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Abstract

We present Condition-Aware Neural Network (CAN), a
new method for adding control to image generative mod-
els. In parallel to prior conditional control methods, CAN
controls the image generation process by dynamically ma-
nipulating the weight of the neural network. This is achieved
by introducing a condition-aware weight generation mod-
ule that generates conditional weight for convolution/linear
layers based on the input condition. We test CAN on class-
conditional image generation on ImageNet and text-to-image
generation on COCO. CAN consistently delivers significant
improvements for diffusion transformer models, including
DiT and UViT. In particular, CAN combined with EfficientViT
(CaT) achieves 2.78 FID on ImageNet 512×512, surpassing
DiT-XL/2 while requiring 52× fewer MACs per sampling
step.

1. Introduction

Large-scale image [1–4] and video generative models

[5, 6] have demonstrated astounding capacity in synthesizing

photorealistic images and videos. To convert these models

into productive tools for humans, a critical step is adding

control. Instead of letting the model randomly generate

data samples, we want the generative model to follow our

instructions (e.g., class label, text, pose) [7].

Extensive studies have been conducted to achieve this

goal. For example, in GANs [8, 9], a widespread solution

is to use adaptive normalization [10, 11] that dynamically

scales and shifts the intermediate feature maps according

to the input condition. In addition, another widely used

technique is to use cross-attention [1] or self-attention [12]

to fuse the condition feature with the image feature. Though

differing in the used operations, these methods share the

same underlying mechanism, i.e., adding control by feature

space manipulation. Meanwhile, the neural network weight

(convolution/linear layers) remains the same for different

conditions.

∗Work done during an internship at NVIDIA.
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Figure 1. Comparing CAN Models and Prior Image Generative
Models on ImageNet 512×512. With the new conditional control

method, we significantly improve the performance of controlled

image generative models. Combining CAN and EfficientViT [13],

our CaT model provides 52× MACs reduction per sampling step

than DiT-XL/2 [14] without performance loss.

This work aims to answer the following questions: i) Can
we control image generative models by manipulating their
weight? ii) Can controlled image generative models benefit
from this new conditional control method?

To this end, we introduce Condition-Aware Neural
Network (CAN), a new conditional control method based

on weight space manipulation. Differentiating from a regular

neural network, CAN introduces an additional weight gen-

eration module (Figure 2). The input to this module is the

condition embedding, which consists of the user instruction

(e.g., class label) and the timestep for diffusion models [15].

The module’s output is the conditional weight used to adapt

the static weight of the convolution/linear layer. We conduct

extensive ablation study experiments investigating the practi-

cal use of CAN on diffusion transformers. Our study reveals

two critical insights for CAN. First, rather than making all

layers condition-aware, we find carefully choosing a subset

of modules to be condition-aware (Figure 3) is beneficial

20
24

 IE
EE

/C
VF

 C
on

fe
re

nc
e 

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n 

(C
VP

R)
 |

 9
79

-8
-3

50
3-

53
00

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
VP

R5
27

33
.2

02
4.

00
68

7

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



Input Image 
Feature

Output Image 
Feature

Condition: Class, 
Timestep, …

xi

xi+1

c

Conv / Linear

Condition-Aware 
Conv/Linear Weight 

Generation

WcW+Conv / LinearW

Input Image 
Feature

xi

Output Image 
Feature

xi+1

Condition: Class, 
Timestep, …

c

Conv / LinearW

Input Image 
Feature

xi

Output Image 
Feature

xi+1

Conv / Linear
Wc

Condition-Aware 
Conv/Linear Weight 

Generation

Figure 2. Illustration of Condition-Aware Neural Network. Left: A regular neural network with static convolution/linear layers. Right: A

condition-aware neural network and its equivalent form.

for both efficiency and performance (Table 1). Second, we

find directly generating the conditional weight is much more

effective than adaptively merging a set of base static layers

[16] for conditional control (Figure 4).

We evaluate CAN on two representative diffusion trans-

former models, including DiT [14], and UViT [12]. CAN

achieves significant performance boosts for all these diffu-

sion transformer models while incurring negligible computa-

tional cost increase (Figure 7). We also find that CAN alone

provides effective conditional control for image generative

models, delivering lower FID and higher CLIP scores than

prior conditional control methods (Table 3). Apart from

applying CAN to existing diffusion transformer models, we

further build a new family of diffusion transformer models

called CaT by marrying CAN and EfficientViT [13] (Fig-

ure 6). We summarize our contributions as follows:

• We introduce a new mechanism for controlling image

generative models. To the best of our knowledge, our

work is the first to demonstrate the effectiveness of weight

manipulation for conditional control.

• We propose Condition-Aware Neural Network, a new con-

ditional control method for controlled image generation.

We also provide design insights to make CAN usable in

practice.

• Our CAN consistently improves performances on image

generative models, outperforming prior conditional con-

trol methods by a significant margin. In addition, CAN

can also benefit the deployment of image generative mod-

els. Achieving a better FID on ImageNet 512×512, our

CAN model requires 52× fewer MACs than DiT-XL/2

per sampling step (Figure 1), paving the way for diffusion

model applications on edge devices.

2. Method

2.1. Condition-Aware Neural Network

The image generation process can be viewed as a mapping

from the source domain (noise or noisy image) to the target

domain (real image). For controlled image generation, the

target data distribution is different given different conditions

(e.g., cat images’ data distribution vs. castle images’ data

distribution). In addition, the input data distribution is also

different for diffusion models [15] at different timesteps.

Despite these differences, prior models use the same static

convolution/linear layers for all cases, limiting the overall

performance due to negative transfer between different sub-

tasks [17]. To alleviate this issue, one possible solution is

to have an expert model [18] for each sub-task. However,

this approach is infeasible for practical use because of the

enormous cost. Our condition-aware neural network (CAN)

tackles this issue by enabling the neural network to adjust its

weight dynamically according to the given condition, instead

of explicitly having the expert models.

Figure 2 demonstrates the general idea of CAN. The key

difference from a regular neural network is that CAN has an

extra conditional weight generation module. This module

takes the condition embedding c as the input and outputs the

conditional weight Wc. In addition to the conditional weight

Wc, each layer has the static weight W . During training and

inference, Wc and W are fused into a single kernel call by

summing the weight values. This is equivalent to applying

Wc and W independently on the input image feature and

then adding their outputs.

2.2. Practical Design

Which Modules to be Condition-Aware? Theoretically,

we can make all layers in the neural network condition-

aware. However, in practice, this might not be a good design.

First, from the performance perspective, having too many

condition-aware layers might make the model optimization

challenging. Second, from the efficiency perspective, while

the computational overhead of generating the conditional

weight for all layers is negligible1 , it will incur a significant

parameter overhead. For example, let’s denote the dimension

of the condition embedding as d (e.g., 384, 512, 1024, etc)

and the model’s static parameter size as #params. Using

a single linear layer to map from the condition embedding

to the conditional weight requires #params ×d parameters,

1It is because the sequence length (or spatial size) of the condition

embedding is much smaller than the image feature.
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Figure 3. Overview of Applying CAN to Diffusion Transformer. The patch embedding layer, the output projection layers in self-attention,

and the depthwise convolution (DW Conv) layers are condition-aware. The other layers are static. All output projection layers share the

same conditional weight while still having their own static weights.

which is impractical for real-world use. In this work, we

carefully choose a subset of modules to apply CAN to solve

this issue.

An overview of applying CAN to diffusion transformer

[12, 14] is provided in Figure 3. Depthwise convolution [19]

has a much smaller parameter size than regular convolution,

making it a low-cost candidate to be condition-aware. There-

fore, we add a depthwise convolution in the middle of FFN

following the previous design [13]. We conduct ablation

study experiments on ImageNet 256×256 using UViT-S/2

[12] to determine the set of modules to be condition-aware.

All the models, including the baseline model, have the same
architecture. The only distinction is the set of condition-
aware modules is different.

We summarize the results in Table 1. We have the follow-

ing observations in our ablation study experiments:

• Making a module condition-aware does not always im-

prove the performance. For example, using a static head

gives a lower FID and a higher CLIP score than using a

condition-aware head (row #2 vs. row #4 in Table 1).

• Making depthwise convolution layers, the patch embed-

ding layer, and the output projection layers condition-

aware brings a significant performance boost. It improves

the FID from 28.32 to 8.82 and the CLIP score from 30.09

to 31.74.

Based on these results, we chose this design for CAN. Details

are illustrated in Figure 3. For the depthwise convolution

layers and the patch embedding layer, we use a separate

conditional weight generation module for each layer, as their

parameter size is small. In contrast, we use a shared condi-

tional weight generation module for the output projection

layers, as their parameter size is large. Since different output

projection layers have different static weights, we still have

different weights for different output projection layers.

CAN vs. Adaptive Kernel Selection. Instead of directly

generating the conditional weight, another possible approach

is maintaining a set of base convolution kernels and dy-

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
1. Baseline (Static Conv/Linear) 28.32 30.09

Making Modules Condition-Aware:

2. DW Conv 11.18 31.54

3. + Patch Embedding 10.23 31.61

4. or + Head (�) 12.29 31.40

5. + Output Projection 8.82 31.74

6. or + QKV Projection (�) 9.71 31.66

7. or + MLP (�) 10.06 31.62

Table 1. Ablation Study on Making Which Modules Condition-
Aware.
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Figure 4. CAN is More Effective than Adaptive Kernel Selec-
tion.

namically generating scaling parameters to combine these

base kernels [2, 16]. This approach’s parameter overhead is

smaller than CAN. However, this adaptive kernel selection

strategy cannot match CAN’s performance (Figure 4). It

suggests that dynamic parameterization alone is not the key

to better performances; better condition-aware adaptation

capacity is critical.
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Figure 6. Macro Architecture of CaT. Benefiting from EfficientViT’s linear computational complexity [13], we can keep the high-resolution

stages without efficiency concerns.

Implementation. Since the condition-aware layers have

different weights given different samples, we cannot do the

batch training and inference. Instead, we must run the kernel

calls independently for each sample, as shown in Figure 5

(left). This will significantly slow down the training process

on GPU. To address this issue, we employ an efficient im-

plementation for CAN (Figure 5 right). The core insight

is to fuse all convolution kernel calls [20] into a grouped

convolution where #Groups is the batch size B. We do the

batch-to-channel conversion before running the grouped con-

volution to preserve the functionality. After the operation,

we add the channel-to-batch transformation to convert the

feature map to the original format.

Theoretically, with this efficient implementation, there

will be negligible training overhead compared to running a

static model. In practice, as NVIDIA GPU supports regular

convolution much better than grouped convolution, we still

observe 30%-40% training overhead. This issue can be

addressed by writing customized CUDA kernels. We leave

it to future work.

3. Experiments

3.1. Setups

Datasets. Due to resource constraints, we conduct class-

conditional image generation experiments using the Ima-

geNet dataset and use COCO for text-to-image generation

experiments. For large-scale text-to-image experiments [21],

we leave them to future work.

Evaluation Metric. Following the common practice, we

use FID [22] as the evaluation metric for image quality. In

addition, we use the CLIP score [23] as the metric for con-

trollability. We use the public CLIP ViT-B/32 [24] for mea-

suring the CLIP score, following [21]. The text prompts are

constructed following CLIP’s zero-shot image classification

setting [24].

Implementation Details. We apply CAN to recent dif-

fusion transformer models, including DiT [14] and UViT

[12]. We follow the training setting suggested in the offi-

cial paper or GitHub repository. By default, classifier-free

guidance [25] is used for all models unless explicitly stated.

The baseline models’ architectures are the same as the CAN

models’, having depthwise convolution in FFN layers. We

implement our models using Pytorch and train them using

A6000 GPUs. Automatic mixed-precision is used during

training. In addition to applying CAN to existing models,

we also build a new family of diffusion transformers called

CaT by marrying CAN and EfficientViT [13]. The macro

architecture of CaT is illustrated in Figure 6.

3.2. Ablation Study

We train all models for 80 epochs with batch size 1024

(around 100K iterations) for ablation study experiments un-

less stated explicitly. All models use DPM-Solver [26] with

50 steps for sampling images.

Effectiveness of CAN. Figure 7 summarizes the results

of CAN on various UViT and DiT variants. CAN signifi-

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



0

20

40

60

0 6 12 18

CAN Baseline

F
ID

 ↓

GMACs (Per Step) ↓

ImageNet 256 256
UViT

×

0

20

40

60

80

0 6 12 18 24
F

ID
↓

GMACs (Per Step) ↓

ImageNet 256 256
DiT

×

28

29

30

31

32

33

0 6 12 18

CAN Baseline

C
LI

P
 S

co
re

↑

GMACs (Per Step) ↓

ImageNet 256 256
UViT

×

28

29

30

31

32

33

0 6 12 18 24

C
LI

P
 S

co
re

 ↑

GMACs (Per Step) ↓

ImageNet 256 256
DiT

×

Figure 7. CAN Results on Different UViT and DiT Variants. CAN consistently delivers lower FID and higher CLIP score for UViT and

DiT variants.
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Figure 8. Training Curve. CAN’s improvements are not due to

faster convergence. We observe consistent FID improvements when

trained longer.

cantly improves the image quality and controllability over

the baseline for all variants. Additionally, these improve-

ments come with negligible computational cost overhead.

Therefore, CAN also enhances efficiency by delivering the

same FID and CLIP score with lower-cost models.

Figure 8 compares the training curves of CAN and base-

line on UViT-S/2 and DiT-S/2. We can see that the absolute

improvement remains significant when trained longer for

both models. It shows that the improvements are not due

to faster convergence. Instead, adding CAN improves the

performance upper bound of the models.

Analysis. For diffusion models, the condition embedding

contains both the class label and timestep. To dissect which

one is more important for the conditional weight generation

process, we conduct the ablation study experiments using

UViT-S/2, and summarize the results in Table 2. We find

that:

• The class label information is more important than the

timestep information in the weight generation process.

Adding class label alone provides 5.15 lower FID and 0.33

higher CLIP score than adding timestep alone.

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
Baseline 28.32 30.09

CAN (Timestep Only) 15.16 31.26

CAN (Class Label Only) 10.01 31.59

CAN (All) 8.82 31.74

Table 2. Ablation Study on the Effect of Each Condition for
CAN.

ImageNet 256×256, DiT-S/2

Models FID ↓ CLIP Score ↑
Adaptive Normalization 39.44 29.57

CAN Only 26.44 30.54

CAN + Adaptive Normalization 21.76 30.86

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
Attention (Condition as Tokens) 28.32 30.09

CAN Only 8.79 31.75

CAN + Attention (Condition as Tokens) 8.82 31.74

Table 3. Comparison with Prior Conditional Control Methods.
CAN can work alone without adding other conditional control

methods.

• Including the class label and the timestep in the condition

embedding delivers the best results. Therefore, we stick to

this design in the following experiments.

Comparison with Prior Conditional Control Methods.
In prior experiments, we kept the original conditional control

methods of DiT (adaptive normalization) and UViT (atten-

tion with condition as tokens) unchanged while adding CAN.

To see if CAN can work alone and the comparison between

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



ImageNet 512×512

Models FID-50K (no cfg) ↓ FID-50K ↓ #MACs (Per Step) ↓ #Steps ↓ #Params ↓
ADM [27] 23.24 7.72 1983G 250 559M

ADM-U [27] 9.96 3.85 2813G 250 730M

UViT-L/4 [12] - 4.67 77G 50 287M

UViT-H/4 [12] - 4.05 133G 50 501M

DiT-XL/2 [14] 12.03 3.04 525G 250 675M

CAN (UViT-S-Deep/4) 23.40 4.04 16G 50 185M

CaT-L0 14.25 2.78 10G 20 377M

CaT-L1 10.64 2.48 12G 20 486M

ImageNet 256×256

Models FID-50K (no cfg) ↓ FID-50K ↓ #MACs (Per Step) ↓ #Steps ↓ #Params ↓
LDM-4 [1] 10.56 3.60 - 250 400M

UViT-L/2 [12] - 3.40 77G 50 287M

UViT-H/2 [12] - 2.29 133G 50 501M

DiT-XL/2 [14] 9.62 2.27 119G 250 675M

CAN (UViT-S/2) 16.20 3.52 12G 50 147M

CAN (UViT-S-Deep/2) 11.89 2.78 16G 50 182M

CaT-B0 8.81 2.09 12G 30 475M

Table 4. Class-Conditional Image Generation Results on ImageNet.

CAN and previous conditional control methods, we conduct

experiments and provide the results in Table 3. We have the

following findings:

• CAN alone can work as an effective conditional control

method. For example, CAN alone achieves a 13.00 better

FID and 0.97 higher CLIP score than adaptive normal-

ization on DiT-S/2. In addition, CAN alone achieves a

19.53 lower FID and 1.66 higher CLIP score than attention

(condition as tokens) on UViT-S/2.

• CAN can be combined with other conditional control meth-

ods to achieve better results. For instance, combining CAN

with adaptive normalization provides the best results for

DiT-S/2.

• For UViT models, combining CAN with attention (condi-

tion as tokens) slightly hurts the performance. Therefore,

we switch to using CAN alone on UViT models in the

following experiments.

3.3. Comparison with State-of-the-Art Models

We compare our final models with other diffusion models

on ImageNet and COCO. The results are summarized in

Table 4 and Table 6. For CaT models, we use UniPC [28] for

sampling images to reduce the number of sampling steps.

Class-Conditional Generation on ImageNet 256×256.
As shown in Table 4 (bottom), with the classifier-free guid-

ance (cfg), our CaT-B0 achieves 2.09 FID on ImageNet

256×256, outperforming DiT-XL/2 and UViT-H/2. More

importantly, our CaT-B0 is much more compute-efficient

than these models: 9.9× fewer MACs than DiT-XL/2 and

11.1× fewer MACs than UViT-H/2. Without the classifier-

free guidance, our CaT-B0 also achieves the lowest FID

among all compared models (8.81 vs. 9.62 vs. 10.56).

Class-Conditional Generation on ImageNet 512×512.
On the more challenging 512×512 image generation task,

we observe the merits of CAN become more significant. For

example, our CAN (UViT-S-Deep/4) can match the perfor-

mance of UViT-H (4.04 vs. 4.05) while only requiring 12%

of UViT-H’s computational cost per diffusion step. Addition-

ally, our CaT-L0 delivers 2.78 FID on ImageNet 512×512,

outperforming DiT-XL/2 (3.04 FID) that requires 52× higher

computational cost per diffusion step. In addition, by slightly

scaling up the model, our CaT-L1 further improves the FID

from 2.78 to 2.48.

In addition to computational cost comparisons, Table 5

compares CaT-L0 and DiT-XL/2 on NVIDIA Jetson AGX

Orin. The latency is measured with TensorRT, fp16. De-

livering a better FID on ImageNet 512×512, CaT-L0 com-

bined with a training-free fast sampling method (UniPC)

runs 229× faster than DiT-XL/2 on Orin. It is possible to

further push the efficiency frontier by combining CaT with

training-based few-step methods [29, 30], showing the po-

tential of enabling real-time diffusion model applications on

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



ImageNet 512×512

Models #Steps ↓ Orin Latency ↓ FID ↓
DiT-XL/2 [14] 250 45.9s 3.04

CaT-L0 20 0.2s 2.78

Table 5. NVIDIA Jetson AGX Orin Latency vs. FID. Latency is

profiled with TensorRT and fp16.

COCO 256×256

Models FID-30K ↓ #MACs ↓ #Params ↓
Friro 8.97 - 512M

UViT-S/2 5.95 15G 45M

UViT-S-Deep/2 5.48 19G 58M

CaT-S0 5.49 3G 169M

CaT-S1 5.22 7G 307M

Table 6. Text-to-Image Generation Results on COCO 256×256.

edge devices.

Apart from quantitative results, Figure 9 provides samples

from the randomly generated images by CAN models, which

demonstrate the capability of our models in generating high-

quality images.

Text-to-Image Generation on COCO 256×256. For text-

to-image generation experiments on COCO, we follow the

same setting used in UViT [12]. Specifically, models are

trained from scratch on the COCO 2014 training set. Follow-

ing UViT [12], we randomly sample 30K text prompts from

the COCO 2014 validation set to generate images and then

compute FID. We use the same CLIP encoder as in UViT

for encoding the text prompts. The results are summarized

in Table 6. Our CaT-S0 achieves a similar FID as UViT-

S-Deep/2 while having much less computational cost (19G

MACs → 3G MACs). It justifies the generalization ability

of our models.

4. Related Work
Controlled Image Generation. Controlled image genera-

tion requires the models to incorporate the condition informa-

tion into the computation process to generate related images.

Various techniques have been developed in the community

for controlled image generation. One typical example is

adaptive normalization [11] that regresses scale and shift

parameters from the condition information and applies the

feature-wise affine transformation to influence the output.

Apart from adaptive normalization, another typical approach

is to treat condition information as tokens and use either

cross-attention [1] or self-attention [12] to fuse the condi-

tion information. ControlNet [7] is another representative

technique that uses feature-wise addition to add extra control

to pre-trained text-to-image diffusion models. In parallel to

these techniques, this work explores another mechanism for

adding conditional control to image generative models, i.e.,

making the weight of neural network layers (conv/linear)

condition-aware.

Dynamic Neural Network. Our work can be viewed as

a new type of dynamic neural network. Apart from adding

conditional control explored in this work, dynamically adapt-

ing the neural network can be applied to many deep learning

applications. For example, CondConv [16] proposes to dy-

namically combine a set of base convolution kernels based

on the input image feature to increase the model capacity.

Similarly, the mixture-of-expert [18] technique uses a gat-

ing network to route the input to different experts dynami-

cally. For efficient deployment, once-for-all network [31]

and slimmable neural network [32] dynamically adjust the

neural network architecture according to the given efficiency

constraint to achieve better tradeoff between efficiency and

accuracy.

Weight Generating Networks. Our conditional weight

generation module can be viewed as a new kind of weight

generation network specially designed for adding conditional

control to generative models. There are some prior works ex-

ploiting weight generation networks in other scenarios. For

example, [33] proposes to use a small network to generate

weights for a larger network. These weights are the same for

every example in the dataset for better parameter efficiency.

Additionally, weight generation networks have been applied

to neural architecture search to predict the weight of a neural

network given its architecture [34] to reduce the training and

search cost [35] of neural architecture search.

Efficient Deep Learning Computing. Our work is also

connected to efficient deep learning computing [36, 37] that

aims to improve the efficiency of deep learning models to

make them friendly for deployment on hardware. State-of-

the-art image generative models [1, 2, 4, 21] have enormous

computation and memory costs, which makes it challeng-

ing to deploy them on resource-constrained edge devices

while maintaining high quality. Our work can improve the

efficiency of the controlled generative models by delivering

the same performance with fewer diffusion steps and lower-

cost models. For future work, we will explore combining

our work and efficient deep learning computing techniques

[31, 38] to futher boost efficiency.

5. Conclusion
In this work, we studied adding control to image genera-

tive models by manipulating their weight. We introduced a
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Figure 9. Samples of Generated Images by CAN Models.

new conditional control method, called Condition-Aware
Neural Network (CAN), and provided efficient and prac-

tical designs for CAN to make it usable in practice. We

conducted extensive experiments on class-conditional gen-

eration using ImageNet and text-to-image generation using

COCO to evaluate CAN’s effectiveness. CAN delivered con-

sistent and significant improvements over prior conditional

control methods. We also built a new family of diffusion

transformer models by marrying CAN and EfficientViT. For

future work, we will apply CAN to more challenging tasks

like large-scale text-to-image generation, video generation,

etc.

Acknowledgments
This work is supported by MIT-IBM Watson AI Lab, Ama-
zon, MIT Science Hub, and National Science Founda-
tion.

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



References
[1] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 6, 7

[2] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli

Shechtman, Sylvain Paris, and Taesung Park. Scaling up gans

for text-to-image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 10124–10134, 2023. 3, 7

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Ji-

aming Song, Karsten Kreis, Miika Aittala, Timo Aila, Samuli

Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion

models with an ensemble of expert denoisers. arXiv preprint
arXiv:2211.01324, 2022.

[4] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,

Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael

Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-

torealistic text-to-image diffusion models with deep language

understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022. 1, 7

[5] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei

Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric

Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.

Video generation models as world simulators. 2024. 1

[6] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel

Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,

Zion English, Vikram Voleti, Adam Letts, et al. Stable

video diffusion: Scaling latent video diffusion models to

large datasets. arXiv preprint arXiv:2311.15127, 2023. 1

[7] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding

conditional control to text-to-image diffusion models. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 1, 7

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018. 1

[9] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401–4410, 2019. 1

[10] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vision,

pages 1501–1510, 2017. 1

[11] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with

a general conditioning layer. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018. 1, 7

[12] Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are worth

words: a vit backbone for score-based diffusion models. In

NeurIPS 2022 Workshop on Score-Based Methods, 2022. 1,

2, 3, 4, 6, 7

[13] Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song

Han. Efficientvit: Lightweight multi-scale attention for high-

resolution dense prediction. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 17302–

17313, 2023. 1, 2, 3, 4

[14] William Peebles and Saining Xie. Scalable diffusion models

with transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4195–4205,

2023. 1, 2, 3, 4, 6, 7

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 2

[16] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. Advances in neural information
processing systems, 32, 2019. 2, 3, 7

[17] Sen Wu, Hongyang R Zhang, and Christopher Ré. Under-

standing and improving information transfer in multi-task

learning. arXiv preprint arXiv:2005.00944, 2020. 2

[18] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-

geously large neural networks: The sparsely-gated mixture-

of-experts layer. arXiv preprint arXiv:1701.06538, 2017. 2,

7

[19] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

1251–1258, 2017. 3

[20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 8110–8119, 2020. 4

[21] Zhan Shi, Xu Zhou, Xipeng Qiu, and Xiaodan Zhu. Im-

proving image captioning with better use of captions. arXiv
preprint arXiv:2006.11807, 2020. 4, 7

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-

hard Nessler, and Sepp Hochreiter. Gans trained by a two

time-scale update rule converge to a local nash equilibrium.

Advances in neural information processing systems, 30, 2017.

4

[23] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,

and Yejin Choi. Clipscore: A reference-free evaluation metric

for image captioning. arXiv preprint arXiv:2104.08718, 2021.

4

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning

transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages

8748–8763. PMLR, 2021. 4

[25] Jonathan Ho and Tim Salimans. Classifier-free diffusion

guidance. arXiv preprint arXiv:2207.12598, 2022. 4

[26] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan

Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion

probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

4

[27] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021. 6

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 



[28] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and

Jiwen Lu. Unipc: A unified predictor-corrector framework

for fast sampling of diffusion models. Advances in Neural
Information Processing Systems, 36, 2024. 6

[29] Tim Salimans and Jonathan Ho. Progressive distillation

for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 6

[30] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.

Consistency models. arXiv preprint arXiv:2303.01469, 2023.

6

[31] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and specialize it

for efficient deployment. arXiv preprint arXiv:1908.09791,

2019. 7

[32] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 7

[33] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks.

In International Conference on Learning Representations,

2017. 7

[34] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 7

[35] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 7

[36] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 7

[37] Han Cai, Chuang Gan, Ji Lin, and Song Han. Net-

work augmentation for tiny deep learning. arXiv preprint
arXiv:2110.08890, 2021. 7

[38] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen

Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.

Q-diffusion: Quantizing diffusion models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,

pages 17535–17545, 2023. 7

Authorized licensed use limited to: Duke University. Downloaded on November 06,2024 at 05:03:00 UTC from IEEE Xplore.  Restrictions apply. 


