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Abstract

We present Condition-Aware Neural Network (CAN), a
new method for adding control to image generative mod-
els. In parallel to prior conditional control methods, CAN
controls the image generation process by dynamically ma-
nipulating the weight of the neural network. This is achieved
by introducing a condition-aware weight generation mod-
ule that generates conditional weight for convolution/linear
layers based on the input condition. We test CAN on class-
conditional image generation on ImageNet and text-to-image
generation on COCO. CAN consistently delivers significant
improvements for diffusion transformer models, including
DiT and UVIT. In particular, CAN combined with EfficientViT
(CaT) achieves 2.78 FID on ImageNet 512 <512, surpassing
DiT-XL/2 while requiring 52x fewer MACs per sampling
step.

1. Introduction

Large-scale image [1-4] and video generative models
[5, 6] have demonstrated astounding capacity in synthesizing
photorealistic images and videos. To convert these models
into productive tools for humans, a critical step is adding
control. Instead of letting the model randomly generate
data samples, we want the generative model to follow our
instructions (e.g., class label, text, pose) [7].

Extensive studies have been conducted to achieve this
goal. For example, in GANSs [8, 9], a widespread solution
is to use adaptive normalization [10, 11] that dynamically
scales and shifts the intermediate feature maps according
to the input condition. In addition, another widely used
technique is to use cross-attention [1] or self-attention [12]
to fuse the condition feature with the image feature. Though
differing in the used operations, these methods share the
same underlying mechanism, i.e., adding control by feature
space manipulation. Meanwhile, the neural network weight
(convolution/linear layers) remains the same for different
conditions.

*Work done during an internship at NVIDIA.
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Figure 1. Comparing CAN Models and Prior Image Generative
Models on ImageNet 512 x512. With the new conditional control
method, we significantly improve the performance of controlled
image generative models. Combining CAN and EfficientViT [13],
our CaT model provides 52 x MACs reduction per sampling step
than DiT-XL/2 [14] without performance loss.

This work aims to answer the following questions: i) Can
we control image generative models by manipulating their
weight? ii) Can controlled image generative models benefit
from this new conditional control method?

To this end, we introduce Condition-Aware Neural
Network (CAN), a new conditional control method based
on weight space manipulation. Differentiating from a regular
neural network, CAN introduces an additional weight gen-
eration module (Figure 2). The input to this module is the
condition embedding, which consists of the user instruction
(e.g., class label) and the timestep for diffusion models [15].
The module’s output is the conditional weight used to adapt
the static weight of the convolution/linear layer. We conduct
extensive ablation study experiments investigating the practi-
cal use of CAN on diffusion transformers. Our study reveals
two critical insights for CAN. First, rather than making all
layers condition-aware, we find carefully choosing a subset
of modules to be condition-aware (Figure 3) is beneficial
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Figure 2. Illustration of Condition-Aware Neural Network. Left: A regular neural network with static convolution/linear layers. Right: A

condition-aware neural network and its equivalent form.

for both efficiency and performance (Table 1). Second, we

find directly generating the conditional weight is much more

effective than adaptively merging a set of base static layers

[16] for conditional control (Figure 4).

We evaluate CAN on two representative diffusion trans-
former models, including DiT [14], and UViT [12]. CAN
achieves significant performance boosts for all these diffu-
sion transformer models while incurring negligible computa-
tional cost increase (Figure 7). We also find that CAN alone
provides effective conditional control for image generative
models, delivering lower FID and higher CLIP scores than
prior conditional control methods (Table 3). Apart from
applying CAN to existing diffusion transformer models, we
further build a new family of diffusion transformer models
called CaT by marrying CAN and EfficientViT [13] (Fig-
ure 6). We summarize our contributions as follows:

* We introduce a new mechanism for controlling image
generative models. To the best of our knowledge, our
work is the first to demonstrate the effectiveness of weight
manipulation for conditional control.

* We propose Condition-Aware Neural Network, a new con-
ditional control method for controlled image generation.
We also provide design insights to make CAN usable in
practice.

e Our CAN consistently improves performances on image
generative models, outperforming prior conditional con-
trol methods by a significant margin. In addition, CAN
can also benefit the deployment of image generative mod-
els. Achieving a better FID on ImageNet 512x512, our
CAN model requires 52x fewer MACs than DiT-XL/2
per sampling step (Figure 1), paving the way for diffusion
model applications on edge devices.

2. Method
2.1. Condition-Aware Neural Network

The image generation process can be viewed as a mapping
from the source domain (noise or noisy image) to the target
domain (real image). For controlled image generation, the
target data distribution is different given different conditions

(e.g., cat images’ data distribution vs. castle images’ data
distribution). In addition, the input data distribution is also
different for diffusion models [15] at different timesteps.
Despite these differences, prior models use the same static
convolution/linear layers for all cases, limiting the overall
performance due to negative transfer between different sub-
tasks [17]. To alleviate this issue, one possible solution is
to have an expert model [18] for each sub-task. However,
this approach is infeasible for practical use because of the
enormous cost. Our condition-aware neural network (CAN)
tackles this issue by enabling the neural network to adjust its
weight dynamically according to the given condition, instead
of explicitly having the expert models.

Figure 2 demonstrates the general idea of CAN. The key
difference from a regular neural network is that CAN has an
extra conditional weight generation module. This module
takes the condition embedding c as the input and outputs the
conditional weight W,. In addition to the conditional weight
W, each layer has the static weight 1. During training and
inference, W, and W are fused into a single kernel call by
summing the weight values. This is equivalent to applying
W. and W independently on the input image feature and
then adding their outputs.

2.2. Practical Design

Which Modules to be Condition-Aware? Theoretically,
we can make all layers in the neural network condition-
aware. However, in practice, this might not be a good design.
First, from the performance perspective, having too many
condition-aware layers might make the model optimization
challenging. Second, from the efficiency perspective, while
the computational overhead of generating the conditional
weight for all layers is negligible!, it will incur a significant
parameter overhead. For example, let’s denote the dimension
of the condition embedding as d (e.g., 384, 512, 1024, etc)
and the model’s static parameter size as #params. Using
a single linear layer to map from the condition embedding
to the conditional weight requires #params X d parameters,

Lt is because the sequence length (or spatial size) of the condition
embedding is much smaller than the image feature.
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Figure 3. Overview of Applying CAN to Diffusion Transformer. The patch embedding layer, the output projection layers in self-attention,
and the depthwise convolution (DW Conv) layers are condition-aware. The other layers are static. All output projection layers share the

same conditional weight while still having their own static weights.

which is impractical for real-world use. In this work, we

carefully choose a subset of modules to apply CAN to solve

this issue.

An overview of applying CAN to diffusion transformer
[12, 14] is provided in Figure 3. Depthwise convolution [19]
has a much smaller parameter size than regular convolution,
making it a low-cost candidate to be condition-aware. There-
fore, we add a depthwise convolution in the middle of FFN
following the previous design [13]. We conduct ablation
study experiments on ImageNet 256256 using UViT-S/2
[12] to determine the set of modules to be condition-aware.
All the models, including the baseline model, have the same
architecture. The only distinction is the set of condition-
aware modules is different.

We summarize the results in Table 1. We have the follow-
ing observations in our ablation study experiments:

e Making a module condition-aware does not always im-
prove the performance. For example, using a static head
gives a lower FID and a higher CLIP score than using a
condition-aware head (row #2 vs. row #4 in Table 1).

* Making depthwise convolution layers, the patch embed-
ding layer, and the output projection layers condition-
aware brings a significant performance boost. It improves
the FID from 28.32 to 8.82 and the CLIP score from 30.09
to 31.74.

Based on these results, we chose this design for CAN. Details
are illustrated in Figure 3. For the depthwise convolution
layers and the patch embedding layer, we use a separate
conditional weight generation module for each layer, as their
parameter size is small. In contrast, we use a shared condi-
tional weight generation module for the output projection
layers, as their parameter size is large. Since different output
projection layers have different static weights, we still have
different weights for different output projection layers.

CAN vs. Adaptive Kernel Selection. Instead of directly
generating the conditional weight, another possible approach
is maintaining a set of base convolution kernels and dy-

ImageNet 256 <256, UViT-S/2

Models | FID|  CLIP Score t
1. Baseline (Static Conv/Linear) ‘ 28.32 30.09
Making Modules Condition-Aware:

2. DW Conv | 11.18 31.54

3. + Patch Embedding 10.23 31.61

4. or + Head (X) 12.29 31.40

5. + Output Projection 8.82 31.74

6. or + QKV Projection (X) 9.71 31.66

7. or + MLP (X) 10.06 31.62

Table 1. Ablation Study on Making Which Modules Condition-
Aware.

+ Adaptive Kernel Selection

35
\ \
Qe b = nn g ST
o5 | C - Baseline
=4 ImageNet 256X256
i 15 UVIT-S/2
5 CAN

2 4 6 8 10 12
Number of Base Kernels

Figure 4. CAN is More Effective than Adaptive Kernel Selec-
tion.

namically generating scaling parameters to combine these
base kernels [2, 16]. This approach’s parameter overhead is
smaller than CAN. However, this adaptive kernel selection
strategy cannot match CAN’s performance (Figure 4). It
suggests that dynamic parameterization alone is not the key
to better performances; better condition-aware adaptation
capacity is critical.
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Figure 6. Macro Architecture of CaT. Benefiting from EfficientViT’s linear computational complexity [13], we can keep the high-resolution

stages without efficiency concerns.

Implementation. Since the condition-aware layers have
different weights given different samples, we cannot do the
batch training and inference. Instead, we must run the kernel
calls independently for each sample, as shown in Figure 5
(left). This will significantly slow down the training process
on GPU. To address this issue, we employ an efficient im-
plementation for CAN (Figure 5 right). The core insight
is to fuse all convolution kernel calls [20] into a grouped
convolution where #Groups is the batch size B. We do the
batch-to-channel conversion before running the grouped con-
volution to preserve the functionality. After the operation,
we add the channel-to-batch transformation to convert the
feature map to the original format.

Theoretically, with this efficient implementation, there
will be negligible training overhead compared to running a
static model. In practice, as NVIDIA GPU supports regular
convolution much better than grouped convolution, we still
observe 30%-40% training overhead. This issue can be
addressed by writing customized CUDA kernels. We leave
it to future work.

3. Experiments
3.1. Setups

Datasets. Due to resource constraints, we conduct class-
conditional image generation experiments using the Ima-
geNet dataset and use COCO for text-to-image generation
experiments. For large-scale text-to-image experiments [21],
we leave them to future work.

Evaluation Metric. Following the common practice, we
use FID [22] as the evaluation metric for image quality. In
addition, we use the CLIP score [23] as the metric for con-
trollability. We use the public CLIP ViT-B/32 [24] for mea-
suring the CLIP score, following [21]. The text prompts are
constructed following CLIP’s zero-shot image classification
setting [24].

Implementation Details. We apply CAN to recent dif-
fusion transformer models, including DiT [14] and UViT
[12]. We follow the training setting suggested in the offi-
cial paper or GitHub repository. By default, classifier-free
guidance [25] is used for all models unless explicitly stated.
The baseline models’ architectures are the same as the CAN
models’, having depthwise convolution in FFN layers. We
implement our models using Pytorch and train them using
A6000 GPUs. Automatic mixed-precision is used during
training. In addition to applying CAN to existing models,
we also build a new family of diffusion transformers called
CaT by marrying CAN and EfficientViT [13]. The macro
architecture of CaT is illustrated in Figure 6.

3.2. Ablation Study

We train all models for 80 epochs with batch size 1024
(around 100K iterations) for ablation study experiments un-
less stated explicitly. All models use DPM-Solver [26] with
50 steps for sampling images.

Effectiveness of CAN. Figure 7 summarizes the results
of CAN on various UViT and DiT variants. CAN signifi-
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Figure 7. CAN Results on Different UViT and DiT Variants. CAN consistently delivers lower FID and higher CLIP score for UViT and

DiT variants.
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Figure 8. Training Curve. CAN’s improvements are not due to
faster convergence. We observe consistent FID improvements when
trained longer.

cantly improves the image quality and controllability over
the baseline for all variants. Additionally, these improve-
ments come with negligible computational cost overhead.
Therefore, CAN also enhances efficiency by delivering the
same FID and CLIP score with lower-cost models.

Figure 8 compares the training curves of CAN and base-
line on UViT-S/2 and DiT-S/2. We can see that the absolute
improvement remains significant when trained longer for
both models. It shows that the improvements are not due
to faster convergence. Instead, adding CAN improves the
performance upper bound of the models.

Analysis. For diffusion models, the condition embedding
contains both the class label and timestep. To dissect which
one is more important for the conditional weight generation
process, we conduct the ablation study experiments using

UVIT-S/2, and summarize the results in Table 2. We find

that:

* The class label information is more important than the
timestep information in the weight generation process.
Adding class label alone provides 5.15 lower FID and 0.33
higher CLIP score than adding timestep alone.

ImageNet 256 <256, UViT-S/2

Models ‘ FID | CLIP Score 1
Baseline ‘ 28.32 30.09
CAN (Timestep Only) 15.16 31.26
CAN (Class Label Only) | 10.01 31.59
CAN (All) | 8.82 31.74

Table 2. Ablation Study on the Effect of Each Condition for
CAN.

ImageNet 256 <256, DiT-S/2
Models

| FID | CLIP Score
Adaptive Normalization ‘ 39.44 29.57

CAN Only 26.44 30.54
CAN + Adaptive Normalization 21.76 30.86

ImageNet 256 <256, UViT-S/2

Models | FID | CLIP Score 1
Attention (Condition as Tokens) ‘ 28.32 30.09
CAN Only 8.79 31.75
CAN + Attention (Condition as Tokens) | 8.82 31.74

Table 3. Comparison with Prior Conditional Control Methods.
CAN can work alone without adding other conditional control
methods.

* Including the class label and the timestep in the condition
embedding delivers the best results. Therefore, we stick to
this design in the following experiments.

Comparison with Prior Conditional Control Methods.
In prior experiments, we kept the original conditional control
methods of DiT (adaptive normalization) and UViT (atten-
tion with condition as tokens) unchanged while adding CAN.
To see if CAN can work alone and the comparison between
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ImageNet 512x512

Models FID-50K (no cfg) | FID-50K | | #MACs (Per Step) |~ #Steps | | #Params |
ADM [27] 23.24 7.72 1983G 250 559M
ADM-U [27] 9.96 3.85 2813G 250 730M
UViT-L/4 [12] - 4.67 77G 50 287M
UViT-H/4 [12] - 4.05 133G 50 501M
DiT-XL/2 [14] 12.03 3.04 525G 250 675M
CAN (UViT-S-Deep/4) | 23.40 404 | 16G 50 185M
CaT-L0 14.25 2.78 10G 20 377M
CaT-L1 10.64 248 12G 20 486M
ImageNet 256 <256

Models | FID-50K (no cfg) | FID-50K | | #MACs (Per Step) | #Steps | | #Params |
LDM-4 [1] \ 10.56 360 | - 250 | 400M
UVIT-L/2 [12] - 3.40 717G 50 287M
UVIT-H/2 [12] - 2.29 133G 50 501M
DiT-XL/2 [14] 9.62 2.27 119G 250 675M
CAN (UViT-S/2) 16.20 3.52 12G 50 147M
CAN (UViT-S-Deep/2) 11.89 2.78 16G 50 182M
CaT-B0 \ 8.81 209 | 12G 30 | 475M

Table 4. Class-Conditional Image Generation Results on ImageNet.

CAN and previous conditional control methods, we conduct
experiments and provide the results in Table 3. We have the
following findings:

e CAN alone can work as an effective conditional control
method. For example, CAN alone achieves a 13.00 better
FID and 0.97 higher CLIP score than adaptive normal-
ization on DiT-S/2. In addition, CAN alone achieves a
19.53 lower FID and 1.66 higher CLIP score than attention
(condition as tokens) on UViT-S/2.

CAN can be combined with other conditional control meth-
ods to achieve better results. For instance, combining CAN
with adaptive normalization provides the best results for
DiT-S/2.

For UViT models, combining CAN with attention (condi-
tion as tokens) slightly hurts the performance. Therefore,
we switch to using CAN alone on UViT models in the
following experiments.

3.3. Comparison with State-of-the-Art Models

We compare our final models with other diffusion models
on ImageNet and COCO. The results are summarized in
Table 4 and Table 6. For CaT models, we use UniPC [28] for
sampling images to reduce the number of sampling steps.

Class-Conditional Generation on ImageNet 256 x256.
As shown in Table 4 (bottom), with the classifier-free guid-
ance (cfg), our CaT-BO achieves 2.09 FID on ImageNet

256x256, outperforming DiT-XL/2 and UViT-H/2. More
importantly, our CaT-B0 is much more compute-efficient
than these models: 9.9x fewer MACs than DiT-XL/2 and
11.1x fewer MACs than UViT-H/2. Without the classifier-
free guidance, our CaT-BO also achieves the lowest FID
among all compared models (8.81 vs. 9.62 vs. 10.56).

Class-Conditional Generation on ImageNet 512x512.
On the more challenging 512x512 image generation task,
we observe the merits of CAN become more significant. For
example, our CAN (UViT-S-Deep/4) can match the perfor-
mance of UViT-H (4.04 vs. 4.05) while only requiring 12%
of UViT-H’s computational cost per diffusion step. Addition-
ally, our CaT-LO delivers 2.78 FID on ImageNet 512x512,
outperforming DiT-XL/2 (3.04 FID) that requires 52 x higher
computational cost per diffusion step. In addition, by slightly
scaling up the model, our CaT-L1 further improves the FID
from 2.78 to 2.48.

In addition to computational cost comparisons, Table 5
compares CaT-L0O and DiT-XL/2 on NVIDIA Jetson AGX
Orin. The latency is measured with TensorRT, fpl16. De-
livering a better FID on ImageNet 512x512, CaT-LO com-
bined with a training-free fast sampling method (UniPC)
runs 229 x faster than DiT-XL/2 on Orin. It is possible to
further push the efficiency frontier by combining CaT with
training-based few-step methods [29, 30], showing the po-
tential of enabling real-time diffusion model applications on
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ImageNet 512x512

Models | #Steps | Orin Latency | | FID |
DIiT-XL/2 [14]| 250 45.9s | 3.04
CaT-L0 | 20 0.2s | 2.78

Table 5. NVIDIA Jetson AGX Orin Latency vs. FID. Latency is
profiled with TensorRT and fp16.

COCO 256x256

Models | FID-30K | | #MACs |  #Params |
Friro | 897 | - 512M
UVIT-S/2 5.95 15G 45M
UViT-S-Deep/2 5.48 19G 58M
CaT-S0 5.49 3G 169M
CaT-S1 5.22 7G 307M

Table 6. Text-to-Image Generation Results on COCO 256 x 256.

edge devices.

Apart from quantitative results, Figure 9 provides samples
from the randomly generated images by CAN models, which
demonstrate the capability of our models in generating high-
quality images.

Text-to-Image Generation on COCO 256x256. For text-
to-image generation experiments on COCO, we follow the
same setting used in UVIiT [12]. Specifically, models are
trained from scratch on the COCO 2014 training set. Follow-
ing UViT [12], we randomly sample 30K text prompts from
the COCO 2014 validation set to generate images and then
compute FID. We use the same CLIP encoder as in UViT
for encoding the text prompts. The results are summarized
in Table 6. Our CaT-S0 achieves a similar FID as UViT-
S-Deep/2 while having much less computational cost (19G
MACs — 3G MACs). It justifies the generalization ability
of our models.

4. Related Work

Controlled Image Generation. Controlled image genera-
tion requires the models to incorporate the condition informa-
tion into the computation process to generate related images.
Various techniques have been developed in the community
for controlled image generation. One typical example is
adaptive normalization [11] that regresses scale and shift
parameters from the condition information and applies the
feature-wise affine transformation to influence the output.
Apart from adaptive normalization, another typical approach
is to treat condition information as tokens and use either
cross-attention [1] or self-attention [12] to fuse the condi-
tion information. ControlNet [7] is another representative

technique that uses feature-wise addition to add extra control
to pre-trained text-to-image diffusion models. In parallel to
these techniques, this work explores another mechanism for
adding conditional control to image generative models, i.e.,
making the weight of neural network layers (conv/linear)
condition-aware.

Dynamic Neural Network. Our work can be viewed as
a new type of dynamic neural network. Apart from adding
conditional control explored in this work, dynamically adapt-
ing the neural network can be applied to many deep learning
applications. For example, CondConv [16] proposes to dy-
namically combine a set of base convolution kernels based
on the input image feature to increase the model capacity.
Similarly, the mixture-of-expert [18] technique uses a gat-
ing network to route the input to different experts dynami-
cally. For efficient deployment, once-for-all network [31]
and slimmable neural network [32] dynamically adjust the
neural network architecture according to the given efficiency
constraint to achieve better tradeoff between efficiency and
accuracy.

Weight Generating Networks. Our conditional weight
generation module can be viewed as a new kind of weight
generation network specially designed for adding conditional
control to generative models. There are some prior works ex-
ploiting weight generation networks in other scenarios. For
example, [33] proposes to use a small network to generate
weights for a larger network. These weights are the same for
every example in the dataset for better parameter efficiency.
Additionally, weight generation networks have been applied
to neural architecture search to predict the weight of a neural
network given its architecture [34] to reduce the training and
search cost [35] of neural architecture search.

Efficient Deep Learning Computing. Our work is also
connected to efficient deep learning computing [36, 37] that
aims to improve the efficiency of deep learning models to
make them friendly for deployment on hardware. State-of-
the-art image generative models [1, 2, 4, 21] have enormous
computation and memory costs, which makes it challeng-
ing to deploy them on resource-constrained edge devices
while maintaining high quality. Our work can improve the
efficiency of the controlled generative models by delivering
the same performance with fewer diffusion steps and lower-
cost models. For future work, we will explore combining
our work and efficient deep learning computing techniques
[31, 38] to futher boost efficiency.

5. Conclusion

In this work, we studied adding control to image genera-
tive models by manipulating their weight. We introduced a
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Figure 9. Samples of Generated Images by CAN Models.

new conditional control method, called Condition-Aware
Neural Network (CAN), and provided efficient and prac-
tical designs for CAN to make it usable in practice. We
conducted extensive experiments on class-conditional gen-
eration using ImageNet and text-to-image generation using
COCO to evaluate CAN’s effectiveness. CAN delivered con-
sistent and significant improvements over prior conditional
control methods. We also built a new family of diffusion

transformer models by marrying CAN and EfficientViT. For
future work, we will apply CAN to more challenging tasks
like large-scale text-to-image generation, video generation,
etc.
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