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Figure 1. We introduce DistriFusion, a training-free algorithm to harness multiple GPUs to accelerate diffusion model inference without

sacrificing image quality. Naïve Patch (Figure 2(b)) suffers from the fragmentation issue due to the lack of patch interaction. Our

DistriFusion removes artifacts and avoids the communication overhead by reusing the features from the previous steps. Setting: SDXL

with 50-step Euler sampler, 1280× 1920 resolution. Latency is measured on A100s.

Abstract
Diffusion models have achieved great success in syn-

thesizing high-quality images. However, generating high-
resolution images with diffusion models is still challenging
due to the enormous computational costs, resulting in a pro-
hibitive latency for interactive applications. In this paper,
we propose DistriFusion to tackle this problem by leveraging
parallelism across multiple GPUs. Our method splits the
model input into multiple patches and assigns each patch to
a GPU. However, naïvely implementing such an algorithm
breaks the interaction between patches and loses fidelity,
while incorporating such an interaction will incur tremen-
dous communication overhead. To overcome this dilemma,
we observe the high similarity between the input from adja-
cent diffusion steps and propose displaced patch parallelism,
which takes advantage of the sequential nature of the dif-
fusion process by reusing the pre-computed feature maps
from the previous timestep to provide context for the current
step. Therefore, our method supports asynchronous commu-
nication, which can be pipelined by computation. Extensive
experiments show that our method can be applied to recent
Stable Diffusion XL with no quality degradation and achieve
up to a 6.1× speedup on eight A100 GPUs compared to one.

*indicates equal contributions.

1. Introduction
The advent of AI-generated content (AIGC) represents a

seismic shift in technological innovation. Tools like Adobe

Firefly, Midjourney and recent Sora showcase astonishing ca-

pabilities, producing compelling imagery and designs from

simple text prompts. These achievements are notably sup-

ported by the progression in diffusion models [13, 57]. The

emergence of large text-to-image models, including Stable

Diffusion [51], Imgen [53], eDiff-I [2], DALL·E [3, 45, 46]

and Emu [6], further expands the horizons of AI creativity.

Trained on diverse open-web data, these models can

generate photorealistic images from text descriptions alone.

Such technological revolution unlocks numerous synthesis

and editing applications for images and videos, placing new

demands on responsiveness: by interactively guiding and

refining the model output, users can achieve more person-

alized and precise results. Nonetheless, a critical challenge

remains – high resolution leading to large computation. For

example, the original Stable Diffusion [51] is limited to

generating 512 × 512 images. Later, SDXL [43] expands

the capabilities to 1024× 1024 images. More recently, Sora

further pushes the boundaries by enabling video generation

at 1080 × 1920 resolution. Despite these advancements,

the increased latency of generating high-resolution images
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Figure 2. (a) Original diffusion model running on a single device.

(b) Naïvely splitting the image into 2 patches across 2 GPUs has

an evident seam at the boundary due to the absence of interaction

across patches. (c) DistriFusion employs synchronous communica-

tion for patch interaction at the first step. After that, we reuse the

activations from the previous step via asynchronous communica-

tion. In this way, the communication overhead can be hidden into

the computation pipeline.

presents a tremendous barrier to real-time applications.

Recent efforts to accelerate diffusion model inference

have mainly focused on two approaches: reducing sampling

steps [20, 32–34, 54, 58, 66, 69] and optimizing neural net-

work inference [23, 25, 26]. As computational resources

grow rapidly, leveraging multiple GPUs to speed up infer-

ence is appealing. For example, in natural language pro-

cessing (NLP), large language models have successfully

harnessed tensor parallelism across GPUs, significantly re-

ducing latency. However, for diffusion models, multiple

GPUs are usually only used for batch inference. When gen-

erating a single image, typically only one GPU is involved

(Figure 2(a)). Techniques like tensor parallelism are less

suitable for diffusion models due to the large activation size,

as communication costs outweigh savings from distributed

computation. Thus, even when multiple GPUs are available,

they cannot be effectively exploited to further accelerate

single-image generation. This motivates the development of

a method that can utilize multiple GPUs to speed up single-

image generation with diffusion models.

A naïve approach would be to divide the image into

several patches, assigning each patch to a different device for

generation, as illustrated in Figure 2(b). This method allows

for independent and parallel operations across devices.

However, it suffers from a clearly visible seam at the

boundaries of each patch due to the absence of interaction

between the individual patches. However, introducing

interactions among patches to address this issue would incur

excessive synchronization costs again, offsetting the benefits

of parallel processing.

In this work, we present DistriFusion, a method that

enables running diffusion models across multiple devices

in parallel to reduce the latency of single-sample generation

without hurting image quality. As depicted in Figure 2(c),

our approach is also based on patch parallelism, which

divides the image into multiple patches, each assigned to

a different device. Our key observation is that the inputs

across adjacent denoising steps in diffusion models are

similar. Therefore, we adopt synchronous communication

solely for the first step. For the subsequent steps, we

reuse the pre-computed activations from the previous step
to provide global context and patch interactions for the

current step. We further co-design an inference framework

to implement our algorithm. Specifically, our framework

effectively hides the communication overhead within

the computation via asynchronous communication. It

also sparsely runs the convolutional and attention layers

exclusively on the assigned regions, thereby proportionally

reducing per-device computation. Our method, distinct

from data, tensor, or pipeline parallelism, introduces a new

parallelization opportunity: displaced patch parallelism.

DistriFusion only requires off-the-shelf pre-trained diffu-

sion models and is applicable to a majority of few-step sam-

plers. We benchmark it on a subset of COCO Captions [5].

Without loss of visual fidelity, it mirrors the performance

of the original Stable Diffusion XL (SDXL) [43] while

reducing the computation* proportionally to the number of

used devices. Furthermore, our framework also reduces the

latency of SDXL U-Net for generating a single image by up

to 1.8×, 3.4× and 6.1× with 2, 4, and 8 A100 GPUs, respec-

tively. When combined with batch splitting for classifier-free

guidance [12], we achieve in total 3.6× and 6.6× speedups

using 4 and 8 A100 GPUs for 3840× 3840 images, respec-

tively. See Figure 1 for some examples of our method.

2. Related Work

Diffusion models. Diffusion models have significantly trans-

formed the landscape of content generation [2, 13, 39, 43].

At its core, these models synthesize content through an

iterative denoising process. Although this iterative approach

yields unprecedented capabilities for content generation,

it requires substantially more computational resources and

*Following previous works, we measure the computational cost with the

number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.
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results in slower generative speed. This issue intensifies

with the synthesis of high-dimensional data, such as high-

resolution [9, 14] or 360◦ images [71]. Researchers have

investigated various perspectives to accelerate the diffusion

model. The first line lies in designing more efficient denois-

ing processes. Rombach et al. [51] and Vahdat et al. [62]

propose to compress high-resolution images into low-

resolution latent representations and learn diffusion model in

latent space. Another line lies in improving sampling via de-

signing efficient training-free sampling algorithms. A large

category of works along this line is built upon the connection

between diffusion models and differential equations [59],

and leverage a well-established exponential integra-

tor [32, 69, 70] to reduce sampling steps while maintaining

numerical accuracy. The third strategy involves distilling

faster generative models from pre-trained diffusion models.

Despite significant progress made in this area, a quality gap

persists between these expedited generators and diffusion

models [19, 34, 54]. In addition to the above schemes, some

works investigate how to optimize the neural inference for

diffusion models [23, 25, 26]. In this work, we explore

a new paradigm for accelerating diffusion by leveraging

parallelism to the neural network on multiple devices.

Parallelism. Existing work has explored various parallelism

strategies to accelerate the training and inference of large lan-

guage models (LLMs), including data, pipeline [15, 27, 36],

tensor [17, 37, 67, 68, 74], and zero-redundancy paral-

lelism [44, 47, 48, 73]. Tensor parallelism, in particular,

has been widely adopted for accelerating LLMs [28], which

are characterized by their substantial model sizes, whereas

their activation sizes are relatively small. In such scenarios,

the communication overhead introduced by tensor paral-

lelism is relatively minor compared to the substantial latency

benefits brought by increased memory bandwidth. However,

the situation differs for diffusion models, which are gener-

ally smaller than LLMs but are often bottlenecked by the

large activation size due to the spatial dimensions, especially

when generating high-resolution content. The communica-

tion overhead from tensor parallelism becomes a significant

factor, overshadowing the actual computation time. As a

result, only data parallelism has been used thus far for dif-

fusion model serving, which provides no latency improve-

ments. The only exception is ParaDiGMS [56], which uses

Picard iteration to run multiple steps in parallel. However,

this sampler tends to waste much computation, and the gen-

erated results exhibit significant deviation from the original

diffusion model. Our method is based on patch parallelism,

which distributes the computation across multiple devices

by splitting the input into small patches. Compared to tensor

parallelism, such a scheme has superior independence and

reduced communication demands. Additionally, it favors

the use of AllGather over AllReduce for data interac-

tion, significantly lowering overhead (see Section 5.3 for the

full comparisons). Drawing inspiration from the success of

asynchronous communication in parallel computing [63], we

further reuse the features from the previous step as context

for current step to overlap communication and computation,

called displaced patch parallelism. This represents the first

parallelism strategy tailored to the sequential characteristics

of diffusion models while avoiding the heavy communication

costs of traditional techniques like tensor parallelism.

Sparse computation. Sparse computation has been exten-

sively researched in various domains, including weight [10,

16, 21, 31], input [50, 60, 61] and activation [7, 18, 23, 24,

40, 49, 49, 55]. In the activation domain, to facilitate on-

hardware speedups, several studies propose to use structured

sparsity. SBNet [49] employs a spatial mask to sparsify acti-

vations for accelerating 3D object detection. This mask can

be derived either from prior problem knowledge or an auxil-

iary network. In the context of image generation, SIGE [23]

leverages the highly structured sparsity of user edits, selec-

tively performing computation at the edited regions to speed

up GANs [8] and diffusion models. MCUNetV2[29] adopts

a patch-based inference to reduce memory usage for image

classification and detection. In our work, we also partition

the input into patches, each processed by a different device.

However, we focus on reducing the latency by parallelism

for image generation instead. Each device will solely process

the assigned regions to reduce the per-device computation.

3. Background
To generate a high-quality image, a diffusion model often

trains a noise-prediction neural model (e.g., U-Net [52])

εθ. Starting from pure Gaussian noise xT ∼ N (0, I), it

involves tens to hundreds of iterative denoising steps to get

the final clean image x0, where T is the total number of

steps. Specifically, given the noisy image xt at time step t,
the model εθ takes xt, t and an additional condition c (e.g.,

text) as inputs to predict the corresponding noise εt within

xt. At each denoising step, xt−1 can be derived from the

following equation:

xt−1 = Update(xt, t, εt), εt = εθ(xt, t, c). (1)

Here, ‘Update’ refers to a sampler-specific function that typ-

ically includes element-wise additions and multiplications.

Therefore, the primary source of latency in this process is

the forward passes through model εθ. For example, Stable

Diffusion XL [43] requires 6,763 GMACs per step to gen-

erate a 1024 × 1024 image. This computational demand

escalates more than quadratically with increasing resolution,

making the latency for generating a single high-resolution

image impractically high for real-world applications. Fur-

thermore, given that xt−1 depends on xt, parallel computa-

tion of εt and εt−1 is challenging. Hence, even with multi-

ple idle GPUs, accelerating the generation of a single high-
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resolution image remains tricky. Recently, Shih et al. intro-

duced ParaDiGMS [56], employing Picard iterations to paral-

lelize the denoising steps in a data-parallel manner. However,

ParaDiGMS wastes the computation on speculative guesses

that fail quality thresholds. It also relies on a large total

step count T to exploit multi-GPU data parallelism, limiting

its potential applications. Another conventional method is

sharding the model on multiple devices and using tensor

parallelism for inference. However, this method suffers from

intolerable communication costs, making it impractical for

real-world applications. Beyond these two schemes, are

there alternative strategies for distributing workloads across

multiple GPU devices so that single-image generation can

also enjoy the free-lunch speedups from multiple devices?

4. Method

The key idea of DistriFusion is to parallelize computation

across devices by splitting the image into patches. Naïvely,

this can be done by either (1) independently computing

patches and stitching them together, or (2) synchronously

communicating intermediate activations between patches.

However, the first approach leads to visible discrepancies at

the boundaries of each patch due to the absence of interaction

between them (see Figure 1 and Figure 2(b)). The second

approach, on the other hand, incurs excessive communica-

tion overheads, negating the benefits of parallel processing.

To address these challenges, we propose a novel parallelism

paradigm, displaced patch parallelism, which leverages the

sequential nature of diffusion models to overlap communica-

tion and computation. Our key insight is reusing slightly out-

dated, or ‘stale’ activations from the previous diffusion step

to facilitate interactions between patches, which we describe

as activation displacement. This is based on the observation

that the inputs for consecutive denoising steps are relatively

similar. Consequently, computing each patch’s activation

at a layer does not rely on other patches’ fresh activations,

allowing communication to be hidden within subsequent lay-

ers’ computation. We will next provide a detailed breakdown

of each aspect of our algorithm and system design.

Displaced patch parallelism. As shown in Figure 3, when

predicting εθ(xt) (we omit the inputs of timestep t and con-

dition c here for simplicity), we first split xt into multiple

patches x
(1)
t ,x

(2)
t , . . . ,x

(N)
t , where N is the number of de-

vices. For example, we use N = 2 in Figure 3. Each device

has a replicate of the model εθ and will process a single

patch independently, in parallel.

For a given layer l, let’s consider the input activation

patch on the i-th device, denoted as A
l,(i)
t . This patch is first

scattered into the stale activations from the previous step,

Al
t+1, at its corresponding spatial location (the method for

obtaining Al
t+1 will be discussed later). Here, Al

t+1 is in full

spatial shape. In the Scatter output, only the 1
N regions

where A
l,(i)
t is placed are fresh and require recomputation.

We then selectively apply the layer operation Fl (linear,

convolution, or attention) to these fresh areas, thereby gener-

ating the output for the corresponding regions. This process

is repeated for each layer. Finally, the outputs from all layers

are synchronized together to approximate εθ(xt). Through

this methodology, each device is responsible for only 1
N of

the total computations, enabling efficient parallelization.

There still remains a problem of how to obtain the stale

activations from the previous step. As shown in Figure 3, at

each timestep t, when device i acquires A
l,(i)
t , it will then

broadcast the activations to all other devices and perform the

AllGather operation. Modern GPUs often support asyn-

chronous communication and computation, which means

that this AllGather process does not block ongoing com-

putations. By the time we reach layer l in the next timestep,

each device should have already received a replicate of Al
t.

Such an approach effectively hides communication over-

heads within the computation phase, as shown in Figure 4.

However, there is an exception: the very first step (i.e., xT ).

In this scenario, each device simply executes the standard

synchronous communication and caches the intermediate

activations for the next step.

Sparse operations. For each layer l, we modify the original

operator Fl to enable sparse computation selectively on the

fresh areas. Specifically, if Fl is a convolution, linear, or

cross-attention layer, we apply the operator exclusively to

the newly refreshed regions, rather than the full feature map.

This can be achieved by extracting the fresh sections from

the scatter output and feeding them into Fl. For layers

where Fl is a self-attention layer, we transform it into a

cross-attention layer, similar to SIGE [23]. In this setting,

only the query tokens from the fresh areas are preserved on

the device, while the key and value tokens still encompass

the entire feature map (the scatter output). Thus, the

computational cost for Fl is exactly proportional to the size

of the fresh area.

Corrected asynchronous GroupNorm. Diffusion models

often adopt group normalization (GN) [38, 64] layers in

the network. These layers normalize across the spatial

dimension, necessitating the aggregation of activations to

restore their full spatial shape. In Section 5.3, we discover

that either normalizing only the fresh patches or reusing

stale features degrades image quality. However, aggregating

all the normalization statistics will incur considerable

overhead due to the synchronous communication. To solve

this dilemma, we additionally introduce a correction term to

the stale statistics. Specifically, for each device i at a given

step t, every GN layer can compute the group-wise mean of

its fresh patch A
(i)
t , denoted as E[A

(i)
t ]. For simplicity, we

omit the layer index l here. It also has cached the local mean

E[A
(i)
t+1] and aggregated global mean E[At+1] from the
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Figure 3. Overview of DistriFusion. For simplicity, we omit the inputs of t and c, and use N = 2 devices as an example. Superscripts (1) and
(2) represent the first and the second patch, respectively. Stale activations from the previous step are darkened. At each step t, we first split

the input xt into N patches x
(1)
t , . . . ,x

(N)
t . For each layer l and device i, upon getting the input activation patches A

l,(i)
t , two operations

then process asynchronously: First, on device i, A
l,(i)
t is scattered back into the stale activation Al

t+1 from the previous step. The output

of this Scatter operation is then fed into the sparse operator Fl (linear, convolution, or attention layers), which performs computations

exclusively on the fresh regions and produces the corresponding output. Meanwhile, an AllGather operation is performed over A
l,(i)
t

to prepare the full activation Al
t for the next step. We repeat this procedure for each layer. The final outputs are then aggregated together

to approximate εθ(xt), which is used to compute xt−1. The timeline visualization of each device for predicting εθ(xt) is shown in Figure 4.

…

Device 
1-N

Comm.

Scatter Scatter ScatterSparse Op F1 Sparse Op F2 Sparse Op FL

AllGather AllGather AllGather

Layer 1 Layer 2 Layer L

Figure 4. Timeline visualization on each device when predicting

εθ(xt). Comm. means communication, which is asynchronous

with computation. The AllGather overhead is fully hidden

within the computation.

previous step. Then the approximated global mean E[At]
for current step on device i can be computed as

E[At] ≈ E[At+1]
︸ ︷︷ ︸

stale global mean

+(E[A
(i)
t ]− E[A

(i)
t+1])

︸ ︷︷ ︸

correction

. (2)

We use the same technique to approximate E[(At)
2], then

the variance can be approximated as E[(At)
2] − E[At]

2.

We then use these approximated statistics for the GN layer

and in the meantime aggregate the local mean and variance

to compute the precise ones using asynchronous communi-

cation. Thus, the communication cost can also be pipelined

into the computation. We empirically find this method yields

comparable results to the direct synchronous aggregation.

However, there are some rare cases where the approximated

variance is negative. For these negative variance groups, we

will fall back to use the local variance of the fresh patch.

Warm-up steps. As observed in eDiff-I [2] and FastCom-

poser [65], the behavior of diffusion synthesis undergoes

qualitative changes throughout the denoising process.

Specifically, the initial steps of sampling predominantly

shape the low-frequency aspects of the image, such as spatial

layout and overall semantics. As the sampling progresses,

the focus shifts to recovering local high-frequency details.

Therefore, to boost image quality, especially in samplers

with a reduced number of steps, we adopt warm-up steps. In-

stead of directly employing displaced patch parallelism after

the first step, we continue with several iterations of the stan-

dard synchronous patch parallelism as a preliminary phase,

or warm-up. As detailed in Section 5.3, this integration of

warm-up steps significantly improves performance.

5. Experiments
We first describe our experiment setups, including our

benchmark datasets, baselines, and evaluation protocols.

Then we present our main results regarding both quality and

efficiency. Finally, we further show some ablation studies to

verify each design choice.

5.1. Setups

Models. As our method only requires off-the-shelf pre-

trained diffusion models, we mainly conduct experiments on

the state-of-the-art public text-to-image model Stable Dif-

fusion XL (SDXL) [43]. SDXL first compresses an image

to an 8× smaller latent representation using a pre-trained

auto-encoder and then applies a diffusion model in this latent

space. It also incorporates multiple cross-attention layers to

facilitate text conditioning. Compared to the original Stable

Diffusion [51], SDXL adopts significantly more attention

layers, resulting in a more computationally intensive model.

Datasets. We use the HuggingFace version of COCO

Captions 2014 [5] dataset to benchmark our method. This

dataset contains human-generated captions for images
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FID: 24.0
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Latency: 1.80s (2.8× Faster)
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FID: 24.0
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FID: 24.3

Prompt: A multi-colored parrot holding its foot up to its beak.

Prompt: A kid wearing headphones and using a laptop

Figure 5. Qualitative results. FID is computed against the ground-truth images. Our DistriFusion can reduce the latency according to the

number of used devices while preserving visual fidelity.

from Microsoft Common Objects in COntext (COCO)

dataset [30]. For evaluation, we randomly sample a subset

from the validation set, which contains 5K images with one

caption per image.

Baselines. We compare our DistriFusion against the follow-

ing baselines in terms of both quality and efficiency:

• Naïve Patch. At each iteration, the input is divided row-

wise or column-wise alternately. These patches are then

processed independently by the model, without any in-

teraction between them. The outputs are subsequently

concatenated together.

• ParaDiGMS [56] is a technique to accelerate pre-trained

diffusion models by denoising multiple steps in parallel. It

uses Picard iterations to guess the solution of future steps

and iteratively refines it until convergence. We use a batch

size 8 for ParaDiGMS to align with Table 4 in the original

paper [56]. We empirically find this setting yields the best

performance in both quality and latency.

Metrics. Following previous works [22, 23, 35, 41], we

evaluate the image quality with standard metrics: Peak Sig-

nal Noise Ratio (PSNR, higher is better), LPIPS (lower is

better) [72], and Fréchet Inception Distance (FID, lower is

better) [11]†. We employ PSNR to quantify the minor nu-

merical differences between the outputs of the benchmarked

†We use TorchMetrics to calculate PSNR and LPIPS, and use Clean-

FID [42] to calculate FID.

method and the original diffusion model outputs. LPIPS

is used to evaluate perceptual similarity. Additionally, the

FID score is used to measure the distributional differences

between the outputs of the method and either the original

outputs or the ground-truth images.

Implementation details. By default, we adopt the 50-step

DDIM sampler [58] with classifier-free guidance scale 5 to

generate 1024 × 1024 images, unless otherwise specified.

In addition to the first step, we perform another 4-step

synchronous patch parallelism, serving as a warm-up phase.

Please refer to Section 5.1 in our arXiv version for the

latency measurement details.

5.2. Main Results

Quality results. In Figure 5, we show some qualitative

visual results and report some quantitative evaluation in

Table 1. with G.T. means computing the metric with the

ground-truth COCO [30] images, whereas w/ Orig. refers

to computing the metrics with the outputs from the original

model. For PSNR, we report only the w/ Orig. setting, as

the w/ G.T. comparison is not informative due to significant

numerical differences between the generated outputs and the

ground-truth images.

As shown in Table 1, ParaDiGMS [56] expends consid-

erable computational resources on guessing future denoising

steps, resulting in a much higher total MACs. Besides, it
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#Steps #Devices Method PSNR (↑)
LPIPS (↓) FID (↓)

MACs (T)
Latency

w/ G.T. w/ Orig. w/ Orig. w/ G.T. Value (s) Speedup

1 Original – 0.797 – 24.0 – 338 5.02 –

2
Naïve Patch 28.2 0.812 0.596 33.6 29.4 322 2.83 1.8×
Ours 31.9 0.797 0.146 24.2 4.86 338 3.35 1.5×

50 4
Naïve Patch 27.9 0.853 0.753 125 133 318 1.74 2.9×
Ours 31.0 0.798 0.183 24.2 5.76 338 2.26 2.2×
Naïve Patch 27.8 0.892 0.857 252 259 324 1.27 4.0×

8 ParaDiGMS 29.3 0.800 0.320 25.1 10.8 657 1.80 2.8×
Ours 30.5 0.799 0.211 24.4 6.46 338 1.77 2.8×

Table 1. Quantitative evaluation. MACs measures cumulative computation across all devices for the whole denoising process for generating

a single 1024× 1024 image. w/ G.T. means calculating the metrics with the ground-truth images, while w/ Orig. means with the original

model’s samples. For PSNR, we report the w/ Orig. setting. Our method mirrors the results of the original model across all metrics while

maintaining the total MACs. It also reduces the latency on NVIDIA A100 GPUs in proportion to the number of used devices.
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Figure 6. Measured total latency of DistriFusion with the 50-step

DDIM sampler [58] for generating a single image across different

resolutions on NVIDIA A100 GPUs. When scaling up the res-

olution, the GPU devices are better utilized. Remarkably, when

generating 3840× 3840 images, DistriFusion achieves 1.8×, 3.4×
and 6.1× speedups with 2, 4, and 8 A100s, respectively.

also suffers from some performance degradation. In contrast,

our method simply distributes workloads across multiple

GPUs, maintaining a constant total computation. The Naïve

Patch baseline, while lower in total MACs, lacks the crucial

inter-patch interaction, leading to fragmented outputs. This

limitation significantly impacts image quality, as reflected

across all evaluation metrics. Our DistriFusion can well

preserve interaction. Even when using 8 devices, it achieves

comparable PSNR, LPIPS, and FID scores comparable to

those of the original model.

Speedups. Compared to the theoretical computation reduc-

tion, on-hardware acceleration is more critical for real-world

applications. To demonstrate the effectiveness of our method,

we also report the end-to-end latency in Table 1 on 8 NVIDIA

A100 GPUs. In the 50-step setting, ParaDiGMS achieves an

identical speedup of 2.8× to our method at the cost of com-

promised image quality (see Figure 5). In our arXiv version,

we also show the speedups on more commonly used 25-step

setting. ParaDiGMS only has a marginal 1.3× speedup due

to excessive wasted guesses, which is also reported in Shih

et al. [56]. However, our method can still mirror the original

quality and accelerate the model by 2.7×.

Method
1024 × 1024 2048 × 2048 3840 × 3840

Comm. Latency Comm. Latency Comm. Latency

Original – 5.02s – 23.7s – 140s

Sync. TP 1.33G 3.61s 5.33G 11.7s 18.7G 46.3s
Sync. PP 0.42G 2.21s 1.48G 5.62s 5.38G 24.7s
DistriFusion (Ours) 0.42G 1.77s 1.48G 4.81s 5.38G 22.9s

No Comm. – 1.48s – 4.14s – 21.3s

Table 2. Communication cost comparisons with 8 A100s across

different resolutions. Sync. TP/PP: Synchronous tensor/patch

parallelism. No Comm.: An ideal no communication PP. Comm.
measures the total communication amount. PP only requires less

than 1
3

communication amounts compared to TP. Our DistriFusion

further reduces the communication overhead by 50 ∼ 60%.

When generating 1024× 1024 images, our speedups are

limited by the low GPU utilization of SDXL. To maximize

device usage, we further scale the resolution to 2048× 2048
and 3840 × 3840 in Figure 6. At these larger resolutions,

the GPU devices are better utilized. Specifically, for

3840 × 3840 images, DistriFusion reduces the latency by

1.8×, 3.4× and 6.1× with 2, 4 and 8 A100s, respectively.

Note that these results are benchmarked with PyTorch.

With more advanced compilers, such as TVM [4] and

TensorRT [1], we anticipate even higher GPU utilization and

consequently more pronounced speedups from DistriFusion,

as observed in SIGE [23]. In practical use, the batch size

often doubles due to classifier-free guidance [12]. We

can first split the batch and then apply DistriFusion to

each batch separately. This approach further improves the

total speedups to 3.6× and 6.6× with 4 and 8 A100s for

generating a single 3840× 3840 image, respectively.

5.3. Ablation Study

Compare to tensor parallelism. In Table 2, we bench-

mark our latency with synchronous tensor parallelism (Sync.
TP) and synchronous patch parallelism (Sync. PP), and re-

port the corresponding communication amounts. Compared

to TP, PP has better independence, which eliminates the

need for communication within cross-attention and linear
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Original
Latency: 1.01s

Ours 
LPIPS: 0.404

Latency: 0.374s

Ours (1-Step Warm-up)
LPIPS: 0.288

Latency: 0.388s
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Latency: 0.400s

Prompt: A small boat in the blue and green water.

Prompt: A motorcylce sits on the pavement on a cloudy day.

Figure 7. Qualitative results on the 10-step DPM-Solver [32, 33]

with different warm-up steps. LPIPS is computed against the

samples from the original SDXL over the entire COCO [5] dataset.

Naïve DistriFusion without warm-up steps has evident quality

degradation. Adding a 2-step warm-up significantly improves the

performance while avoiding high latency rise.

layers. For convolutional layers, communication is only

required at the patch boundaries, which represent a min-

imal portion of the entire tensor. Moreover, PP utilizes

AllGather over AllReduce, leading to lower commu-

nication demands and no additional use of computing re-

sources. Therefore, PP requires 60% fewer communication

amounts and is 1.6 ∼ 2.1× faster than TP, making it a more

efficient approach for deploying diffusion models. We also

include a theoretical PP baseline without any communication

(No Comm.) to demonstrate the communication overhead

in Sync. PP and DistriFusion. Compared to Sync. PP,

DistriFusion further cuts such overhead by over 50%. The

remaining overhead mainly comes from our current usage

of NVIDIA Collective Communication Library (NCCL) for

asynchronous communication. NCCL kernels use SMs (the

computing resources on GPUs), which will slow down the

overlapped computation. Using remote memory access can

bypass this issue and close the performance gap.

Few-step sampling and warm-up steps. Our approach

hinges on the observation that adjacent denoising steps

share similar inputs, i.e., xt ≈ xt−1. However, as we

increase the step size and thereby reduce the number

of steps, the approximation error escalates, potentially

compromising the effectiveness of our method. In Figure 7,

we present results using 10-step DPM-Solver [32, 33]. The

10-step configuration is the threshold for the training-free

samplers to maintain the image quality. Under this setting,

naïve DistriFusion without warm-up struggles to preserve

the image quality. However, incorporating an additional

two-step warm-up significantly recovers the performance

with only slightly increased latency.

GroupNorm. As discussed in Section 4, calculating accu-

rate group normalization (GN) statistics is crucial for pre-

serving image quality. In Figure 8, we compare four different

Original
Latency: 5.02s

Separate GN
LPIPS: 0.317
Latency: 1.64s

Stale GN
LPIPS: 0.247
Latency: 1.76s

Sync. GN
LPIPS: 0.207
Latency: 1.85s

Ours
LPIPS: 0.211

Latency: 1.77s

Prompt: A kitchen with a microwave, stove, cutlery and fruits.

Prompt: An old clock reading two twenty on a gloomy day.

Figure 8. Qualitative results of different GN schemes with 8 A100s.

LPIPS is computed against the original samples over the whole

COCO [5] dataset. Separate GN only utilizes the statistics from the

on-device patch. Stale GN reuses the stale statistics. They suffer

from quality degradation. Sync. GN synchronizes data to ensure

accurate statistics at the cost of extra overhead. Our corrected

asynchronous GN, by correcting stale statistics, avoids the need for

synchronization and effectively restores quality.

GN schemes. The first approach Separate GN uses statistics

from the on-device fresh patch. This approach delivers the

best speed at the cost of lower image fidelity. This compro-

mise is particularly severe for large numbers of used devices,

due to insufficient patch size for precise statistics estimation.

The second scheme Stale GN computes statistics using stale

activations. However, this method also faces quality degrada-

tion, because of the different distributions between stale and

fresh activations, often resulting in images with a fog-like

noise effect. The third approach Sync. GN use synchronized

communication to aggregate accurate statistics. Though

achieving the best image quality, it suffers from large syn-

chronization overhead. Our method uses a correction term to

close the distribution gap between the stale and fresh statis-

tics. It achieves image quality on par with Sync. GN but

without incurring synchronous communication overhead.

6. Conclusion & Discussion

In this paper, we introduce DistriFusion to accelerate

diffusion models with multiple GPUs for parallelism. Our

method divides images into patches, assigning each to a

separate GPU. We reuse the pre-computed activations from

previous steps to maintain patch interactions. On Stable

Diffusion XL, our method achieves up to a 6.1× speedup on

8 NVIDIA A100s. This advancement not only enhances the

efficiency of AI-generated content creation but also sets a

new benchmark for future research in parallel computing for

AI applications.
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