
PockEngine: Sparse and Efficient Fine-tuning in a Pocket

Ligeng Zhu
MIT

Cambridge, MA, USA
ligeng@mit.edu

Lanxiang Hu
UCSD

San Diego, CA, USA
hlxde2@gmail.com

Ji Lin
MIT

Cambridge, MA, USA
jilin@mit.edu

Wei-Chen Wang
MIT

Cambridge, MA, USA
wweichen@mit.edu

Wei-Ming Chen
MIT

Cambridge, MA, USA
wmchen@mit.edu

Chuang Gan
MIT-IBM Watson AI Lab
Cambridge, MA, USA
chuangg@mit.edu

Song Han
MIT, NVIDIA

Cambridge, MA, USA
songhan@mit.edu

ABSTRACT

On-device learning and efficient fine-tuning enable continuous and

privacy-preserving customization (e.g., locally fine-tuning large

language models on personalized data). However, existing training

frameworks are designed for cloud servers with powerful acceler-

ators (e.g., GPUs, TPUs) and lack the optimizations for learning

on the edge, which faces challenges of resource limitations and

edge hardware diversity. We introduce PockEngine: a tiny, sparse

and efficient engine to enable fine-tuning on various edge devices.

PockEngine supports sparse backpropagation: it prunes the back-

ward graph and sparsely updates the model with measured memory

saving and latency reduction while maintaining the model quality.

Secondly, PockEngine is compilation first: the entire training

graph (including forward, backward and optimization steps) is de-

rived at compile-time, which reduces the runtime overhead and

brings opportunities for graph transformations. PockEngine also

integrates a rich set of training graph optimizations, thus can fur-

ther accelerate the training cost, including operator reordering and

backend switching. PockEngine supports diverse applications,

frontends and hardware backends: it flexibly compiles and tunes

models defined in PyTorch/TensorFlow/Jax and deploys binaries

to mobile CPU/GPU/DSPs. We evaluated PockEngine on both vi-

sion models and large language models. PockEngine achieves up to

15 × speedup over off-the-shelf TensorFlow (Raspberry Pi), 5.6 ×

memory saving back-propagation (Jetson AGX Orin). Remarkably,

PockEngine enables fine-tuning LLaMav2-7B on NVIDIA Jetson

AGX Orin at 550 tokens/s, 7.9× faster than the PyTorch.

CCS CONCEPTS

• Computer systems organization → Neural networks.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614307

KEYWORDS

neural network, sparse update, on-device training, efficient finetun-

ing

ACM Reference Format:

Ligeng Zhu, Lanxiang Hu, Ji Lin, Wei-Chen Wang, Wei-Ming Chen, Chuang

Gan, and Song Han. 2023. PockEngine: Sparse and Efficient Fine-tuning in a

Pocket. In 56th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO ’23), October 28–November 01, 2023, Toronto, ON, Canada. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3613424.3614307

1 INTRODUCTION

Edge devices are ubiquitous and produce an increasing amount of

data in our daily lives. The need for intelligent, personalized, and

private AI is rapidly growing, as a single model fails to fit different

users’ needs. However, while deep learning inferences are widely

performed on edge devices, the training of deep neural networks is

typically run on cloud GPU servers. Cloud-based training requires

users to upload their personal data to the cloud, which not only

incurs additional data transfer costs, but also brings privacy risks

over sensitive data (e.g., healthcare data, keyboard input history,

GPS location, etc.).

On-device training is a promising solution for model customiza-

tion without sacrificing privacy (Figure 1). It allows a pre-trained

model to continuously adapt to sensor data without sending it to

the cloud. For example, the smart keyboard model can update itself

to better predict the next word from users’ typing history; the email

assistant can learn from users’ previous drafts and train person-

alized language models; vision models can automatically adapt to

environments with domain shifts [53]). The near-sensor training

paradigm also brings important benefits for energy and connectiv-

ity: it saves energy from data transmission (which is much more

expensive than computation [35]); it also helps with applications

like ocean sensing [25] and smart agriculture [56] that do not have

physical access to the Internet.

Despite all the benefits, on-device training is difficult due to the

following challenges:

(1) Resource Limitations. The capacity of edge devices is or-

ders of magnitude smaller than cloud servers. People have been

1381

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

Ubiquitous AI Applications

Generate /
Collect

On-device Learning Cloud Server

User’s Private Data
Customization;
Continual Learning

Privacy-preserving
Learning on edge

Figure 1. On-device learning and local fine-tuning enable customiza-

tion, protect privacy, and form a virtuous cycle between user and

devices.

trying hard to squeeze deep learning models just for edge inference,

while model training and fine-tuning are more power-, computation-

, and memory-expensive. We need extra memory to store all inter-

mediate feature maps for backpropagation, and extra computation

for the backward pass (roughly 3× compared to inference). Some-

times the training needs a larger batch size to ensure a stable conver-

gence, making the process even more costly. For MobilenetV2 [50]

the training memory is 14× and 7.3 × larger than inference (batch

size 8) and for BERT [18] the peak memory usage is 7.3 × larger

compared to inference. Furthermore, the optimizers also require

extra memory (2x for Momentum and 3x for Adam [30]). With the

current training framework, the training costs could soon exceed

the resource limits of edge hardware.

(2)HardwareDiversity While the accelerators on cloud servers

are dominated by GPUs, the hardware of edge platforms has a wide

range of options on the market. The processor ranges from ARM

microcontrollers to powerful Apple M1 chips, and the accelera-

tor varies between Qualcomm Adreno GPUs, Hexagon DSPs, and

edge TPUs. Each hardware comes with a different inference library.

PockEngine can directly use these inference libraries for training by

compiling the training graph into standard ONNX format. On the

other hand, popular deep learning training frameworks like Ten-

sorFlow [4], PyTorch [46] and Jax [9] are developed for high-end

cloud GPUs/TPUs. The performance is poor when directly applied

to edge platforms1.

To address the above challenges, we introduce PockEngine, a

tiny and efficient training engine designed for on-device training.

We highlight the following properties:

• PockEngine provides system-level support for both dense

and sparse backpropagation. Apart from updating the

whole model, PockEngine supports flexible sparse update

schemes by computing the gradients for only part of the

weights, which proves to be a more efficient option for

fine-tuning/transfer learning without harming the accu-

racy [10, 20, 23, 24, 37, 41, 42]. Existing training frameworks

can only simulate the sparse backpropagation by computing

the backward and mask out gradients, but cannot realize

measured speed up and memory savings. PockEngine sup-

ports sparse backpropagation via graph pruning and dead

1The frameworks themselves cannot even be installed due to the tight resource con-
straints of low-end hardware like microcontrollers [41].

code elimination with the compilation nature, leading to

smaller computation and memory usage.

• PockEngine is a compilation-based efficient training en-

gine and enables many inference-only framework to per-

form training. Our compilation workflow helps to connect

diverse model architectures and frontend options (e.g., vi-

sion/NLP models, PyTorch/TensorFlow/ONNX definitions)

with various backend libraries (e.g., SNPE for Qualcomm,

Metal for Apple Silicon, TVM), exposing a unified intermedi-

ate representation (IR). By sharing the same set of operators

for both forward and backward operations, we not only en-

able inference frameworks to train neural networks, but also

allow for various graph optimizations to improve efficiency

(see Figure 4).

• PockEngine implements a rich set of graph optimizations

to improve the efficiency on edge devices, including operator

fusion, operator reordering, layout transforms, and backend

switching that are conventionally used for inference only.

We find that the training graphs actually have more opti-

mization opportunities due to their complexity. By sharing

the same operator set with inference graphs, PockEngine

can well utilize the optimization techniques from inference

engines (e.g., PockEngine utilizes previously inference-only

winograd convolution to accelerate training).

We extensively evaluated PockEngine on six edge platforms and

six deep learning tasks from vision to NLP. PockEngine achieves up

to 11× speedup over TensorFlow for the same training workload.

With sparse backpropagation, we can further improve the accelera-

tion up to 21× without losing transfer learning accuracy on tiny

microcontrollers. We hope our work can contribute to the thriving

of on-device training by providing a general-purpose, high-efficiency,

user-friendly training framework for edge devices.

2 RELATEDWORK

2.1 Cloud Deep Learning Systems

The success of deep learning is built on top of popular training

frameworks such as PyTorch [46], TensorFlow [5], MXNet [12],

JAX [9], etc. These systems are designed for development flexibil-

ity and depend on a host language (e.g., Python) to execute. This

brings significant memory overhead (>300MB) and makes the run-

time especially slow on low-frequency CPU (e.g., ARM Cortex).

Moreover, the operator kernels are optimized for high-end GPU

devices and lack performance tuning for edge devices and some

overheads such as extra gradient buffers for the optimizer step are

not considered a bottleneck for powerful server hardware. Pock-

Engine is a compilation-based framework thus the runtime does

not rely on host languages as compared in Table 1. This moves

most workloads from runtime to compile-time to minimize the run-

time overhead and enables later optimizations to improve training

throughput.

2.2 Edge Deep Learning Systems

When deploying models on tiny edge devices, inference libraries

like TVM [13], TF-Lite, NCNN [1], TensorRT [2], and Open-

VINO [57] deliver optimized kernels for mobile platforms and pro-

vide a lightweight runtime without host language. However, they

1382

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1. Comparison between existing deep learning frameworks. “-” denotes the feature is not fully supported for training.

Support

Training

Support

Sparse-BP

Run without

Host Language

Kernel Optimized

for Edge

Compile-Time

AutoDiff

Graph

Optimizations

PyTorch [46] � � � � � �

TensorFlow [4] � � � � � -

Jax [9] � � � � � �

TVM [13] � � � � - �

MNN [29] � � � � � �

PockEngine (ours) � � � � � �

focus mostly on inference and do not support on-device training.

MNN [29] has preliminary support for CNNs but the flexibility

is rather limited and it does not optimize training memory usage.

POET [47] applies rematerialization and paging to deal with re-

stricted memory size, but it introduces extra computation, relies on

large external Flash (e.g. 32GB SD Card) and does not support gen-

eral model and workload definition. PockEngine provides complete

training support for popular models at various scales including

MCUNet [40], MobilenetV2 [50], ResNet [22], DistilBERT [51], and

BERT [18]. PockEngine optimizes both computation and memory

efficiency to make on-device training easy and realistic.

2.3 Efficient On-Device Learning Algorithms

Edge devices have limited computational capacity. Therefore, on-

device training for edge devices often focuses on transfer learn-

ing [10, 33]. It first pre-trains the model on large-scale datasets to

learn general and rich features, such as ImageNet [17] for ConvNets

or BooksCorpus [64] for BERT. The model is then transferred to

downstream tasks, such as Visual Wake Words [16] for vision or

the GLUE benchmark [58] for language. After which, the model

can be customized to a small amount of personal data (e.g., learning

a user’s accent) to perform better at the same task.

Due to the smaller scale and diversity of the downstream data,

people found that it is not always necessary to update the entire

model to achieve a good performance. Sparsely updating part of the

model proves to be a good solution that achieves similar or better

performance at a smaller training cost [10, 20, 23, 24, 37, 41, 42].

The most straightforward method is to fine-tune only the classifier

layer [11, 19, 21, 52], but the capacity is limited when the domain

shift is large. For CNNmodels, people have investigated fine-tuning

only biases [10, 61], batch normalization layers [20, 43], added

parallel branches [10], etc. The sparse backpropagation scheme

is even more popular for adapting pre-trained language models

(e.g., BERT [18], GPT [49]) to various downstream tasks, which

significantly reduce the trainable parameters [23, 24, 37]. However,

sparse backpropagation lacks system support. Despite the great

theoretical savings, existing training frameworks cannot realize

measured speedup or memory saving from sparse backpropaga-

tion. PockEngine provides system-level support for such flexible

workloads to deliver a faster program and efficient runtime.

2.4 Computation Graph Transformation and
Optimizations

There are plenty of graph transformations for inference scenarios.

For example, one common transform used in edge deployment is

data layout conversion, as the ‘NCHW’ preferred by GPU training

is not efficient on the edge. Another common optimization tech-

nique is layer fusion. IO-intensive layers (e.g. ReLU) can usually

be fused into preceding compute-intensive layers (e.g. CONV, LIN-

EAR). In addition, MetaFlow [27] proposes functional-preserving

graph transformations to optimize DNN architectures. TASO [26]

further introduces automated generation of transformation rules

using formal verification. These techniques have been proven effec-

tive in inference, but few studies have explored their performance

on training, even though the training graph is much more complex.

Standing on the shoulder of conventional wisdom, PockEngine is

early exploration for apply these graph optimizations techniques to

on-device training and discover more potential optimizations. Pock-

Engine shows that these optimizations bring up to 1.2x speedup.

2.5 Compilation-Based Workflow

Existing training frameworks (e.g., PyTorch, TensorFlow) are based

on runtime auto differentiation for flexibility. However, the design is

not suitable for edge devices with limited memory and computation

resources. Instead, PockEngine is based on a compilation-based

workflow, sharing the following benefits:

Offload Workload from Runtime to Compile Time. With the

compilation-centric design, we can offload part of the workload

from runtime to compile time, like backward graph derivation

with autodiff, memory scheduling, execution planning, etc. Modern

neural network usually consists of thousands of operators, the

overhead might be small for cloud servers but not negligible for

edge devices (Figure. 7).

By offloading computation to the compiler, it is possible to per-

form more aggressive optimizations that would not be feasible or

efficient to perform at runtime. For example, PockEngine performs

graph pruning, fusions, and backend switching, which can lead to

significant performance gains and memory saving.

Another advantage of compilation-based workflow is that it

allows us to optimize the code across the entire program, rather

than just focusing on optimizing individual operations at runtime.

This not only allows us to compile used operators only to ship slim

1383

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

FCFC FC FC

(a) Full BP (b) Last-only BP (c) Bias-only BP (d) Sparse BP

Sparse tensor backpropagation

Sparse layer backpropagationBackpropagate to the very first layer

Figure 2. The computation graph of different backpropagation schemes on a five-layermodel.We use blue to indicate the demanded intermediate

activations during training. Sparse-BP delivers the best cost-quality trade-off which we will show in Section. 4.

(a) Conventional full backpropagation (b) Bias only update

(c) Sparse layer backpropagation (d) Sparse tensor backpropagation

MatMul

X W

Y GW.T

MatMul MatMul

dy/dx dy/dw

ReduceSum

dy/dbB

X.T

MatMul

X W

Y GW.T

MatMul MatMul

dy/dx dy/dw

ReduceSum

dy/dbB

X.T

MatMul

X W

Y GW.T

MatMul MatMul

dy/dx dy/dw

ReduceSum

dy/dbB

X.T

MatMul

X W

Y GW.T

MatMul MatMul

dy/dx dy/dw

ReduceSum

dy/dbB

X.T

Training memory bottleneck

Figure 3. The computation graph of sparse backpropagation for a linear layer. Red and blue blocks indicate the forward and backward OPs

respectively. The red line denotes the training memory bottleneck brought by storing activations, which can be avoided using bias only / sparse

update as shown in (b) (c) (d).

binaries, but also reveals the memory redundancy in the training

loop (details in Section 3.2).

Support Diverse Frontends/Backends. Unlike the cloud, edge

platforms are highly diverse, with different instruction sets, de-

grees of parallelism, etc. Our compilation-based workflow provides

general support for various frontends/backends. It can effortlessly

support training on hardware and vendor libraries that are designed

specifically for inference (e.g., PockEngine can enable training on

Qualcomm Hexagon DSPs with SNPE library).

The PockEngine frontend takes in a neural network represented

in various representations (e.g., ONNX, torchscript, tf.graph) and
analyzes the DAG structure. It will then perform automatic differen-

tiation (autodiff) to derive the backward graph which computes the

gradients w.r.t. the loss function (Figure 7). With the static forward

and backward graph, PockEngine will convert it into a unified inter-

mediate representation (IR), perform graph optimizations (will be

introduced later), and generate the code for different backends. Only

used operators will be compiled and PockEngine link these OPs

to build a light-weight executable binary. The PockEngine backend

supports both vendor libraries (e.g., SNPE for Snapdragon GPUs

and DSPs, TensorRT for NVIDIA GPUs) and customized kernels

(e.g., TVM [13] tuning for ARM CPUs).

Notably, instead of binding each operator with a backward im-

plementation (e.g., matmul, matmul_backward), PockEngine uses
the same set of primitive operations as inference to construct the

training graph, allowing us to utilize inference-only backends (e.g.,

SNPE, TensorRT, TVM) for training, achieving high efficiency at

minimal engineer effort.

2.6 Sparse Backpropagation and Computation
Graph Pruning

Edge devices have a limited computation capacity compared to

the cloud. Therefore, on-device training on edge usually targets a

transfer learning/fine-tuning scenario. Due to the smaller scale and

diversity of the downstream data, people found that updating the

entire model may not always lead to the best performance due to

over-fitting and feature distortion [10, 33]. Updating only a subset

of the models is proven to be a good solution that achieves similar

or better performance at a much smaller training cost, including

updating bias terms [10] and the normalization layers [20] for vi-

sion models training the low-rank parts [24] and input prompts

for language models [37], and sparsely update the important mod-

ules [41]. PockEngine aims to generally support on-device training

1384

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 4. The workflow of PockEngine. PockEngine performs the auto-diff at compile-time, prunes the computation graph to support sparse

backpropagation, and enables previously inference-only hardware platforms to perform backpropagation. PockEngine enables efficient

fine-tuning on resource-constrained devices like NVIDIA Jetson and mobile devices.

for various workloads and we focus on the sparse update to reduce

training costs.

During the compilation, PockEngine takes in a user-defined

sparse backpropagation scheme and will prune the correspond-

ing subgraphs of backpropagation calculation. PockEngine flexibly

supports the following sparse backpropagation patterns:

Bias-only Update. Bias-only update does not require saving the

intermediate activation [10], which significantly reduces memory

usage (consider a linear layer y = Wx, dW = 𝑓1 (dy, x), db = 𝑓2 (dy),
only the weight gradient requires saving the input). It also saves

the computation by 1/3 by skipping dW computation.

Layer-wise Sparse Backpropagation. Not all the layers/weight

tensors are equally important for transfer learning [41]. For transfer

learning to a downstream task, we find that part of the layers can

be kept frozen without affecting the transfer learning performance

(we can find the layers to freeze by sensitivity analysis [41]; detailed

in Section 4.1). Therefore, we can skip the computation of part of

the layers to further improve the training throughput.

Sub-layer Sparse Backpropagation. For edge devices with

limited capacity (e.g., microcontrollers), we further support sub-

layer level sparse BP, where only part of the channels of a layer

(convolutional layers and linear layers) are updated2. It further

reduces the memory cost for storing intermediate activation (we

do not need to store activation for the frozen channels) and the

computation cost for gradient calculation.

3 POCKENGINE

Compared to conventional training frameworks, sparse backpropa-

gation has the following unique advantages

• Expensive intermediate activations can be released imme-

diately after forward When either learning the bias-only

(𝑑𝑦/𝑑𝑏 and 𝑑𝑦/𝑑𝑥) or fully skipping the layer (only 𝑑𝑦/𝑑𝑥
to keep chain-rule). Thus sparse backpropagations greatly

reduce the main memory bottleneck of training (the red

connection line in Figure 3.a).

2Following [41], we simply update the first 𝑘 channels of a layer. 𝑘 is the #channels to
update.

• Sparse back-propagation does not back-propagate the very

first layers in DNN models since there is no need to compute

gradients to the front layers if they do not require gradients

(the red X mark in Figure 5).

None of the prior work can convert the theoretical savings into

measured speed-up and memory savings. PockEngine provides

systematic support for sparse BP and is able to actually reduce the

on-device training cost and we expand as follows

3.1 Searching for Sparse Backpropagation
Scheme

Not all the weights are equally important for transfer learning [20,

34, 41]. We aim to fine-tune only the important weights to reduce

the training costs while preserving the model’s accuracy.

Cost Model and Search Criterion. In order to find the training

scheme, we build cost models for model quality and training cost.

Following [41], we first fine-tune only one linear (conv, fc) layer un-

til convergence, and then repeat this process for all layers. This is an

offline analysis and we use the accuracy improvement/degradation

as the “contribution” of the weights of 𝑖𝑡ℎ layer (ΔaccW𝑖). Similarly,

we obtain the results the for bias terms of 𝑘𝑡ℎ layer(Δaccb𝑘) and
then iteratively repeat the same operations to all weights and biases

to estimate their performance.

For the training cost, we focus on the memory as edge devices

usually have limited memory and will easily get OOM. Thus we

profile the feature map size and record it as Memory𝑘,𝑖,𝑟 . We then

solve the following optimization:

k∗, i∗, r∗ = max
k,i,r

(
∑

k∈i

Δaccb𝑘 +
∑

𝑖∈i,𝑟 ∈r

ΔaccW𝑖,𝑟)

s.t. Memory(k, i, r) ≤ constraint,

(1)

where 𝑖 is the layer index of weights, 𝑘 is the layer index of biases

and 𝑟 is the ratio of learnable weights. Optimizing the objectives

finds the optimal update config where total contributions are max-

imized and the memory footprint does not exceed the constraint.

We assume that the accuracy contribution of each tensor (Δacc)
can be summed up thus the problem can be efficiently solved with

evolutionary search.

1385

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.
M

B
1

3x
3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

Backpropagation stops here

Sparse tensor backpropagation

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

Sparse layer backpropagation

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Tr
an

sB
lo

ck

Backpropagation stops here

(a) MobilenetV2 Training Scheme

(b) BERT Training Scheme

C
on

v2
d,

 3
x3

C
on

v2
d,

 1
x1

C
on

v2
d,

 1
x1

(d) Detailed Training Schemes of (b) and (a)

M
H

A
tte

n

FF
N

 L
in

ea
r 1

FF
N

 L
in

ea
r 2

Figure 5. The computation graph of sparse backpropagation for ConvNet and Transformers.

Depthwise Conv2d, 3x3

Conv2d, 1x1

Depthwise Conv2d, 3x3

Embedding

(a) MobileNetV2

Input

Updated Frozen

Multi-Head Attn

Conv2d, 1x1 FFN Linear 2

FFN Linear 1

FFN Linear 2

Multi-Head Attn

FFN Linear 1

(b) LlamaV2-7B

Figure 6. The sparse backpropagation schemes for MobileNetV2 and

LlamaV2-7B building blocks. The first point-wise convolution plays

an important role for ConvNet, while for Llamamodels, the attention

module and first FNN layer are more important.

Generalization and Acceleration. It is worth noting that the

sparse update scheme is general and universal across different

datasets. We only perform ONE scheme search on CIFAR (for vision

models) and CoLA (for language models) and sparse-BP demon-

strates good generalization capability. The schemes achieve com-

petitive training accuracy compared to full fine-tuning (Table 2 and

Table 3). Specifically, we find that for CNNs: it is most effective to

update the weights of the first convolution in each block, while

for transformer blocks, the weights in the attention module and

the first linear layer in the Feed-Forward Network (FFN) are more

important (Figure 6). Such schemes are also memory-efficient: the

depthwise conv and second pointwise conv in the inverted bot-

tleneck block (Figure 6.a) and the second linear layer in the FFN

(Figure 6.b) have the largest input activation, while our update

scheme does not require saving these large features.

After finding and specifying the gradients needed for the on-

device training, PockEngine automatically traces dependency and

analyzes the updated topology, then prunes the training graph

using dead code elimination (DCE) to prune the computation graph

and remove intermediate nodes and buffers that are no longer

needed for the training. Because the pruning is performed on graph

level at compile-time, it can deliver measured memory saving and

throughput improvement.

3.2 Training Graph Optimization

After we get the static, pruned training graph, PockEngine applies

various graph optimization techniques on the unified IR before

translating to different backends, which further improves the train-

ing efficiency.

Operator Reordering and In-place Update. Different execu-

tion orders lead to different life cycles of tensors and the overall/-

peak memory footprint will be also affected even for the same com-

putational graphs. This has been well-studied for inference [6, 38]

but less discussed for training because the backward graph is usu-

ally derived during runtime and the compiler/scheduler does not

have global information of the training process.

A concrete example is the optimizer, where the gradients are

applied to update the model parameters. In conventional training,

frameworks calculate all gradients and then apply the update. This

is common among frameworks like PyTorch and TensorFlow as the

optimizer and forward-backward are separate components in the

system design. However, such a practice leads to significantmemory

waste for storing the gradients. In small batch training with sparse

backpropagation, the cost of storing parameter gradients is close to

peak memory usage in forward and backward as shown in Table. 4:

To address the overhead, PockEngine obtains all tensor information

and plans for a better execution schedule. By reordering operators,

the gradients can be immediately applied to the corresponding

parameters before back-propagating to earlier layers. We further

trace the life-cycle of all tensors (weights, activations, gradients)

1386

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

: Runtime: Compile-Time

1. Computation Graph
(forward)

2. AutoDiff

f(x) → f′(x)

3. Computation Graph
(backward)

(a). Conventional training frameworks (b). Our proposed Tiny Training Engine

Extensive graph optimizations during compile-time.

1. Computation Graph
(forward)

2. AutoDiff
f(x) → f′(x)

3. Computation Graph
(backward)

4. Execution
Engine

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dwData Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution
Engine

Runtime graph optimizations lead to training overhead.

Figure 7. The comparison between runtime auto-differentiation and our compile-time differentiation. By offloading the differentiation to

compile time, PockEngine not only simplifies the runtime, but also enables plenty of optimization opportunities, which will be detailed in

Section. 3.2.

and re-order the schedules to reduce memory usage, leading up to

21x savings on microcontrollers for MCUNet.

Operator Fusion. In most deep learning frameworks, a sim-

ple operation usually requires a number of fine-grained kernels to

implement. For example, a single-layer normalization operation

requires three kernel calls and two memory reads and writes for

forward, and six kernel calls and five memory reads and writes for

backward. Moreover, transformations such as fusing cheap opera-

tions into expensive ones (e.g. CONV-BN-ReLU,), and parallel linear

operations (e.g. batch matmul) have been shown effective in improv-

ing the inference. During compilation and codegen, PockEngine

fuse these kernels into a single one and results in less memory IO

and kernel calls.

Functional-Preserving Graph Transformation. Existing

DNN frameworks optimize a computation graph by applying rules

either designed by domain experts [2, 4] or automatically discovered

by program [26, 28]. There are more optimization opportunities

but previous research is unable to utilize them since the backward

graph was derived at runtime in earlier frameworks. Extensive

investigation of potential graph optimizations will lead to slow

training and incur undesired runtime overhead.

Our engine integrates these optimization techniques and is an

early trial to apply to the training graph. PockEngine transforms

the data layout for different hardware. For vision tasks, NCHW is

the most widely used layout. But this format is only efficient on

accelerators like GPU. When training on mobile CPUs / DSPs, such

format is no longer optimal and PockEngine will transform the

layout at compile-time to facilitate runtime training efficiency.

Furthermore, PockEngine explores different implementations of

kernels. For example, Winograd has been widely used in inference

because of its faster computation. However, the savings are not free:

it requires extra pre-processing of the weights. If the weights are

not static, then the transformation needs to be applied every epoch

and the total FLOPs can be even higher than normal convolution.

Hence it was utilized in inference and not incorporated into train-

ing frameworks. For on-device training scenarios, there are many

frozen layers where the weights are not being changed during train-

ing [10, 61]. These layers in fact can utilize Winograd to accelerate

but such opportunities are ignored in current frameworks even if

the requires_grad attribute is set to False. PockEngine obtains
the complete training graph during compile-time thus knowing the

updating information of each parameter. Therefore, we can ana-

lyze the tensor and graph information, knowing whose weights are

static and whose are dynamic. PockEngine can bind operation to the

fastest implementation and enable the chance to utilize Winograd

even in the training.

4 RESULTS

In this section, we comprehensively evaluate the performance of

PockEngine. We first study the effectiveness of sparse backpropa-

gation, then present the experimental results on different hardware

and platforms, compared with other training frameworks. Finally,

we discuss the graph optimization results.

4.1 Setups

Models. We evaluate PockEngine on popular vision and lan-

guage models. For vision tasks, we choose MCUNet [40] (5FPS

model), MobilenetV2 [50] (width multiplier 0.35 and 1.0), and

ResNet-50 [22]. All normalization layers (e.g. BatchNorm) are fused

into the linear operations (e.g. Conv, Linear). For masked language

models, we choose the base-uncased version of BERT [18] and

DistilBERT [51] to benchmark the performance.

Datasets. For vision models, we first pre-trained them on Ima-

geNet [17] with resolution 224×224 (except 128×128 for MCUNet),

and then fine-tuned on a set of downstream tasks to evaluate the

transfer learning accuracy (including Cars [31], CIFAR-10 [32],

CUB [60], Flowers [44], Foods [8], Pets [45], and VWW [16] con-

ventional TinyML setting used in [10, 41]). The NLP models (BERT

and DistilBERT) are pre-trained onWikipedia and BookCorpus [65].

We evaluate their transfer learning performance on the GLUE [58]

benchmark (including CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST-

2). For the chatbot models, we use Llamav2 [55] then fine-tuned

with instructions from Stanford Alpaca dataset [54]. We follow

alpaca-eval [36] and MT-Bench [15, 62] to evaluate the response

quality.

1387

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

Table 2. Sparse BP achieves comparable transfer learning performance (< 1%) degradation on average) compared to the full update for vision

models at various scales, while reducing the cost of on-device training.

Vision

Model
Method

Avg.

Acc

On-Device Training Vision Datasets

Cars CIFAR CUB Flowers Foods Pets VWW

MCUNet-5FPS [40]

Full BP 74.1% 56.7 ± 1.1% 86.0 ± 0.7% 56.2 ± 0.5% 88.8 ± 0.2% 67.1 ± 0.3% 79.5 ± 0.4% 88.7 ± 0.3%
Bias Only 72.7% 52.4 ± 1.4% 83.4 ± 0.5% 55.2 ± 0.6% 86.7 ± 0.4% 65.0 ± 0.4% 78.0 ± 0.3% 88.1 ± 0.3%
Sparse BP 74.8% 55.2 ± 1.3% 86.9 ± 0.6% 57.8 ± 0.4% 89.1 ± 0.3% 64.4 ± 0.3% 80.9 ± 0.3% 89.3 ± 0.4%

MobilenetV2 [50]

Full BP 89.2% 87.1 ± 0.9% 96.0 ± 0.5% 76.6 ± 0.8% 95.4 ± 0.2% 83.9 ± 0.2% 90.7 ± 0.4% 94.5 ± 0.2%
Bias Only 87.3% 85.8 ± 0.8% 94.0 ± 0.7% 74.5 ± 0.7% 95.1 ± 0.5% 82.0 ± 0.6% 87.6 ± 0.5% 92.4 ± 0.3%
Sparse BP 88.5% 86.4 ± 1.0% 95.0 ± 0.9% 76.4 ± 1.0% 95.4 ± 0.3% 81.5 ± 0.5% 90.4 ± 0.3% 94.2 ± 0.3%

ResNet-50 [22]

Full BP 90.5% 88.2 ± 0.5% 96.8 ± 0.4% 79.9 ± 0.6% 94.2 ± 0.3% 85.2 ± 0.4% 93.6 ± 0.2% 95.3 ± 0.1%
Bias Only 87.8% 84.3 ± 0.6% 93.7 ± 0.7% 75.0 ± 0.3% 92.5 ± 0.5% 83.7 ± 0.3% 91.8 ± 0.4% 93.8 ± 0.1%
Sparse BP 90.3% 86.7 ± 0.7% 96.2 ± 0.6% 81.0 ± 0.7% 95.6 ± 0.3% 84.0 ± 0.3% 93.4 ± 0.5% 95.1 ± 0.1%

Table 3. For language models, sparse BP maintains the fine-tuning accuracy for at a reduced training cost. Results are reported with mean and

standard deviation for 3 runs.

Language

Model
Method Avg.

On-Device Training Language Datasets

CoLA MNLI MRPC-acc QNLI QQP-acc RTE SST-2

Distill-BERT [51]

Full BP 76.9% 46.6 ± 1.2% 81.9 ± 0.2% 83.8 ± 1.9% 88.3 ± 0.1% 90.0 ± 0.2% 59.6 ± 1.9% 90.8 ± 0.8%
Bias Only 72.8% 44.6 ± 0.9% 73.2 ± 0.7% 78.9 ± 2.3% 83.4 ± 1.4% 83.6 ± 0.5% 57.8 ± 2.5% 88.0 ± 1.3%
Sparse BP 77.0% 47.9 ± 1.5% 81.1 ± 0.3% 84.2 ± 1.8% 87.8 ± 0.1% 88.5 ± 0.3% 58.0 ± 1.6% 90.6 ± 0.5%

BERT [18]

Full BP 81.8% 59.9 ± 1.5% 84.0 ± 0.1% 85.8 ± 1.9% 90.9 ± 0.2% 90.8 ± 0.3% 68.2 ± 2.0% 92.7 ± 0.7%
Bias Only 78.1% 51.1 ± 0.5% 78.6 ± 0.8% 83.6 ± 2.6% 88.5 ± 1.0% 86.0 ± 0.1% 67.9 ± 3.3% 90.7 ± 1.3%
Sparse BP 81.7% 58.6 ± 0.8% 84.4 ± 0.2% 86.2 ± 1.6% 90.8 ± 0.1% 90.3 ± 0.6% 69.4 ± 1.8% 91.8 ± 0.4%

Figure 8. The training loss curves of FT-Full and our used sparse up-

date on QNLI and SST-2 dataset using BERT. Sparse updates slightly

slow down the training curve, but do not degrade the final accuracy

Runtime adaptations. PockEngine is a compilation-based

framework, and the compilation workflow helps to handle vari-

ous frontends as well as adapt to different backends and runtimes.

PockEngine takes models defined in PyTorch/TensorFlow/Jax and

translates them into IR where graph optimizations can be applied.

The optimized training graph is then fed to deep learning libariries

like TVM [13], SNPE [48] and TinyEngine [39] to generate platform-

specific binaries.

Sparse-BP Schemes for Fine-tuning. We obtain sparse back-

propagation schemes for CNN models (MCUNet [40], MobileNet-

V2 [50], ResNet-50 [22]) and transformer [57]-based NLP models

(BERT [18] and DistilBERT [51]) by sensitivity analysis [41] while

considering computation/memory cost. Our final update schemes

are:

• MCUNet: we further support sparse tensor backpropagation

to handle the extremememory constraints of IoT devices [40].

We update the biases of the last 7 blocks and update {100%,

100%, 50%, 100%} of the weights of the first convolutions for

the intermediate 4 blocks.

• MobileNetV2: update the biases and the weights of the first

1x1 convolution for the last 7 blocks (out of 19).

• ResNet-50: update the biases and the weights of the first 1x1

convolution for the last 8 blocks (out of 16).

• BERT: update the biases of the last 6 blocks (out of 12) and

the weights of the attention module and the first linear in

FFN for the last 4 blocks.

• Distill-BERT: update the biases of the last 3 blocks (out of 6)

and the weights of the attention module and the first linear

in FFN for the last 2 blocks.

• LlamaV2-7B: update the biases of the last 5 blocks (out of 32)

and the weights of the attention module and the first linear

in FFN for the last 5 blocks.

4.2 Effectiveness of Sparse Backpropagation

Sparse Backpropagation Achieves Full Accuracy. On-device

training aims to continually improve user experience by local data

thus the number of training samples is usually small compared

to large-scale pre-training. Therefore, it is not necessary to per-

form full backpropagation to update the whole model as shown in

Table 2. Remarkably, the downstream accuracy of sparse backpropa-

gation can match the full-propagation baselines on both vision and

1388

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

PockEngine (Sparse-BP)MNNPyTorch PockEngine (Full-BP)JAXTensorFlow

0
60

120
180
240

110

5456

172

257

87
4133

101116

3522223441 33171528
48

(a) Jetson Nano GPU

0

1

2

3
2.3

2.7

1.8

0.91.1
0.8

0.10.10.1

(c) STM32F746G MCU
MCUNet MbV2 Proxylessim

ag
es

 (s
en

te
nc

es
)/s

ec

im
ag

es
 /s

ec

MCUNet MbV2 ResNet-50 BERT DistilBERT
0.0
0.3
0.6
0.9
1.2 1.09

0.56

0.13

LlamaV2-7B

se
nt

en
ce

s/
se

c

(b) Jetson Orin GPU

0
2.5

5
7.5
10

6.9

3.7

1.3

9.511.2

4.8

2.6
0.8

5.9
7.9

0.20.60.8 0.50.20.10.50.5 0.50.40.20.50.7 0.40.30.10.40.5

MCUNet MbV2 ResNet-50
(f) Raspberry Pi 4 CPU

BERT D-BERT 0
450
900

1350
1800

585

1,625
1,804

317

988
1,292

MCUNet MbV2 ResNet-50
(g) Snapdragon 8Gen1 DSP

im
ag

es
/s

ec

im
ag

es
 (s

en
te

nc
es

)/s
ec

0
13
25
38
50 51

21
15

37

52

33

14
9

2223

4
912 14

75
1012

MCUNet MbV2 ResNet-50
(d) Apple M1 GPU

BERT D-BERT
0
5

10
15
20

5.4
3.0

1.2

10.9

23.1

3.02.00.8

5.6

10.1

MCUNet MbV2 ResNet-50
(e) Snapdragon 8Gen1 CPU

BERT D-BERTim
ag

es
 (s

en
te

nc
es

)/s
ec

im
ag

es
 (s

en
te

nc
es

)/s
ec

1.81.8

Figure 9. Training speed comparison between other frameworks and PockEngine of popular deep learning models on various hardware

platforms. PockEngine consistently outperforms existing frameworks and sparse bp further speedups the training throughput.

language models (<1% performance drop). On some downstream

datasets, the performance of sparse backpropagation is even higher

surpassing the full baselines such as Flower in vision and mrpc-acc

in language. The performance is far above the common require-

ments for TinyML [7] (80% accuracy on VWW), suggesting sparse

propagation is a good strategy for on-device training.

Furthermore, when evaluating language models, sparse back-

propagation also maintains the finetuning accuracy at a reduced

training cost. The average performance degradation is within 1%.

This means that the use of sparse backpropagation can effectively

reduce the time and cost required for training language models,

without sacrificing accuracy. In fact, the results show that sparse

backpropagation can even improve the model’s performance on

certain sub-tasks (e.g. MRPC and RTE). By making training more ef-

ficient, sparse backpropagation could help to accelerate progress in

these fields and enable the development of more advanced language

models.

Sparse Backpropagation Reduces Training Time andMem-

ory. Besides the comparable performance when transferring to

downstream tasks, sparse backpropagation greatly reduces the

training peak memory and improves the training speed.

Shown in Table 4, the training memory grows rapidly w.r.t the

batch size and soon exceeds the limitation for edge devices (e.g. 1GB

for Raspberry Pi), using swap or re-materialization techniques [47]

will introduce extra computation and energy cost. Sparse backprop-

agation cuts down peak memory usage (2.2× to 21.3×) and the

saving is general across models and applications. Even when batch

size grows, the required memory is still small and the memory cost

of training MCUNet-5FPS sparse-BP with batch size 8 is still smaller

than batch 1. Batched training helps improve device utilization as

well as training stability.

When applying sparse backpropagation, operations and tensors

related to frozen layers are automatically trimmed from the training

graph via dead-code elimination, resulting in less computation

and higher training throughput. Figure 9 shows that the sparse

backpropagation can further accelerate the speed by 1.3x to 1.6x on

Raspberry Pi. Previous efficient training algorithms only discuss

the theoretical performance and PockEngine provides system-level

support and translates into measured reduction.

4.3 PockEngine Speedups On-Device Training

We compare PockEngine with other training frameworks in Fig-

ure 9. PockEngine enables training on various hardware platforms,

including Raspberry Pi 4, Snapdragon CPU and DSP, Apple M1,

Jetson Nano, and microcontrollers. It also supports a wide range of

models, such as MCUNet, MobilenetV2, ResNet-50, BERT, and Dis-

tilBERT. PockEngine effortlessly supports diverse models through

its frontend, which converts neural networks represented in various

formats to a unified intermediate representation.

Furthermore, the compilation-based workflow allows us to

choose the best runtime backend for different training scenarios, in-

cluding both vendor libraries (e.g. SNPE for Snapdragon GPUs and

DSPs, TensorRT for NVIDIA GPUs) and customized kernels (e.g.,

TVM-tuned kernels for ARM CPUs and Apple M1). We present a

comparison of training workflows in Figure 9 and discuss it below:

Edge CPU.. For platforms like the Raspberry Pi, PockEngine

offers 13 to 21 × better performance compared to popular DNN

training frameworks. This speedup is due to kernel tuning, which

1389

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

Table 4. The trainingmemory usage comparison of full backpropagation and sparse backpropagation.We report actual memory usagemeasured

on Jetson AGX Orin. The saving ratios are more significant as batch sizes increase. “-” denotes that the experiments cannot fit into devices.

Platform Model #Params Method
Training Memory

bs=1 bs=4 bs=16

MCU MCUNet 0.6M
Full-BP 3.6MB - -

Sparse-BP 173KB - -

Jetson Nano MobilenetV2 3.4M
Full-BP 729MB 910MB 1.2GB

Sparse-BP 435MB 501MB 819MB

Jetson Nano ResNet50 26M
Full-BP 827MB 1.1GB 2.1GB

Sparse-BP 663MB 723MB 885MB

Jetson AGX Orin BERT 125M
Full-BP 1.7GB 3.6GB 5.7GB

Sparse-BP 1.4GB 1.9GB 2.3GB

Jetson AGX Orin LlamaV2 7B
Full-BP 43.1GB - -

Sparse-BP 31.2GB - -

existing frameworks either overlook in favor of GPU kernel im-

plementations (PyTorch, TensorFlow, Jax) or optimize only for the

inference pipeline and operators (MNN). The corresponding ARM

kernels do not provide ideal performance, let alone the overhead

brought by frameworks.

Edge GPU. We benchmark edge GPU platforms using NVIDIA

Jetson Nano and Jetson AGX Orin due to their widespread use in

edge applications. GPUs have a much higher degree of parallelism

and better training throughput than CPUs. The faster training

speed of PockEngine (2.2x to 2.6× speedup) is mainly due to the

compilation process: The host language Python is typically slow on

low-frequency CPUs, while PockEngine’s compiled graph can run

without host languages. While other frameworks like TensorRT [2]

may also achieve this, they are limited to inference only and do not

provide training support.

Apple M-Chip. The Apple M1 chip is a relatively new plat-

form for training. While PyTorch and Tensorflow have preliminary

GPU support, the compatibility is not ideal 3. Even with the latest

build (commit ID: c9913cf), PyTorch throws errors when launching

training for BERT and DistilBERT. On the other hand, PockEngine

compiles the training graph to Metal, providing better compatibility

and faster training speeds.

Mobile DSP. For Qualcomm DSP, we integrate SNPE [48] to de-

liver the final binaries. It is worth noting that SNPE is a convention-

ally inference-only library for integer models and our PockEngine

easily extends it with training capability. As shown in Figure. 9 (g),

the peak performance of DSP is impressive and even on par with

edge GPUs.

Microcontrollers. For the microcontroller platform, we inte-

grate TinyEngine [40] to perform the codegen and enable training

under extremely limited memory constraints. Previous frameworks

like TF-Lite-Micro [3] is inference-only and we report the projected

latency. Show in Figure. 7 (c), the speed is much lower than Pock-

Engine.

3https://github.com/pytorch/pytorch/issues/77764

PockEngine enables efficient on-device training by compilation

and adaptation to various runtimes. It further supports advanced

backpropagation schemes and advanced graph optimization, which

we will expand further in the following section.

5 FINE-TUNING CHATBOT WITH
POCKENGINE

With the growing attention ChatGPT has received, the demand for

fine-tuning one’s own Chatbot models has also been increasing.

This allows users to tailor the model to their domain-specific needs

(e.g., law, biomedical, health care) and ensures privacy (e.g. private

emails, personal assistant) by not uploading information to the

cloud. By fine-tuning our own language model, we can address

these concerns and obtain a high-quality language model that meets

our needs. In this section, we demonstrate how PockEngine can

efficiently fine-tune a chatbot on edge platform (Jetson AGX Orin).

Models. We choose Meta’s LlamaV2 [55] and choose the 7B

model as the backbone for our experiments. This decision was

based on the trade-off of model quality and device resources. The

detailed fine-tuning settings are discussed below.

Evaluation. For evaluation, we follow Alpaca-Eval [36] and

MT-Bench [62] to use LLMs as the automated evaluator for bench-

mark generation and performance assessments. The quality of the

answers is evaluated based on helpfulness, relevance, accuracy, and

details from 805 questions4 and 80 questions from Vicuna project5.

This is a pair-to-pair comparison and we choose text-davinci-003

for Alpaca-Eval win rate (%) and ChatGPT-3.5-Turbo for MT-Bench

Score.

Datasets. To align pre-trained language models with instruc-

tions, we follow the self-instruct [59] and adapt data from Stanford

Alpaca [54]. The total training set has 52K examples containing

diverse instructions and responses 6

4https://tatsu-lab.github.io/alpaca_eval
5https://github.com/lm-sys/FastChat
6https://huggingface.co/datasets/tatsu-lab/alpaca

1390

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 5. Instruction tuning comparisons between PyTorch and PockEngine. The pre-trained model is LLamaV2-7B [55] and we fine-tune the

models following Stanford Alpaca’s setting [54]. We report the training loss and Alpaca-eval score [36] (reference model text-davinci003.

PockEngine shows significant speedup over PyTorch on Jetson AGX Orin while fully matching the training quality. With the sparse update,

PockEngine further improves the training throughput while maintaining the response quality.

Framework Method
Iteration

Latency (↓)
GPU

Memory(↓) Loss(↓)
Alpaca-Eval

Winrate(↑)
MT-Bench

score(↑)

PyTorch FT-Full 7.7s 45.1GB 0.761 44.1% 6.1

PyTorch LoRA (rank=8) 7.3s 30.9GB 0.801 43.1% 5.1

PockEngine FT-Full 1.8s 43.1GB 0.768 43.7% 6.1

PockEngine Sparse 0.9s 31.2GB 0.779 43.1% 5.7

Instruction:What is the meaning of the following idiom?

Input: It’s raining cats and dogs.

Output: The idiom "it’s raining cats and dogs" means that it is

raining heavily.

Example Record from Alpaca Dataset.

Fine-tuning. We fine-tune the models for 3 epochs using a

learning rate of 10−4 and no weight decay. The optimizer we use

is memory-efficient Lion [14], and the maximum sentence length

is limited to 512. The instruction tuning batch size is 1, and the

gradient is accumulated over 16 steps.We sparsely update the biases

of the last 5 blocks (out of 24) and the weights of the attention

module and the first linear layer in the FFN for the last 5 blocks.

We further freeze the layer-norm layers to reduce training costs

and speed up training.

5.1 Quantitative Comparison.

PockEngine Accelerates Training. As shown in Table 5, Py-

Torch can train on Jetson AGX Orin, but one iteration takes more

than 7 seconds for LlamaV2-7B. Fine-tuning on 1000 records would

require 2 hours while PockEngine accelerates training by 4.4x and

can finish in less than half an hour.

Sparse Backpropagation Accelerates Training. For popular

parameter-efficient fine-tuning methods like LoRA [24], although

they can effectively reduce the memory footprint (from 45.1GB

to 30.9GB), the training cost is not significantly improved as they

still need to backpropagate the first layer. In contrast, Sparse back-

propagation reduces the backpropagation depth and significantly

improves training speed (from 1768ms to 914ms, 1.9× faster).

Sparse-BP Achieves Comparable Accuracy. Besides training

throughput improvement, sparse backpropagation also maintains

fine-tuning accuracy. When compared to full-BP, sparse-BP demon-

strates similar performance, achieving an impressive Alpaca-Eval

score of 43.7. This score closely matches the performance of full-BP,

which has an Alpaca-Eval score of 44.1. Sparse-BP also performs

favorably when compared to LoRA (Alpaca-Eval score 43.1).

5.2 Qualitative Comparison between Full-BP
and Sparse-BP

In addition to quantitative analysis on accuracy and throughput, we

also conduct qualitative analysis to compare the quality of sparse-

BP and full-BP when performing instruction tuning on LlamaV2-7B.

We make the assumption that a model’s knowledge and capabilities

are learned primarily during pretraining, while alignment teaches

LLMs how to interact with users [63]. Therefore, we examine the

response quality from multiple perspectives:

Factual Recall. : To thoroughly evaluate the performance be-

tween Full- and Sparse-backpropagation, we conduct a detailed

analysis of the corresponding models’ proficiency to answer ques-

tions related to general knowledge. We first examine the capability

to correctly identify the capital city of a given country. All models

consistently deliver accurate responses while the tuned models not

only provide accurate answers but also offer more comprehensive

information, enriching the overall user experience.

Input:What is the capital of United Status?

LlamaV2-7B-original:Washington, D.C.

LlamaV2-7B-tuned (Full-BP): The capital of the United

States is Washington D.C. (District of Columbia).

LlamaV2-7B-tuned (Sparse-BP): The capital of the United

States is Washington, D.C.

Example 1.The Capital of U.S.A.

Similarly, when we inquire about the dates of notable events,

all models exhibit a remarkable level of confidence and accuracy

in their responses. This suggests the reliability and correctness of

both Full- and Sparse-backpropagation during fine-tuning.

Input: In what year was the Beijing Olympics held?

LlamaV2-7B-original: The Beijing Olympics were held in

2008..

LlamaV2-7B-tuned (Full-BP): The Beijing Olympics, also

known as the Games of the XXIX Olympiad, were held in 2008.

The opening ceremony took place on August 8, 2008, and the

closing ceremony was held on August 24, 2008.

LlamaV2-7B-tuned (Sparse-BP): The Beijing Olympics, also

known as the 2008 Summer Olympics, were held in Beijing,

China in 2008.

Example 2. The Date of Beijing Olympics.

However, when the question becomes obscure, the original Llama

model no longer provides accurate answers. For example, the raw

Llama model (without fine-tuning) incorrectly states that Michael

Jackson died in 2020 (the actual year is 2009), and it also provides

incorrect album names (the proper title is “Invincible”). Meanwhile,

the Full-BP model and the Sparse-BP model both properly interpret

the questions and provide accurate responses.

1391

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

Input: what was Michael Jackson’s last album?

LlamaV2-7B-original: Michael Jackson passed away on June

25, 2020, so he did not release an album after that. However,

before his death, he released the album "Michael Jackson: The

Ultimate Collection," which was a compilation of his previous

studio albums and bonus tracks.

LlamaV2-7B-tuned (Full-BP): Michael Jackson’s last album

was ’Invincible’, released in 2001.

LlamaV2-7B-tuned (Sparse-BP):Michael Jackson’s last al-

bum, released during his lifetime, was "Invincible" which was

released in 2001.

Example 3. The Title of Michael Jackson’s Final Album

Operation and Logic Inference. Next, we evaluate a simple but

interesting task: reverse the order of words. This task requires LLMs

to understand the concept of reversing and properly segmenting the

sentences. The original model misunderstood the task and reversed

the words’ meanings, leading to incorrect answers. Meanwhile,

the Full-BP and sparse-BP models, which were fine-tuned, both

correctly understood the term "reverse" and executed the given

task, though the sparse-BP model made a tiny mistake and still

misplaced the word "the".

Input: Please reverse the words in the sentence "I love the

Micro conference"

LlamaV2-7B-original: I hate the conference Micro.

LlamaV2-7B-tuned (Full-BP): The reversed result is "Con-

ference Micro the love I"

LlamaV2-7B-tuned (Sparse-BP): The reversed sentence

would be "Conference the Micro love I".

Example 4. Reversing a sentence.

After comparing the response quality of executing given tasks,

we then evaluated the logical inference capability of the fine-tuned

models. We first briefly introduced the hosting location of the Micro

conference for the past three years and asked where the conference

was held last year. Without fine-tuning, the original Llama model

failed to understand the question and only simply repeated the first

sentence. However, for the fine-tuned models, both Full-BP and

Sparse-BP were able to correctly name the place, with the response

from Full-BP being more confident.

Input:Micro was running virtually online in 2021, and held

physically at Chicago in 2022 and will soon be hosted in

Toronto in 2023. Now is the year of 2023, where was Micro

hosted last year?

LlamaV2-7B-original:Micro was hosted virtually in 2021

LlamaV2-7B-tuned (Full-BP): Micro was hosted physically

in Chicago in 2022.

LlamaV2-7B-tuned (Sparse-BP): Based on the information

provided, it seems that Micro was hosted physically at Chicago

in 2022.

Example 5. Inferring Information Based on Context.

Maths. We then compared themathematical abilities of different

models. Mathematics is often considered a significant challenge

for many language models, and obviously, the original LlamaV2

model struggled with math-related questions, while the Full-BP and

Sparse-BP models demonstrated certain capabilities for reasoning

and properly calculating the results.

Input: Lee mows one lawn and charges $33. Last week he

mowed 16 lawns and three customers each gave him a $10 tip.

How many dollars did Lee earn mowing lawns last week?

LlamaV2-7B-original: Lee earned $660 from mowing lawns

last week.

LlamaV2-7B-tuned (Full-BP): Lee earned $33 x 16 = $528

from mowing lawns. His total earnings from the 16 customers

who gave him a $10 tip is $10 x 3 = $30. Therefore, Lee earned

a total of $528 + $30 = $558 last week mowing lawns.

LlamaV2-7B-tuned (Sparse-BP): To determine how much

Lee earned mowing lawns last week, we need to calculate the

total amount of money he earned from mowing lawns and

tips. Lee mowed one lawn and charged $33, so he earned $33

from that lawn. Last week, Lee mowed 16 lawns, and three

customers each gave him a $10 tip, so he earned $10 x 3 = $30

in tips from those lawns and earned $33 from mowing one

lawn and total 16 lawns = $528. Therefore, Lee earned $558

last week from mowing lawns and receiving tips.

Example 6. Math Problem Solving

Note that this is a concise qualitative study comparing original,

Full-BP fine-tuned, and Sparse-BP fine-tuned LLMs. We carefully

selected representative samples for this study, although it is impor-

tant to note that it is not comprehensive given the extensive range

of responses the model can provide. The objective of this analy-

sis is to present compelling evidence in support of two findings:

(1) fine-tuning is an essential process for personalizing your own

Chabot, and (2) Sparse-BP is capable of fine-tuning models with

comparable quality with much reduced cost.

6 CONCLUSION

We present PockEngine, an efficient training framework for learn-

ing on edge. PockEngine has general support for various fron-

tends/backends to deal with hardware heterogeneity on edge. It

improves the efficiency of on-device training via (1) compilation-

based auto-differentiation to offload overheads from runtime to

compile time; (2) supporting sparse backpropagationwith backward

graph pruning; (3) training graph optimization including operator

reordering/fusion and various function-preserving transforms.

Experiments on different edge devices show PockEngine can

significantly speedup on-device training: 11.2× on ARM CPUs,

2× on Apple M1, and 2.7× on NVIDIA edge GPU, and 9.6× on

microcontroller compared to TensorFlow. PockEngine supports

sparse backpropagation, which further speeds up by 1.5 - 3.5×while

matching the accuracy of full backpropagation. Further, PockEngine

enables fine-tuning LLamaV2-7B language model on a Jetson AGX

Orin at 914ms, 7.9× faster than the PyTorch baseline. We hope our

engine design can facilitate AI applications with personalization

and life-long learning capacity by democratizing learning on the

edge.

ACKNOWLEDGMENTS

This work was supported byMIT-IBMWatson AI Lab, MIT AI Hard-

ware Program, MIT-Amazon Science Hub, and NSF. Ligeng Zhu

and Ji Lin were partially supported by the Qualcomm Innovation

Fellowship.

1392

PockEngine MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

REFERENCES
[1] [n. d.]. NCNN : A high-performance neural network inference computing frame-

work optimized for mobile platforms. https://github.com/Tencent/ncnn.
[2] [n. d.]. NVIDIA TensorRT, an SDK for high-performance deep learning inference.

https://developer.nvidia.com/tensorrt.
[3] [n. d.]. TensorFlow Lite Micro.
[4] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In OSDI.

[6] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and
Hadi Esmaeilzadeh. 2020. Ordering chaos: Memory-aware scheduling of irreg-
ularly wired neural networks for edge devices. arXiv preprint arXiv:2003.02369
(2020).

[7] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy
Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,
et al. 2020. Benchmarking TinyML systems: Challenges and direction. arXiv
preprint arXiv:2003.04821 (2020).

[8] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101–mining
discriminative components with random forests. In European conference on com-
puter vision. Springer, 446–461.

[9] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[10] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce Activa-
tions, Not Trainable Parameters for Efficient On-Device Learning. arXiv preprint
arXiv:2007.11622 (2020).

[11] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Return of the devil in the details: Delving deep into convolutional nets. In BMVC.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In OSDI.

[14] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu,
Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, andQuoc V. Le.
2023. Symbolic Discovery of Optimization Algorithms. arXiv:2302.06675 [cs.LG]

[15] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://vicuna.lmsys.org

[16] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. 2019. Visual wake words dataset. arXiv preprint arXiv:1906.05721
(2019).

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[19] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. 2014. Decaf: A deep convolutional activation feature for
generic visual recognition. In ICML.

[20] Jonathan Frankle, David J Schwab, and Ari S Morcos. 2020. Training BatchNorm
and Only BatchNorm: On the Expressive Power of Random Features in CNNs.
arXiv preprint arXiv:2003.00152 (2020).

[21] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann.
2015. Devnet: A deep event network for multimedia event detection and evidence
recounting. In CVPR. 2568–2577.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In International Conference on
Machine Learning. PMLR, 2790–2799.

[24] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models.

arXiv:2106.09685 [cs.CL]
[25] Junsu Jang and Fadel Adib. 2019. Underwater backscatter networking. In Pro-

ceedings of the ACM Special Interest Group on Data Communication. 187–199.
[26] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47–62.

[27] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and
Alex Aiken. 2019. Optimizing DNN computation with relaxed graph substitutions.
Proceedings of Machine Learning and Systems 1 (2019), 27–39.

[28] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and
Alex Aiken. 2019. Optimizing DNN computation with relaxed graph substitutions.
Proceedings of Machine Learning and Systems 1 (2019), 27–39.

[29] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, et al. 2020. MNN: A universal and
efficient inference engine. arXiv preprint arXiv:2002.12418 (2020).

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3d object repre-
sentations for fine-grained categorization. In Proceedings of the IEEE international
conference on computer vision workshops. 554–561.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[33] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang.
2022. Fine-tuning can distort pretrained features and underperform out-of-
distribution. arXiv preprint arXiv:2202.10054 (2022).

[34] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy
Liang, and Chelsea Finn. 2022. Surgical Fine-Tuning Improves Adaptation to
Distribution Shifts. arXiv preprint arXiv:2210.11466 (2022).

[35] Philip Levis, Neil Patel, David Culler, and Scott Shenker. 2004. Trickle: A self-
regulating algorithm for code propagation and maintenance in wireless sensor
networks. In Proc. of the 1st USENIX/ACM Symp. on Networked Systems Design
and Implementation, Vol. 25. 37–52.

[36] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Car-
los Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. AlpacaEval: An
Automatic Evaluator of Instruction-following Models. https://github.com/tatsu-
lab/alpaca_eval.

[37] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190 (2021).

[38] Edgar Liberis and Nicholas D Lane. 2019. Neural networks on microcon-
trollers: saving memory at inference via operator reordering. arXiv preprint
arXiv:1910.05110 (2019).

[39] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. Mcunetv2:
Memory-efficient patch-based inference for tiny deep learning. arXiv preprint
arXiv:2110.15352 (2021).

[40] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
Mcunet: Tiny deep learning on iot devices. In NeurIPS.

[41] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. On-Device Training Under 256KB Memory. In NeurIPS.

[42] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew
Howard. 2018. K for the price of 1: Parameter-efficient multi-task and transfer
learning. arXiv preprint arXiv:1810.10703 (2018).

[43] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew
Howard. 2019. K for the Price of 1: Parameter-efficient Multi-task and Transfer
Learning. In ICLR.

[44] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated flower classifica-
tion over a large number of classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE, 722–729.

[45] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. 2012.
Cats and dogs. In 2012 IEEE conference on computer vision and pattern recognition.
IEEE, 3498–3505.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[47] Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. 2022.
POET: Training Neural Networks on Tiny Devices with Integrated Remateri-
alization and Paging. In International Conference on Machine Learning. PMLR,
17573–17583.

[48] Qualcomm. [n. d.]. Snapdragon Neural Processing Engine SDK. https://developer.
qualcomm.com/sites/default/files/docs/snpe/overview.html.

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
CVPR.

[51] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv

1393

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zhu et al.

preprint arXiv:1910.01108 (2019).
[52] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.

2014. CNN features off-the-shelf: an astounding baseline for recognition. In CVPR
Workshops.

[53] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz
Hardt. 2020. Test-time training with self-supervision for generalization under
distribution shifts. In International conference on machine learning. PMLR, 9229–
9248.

[54] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[55] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[56] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. {FarmBeats}: An {IoT} Platform for {Data-Driven} Agriculture. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
515–529.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[58] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[59] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, andHannanehHajishirzi. 2022. Self-Instruct: Aligning LanguageModel
with Self Generated Instructions. arXiv:2212.10560 [cs.CL]

[60] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff,
Serge Belongie, and Pietro Perona. 2010. Caltech-UCSD Birds 200. Technical
Report CNS-TR-201. Caltech. /se3/wp-content/uploads/2014/09/WelinderEtal10_
CUB-200.pdf,http://www.vision.caltech.edu/visipedia/CUB-200.html

[61] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. BitFit: Simple
Parameter-efficient Fine-tuning for Transformer-basedMasked Language-models.
CoRR abs/2106.10199 (2021). arXiv:2106.10199 https://arxiv.org/abs/2106.10199

[62] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]

[63] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA: Less Is More for Alignment.
arXiv:2305.11206 [cs.CL]

[64] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19–27.

[65] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning Books and Movies: Towards
Story-Like Visual Explanations by Watching Movies and Reading Books. In The
IEEE International Conference on Computer Vision (ICCV).

1394

