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ABSTRACT

On-device learning and efficient fine-tuning enable continuous and
privacy-preserving customization (e.g., locally fine-tuning large
language models on personalized data). However, existing training
frameworks are designed for cloud servers with powerful acceler-
ators (e.g., GPUs, TPUs) and lack the optimizations for learning
on the edge, which faces challenges of resource limitations and
edge hardware diversity. We introduce PockEngine: a tiny, sparse
and efficient engine to enable fine-tuning on various edge devices.
PockEngine supports sparse backpropagation: it prunes the back-
ward graph and sparsely updates the model with measured memory
saving and latency reduction while maintaining the model quality.
Secondly, PockEngine is compilation first: the entire training
graph (including forward, backward and optimization steps) is de-
rived at compile-time, which reduces the runtime overhead and
brings opportunities for graph transformations. PockEngine also
integrates a rich set of training graph optimizations, thus can fur-
ther accelerate the training cost, including operator reordering and
backend switching. PockEngine supports diverse applications,
frontends and hardware backends: it flexibly compiles and tunes
models defined in PyTorch/TensorFlow/Jax and deploys binaries
to mobile CPU/GPU/DSPs. We evaluated PockEngine on both vi-
sion models and large language models. PockEngine achieves up to
15 X speedup over off-the-shelf TensorFlow (Raspberry Pi), 5.6 X
memory saving back-propagation (Jetson AGX Orin). Remarkably,
PockEngine enables fine-tuning LLaMav2-7B on NVIDIA Jetson
AGX Orin at 550 tokens/s, 7.9x faster than the PyTorch.
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1 INTRODUCTION

Edge devices are ubiquitous and produce an increasing amount of
data in our daily lives. The need for intelligent, personalized, and
private Al is rapidly growing, as a single model fails to fit different
users’ needs. However, while deep learning inferences are widely
performed on edge devices, the training of deep neural networks is
typically run on cloud GPU servers. Cloud-based training requires
users to upload their personal data to the cloud, which not only
incurs additional data transfer costs, but also brings privacy risks
over sensitive data (e.g., healthcare data, keyboard input history,
GPS location, etc.).

On-device training is a promising solution for model customiza-
tion without sacrificing privacy (Figure 1). It allows a pre-trained
model to continuously adapt to sensor data without sending it to
the cloud. For example, the smart keyboard model can update itself
to better predict the next word from users’ typing history; the email
assistant can learn from users’ previous drafts and train person-
alized language models; vision models can automatically adapt to
environments with domain shifts [53]). The near-sensor training
paradigm also brings important benefits for energy and connectiv-
ity: it saves energy from data transmission (which is much more
expensive than computation [35]); it also helps with applications
like ocean sensing [25] and smart agriculture [56] that do not have
physical access to the Internet.

Despite all the benefits, on-device training is difficult due to the
following challenges:

(1) Resource Limitations. The capacity of edge devices is or-
ders of magnitude smaller than cloud servers. People have been
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Figure 1. On-device learning and local fine-tuning enable customiza-
tion, protect privacy, and form a virtuous cycle between user and
devices.

trying hard to squeeze deep learning models just for edge inference,
while model training and fine-tuning are more power-, computation-
, and memory-expensive. We need extra memory to store all inter-
mediate feature maps for backpropagation, and extra computation
for the backward pass (roughly 3x compared to inference). Some-
times the training needs a larger batch size to ensure a stable conver-
gence, making the process even more costly. For MobilenetV2 [50]
the training memory is 14X and 7.3 X larger than inference (batch
size 8) and for BERT [18] the peak memory usage is 7.3 X larger
compared to inference. Furthermore, the optimizers also require
extra memory (2x for Momentum and 3x for Adam [30]). With the
current training framework, the training costs could soon exceed
the resource limits of edge hardware.

(2) Hardware Diversity While the accelerators on cloud servers
are dominated by GPUs, the hardware of edge platforms has a wide
range of options on the market. The processor ranges from ARM
microcontrollers to powerful Apple M1 chips, and the accelera-
tor varies between Qualcomm Adreno GPUs, Hexagon DSPs, and
edge TPUs. Each hardware comes with a different inference library.
PockEngine can directly use these inference libraries for training by
compiling the training graph into standard ONNX format. On the
other hand, popular deep learning training frameworks like Ten-
sorFlow [4], PyTorch [46] and Jax [9] are developed for high-end
cloud GPUs/TPUs. The performance is poor when directly applied
to edge platforms!.

To address the above challenges, we introduce PockEngine, a
tiny and efficient training engine designed for on-device training.
We highlight the following properties:

e PockEngine provides system-level support for both dense
and sparse backpropagation. Apart from updating the
whole model, PockEngine supports flexible sparse update
schemes by computing the gradients for only part of the
weights, which proves to be a more efficient option for
fine-tuning/transfer learning without harming the accu-
racy [10, 20, 23, 24, 37, 41, 42]. Existing training frameworks
can only simulate the sparse backpropagation by computing
the backward and mask out gradients, but cannot realize
measured speed up and memory savings. PockEngine sup-
ports sparse backpropagation via graph pruning and dead

The frameworks themselves cannot even be installed due to the tight resource con-
straints of low-end hardware like microcontrollers [41].
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code elimination with the compilation nature, leading to
smaller computation and memory usage.

e PockEngine is a compilation-based efficient training en-
gine and enables many inference-only framework to per-
form training. Our compilation workflow helps to connect
diverse model architectures and frontend options (e.g., vi-
sion/NLP models, PyTorch/TensorFlow/ONNX definitions)
with various backend libraries (e.g., SNPE for Qualcomm,
Metal for Apple Silicon, TVM), exposing a unified intermedi-
ate representation (IR). By sharing the same set of operators
for both forward and backward operations, we not only en-
able inference frameworks to train neural networks, but also
allow for various graph optimizations to improve efficiency
(see Figure 4).

e PockEngine implements a rich set of graph optimizations
to improve the efficiency on edge devices, including operator
fusion, operator reordering, layout transforms, and backend
switching that are conventionally used for inference only.
We find that the training graphs actually have more opti-
mization opportunities due to their complexity. By sharing
the same operator set with inference graphs, PockEngine
can well utilize the optimization techniques from inference
engines (e.g., PockEngine utilizes previously inference-only
winograd convolution to accelerate training).

We extensively evaluated PockEngine on six edge platforms and
six deep learning tasks from vision to NLP. PockEngine achieves up
to 11X speedup over TensorFlow for the same training workload.
With sparse backpropagation, we can further improve the accelera-
tion up to 21x without losing transfer learning accuracy on tiny
microcontrollers. We hope our work can contribute to the thriving
of on-device training by providing a general-purpose, high-efficiency,
user-friendly training framework for edge devices.

2 RELATED WORK
2.1 Cloud Deep Learning Systems

The success of deep learning is built on top of popular training
frameworks such as PyTorch [46], TensorFlow [5], MXNet [12],
JAX [9], etc. These systems are designed for development flexibil-
ity and depend on a host language (e.g., Python) to execute. This
brings significant memory overhead (>300MB) and makes the run-
time especially slow on low-frequency CPU (e.g., ARM Cortex).
Moreover, the operator kernels are optimized for high-end GPU
devices and lack performance tuning for edge devices and some
overheads such as extra gradient buffers for the optimizer step are
not considered a bottleneck for powerful server hardware. Pock-
Engine is a compilation-based framework thus the runtime does
not rely on host languages as compared in Table 1. This moves
most workloads from runtime to compile-time to minimize the run-
time overhead and enables later optimizations to improve training
throughput.

2.2 Edge Deep Learning Systems

When deploying models on tiny edge devices, inference libraries
like TVM [13], TF-Lite, NCNN [1], TensorRT [2], and Open-
VINO [57] deliver optimized kernels for mobile platforms and pro-
vide a lightweight runtime without host language. However, they
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Table 1. Comparison between existing deep learning frameworks. “-” denotes the feature is not fully supported for training.

‘ Support Support ‘ Run without | Kernel Optimized ‘ Compile-Time Graph
Training | Sparse-BP | Host Language for Edge AutoDiff Optimizations
PyTorch [46] | v | \ X \ X \ X \ X
TensorFlow [4] ‘ v ‘ X ‘ X ‘ X ‘ X ‘ -

Jax [9] | v | x| X \ X \ X \ X
TVM[13] | x| x| v \ v \ - \ v
MNN[20] | v | x| v \ v \ X \ X

PockEngine (ours) ‘ v ‘ v ‘ v ‘ v ‘ ‘ v

focus mostly on inference and do not support on-device training.
MNN ([29] has preliminary support for CNNs but the flexibility
is rather limited and it does not optimize training memory usage.
POET [47] applies rematerialization and paging to deal with re-
stricted memory size, but it introduces extra computation, relies on
large external Flash (e.g. 32GB SD Card) and does not support gen-
eral model and workload definition. PockEngine provides complete
training support for popular models at various scales including
MCUNet [40], MobilenetV2 [50], ResNet [22], DistilBERT [51], and
BERT [18]. PockEngine optimizes both computation and memory
efficiency to make on-device training easy and realistic.

2.3 Efficient On-Device Learning Algorithms

Edge devices have limited computational capacity. Therefore, on-
device training for edge devices often focuses on transfer learn-
ing [10, 33]. It first pre-trains the model on large-scale datasets to
learn general and rich features, such as ImageNet [17] for ConvNets
or BooksCorpus [64] for BERT. The model is then transferred to
downstream tasks, such as Visual Wake Words [16] for vision or
the GLUE benchmark [58] for language. After which, the model
can be customized to a small amount of personal data (e.g., learning
a user’s accent) to perform better at the same task.

Due to the smaller scale and diversity of the downstream data,
people found that it is not always necessary to update the entire
model to achieve a good performance. Sparsely updating part of the
model proves to be a good solution that achieves similar or better
performance at a smaller training cost [10, 20, 23, 24, 37, 41, 42].
The most straightforward method is to fine-tune only the classifier
layer [11, 19, 21, 52], but the capacity is limited when the domain
shift is large. For CNN models, people have investigated fine-tuning
only biases [10, 61], batch normalization layers [20, 43], added
parallel branches [10], etc. The sparse backpropagation scheme
is even more popular for adapting pre-trained language models
(e.g., BERT [18], GPT [49]) to various downstream tasks, which
significantly reduce the trainable parameters [23, 24, 37]. However,
sparse backpropagation lacks system support. Despite the great
theoretical savings, existing training frameworks cannot realize
measured speedup or memory saving from sparse backpropaga-
tion. PockEngine provides system-level support for such flexible
workloads to deliver a faster program and efficient runtime.
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2.4 Computation Graph Transformation and
Optimizations

There are plenty of graph transformations for inference scenarios.
For example, one common transform used in edge deployment is
data layout conversion, as the NCHW’ preferred by GPU training
is not efficient on the edge. Another common optimization tech-
nique is layer fusion. IO-intensive layers (e.g. ReLU) can usually
be fused into preceding compute-intensive layers (e.g. CONV, LIN-
EAR). In addition, MetaFlow [27] proposes functional-preserving
graph transformations to optimize DNN architectures. TASO [26]
further introduces automated generation of transformation rules
using formal verification. These techniques have been proven effec-
tive in inference, but few studies have explored their performance
on training, even though the training graph is much more complex.
Standing on the shoulder of conventional wisdom, PockEngine is
early exploration for apply these graph optimizations techniques to
on-device training and discover more potential optimizations. Pock-
Engine shows that these optimizations bring up to 1.2x speedup.

2.5 Compilation-Based Workflow

Existing training frameworks (e.g., PyTorch, TensorFlow) are based
on runtime auto differentiation for flexibility. However, the design is
not suitable for edge devices with limited memory and computation
resources. Instead, PockEngine is based on a compilation-based
workflow, sharing the following benefits:

Offload Workload from Runtime to Compile Time. With the
compilation-centric design, we can offload part of the workload
from runtime to compile time, like backward graph derivation
with autodiff, memory scheduling, execution planning, etc. Modern
neural network usually consists of thousands of operators, the
overhead might be small for cloud servers but not negligible for
edge devices (Figure. 7).

By offloading computation to the compiler, it is possible to per-
form more aggressive optimizations that would not be feasible or
efficient to perform at runtime. For example, PockEngine performs
graph pruning, fusions, and backend switching, which can lead to
significant performance gains and memory saving.

Another advantage of compilation-based workflow is that it
allows us to optimize the code across the entire program, rather
than just focusing on optimizing individual operations at runtime.
This not only allows us to compile used operators only to ship slim
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Sparse tensor backpropagation

(a) Full BP (b) Last-only BP

Backpropagate to the very first layer
(c) Bias-only BP

Sparse layer backpropagation
(d) Sparse BP

Figure 2. The computation graph of different backpropagation schemes on a five-layer model. We use blue to indicate the demanded intermediate
activations during training. Sparse-BP delivers the best cost-quality trade-off which we will show in Section. 4.
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Figure 3. The computation graph of sparse backpropagation for a linear layer. Red and blue blocks indicate the forward and backward OPs
respectively. The red line denotes the training memory bottleneck brought by storing activations, which can be avoided using bias only / sparse

update as shown in (b) (c) (d).

binaries, but also reveals the memory redundancy in the training
loop (details in Section 3.2).

Support Diverse Frontends/Backends. Unlike the cloud, edge
platforms are highly diverse, with different instruction sets, de-
grees of parallelism, etc. Our compilation-based workflow provides
general support for various frontends/backends. It can effortlessly
support training on hardware and vendor libraries that are designed
specifically for inference (e.g., PockEngine can enable training on
Qualcomm Hexagon DSPs with SNPE library).

The PockEngine frontend takes in a neural network represented
in various representations (e.g., ONNX, torchscript, tf. graph) and
analyzes the DAG structure. It will then perform automatic differen-
tiation (autodiff) to derive the backward graph which computes the
gradients w.r.t. the loss function (Figure 7). With the static forward
and backward graph, PockEngine will convert it into a unified inter-
mediate representation (IR), perform graph optimizations (will be
introduced later), and generate the code for different backends. Only
used operators will be compiled and PockEngine link these OPs
to build a light-weight executable binary. The PockEngine backend
supports both vendor libraries (e.g., SNPE for Snapdragon GPUs
and DSPs, TensorRT for NVIDIA GPUs) and customized kernels
(e.g., TVM [13] tuning for ARM CPUs).
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Notably, instead of binding each operator with a backward im-
plementation (e.g., matmul, matmul_backward), PockEngine uses
the same set of primitive operations as inference to construct the
training graph, allowing us to utilize inference-only backends (e.g.,
SNPE, TensorRT, TVM) for training, achieving high efficiency at
minimal engineer effort.

2.6 Sparse Backpropagation and Computation
Graph Pruning

Edge devices have a limited computation capacity compared to
the cloud. Therefore, on-device training on edge usually targets a
transfer learning/fine-tuning scenario. Due to the smaller scale and
diversity of the downstream data, people found that updating the
entire model may not always lead to the best performance due to
over-fitting and feature distortion [10, 33]. Updating only a subset
of the models is proven to be a good solution that achieves similar
or better performance at a much smaller training cost, including
updating bias terms [10] and the normalization layers [20] for vi-
sion models training the low-rank parts [24] and input prompts
for language models [37], and sparsely update the important mod-
ules [41]. PockEngine aims to generally support on-device training
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Figure 4. The workflow of PockEngine. PockEngine performs the auto-diff at compile-time, prunes the computation graph to support sparse
backpropagation, and enables previously inference-only hardware platforms to perform backpropagation. PockEngine enables efficient
fine-tuning on resource-constrained devices like NVIDIA Jetson and mobile devices.

for various workloads and we focus on the sparse update to reduce
training costs.

During the compilation, PockEngine takes in a user-defined
sparse backpropagation scheme and will prune the correspond-
ing subgraphs of backpropagation calculation. PockEngine flexibly
supports the following sparse backpropagation patterns:

Bias-only Update. Bias-only update does not require saving the
intermediate activation [10], which significantly reduces memory
usage (consider a linear layer y = Wx, dW = fi (dy, x), db = f2(dy),
only the weight gradient requires saving the input). It also saves
the computation by 1/3 by skipping dW computation.

Layer-wise Sparse Backpropagation. Not all the layers/weight
tensors are equally important for transfer learning [41]. For transfer
learning to a downstream task, we find that part of the layers can
be kept frozen without affecting the transfer learning performance
(we can find the layers to freeze by sensitivity analysis [41]; detailed
in Section 4.1). Therefore, we can skip the computation of part of
the layers to further improve the training throughput.

Sub-layer Sparse Backpropagation. For edge devices with
limited capacity (e.g., microcontrollers), we further support sub-
layer level sparse BP, where only part of the channels of a layer
(convolutional layers and linear layers) are updated?. It further
reduces the memory cost for storing intermediate activation (we
do not need to store activation for the frozen channels) and the
computation cost for gradient calculation.

3 POCKENGINE

Compared to conventional training frameworks, sparse backpropa-
gation has the following unique advantages

e Expensive intermediate activations can be released imme-
diately after forward When either learning the bias-only
(dy/db and dy/dx) or fully skipping the layer (only dy/dx
to keep chain-rule). Thus sparse backpropagations greatly
reduce the main memory bottleneck of training (the red
connection line in Figure 3.a).

ZFollowing [41], we simply update the first k channels of a layer. k is the #channels to
update.
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e Sparse back-propagation does not back-propagate the very
first layers in DNN models since there is no need to compute
gradients to the front layers if they do not require gradients
(the red X mark in Figure 5).

None of the prior work can convert the theoretical savings into
measured speed-up and memory savings. PockEngine provides
systematic support for sparse BP and is able to actually reduce the
on-device training cost and we expand as follows

3.1 Searching for Sparse Backpropagation
Scheme

Not all the weights are equally important for transfer learning [20,
34, 41]. We aim to fine-tune only the important weights to reduce
the training costs while preserving the model’s accuracy.

Cost Model and Search Criterion. In order to find the training
scheme, we build cost models for model quality and training cost.
Following [41], we first fine-tune only one linear (conv, fc) layer un-
til convergence, and then repeat this process for all layers. This is an
offline analysis and we use the accuracy improvement/degradation
as the “contribution” of the weights of i*" layer ( Aaccwy;). Similarly,
we obtain the results the for bias terms of k" layer(Aaccy,, ) and
then iteratively repeat the same operations to all weights and biases
to estimate their performance.

For the training cost, we focus on the memory as edge devices
usually have limited memory and will easily get OOM. Thus we
profile the feature map size and record it as Memory; ;.. We then
solve the following optimization:

Z Aacew,, )

k*,i%r* = m@x(z Aaccy, +
kir e icirer (1)

s.t. Memory(k, i, r) < constraint,

where i is the layer index of weights, k is the layer index of biases
and r is the ratio of learnable weights. Optimizing the objectives
finds the optimal update config where total contributions are max-
imized and the memory footprint does not exceed the constraint.
We assume that the accuracy contribution of each tensor (Aacc)
can be summed up thus the problem can be efficiently solved with
evolutionary search.
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Figure 5. The computation graph of sparse backpropagation for ConvNet and Transformers.
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Figure 6. The sparse backpropagation schemes for MobileNetV2 and
LlamaV2-7B building blocks. The first point-wise convolution plays
an important role for ConvNet, while for Llama models, the attention
module and first FNN layer are more important.

Generalization and Acceleration. It is worth noting that the
sparse update scheme is general and universal across different
datasets. We only perform ONE scheme search on CIFAR (for vision
models) and CoLA (for language models) and sparse-BP demon-
strates good generalization capability. The schemes achieve com-
petitive training accuracy compared to full fine-tuning (Table 2 and
Table 3). Specifically, we find that for CNNs: it is most effective to
update the weights of the first convolution in each block, while
for transformer blocks, the weights in the attention module and
the first linear layer in the Feed-Forward Network (FFN) are more
important (Figure 6). Such schemes are also memory-efficient: the
depthwise conv and second pointwise conv in the inverted bot-
tleneck block (Figure 6.a) and the second linear layer in the FEN
(Figure 6.b) have the largest input activation, while our update
scheme does not require saving these large features.

After finding and specifying the gradients needed for the on-
device training, PockEngine automatically traces dependency and
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analyzes the updated topology, then prunes the training graph
using dead code elimination (DCE) to prune the computation graph
and remove intermediate nodes and buffers that are no longer
needed for the training. Because the pruning is performed on graph
level at compile-time, it can deliver measured memory saving and
throughput improvement.

3.2 Training Graph Optimization

After we get the static, pruned training graph, PockEngine applies
various graph optimization techniques on the unified IR before
translating to different backends, which further improves the train-
ing efficiency.

Operator Reordering and In-place Update. Different execu-
tion orders lead to different life cycles of tensors and the overall/-
peak memory footprint will be also affected even for the same com-
putational graphs. This has been well-studied for inference [6, 38]
but less discussed for training because the backward graph is usu-
ally derived during runtime and the compiler/scheduler does not
have global information of the training process.

A concrete example is the optimizer, where the gradients are
applied to update the model parameters. In conventional training,
frameworks calculate all gradients and then apply the update. This
is common among frameworks like PyTorch and TensorFlow as the
optimizer and forward-backward are separate components in the
system design. However, such a practice leads to significant memory
waste for storing the gradients. In small batch training with sparse
backpropagation, the cost of storing parameter gradients is close to
peak memory usage in forward and backward as shown in Table. 4:
To address the overhead, PockEngine obtains all tensor information
and plans for a better execution schedule. By reordering operators,
the gradients can be immediately applied to the corresponding
parameters before back-propagating to earlier layers. We further
trace the life-cycle of all tensors (weights, activations, gradients)
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Figure 7. The comparison between runtime auto-differentiation and our compile-time differentiation. By offloading the differentiation to
compile time, PockEngine not only simplifies the runtime, but also enables plenty of optimization opportunities, which will be detailed in

Section. 3.2.

and re-order the schedules to reduce memory usage, leading up to
21x savings on microcontrollers for MCUNet.

Operator Fusion. In most deep learning frameworks, a sim-
ple operation usually requires a number of fine-grained kernels to
implement. For example, a single-layer normalization operation
requires three kernel calls and two memory reads and writes for
forward, and six kernel calls and five memory reads and writes for
backward. Moreover, transformations such as fusing cheap opera-
tions into expensive ones (e.g. CONV-BN-ReLU,), and parallel linear
operations (e.g. batch matmul) have been shown effective in improv-
ing the inference. During compilation and codegen, PockEngine
fuse these kernels into a single one and results in less memory 10
and kernel calls.

Functional-Preserving Graph Transformation. Existing
DNN frameworks optimize a computation graph by applying rules
either designed by domain experts [2, 4] or automatically discovered
by program [26, 28]. There are more optimization opportunities
but previous research is unable to utilize them since the backward
graph was derived at runtime in earlier frameworks. Extensive
investigation of potential graph optimizations will lead to slow
training and incur undesired runtime overhead.

Our engine integrates these optimization techniques and is an
early trial to apply to the training graph. PockEngine transforms
the data layout for different hardware. For vision tasks, NCHW is
the most widely used layout. But this format is only efficient on
accelerators like GPU. When training on mobile CPUs / DSPs, such
format is no longer optimal and PockEngine will transform the
layout at compile-time to facilitate runtime training efficiency.

Furthermore, PockEngine explores different implementations of
kernels. For example, Winograd has been widely used in inference
because of its faster computation. However, the savings are not free:
it requires extra pre-processing of the weights. If the weights are
not static, then the transformation needs to be applied every epoch
and the total FLOPs can be even higher than normal convolution.
Hence it was utilized in inference and not incorporated into train-
ing frameworks. For on-device training scenarios, there are many
frozen layers where the weights are not being changed during train-
ing [10, 61]. These layers in fact can utilize Winograd to accelerate
but such opportunities are ignored in current frameworks even if
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the requires_grad attribute is set to False. PockEngine obtains
the complete training graph during compile-time thus knowing the
updating information of each parameter. Therefore, we can ana-
lyze the tensor and graph information, knowing whose weights are
static and whose are dynamic. PockEngine can bind operation to the
fastest implementation and enable the chance to utilize Winograd
even in the training.

4 RESULTS

In this section, we comprehensively evaluate the performance of
PockEngine. We first study the effectiveness of sparse backpropa-
gation, then present the experimental results on different hardware
and platforms, compared with other training frameworks. Finally,
we discuss the graph optimization results.

4.1 Setups

Models. We evaluate PockEngine on popular vision and lan-
guage models. For vision tasks, we choose MCUNet [40] (5FPS
model), MobilenetV2 [50] (width multiplier 0.35 and 1.0), and
ResNet-50 [22]. All normalization layers (e.g. BatchNorm) are fused
into the linear operations (e.g. Conv, Linear). For masked language
models, we choose the base-uncased version of BERT [18] and
DistilBERT [51] to benchmark the performance.

Datasets. For vision models, we first pre-trained them on Ima-
geNet [17] with resolution 224x224 (except 128%x128 for MCUNet),
and then fine-tuned on a set of downstream tasks to evaluate the
transfer learning accuracy (including Cars [31], CIFAR-10 [32],
CUB [60], Flowers [44], Foods [8], Pets [45], and VWW [16] con-
ventional TinyML setting used in [10, 41]). The NLP models (BERT
and DistilBERT) are pre-trained on Wikipedia and BookCorpus [65].
We evaluate their transfer learning performance on the GLUE [58]
benchmark (including CoLA, MNLI, MRPC, ONLI, QQP, RTE, SST-
2). For the chatbot models, we use Llamav2 [55] then fine-tuned
with instructions from Stanford Alpaca dataset [54]. We follow
alpaca-eval [36] and MT-Bench [15, 62] to evaluate the response
quality.
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Table 2. Sparse BP achieves comparable transfer learning performance (< 1%) degradation on average) compared to the full update for vision
models at various scales, while reducing the cost of on-device training,.

\I\I/Iisidm; Method Ing. On-Device Training Vision Datasets

ode e Cars CIFAR CUB Flowers Foods Pets VWW
Full BP 74.1% 56.7+1.1% 86.0+0.7% 56.2+0.5% 88.8+0.2% 67.1+0.3% 79.5+0.4% 88.7+0.3%
MCUNet-5FPS [40] BiasOnly 72.7% 52.4+1.4% 83.4+0.5% 55.2+0.6% 86.7+0.4% 65.0+0.4% 78.0+0.3% 88.1+0.3%
Sparse BP  74.8% 55.2+1.3% 86.9+0.6% 57.8+0.4% 89.1+0.3% 644+03% 80.9+0.3% 89.3+0.4%
Full BP 89.2% 87.1+0.9% 96.0+0.5% 76.6+0.8% 954+0.2% 83.9+0.2% 90.7+04% 94.5+0.2%
MobilenetV2 [50] Bias Only 87.3% 85.8+0.8% 94.0+0.7% 74.5+0.7% 95.1+£0.5% 82.0+0.6% 87.6+0.5% 92.4+0.3%
Sparse BP  88.5% 86.4+1.0% 95.0+0.9% 76.4+1.0% 954+0.3% 81.5+05% 90.4+0.3% 94.2+0.3%
Full BP 90.5% 88.2+0.5% 96.8+0.4% 79.9+0.6% 94.2+0.3% 852+04% 93.6+0.2% 953+0.1%
ResNet-50 [22] Bias Only 87.8% 84.3+0.6% 93.7+0.7% 75.0+0.3% 92.5+0.5% 83.7+0.3% 91.8+0.4% 93.8+0.1%
Sparse BP  90.3% 86.7+0.7% 96.2+0.6% 81.0+0.7% 95.6+0.3% 84.0+0.3% 93.4+0.5% 95.1+0.1%

Table 3. For language models, sparse BP maintains the fine-tuning accuracy for at a reduced training cost. Results are reported with mean and

standard deviation for 3 runs.

L:;\x/[l(g)z:lge Method  Av. On-Device Training Language Datasets
CoLA MNLI MRPC-acc ONLI QQP-acc RTE SST-2
Full BP 76.9% 46.6+1.2% 81.9+0.2% 83.8+1.9% 883+0.1% 90.0+0.2% 59.6+1.9% 90.8+0.8%
Distill-BERT [51] BiasOnly 72.8% 44.6+0.9% 73.2+0.7% 78.9+2.3% 83.4+1.4% 83.6+0.5% 57.8+25% 88.0+1.3%
Sparse BP  77.0% 47.9+1.5% 81.1+0.3% 84.2+1.8% 87.8+0.1% 885+0.3% 58.0+1.6% 90.6+0.5%
Full BP 81.8% 59.9+1.5% 84.0+0.1% 858+1.9% 90.9+0.2% 90.8+0.3% 68.2+2.0% 92.7+0.7%
BERT [18] Bias Only 78.1% 51.1+0.5% 78.6+0.8% 83.6+2.6% 88.5+1.0% 86.0+0.1% 67.9+3.3% 90.7+1.3%
Sparse BP  81.7% 58.6+0.8% 84.4+0.2% 862+1.6% 90.8+0.1% 90.3+0.6% 69.4+1.8% 91.8+0.4%
— 8&: grp-;:i((%%.%://?) - 22% g;‘;ﬁ‘é%},@) e MCUNet: we further support sparse tensor backpropagation
07 0.7 to handle the extreme memory constraints of IoT devices [40].
We update the biases of the last 7 blocks and update {100%,
0.5 0.5 100%, 50%, 100%} of the weights of the first convolutions for
0.2 0.2 the intermediate 4 blocks.
e MobileNetV2: update the biases and the weights of the first
00 =5 50 100 e 5 50 100 1x1 convolution for the last 7 blocks (out of 19).

Figure 8. The training loss curves of FT-Full and our used sparse up-
date on QNLI and SST-2 dataset using BERT. Sparse updates slightly
slow down the training curve, but do not degrade the final accuracy

Runtime adaptations. PockEngine is a compilation-based
framework, and the compilation workflow helps to handle vari-
ous frontends as well as adapt to different backends and runtimes.
PockEngine takes models defined in PyTorch/TensorFlow/Jax and
translates them into IR where graph optimizations can be applied.
The optimized training graph is then fed to deep learning libariries
like TVM [13], SNPE [48] and TinyEngine [39] to generate platform-
specific binaries.

Sparse-BP Schemes for Fine-tuning. We obtain sparse back-
propagation schemes for CNN models (MCUNet [40], MobileNet-
V2 [50], ResNet-50 [22]) and transformer [57]-based NLP models
(BERT [18] and DistilBERT [51]) by sensitivity analysis [41] while
considering computation/memory cost. Our final update schemes
are:
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ResNet-50: update the biases and the weights of the first 1x1
convolution for the last 8 blocks (out of 16).

e BERT: update the biases of the last 6 blocks (out of 12) and
the weights of the attention module and the first linear in
FFN for the last 4 blocks.

Distill-BERT: update the biases of the last 3 blocks (out of 6)
and the weights of the attention module and the first linear
in FFN for the last 2 blocks.

LlamaV2-7B: update the biases of the last 5 blocks (out of 32)
and the weights of the attention module and the first linear
in FFN for the last 5 blocks.

4.2

Sparse Backpropagation Achieves Full Accuracy. On-device
training aims to continually improve user experience by local data
thus the number of training samples is usually small compared
to large-scale pre-training. Therefore, it is not necessary to per-
form full backpropagation to update the whole model as shown in
Table 2. Remarkably, the downstream accuracy of sparse backpropa-
gation can match the full-propagation baselines on both vision and

Effectiveness of Sparse Backpropagation
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Figure 9. Training speed comparison between other frameworks and PockEngine of popular deep learning models on various hardware
platforms. PockEngine consistently outperforms existing frameworks and sparse bp further speedups the training throughput.

language models (<1% performance drop). On some downstream
datasets, the performance of sparse backpropagation is even higher
surpassing the full baselines such as Flower in vision and mrpc-acc
in language. The performance is far above the common require-
ments for TinyML [7] (80% accuracy on VWW), suggesting sparse
propagation is a good strategy for on-device training.

Furthermore, when evaluating language models, sparse back-
propagation also maintains the finetuning accuracy at a reduced
training cost. The average performance degradation is within 1%.
This means that the use of sparse backpropagation can effectively
reduce the time and cost required for training language models,
without sacrificing accuracy. In fact, the results show that sparse
backpropagation can even improve the model’s performance on
certain sub-tasks (e.g. MRPC and RTE). By making training more ef-
ficient, sparse backpropagation could help to accelerate progress in
these fields and enable the development of more advanced language
models.

Sparse Backpropagation Reduces Training Time and Mem-
ory. Besides the comparable performance when transferring to
downstream tasks, sparse backpropagation greatly reduces the
training peak memory and improves the training speed.

Shown in Table 4, the training memory grows rapidly w.r.t the
batch size and soon exceeds the limitation for edge devices (e.g. 1GB
for Raspberry Pi), using swap or re-materialization techniques [47]
will introduce extra computation and energy cost. Sparse backprop-
agation cuts down peak memory usage (2.2X to 21.3X) and the
saving is general across models and applications. Even when batch
size grows, the required memory is still small and the memory cost
of training MCUNet-5FPS sparse-BP with batch size 8 is still smaller
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than batch 1. Batched training helps improve device utilization as
well as training stability.

When applying sparse backpropagation, operations and tensors
related to frozen layers are automatically trimmed from the training
graph via dead-code elimination, resulting in less computation
and higher training throughput. Figure 9 shows that the sparse
backpropagation can further accelerate the speed by 1.3x to 1.6x on
Raspberry Pi. Previous efficient training algorithms only discuss
the theoretical performance and PockEngine provides system-level
support and translates into measured reduction.

4.3 PockEngine Speedups On-Device Training

We compare PockEngine with other training frameworks in Fig-
ure 9. PockEngine enables training on various hardware platforms,
including Raspberry Pi 4, Snapdragon CPU and DSP, Apple M1,
Jetson Nano, and microcontrollers. It also supports a wide range of
models, such as MCUNet, MobilenetV2, ResNet-50, BERT, and Dis-
tiIBERT. PockEngine effortlessly supports diverse models through
its frontend, which converts neural networks represented in various
formats to a unified intermediate representation.

Furthermore, the compilation-based workflow allows us to
choose the best runtime backend for different training scenarios, in-
cluding both vendor libraries (e.g. SNPE for Snapdragon GPUs and
DSPs, TensorRT for NVIDIA GPUs) and customized kernels (e.g.,
TVM-tuned kernels for ARM CPUs and Apple M1). We present a
comparison of training workflows in Figure 9 and discuss it below:

Edge CPU.. For platforms like the Raspberry Pi, PockEngine
offers 13 to 21 X better performance compared to popular DNN
training frameworks. This speedup is due to kernel tuning, which
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Table 4. The training memory usage comparison of full backpropagation and sparse backpropagation. We report actual memory usage measured
on Jetson AGX Orin. The saving ratios are more significant as batch sizes increase. “-” denotes that the experiments cannot fit into devices.

Training Memory

Platform Model #Params Method
bs=1 bs=4 bs=16
McU MCUNet 0.6M sﬁiﬁgp ?;;g : :
Jetson Nano MobilenetV2 3.4M SIIJ::rHs_el?gP Zigﬁﬁ :é%ﬁ 81 lzf/[l;
sonNamo RN M gl g s s
Jeson AGX Osin BERT M gleme  Tion asos sk
Jetson AGX Orin LlamaV2 7B S;:ifgp ;i;gi : :

existing frameworks either overlook in favor of GPU kernel im-
plementations (PyTorch, TensorFlow, Jax) or optimize only for the
inference pipeline and operators (MNN). The corresponding ARM
kernels do not provide ideal performance, let alone the overhead
brought by frameworks.

Edge GPU. We benchmark edge GPU platforms using NVIDIA
Jetson Nano and Jetson AGX Orin due to their widespread use in
edge applications. GPUs have a much higher degree of parallelism
and better training throughput than CPUs. The faster training
speed of PockEngine (2.2x to 2.6X speedup) is mainly due to the
compilation process: The host language Python is typically slow on
low-frequency CPUs, while PockEngine’s compiled graph can run
without host languages. While other frameworks like TensorRT [2]
may also achieve this, they are limited to inference only and do not
provide training support.

Apple M-Chip. The Apple M1 chip is a relatively new plat-
form for training. While PyTorch and Tensorflow have preliminary
GPU support, the compatibility is not ideal 3. Even with the latest
build (commit ID: ¢9913cf), PyTorch throws errors when launching
training for BERT and DistilBERT. On the other hand, PockEngine
compiles the training graph to Metal, providing better compatibility
and faster training speeds.

Mobile DSP. For Qualcomm DSP, we integrate SNPE [48] to de-
liver the final binaries. It is worth noting that SNPE is a convention-
ally inference-only library for integer models and our PockEngine
easily extends it with training capability. As shown in Figure. 9 (g),
the peak performance of DSP is impressive and even on par with
edge GPUs.

Microcontrollers. For the microcontroller platform, we inte-
grate TinyEngine [40] to perform the codegen and enable training
under extremely limited memory constraints. Previous frameworks
like TF-Lite-Micro [3] is inference-only and we report the projected
latency. Show in Figure. 7 (c), the speed is much lower than Pock-
Engine.

3https://github.com/pytorch/pytorch/issues/77764
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PockEngine enables efficient on-device training by compilation
and adaptation to various runtimes. It further supports advanced
backpropagation schemes and advanced graph optimization, which
we will expand further in the following section.

5 FINE-TUNING CHATBOT WITH
POCKENGINE

With the growing attention ChatGPT has received, the demand for
fine-tuning one’s own Chatbot models has also been increasing.
This allows users to tailor the model to their domain-specific needs
(e.g., law, biomedical, health care) and ensures privacy (e.g. private
emails, personal assistant) by not uploading information to the
cloud. By fine-tuning our own language model, we can address
these concerns and obtain a high-quality language model that meets
our needs. In this section, we demonstrate how PockEngine can
efficiently fine-tune a chatbot on edge platform (Jetson AGX Orin).

Models. We choose Meta’s LlamaV2 [55] and choose the 7B
model as the backbone for our experiments. This decision was
based on the trade-off of model quality and device resources. The
detailed fine-tuning settings are discussed below.

Evaluation. For evaluation, we follow Alpaca-Eval [36] and
MT-Bench [62] to use LLMs as the automated evaluator for bench-
mark generation and performance assessments. The quality of the
answers is evaluated based on helpfulness, relevance, accuracy, and
details from 805 questions* and 80 questions from Vicuna project’.
This is a pair-to-pair comparison and we choose text-davinci-003
for Alpaca-Eval win rate (%) and ChatGPT-3.5-Turbo for MT-Bench
Score.

Datasets. To align pre-trained language models with instruc-
tions, we follow the self-instruct [59] and adapt data from Stanford
Alpaca [54]. The total training set has 52K examples containing
diverse instructions and responses °

“https://tatsu-lab.github.io/alpaca_eval
Shttps://github.com/lm-sys/FastChat
®https://huggingface.co/datasets/tatsu-lab/alpaca
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Table 5. Instruction tuning comparisons between PyTorch and PockEngine. The pre-trained model is LLamaV2-7B [55] and we fine-tune the
models following Stanford Alpaca’s setting [54]. We report the training loss and Alpaca-eval score [36] (reference model text-davinci003.
PockEngine shows significant speedup over PyTorch on Jetson AGX Orin while fully matching the training quality. With the sparse update,
PockEngine further improves the training throughput while maintaining the response quality.

Iteration GPU Alpaca-Eval MT-Bench
Framework Method Latency () Memory({) Loss(1) Winrate(T) score(T)
PyTorch FT-Full 7.7s 45.1GB 0.761 44.1% 6.1
PyTorch LoRA (rank=8) 7.3s 30.9GB 0.801 43.1% 5.1
PockEngine FT-Full 1.8s 43.1GB 0.768 43.7% 6.1
PockEngine Sparse 0.9s 31.2GB 0.779 43.1% 5.7

Instruction: What is the meaning of the following idiom?
Input: It’s raining cats and dogs.

Output: The idiom "it’s raining cats and dogs" means that it is
raining heavily.

Example Record from Alpaca Dataset.

Fine-tuning. We fine-tune the models for 3 epochs using a
learning rate of 10™* and no weight decay. The optimizer we use
is memory-efficient Lion [14], and the maximum sentence length
is limited to 512. The instruction tuning batch size is 1, and the
gradient is accumulated over 16 steps. We sparsely update the biases
of the last 5 blocks (out of 24) and the weights of the attention
module and the first linear layer in the FFN for the last 5 blocks.
We further freeze the layer-norm layers to reduce training costs
and speed up training.

5.1 Quantitative Comparison.

PockEngine Accelerates Training. As shown in Table 5, Py-
Torch can train on Jetson AGX Orin, but one iteration takes more
than 7 seconds for LlamaV2-7B. Fine-tuning on 1000 records would
require 2 hours while PockEngine accelerates training by 4.4x and
can finish in less than half an hour.

Sparse Backpropagation Accelerates Training. For popular
parameter-efficient fine-tuning methods like LoRA [24], although
they can effectively reduce the memory footprint (from 45.1GB
to 30.9GB), the training cost is not significantly improved as they
still need to backpropagate the first layer. In contrast, Sparse back-
propagation reduces the backpropagation depth and significantly
improves training speed (from 1768ms to 914ms, 1.9X faster).

Sparse-BP Achieves Comparable Accuracy. Besides training
throughput improvement, sparse backpropagation also maintains
fine-tuning accuracy. When compared to full-BP, sparse-BP demon-
strates similar performance, achieving an impressive Alpaca-Eval
score of 43.7. This score closely matches the performance of full-BP,
which has an Alpaca-Eval score of 44.1. Sparse-BP also performs
favorably when compared to LoRA (Alpaca-Eval score 43.1).

5.2 Qualitative Comparison between Full-BP
and Sparse-BP

In addition to quantitative analysis on accuracy and throughput, we

also conduct qualitative analysis to compare the quality of sparse-

BP and full-BP when performing instruction tuning on LlamaV2-7B.
We make the assumption that a model’s knowledge and capabilities
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are learned primarily during pretraining, while alignment teaches
LLMs how to interact with users [63]. Therefore, we examine the
response quality from multiple perspectives:

Factual Recall. : To thoroughly evaluate the performance be-
tween Full- and Sparse-backpropagation, we conduct a detailed
analysis of the corresponding models’ proficiency to answer ques-
tions related to general knowledge. We first examine the capability
to correctly identify the capital city of a given country. All models
consistently deliver accurate responses while the tuned models not
only provide accurate answers but also offer more comprehensive
information, enriching the overall user experience.

Input: What is the capital of United Status?
LlamaV2-7B-original: Washington, D.C.
LlamaV2-7B-tuned (Full-BP): The capital of the United
States is Washington D.C. (District of Columbia).
LlamaV2-7B-tuned (Sparse-BP): The capital of the United
States is Washington, D.C.

Example 1.The Capital of U.S.A.

Similarly, when we inquire about the dates of notable events,
all models exhibit a remarkable level of confidence and accuracy
in their responses. This suggests the reliability and correctness of
both Full- and Sparse-backpropagation during fine-tuning.

Input: In what year was the Beijing Olympics held?
LlamaV2-7B-original: The Beijing Olympics were held in
2008..

LlamaV2-7B-tuned (Full-BP): The Beijing Olympics, also
known as the Games of the XXIX Olympiad, were held in 2008.
The opening ceremony took place on August 8, 2008, and the
closing ceremony was held on August 24, 2008.
LlamaV2-7B-tuned (Sparse-BP): The Beijing Olympics, also
known as the 2008 Summer Olympics, were held in Beijing,
China in 2008.

Example 2. The Date of Beijing Olympics.

However, when the question becomes obscure, the original Llama
model no longer provides accurate answers. For example, the raw
Llama model (without fine-tuning) incorrectly states that Michael
Jackson died in 2020 (the actual year is 2009), and it also provides
incorrect album names (the proper title is “Invincible”). Meanwhile,
the Full-BP model and the Sparse-BP model both properly interpret
the questions and provide accurate responses.
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Input: what was Michael Jackson’s last album?
LlamaV2-7B-original: Michael Jackson passed away on June
25, 2020, so he did not release an album after that. However,
before his death, he released the album "Michael Jackson: The
Ultimate Collection," which was a compilation of his previous
studio albums and bonus tracks.

LlamaV2-7B-tuned (Full-BP): Michael Jackson’s last album
was ‘Invincible’, released in 2001.

LlamaV2-7B-tuned (Sparse-BP): Michael Jackson’s last al-
bum, released during his lifetime, was "Invincible" which was
released in 2001.

Example 3. The Title of Michael Jackson’s Final Album

Operation and Logic Inference. Next, we evaluate a simple but
interesting task: reverse the order of words. This task requires LLMs
to understand the concept of reversing and properly segmenting the
sentences. The original model misunderstood the task and reversed
the words’ meanings, leading to incorrect answers. Meanwhile,
the Full-BP and sparse-BP models, which were fine-tuned, both
correctly understood the term "reverse" and executed the given
task, though the sparse-BP model made a tiny mistake and still
misplaced the word "the".

Input: Please reverse the words in the sentence "I love the
Micro conference"

LlamaV2-7B-original: I hate the conference Micro.
LlamaV2-7B-tuned (Full-BP): The reversed result is "Con-
ference Micro the love I"

LlamaV2-7B-tuned (Sparse-BP): The reversed sentence
would be "Conference the Micro love I".

Example 4. Reversing a sentence.

After comparing the response quality of executing given tasks,
we then evaluated the logical inference capability of the fine-tuned
models. We first briefly introduced the hosting location of the Micro
conference for the past three years and asked where the conference
was held last year. Without fine-tuning, the original Llama model
failed to understand the question and only simply repeated the first
sentence. However, for the fine-tuned models, both Full-BP and
Sparse-BP were able to correctly name the place, with the response
from Full-BP being more confident.

Input: Micro was running virtually online in 2021, and held
physically at Chicago in 2022 and will soon be hosted in
Toronto in 2023. Now is the year of 2023, where was Micro
hosted last year?

LlamaV2-7B-original: Micro was hosted virtually in 2021
LlamaV2-7B-tuned (Full-BP): Micro was hosted physically
in Chicago in 2022.

LlamaV2-7B-tuned (Sparse-BP): Based on the information
provided, it seems that Micro was hosted physically at Chicago
in 2022.

Example 5. Inferring Information Based on Context.

Maths. We then compared the mathematical abilities of different
models. Mathematics is often considered a significant challenge
for many language models, and obviously, the original LlamaV2
model struggled with math-related questions, while the Full-BP and
Sparse-BP models demonstrated certain capabilities for reasoning
and properly calculating the results.
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Input: Lee mows one lawn and charges $33. Last week he
mowed 16 lawns and three customers each gave him a $10 tip.
How many dollars did Lee earn mowing lawns last week?
LlamaV2-7B-original: Lee earned $660 from mowing lawns
last week.

LlamaV2-7B-tuned (Full-BP): Lee earned $33 x 16 = $528
from mowing lawns. His total earnings from the 16 customers
who gave him a $10 tip is $10 x 3 = $30. Therefore, Lee earned
a total of $528 + $30 = $558 last week mowing lawns.
LlamaV2-7B-tuned (Sparse-BP): To determine how much
Lee earned mowing lawns last week, we need to calculate the
total amount of money he earned from mowing lawns and
tips. Lee mowed one lawn and charged $33, so he earned $33
from that lawn. Last week, Lee mowed 16 lawns, and three
customers each gave him a $10 tip, so he earned $10 x 3 = $30
in tips from those lawns and earned $33 from mowing one
lawn and total 16 lawns = $528. Therefore, Lee earned $558
last week from mowing lawns and receiving tips.

Example 6. Math Problem Solving

Note that this is a concise qualitative study comparing original,
Full-BP fine-tuned, and Sparse-BP fine-tuned LLMs. We carefully
selected representative samples for this study, although it is impor-
tant to note that it is not comprehensive given the extensive range
of responses the model can provide. The objective of this analy-
sis is to present compelling evidence in support of two findings:
(1) fine-tuning is an essential process for personalizing your own
Chabot, and (2) Sparse-BP is capable of fine-tuning models with
comparable quality with much reduced cost.

6 CONCLUSION

We present PockEngine, an efficient training framework for learn-
ing on edge. PockEngine has general support for various fron-
tends/backends to deal with hardware heterogeneity on edge. It
improves the efficiency of on-device training via (1) compilation-
based auto-differentiation to offload overheads from runtime to
compile time; (2) supporting sparse backpropagation with backward
graph pruning; (3) training graph optimization including operator
reordering/fusion and various function-preserving transforms.

Experiments on different edge devices show PockEngine can
significantly speedup on-device training: 11.2X on ARM CPUs,
2x on Apple M1, and 2.7x on NVIDIA edge GPU, and 9.6X on
microcontroller compared to TensorFlow. PockEngine supports
sparse backpropagation, which further speeds up by 1.5 - 3.5 x while
matching the accuracy of full backpropagation. Further, PockEngine
enables fine-tuning LLamaV2-7B language model on a Jetson AGX
Orin at 914ms, 7.9X faster than the PyTorch baseline. We hope our
engine design can facilitate Al applications with personalization
and life-long learning capacity by democratizing learning on the
edge.
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