

1 Building ties at multi-stakeholder engagement events to facilitate social learning about
2 contentious issues in natural resource management

3 Tian Guo, Sandra T. Marquart-Pyatt, G. Philip Robertson

4 **Authors:**

5 Tian Guo, Department of Human Dimensions of Natural Resources, Colorado State University,
6 222 W Laurel Street, Fort Collins, Colorado, 80521, US

7 Sandra T. Marquart-Pyatt Department of Geography, Environment and Spatial Sciences,
8 Michigan State University, 673 Auditorium Road, East Lansing, Michigan, 48824, US;
9 Department of Political Science, Michigan State University, S. Kedzie Hall, 368 Farm Lane, East
10 Lansing Michigan 48823, US

11 G. Philip Robertson, W.K. Kellogg Biological Station, Michigan State University, 3700 E. Gull
12 Lake Dr, Hickory Corners, Michigan 49060, US

13

14 **ABSTRACT**

15 Complex natural resources issues including sustainable agriculture require diverse
16 stakeholders to take voluntary and even coordinated actions. Social learning is a critical process
17 for stakeholders to navigate differences in knowledge, values, and ways of knowing while
18 building trust and coordination capacity. Integrating the social learning approach along with
19 social networks, well-proposed, well-designed, and effectively facilitated stakeholder
20 engagement events can promote bridging and information exchange by capitalizing on
21 stakeholder interests and formal and informal interaction opportunities. We collected survey data

22 before and after a stakeholder engagement event for a USDA Long-term Agroecosystem
23 Research (LTAR) site in the summer of 2022. A total of 76 individuals participated in the event
24 coming from diverse groups in the agricultural community, including representatives from
25 agribusiness, extension, farm advisers, farmers, nonprofit organizations, state and federal
26 agencies, and university-affiliated researchers and staff. We conducted two-mode network
27 analyses for participant interests and evaluated connections with other stakeholder groups before
28 and then again after the event. We also explored emerging information exchange ties along with
29 the levels of similarity of these new ties. We found that participating stakeholder groups shared
30 an interest in having greater connections to farmers. Many of the new connections were across
31 affiliation groups and people with different views suggesting opportunities for information
32 exchange. Results demonstrate the value of stakeholder engagement events based on stakeholder
33 interests for facilitating the formation of bridging ties that support social learning.
34 Keywords: outreach and engagement; common experiment; multi-stakeholder initiatives

35 INTRODUCTION

36 Shared understanding and relationships are key to resolving intricate environmental
37 problems in agriculture, such as nutrient pollution, biodiversity loss, and water scarcity. This is
38 because different stakeholder groups need to take voluntary and even coordinated actions, such
39 as producers adopting best land management practices, agencies and conservation organizations
40 providing technical and financial support, agriculture professionals developing environmentally
41 friendly inputs, and consumers demanding sustainable products (Reimer et al. 2018; Charnley et
42 al. 2020; Amblard 2021). Sachet et al. (2021) highlighted the importance of trust between
43 researchers and farmers to achieve agroecological transition. However, stakeholders often come
44 to an issue with diverse beliefs, values, and ways of knowing (Neef and Neubert 2011).

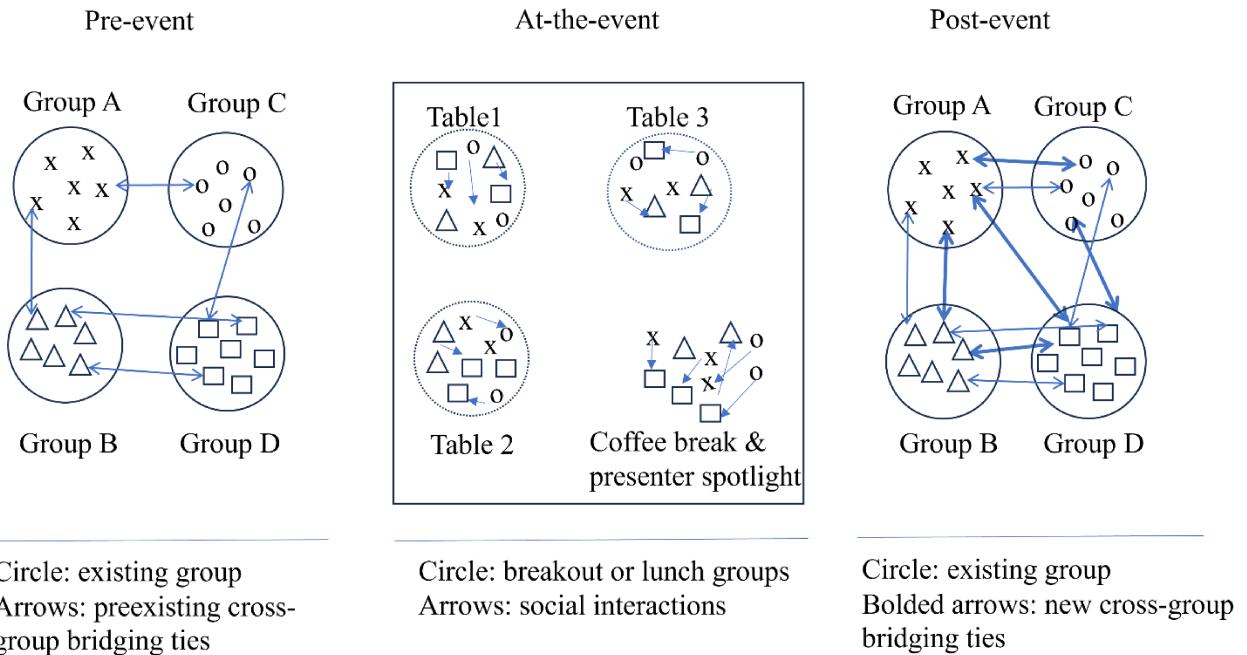
45 Navigating the differences while building trust, enhancing coordination capacity, and fostering
46 positive relationships is a challenging yet critical step to tackling many agricultural challenges
47 (Muro and Jeffrey 2008; Jackson-Smith et al. 2018; Fernández-Giménez et al. 2019; Nikkels et
48 al. 2021; Buchecker et al. 2023)

49 Engaging stakeholders in research projects may help build shared understanding and
50 relationships through stimulating social interaction and the formation of social ties with
51 intentional design (Teodoro et al. 2021). The process of changing perceptions, relationships, and
52 even behaviors through sustained interactions is sometimes described as social learning. Cundill
53 and Rodela (2012) summarized "...the term has been used to refer to processes of ongoing
54 deliberation that take place through sustained interaction and trust building between
55 stakeholders, who expose their own values and share knowledge about the issue at stake". Reed
56 et al. (2010) defined social learning as "changes in understanding that go beyond the individual
57 to become situated within wider social units of communities of practice through social
58 interactions between actors within social networks". A social network consists of interacting
59 nodes (individuals or organizations) and the ties among them, such as shared similarities, social
60 relationships, and interactions (Bodin and Prell 2011; Kadushin 2012; S. B. Borgatti et al. 2013).
61 These ties allow for information exchanges and expose individuals to various values, beliefs, and
62 ways of knowing (Mostert et al. 2007; Luján Soto et al. 2021). Exposure to these ideas and
63 information, coupled with deliberation, discussion, and reflection, are key conditions for social
64 learning (Cundill and Rodela 2012).

65 The connections between social learning and changes in social networks have been noted
66 in the literature on stakeholder engagement. For example, Luján Soto et al. (2021) found that
67 participants in a participatory monitoring and evaluation program for innovative sustainable land

68 management strengthened and expanded their networks for information sharing. Participants
69 showed a more complex and broader shared understanding of regenerative agriculture. Teodoro
70 et al. (2021) studied networks of mutual understanding, respect, and influence among residents,
71 scientists, and government officials who collaboratively manage the impact of sea-level rise.
72 They found that these networks are positively associated with perceptions of climate change.
73 Hoffman et al. (2015) found growers' participation in traditional outreach activities such as
74 meetings and demonstrations is a strong predictor for their number of knowledge-sharing
75 relationships. Building new relationships along with learning new knowledge and perspectives
76 have also been recognized as benefits to participating stakeholders (Jackson-Smith et al. 2018;
77 Holifield and Williams 2019).

78 More attention has been given to designing stakeholder engagement events for social
79 learning, through the lens of social networks (Cundill and Rodela 2012; de Vente et al. 2016).
80 Diversity and stakeholder representation are key design features (Neef and Neubert 2011; Reed
81 et al. 2018; O'Connor et al. 2019). People tend to cluster with like-minded others in groups, a
82 phenomenon known as homophily (McPherson et al., 2001). For instance, Barnes et al. (2022)
83 found that naturally emergent networks in rural agrarian communities favor the inward
84 strengthening of existing networks, while the ties to people with different resources and
85 information did not increase. Fischer and Jasny (2017) found forest and wildfire management
86 organizations in the West U.S. were inclined to associate with others with similar management
87 goals and strategies, leading to more clustered network structures. To overcome the homophily
88 tendency, convening stakeholders from different groups may allow for more perceptions to be
89 represented at an event and stimulate the formation of ties across stakeholder groups. The ties
90 between different stakeholder groups can be referred to as bridging ties, emphasizing interactions


91 that bridge individuals with varied affiliations, beliefs, values, and resources (Moody and Paxton
92 2009). Stakeholder engagement events may break the norm or tendency of interacting with
93 similar people, fostering bridging ties.

94 Built on participant diversity, facilitated group discussions and unstructured social times
95 can be incorporated into engagement events to encourage deliberation, exchange, and reflection.
96 For example, Brymer et al. (2018) analyzed stakeholder dialogues across five workshops
97 coordinated for habitat restoration. They found the discussion changed participants' views on
98 ecosystem services, social processes, and the value and place meanings, among other outcomes.
99 The workshops also stimulated opportunities for participants to stay connected and work together
100 on other projects. Hoffman et al. (2015) found participants in traditional agriculture outreach
101 activities (e.g., meetings and demonstrations) developed knowledge-sharing relationships. The
102 role of facilitators in creating a safe environment for discussion and encouraging individuals to
103 contribute has also been noted as important (de Vente et al. 2016; Sterling et al. 2017; O'Connor
104 et al. 2019; Eaton et al. 2021; Wade et al. 2024). Wilmer et al. (2022) observed that in the early
105 stage of a six-year Collaborative Adaptive Rangeland Management, the research team initially
106 undervalued the importance of facilitation skills and collaborative methods, which led to
107 confusion and tensions in early meetings with stakeholders. Their study also highlighted
108 stakeholder engagement as an adaptive process that benefits from adjustment based on
109 evaluation.

110 Incorporating interactive activities in stakeholder engagement events must consider the
111 social context of the project including stakeholder characteristics and interests (Neef and Neubert
112 2011; Reed et al. 2018; Eaton et al. 2021). De Vente et al. (2016) found stakeholder analysis at
113 the early stage of a project was correlated with outcomes such as information gain, learning by

114 participants, and trust between non-state actors and scientists. Skaalsveen et al. (2020) observed
115 that the development of a network of no-till farmers in the U.K. was driven by individuals'
116 ability and interests in communicating and learning from other farmers. Holifield and Williams
117 (2019) found a lack of interest, along with a lack of time and awareness, was the major obstacle
118 to recruiting and sustaining stakeholder participation. Hutchins et al. (2013) underscored the
119 benefits of proactively assessing partnership potential and participant interests before forming
120 partnerships. Understanding stakeholder interests in connecting with other groups can indicate
121 the status of relationships among stakeholders (e.g., friendly or contentious) and how
122 stakeholders may show up to interactive activities (e.g., open-minded or cautious). A conducive
123 or contentious social environment for interactions will require different facilitation approaches
124 and activities.

125 Figure 1 shows how we expect social networks to change for social learning in a
126 stakeholder engagement event when the design incorporates interaction opportunities for diverse
127 stakeholders and considers stakeholder interests. On the leftmost side of the diagram, we see
128 individuals with particular group affiliations, all of whom are groups (marked by circles) in the
129 agricultural community and bring unique insights to understand an issue such as sustainable
130 agriculture. There are existing ties between individuals with different affiliations (marked by
131 arrows) and individuals within the same affiliations. For the clarity of the graph, existing ties
132 within a group are not depicted. The middle panel depicts designed activities at the event such as
133 breakout discussion groups and lunch tables (marked by circles) and spontaneous network
134 opportunities to allow for interactions (arrows). On the rightmost side of the diagram, in an ideal
135 situation, new (bridging) ties are formed between groups, marked by thicker arrows, allowing
136 changes in group dynamics and information sharing.

137

138 **Figure 1. Conceptual depiction of network expansion through a hypothetical stakeholder**
139 **engagement event.**

140

141 Following this conceptual framework, we used social network analysis (SNA) to capture
142 the interactions among stakeholder groups at a day-long event that included field demonstrations,
143 presentations from scientists and stakeholders, and facilitated discussion. A pre-survey and a
144 post-survey allowed us to observe three networks: individuals' initial interest in connecting with
145 other groups (individual-group interest network), their connections with other groups post-event
146 (individual-group realized network), and their information exchange ties with individuals after
147 the event (individual-individual realized network). We hypothesize that interactions at a
148 stakeholder engagement event will create new ties among different stakeholders. From these
149 three networks, we analyzed:

150 (1) Patterns in participants' interests in forming ties with other groups of stakeholders and
151 the ties with stakeholders from other groups

(2) The characteristics of information exchange ties formed at the event

(3) The impact of breakout group and stakeholder engagement on new information exchange ties

The study is part of the Kellogg Biological Station (KBS) Long-Term Agroecosystem

156 Research (LTAR) project, one of the USDA's national LTAR network sites. The focus of LTAR

157 network is to design agriculture that can meet the growing demand for agricultural commodities,

158 protect environmental quality, and enhance life in rural and national communities. The network's

158 protect environmental quality, and enhance life in rural and national communities. The network's

158 protect environmental quality, and enhance life in rural and national communities. The network's

159 vision, as outlined in its latest strategic plan, is to create a sustainable agricultural community

160 that achieves production, environmental, and social goals (US Department of Agriculture, 2021).

161 Social goals include human health (e.g., worker safety, flexibility, satisfaction) and social

162 cohesion (equity, community security). Environmental goals focus on air quality, greenhouse

163 mitigation, water and soil health, and biodiversity. Production goals emphasize commodity

164 quality, productivity, water use efficiency, yield, and financial stability. The network examin

165 various agroecosystems, including croplands, rangelands, and pasturelands.

166 KBS conducts Aspirational Cropping System Experiments (ACSE), comparing current

167 practices (business as usual or BAU) with an aspirational (ASP) system aimed at economic

168 prosperity and conservation benefits. The ASP system at KBS was developed through

169 stakeholder engagement, including a 2021 visioning symposium with experts from academia,

170 industry, non-profits, and agencies (Robertson et al., in review). Following the symposium, focus

171 groups and a system design team consisting of farmers, crop advisers, and agronomists identified

172 key principles: high crop diversity, circularity, year-round plant cover, continuous no-till,

173 precision technology, prairie strips, and livestock integration. The ASP treatment includes

174 practices such as 5-crop rotation, continuous no-till, cover crops, precision fertilizer inputs, and
175 integrated pest management.

176 **MATERIALS & METHODS**

177 **Study Context**

178 In 2022, a KBS LTAR stakeholder field day event was developed to support the design of
179 KBS ACSE. The goals of the event are threefold: to build and strengthen relationships with
180 existing and new partners, hear from partners on current context of midwestern farming and
181 conservation, and receive advice on the KBS LTAR experiment plans. The field day features in-
182 field visits and reflections, researcher presentations and field demonstrations, stakeholder
183 presentations on policies and new technologies, and break-out discussions on aspects of
184 agriculture outcomes, water quality, soil health, social well-being, and economic well-being. A
185 stakeholder engagement specialist and project leaders jointly selected and invited participants for
186 the field day to represent diverse stakeholder views. Key stakeholders included agribusiness,
187 extension, farm advisers, farmers, nonprofit organizations, state and federal agencies, and
188 university-affiliated researchers and staff. A total of 76 individuals participated in the 2022 KBS
189 LTAR stakeholder field day.

190 To encourage interactions and begin the event with a welcoming tone, the stakeholder
191 engagement specialist and researchers greeted participants at an outdoor tent set up next to the
192 experimental fields. Coffee and breakfast were provided. During the day, participants rode on
193 wagons to different fields to hear research highlights from KBS and reflections from partners. A
194 few stakeholders were invited to present on the current context of agriculture and conservation.
195 The outdoor setting allowed for more informal interactions between the audience and presenters,
196 as well as among the audience members. Lunch was provided, accompanied by a presentation

197 from a social scientist on insights from the 2021 stakeholder scoping survey. After lunch,
198 participants were divided into pre-defined groups to reflect on what they had heard and discuss
199 indicators for sustainable agriculture. The stakeholder specialist facilitated the breakout
200 discussion using guiding questions such as, “What do you want to know about these systems and
201 why?”, “What hasn’t been discussed so far today that would be good to measure?”, and “Given
202 what we heard from our partners, what else will be important to track and know about these
203 systems?”. The event concluded with a happy hour featuring Michigan-sourced refreshments,
204 offering another informal opportunity for interactions. We observed formal discussions during
205 the breakout session and informal chats during breakfast, coffee breaks, lunch, happy hour, and
206 on the wagon rides.

207 The KBS LTAR project is ongoing with a strong commitment to long-term stakeholder
208 engagement. In 2023, an advisory board consisting of farmers, crop marketing organizations,
209 conservationists from organizations, and policy influencers. The Board meets regularly to
210 provide feedback and advice and help to distill input from the larger group of stakeholders into
211 actionable goals. In addition, farm field days and workshops were held in 2023 and 2024 to
212 provide sustained interactions between stakeholders and researchers and among stakeholders.

213 **Data Collection: survey design**

214 The data were from an online pre-survey, sent to participants of the event one month
215 before the event, and an online post-survey sent one month after the event. The survey questions
216 were designed in consultation with the project leadership team and stakeholder engagement
217 specialist and based on previous literature on the effectiveness of stakeholder engagement
218 (Jackson-Smith et al., 2018; Teodoro et al., 2021; de Vente et al., 2016; Eaton et al., 2021).

219 For questions related to networks, in the pre-event survey participants were asked to
220 select all the groups they would be most interested in networking with at the field workshop
221 (Network 1; Table 1). Respondents could select as many groups as they were interested in from a
222 total of eight options including agribusiness, extension, farm advisor (e.g., agronomic
223 consultant), farmers, non-profit organization, state/federal agency, university-affiliated
224 researcher, and others. The question was repeated in the post-event survey, asking whether
225 respondents met anyone new at the workshop and if so, which groups their new connections
226 were from (Network 2; Table 1).

227 In the post-survey, we also asked respondents to list individuals they did not know before
228 the June 2022 workshop but shared information with at the workshop (Network 3; Table 1).
229 Other questions in the post-survey gauged participants' views on the proposed aspirational
230 cropping system treatment, using a five-point semantic scale with five pairs of descriptions
231 (ordinary to innovative, unprofitable to profitable, non-resilient to resilient, no additional
232 environmental benefits to enhanced environmental benefits, and not easily managed by farmers
233 to easily managed by farmers) (Question layout see Appendix).

234 **Data Analyses**

235 We analyzed three networks, including two two-mode networks (Network 1 and Network
236 2) and one individual-to-individual (peer-to-peer) network (Network 3; Table 1). Analysis
237 methods were selected based on the two types of network data that were collected. For Network
238 1 and Network 2, the data is affiliation data as it refers to membership or participation (Borgatti &
239 Halgin, 2011). In affiliation data, individuals do not connect to each other but share common
240 interests in connecting with certain groups. The groups do not directly connect with each other
241 either; rather, they share the same group of individuals who want to connect with the same set of

242 groups. If an individual reports interest in connecting with a group or their new connection is
243 from a group, their tie with that group was coded as one, otherwise zero. In the network data
244 matrix, the rows were individual participants, and the columns were groups. We used two-mode
245 graphs to visualize the network of interests (Network 1) and realized connections (Network 2).

246 Table 1. Network summary

Networks	Type	Surveys	Ties
1. Individual-group interest network	Two-mode	Pre-survey	Which group are you interested in connecting with
2. Individual-group realized network	Two-mode	Post-survey	Which group were your new connections from
3. Individual-individual realized network	Ego-network	Post-survey	Select individuals from a drop-of-list who you did not know before the workshop but shared information with at the workshop

247

248 Compared with the two-mode network data, the second type of network data from the
249 post-survey question focused on peer-to-peer new information exchange ties (Network 3). The
250 data captured individuals (egos) and the people they shared information with at the event (alters).
251 These ties were a self-selected sample from all the occasions of new information exchange at the
252 event. Whether a participant completed the network exercise on the post-survey and respondent
253 recall bias affected who appeared in the emergent individual-to-individual realized network.
254 Nevertheless, the emergent ties complement the two-mode individual-group realized network
255 (Network 2) and help detail how the information network might be expanded after the event. To
256 investigate the relationship between group affiliations, event speakers, and their presence in the
257 emerging information network, two pairs of variables were used in chi-square analyses: (1)
258 whether an individual finished the network exercise and their affiliations, and (2) whether an
259 individual appeared in network 3 and whether they were a speaker at the event.

260 To explore how individuals were similar or different from the ones they shared
261 information with, we used the E-I index, which captures both external (E) and internal (I) ties
262 from the ego to their alters and to others within their affiliation group (Robins 2015). The letter
263 “E” stands for the number of external ties, meaning ties with alters in different groups of the ego.
264 In our study, E refers to how many new connections a person reported were from an affiliation
265 group different from their own. The letter “I” stands for the number of internal ties, the number
266 of connections from the same affiliation group of the ego. E-I index is the ratio between the
267 number of external ties minus the number of internal ties divided by the total number of ties. The
268 ratio ranges from -1 to 1, with values closer to -1 indicating all the ties of the ego were from the
269 same group as the ego (perfect homophily) to 1 meaning all the ties of the ego were from groups
270 different from the ego (perfect heterophily). Breakout group and affiliation were two categorical
271 variables readily for E-I index calculations. We recorded the five-point ASP assessment questions
272 into three categories, with zero referring to a negative view of ASP on criteria (combining scores
273 one and two), one referring to a neutral view of ASP on criteria (score three), and three referring
274 to a positive view of ASP (combining score four and five). We used Analysis of Variances
275 ANOVA to compare individual node E-I index by their affiliation.

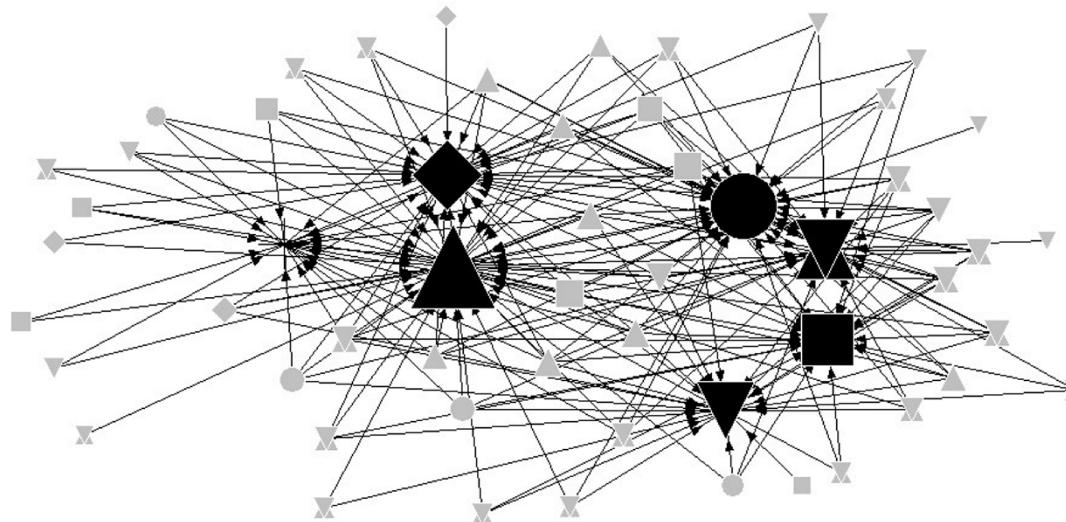
276 The analyses were conducted in SPSS and UCINET 6 (Borgatti et al. 2002).

277 RESULTS

278 A total of 76 individuals participated in the 2022 KBS LTAR stakeholder field day. The
279 event participants represented seven stakeholder groups (Table 2). University-affiliated
280 researchers and staff were the group most present in numbers at the event, accounting for 42% of
281 all participants. Among these participants, 51 individuals (67%) responded to the pre-survey and
282 37 individuals (49%) to the post-survey. The affiliation profile of respondents to the two surveys

283 resembles the actual participant profile, except that agribusiness was underrepresented in the pre-
284 and post-survey and farmer advisers were underrepresented in the post-survey.

285 Table 2. Event participant and survey respondent affiliation distribution.


Stakeholder Group	Total Participants	%	Pre-Survey Respondents	%	Post-Survey Respondents	%
Agribusiness	4	5%	0	0%	1	3%
Extension	5	7%	4	8%	3	8%
Farm Adviser	4	5%	3	6%	1	3%
Farmer	10	13%	8	16%	5	14%
Non-profit Orgs.	11	14%	7	14%	6	16%
Agencies	10	13%	8	16%	3	8%
University-Affiliated Researchers and Staff	32	42%	21	41%	18	49%

286 Note. 1. Percentages were rounded to the nearest integer, resulting in the sum of the percentages
287 exceeding 100%. 2. Five farmers also reported affiliations with other groups, including non-profit
288 organizations, agribusiness, farm advisers, and universities. A participant from a non-profit organization
289 identified as university-affiliated researcher as well.

290

291 **Stakeholder Interests Before the Event**

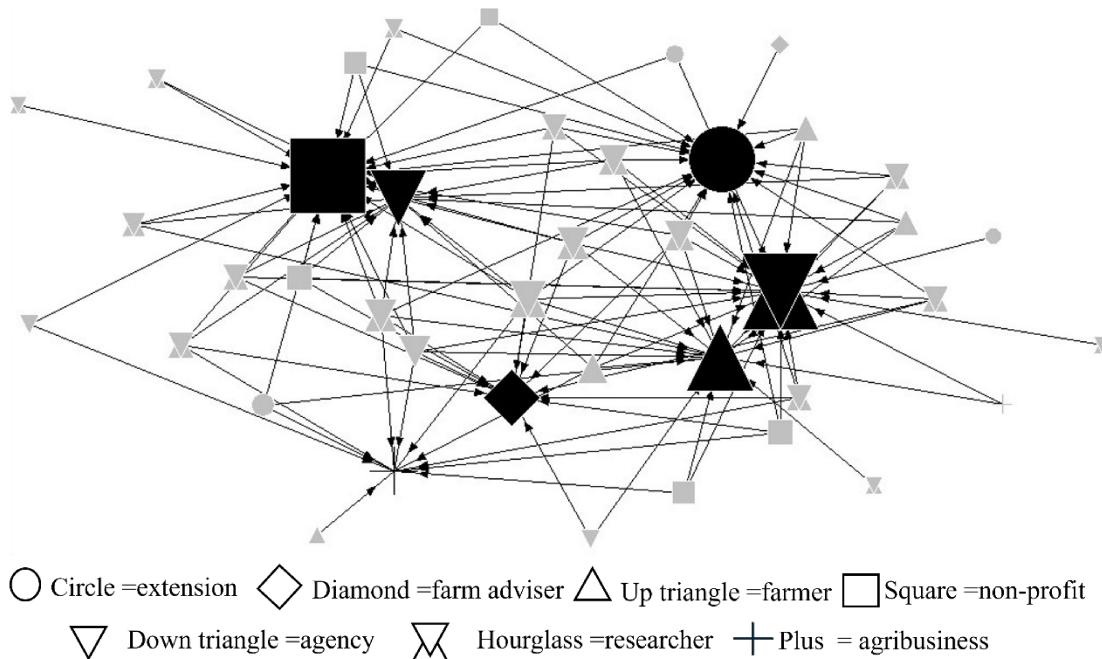
292 The pre-survey asked respondents which group they would be interested in connecting
293 with at the event, forming a two-mode network (Network 1; Figure 2).

○ Circle =extension ◊ Diamond =farm adviser △ Up triangle =farmer □ Square =non-profit
 ▽ Down triangle =agency ╳ Hourglass =researcher + Plus =agribusiness

294

295 **Figure 2. Two-mode interest network (Network 1). Grey nodes: respondents to the pre-survey.**
 296 **Black nodes: group. Lines: respondents indicated they were interested in networking with a**
 297 **group at the field workshop. The size of the nodes represents the degree. The shape represents**
 298 **affiliations.**

299 The most interest in connections was directed toward farmers, with farm advisors and
300 extension educators also receiving notable attention. This result points to a strong interest among
301 participants in engaging with those who work directly in the agricultural field (Table 3). Most of
302 the interests were cross-group, with many respondents selecting groups outside their own
303 affiliation. Researchers had the least cross-group interest (67%) compared to other stakeholder
304 groups.


305 Table 3. Groups attracting connection interests (in-degree of the group nodes in the two-mode
306 network) indicated by the pre-survey respondents

	In-degree	Ties cross-group count	Ties cross-group %
Farmer	42	34	81
Farm advisor	32	30	94
Extension	31	31	100
Researcher	27	18	67
Agency	25	22	88
Agribusiness	20	20	100

307

308 **From Interests to Connections At the Event**

309 Participants' interests in building their professional networks across affiliation groups
 310 sparked the building of new connections. Of the 37 post-survey respondents, 36 indicated they
 311 met someone new at the event. The two-mode data reveals which affiliation group individuals'
 312 new connections were from (Network 2; Figure 3).

313

314 **Figure 3. Two-mode realized network (Network 2). Grey nodes: respondents to the pre-survey.**
 315 **Black nodes: group. Lines: respondents indicated they were interested in networking with a**
 316 **group at the field workshop. The size of the nodes represents the degree. The shape represents**
 317 **affiliations.**

318

319 Non-profit organizations and researchers received the most post-event connections,
 320 followed by farmers and extension (Table 4), although these groups, except farmers, did not
 321 attract the most connection interest from the pre-survey. Thirty-two university-affiliated
 322 researchers and staff attended the event, accounting for about 42% of the event participants. By
 323 comparison, only eleven participants were from a non-profit organization, yet an equal number

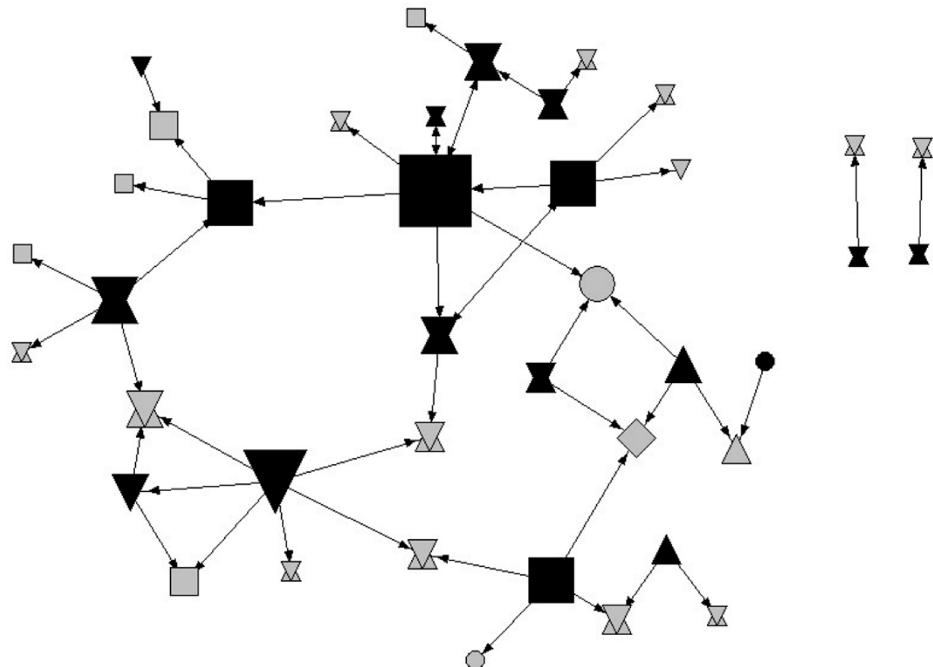
324 of new connections were made with people from non-profit organizations. Researchers exhibited
325 more within-group interactions (50%) compared to other groups at the event, reflecting the high
326 within-group connection interests observed in the pre-survey.

327

328 Table 4. Group receiving realized connections (in-degree of the group nodes in the two-mode
 329 network) indicated by the post-survey respondents.

	In-degree	Ties cross-group count	Ties cross-group %
Non-profit	20	17	85
Researcher	20	10	50
Farmer	17	14	82
Extension	17	17	100
Agency	14	13	93
Farm advisor	13	13	100
Agribusiness	11	11	100

330


331 **Bridging Ties Formed at the Event**

332 Among post-survey respondents, eighteen individuals finished the network exercise by
 333 selecting the name of at least one person they did not know before but shared information with at
 334 the event. Individuals selected one to six names, resulting in forty-three undirected ties of new
 335 information exchange. Three of these new information exchange ties were reciprocal, meaning
 336 both nodes that shared the information ties finished the network exercise and reported each other
 337 as information sharing. There was no significant relationship between affiliations and whether
 338 individuals finished the network exercise ($\text{Chi-square} = 1.816$, $p\text{-value} = 0.874$).

339 These ties were a sample of all the new information exchange ties brought about by the
 340 event. It is worth noting that the ties from the peer-to-peer network are fundamentally different
 341 from the two-mode data of individual new connections with groups, but they do both speak to
 342 the behavior of participating stakeholders. Moreover, whether a tie appeared in the sample
 343 depended on whether a participant finished the network exercise on the post-survey and whether
 344 they remembered the interaction. Hence, the results may not be broadly applicable. However,
 345 studying these emergent ties can help us understand the process of network expansion and the
 346 level of homophily among the new ties. In the last section of the results, we describe the

347 connectivity of information exchange ties and how these ties were organized by break-out
348 groups, stakeholder presentations, affiliations, and views on ASP systems.

349 Figure 4 presents a network graph that includes all the new information exchange ties
350 (Network 3). The ties were sparse but connected, rather than presenting a few isolated hubs of
351 individuals and their alters. Those who finished the network exercise (black nodes) and those
352 who did not (grey nodes) both served as connectors. Respondents from non-profit organizations
353 and agencies tended to report more ties.

○ Circle =extension \diamond Diamond =farm adviser \triangle Up triangle =farmer \square Square =non-profit
354 ∇ Down triangle =agency \boxtimes Hourglass =researcher $+$ Plus =agribusiness

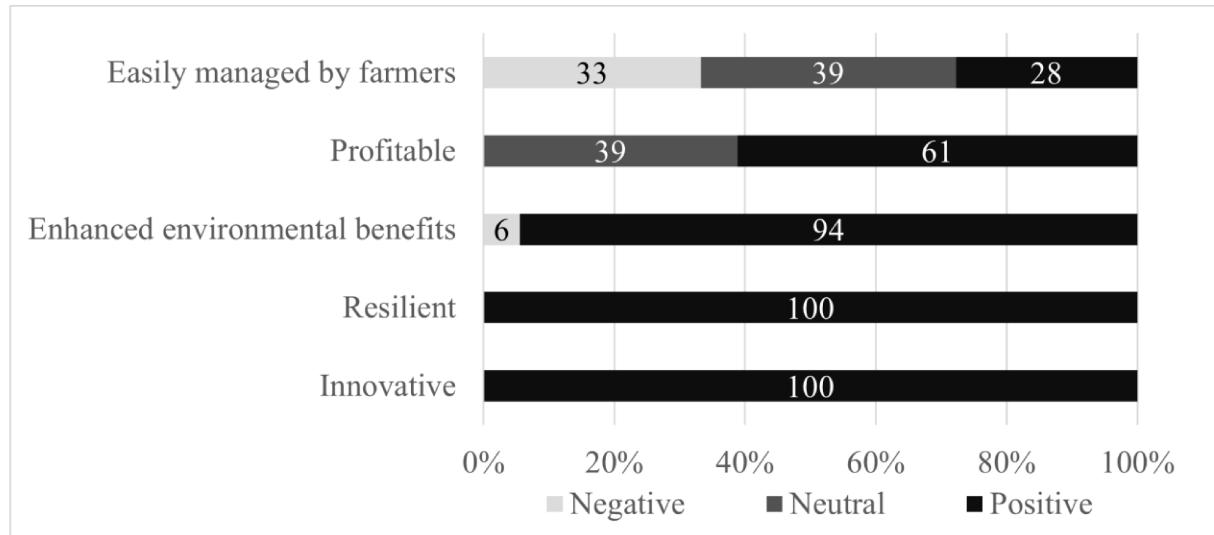
355 **Figure 4. Individual-individual realized network (emergent information network, Network 3).**
356 **Black nodes:** individuals who finished the network exercise post-survey. **Grey nodes:**
357 individuals who did not finish the network exercise but were mentioned by those who did.
358 **Lines:** individuals indicated they shared information with the other individual. **The size of**
359 **the nodes represents the degree. The shape of the nodes represents affiliations.**

360

361 Stakeholder speakers at the event seemed to be more likely to be present in the emergent
362 network than non-speakers. Among the sixteen speakers, four individuals reported a total of
363 sixteen ties, while six individuals were mentioned by other individuals. The percent of a speaker
364 who participated in the post-survey and was present in the emergent information network (78%)
365 was higher than the percent of non-speakers present in the network (65%), although the chi-
366 square test was not significant (Chi-square = 2.112, p-value=.146).

367 The homophily analyses using E-I indices suggest that individuals might be more likely
368 to form new connections outside of the breakout groups -- the structured discussion time. Out of
369 the eighteen individuals, three (17%) reported new connections entirely from the same affiliation
370 (E-I index = -1), while nine respondents (50%) reported connections only outside their breakout
371 groups (E-I index = 1) (Table 5). The results do not imply that the breakout group failed to
372 support relationship building. Instead, the data indicate the activities designed for informal
373 interactions such as coffee breaks, meals, and wagon rides were effective in creating new
374 information exchange ties.

375 The E-I indices, which use affiliation as the comparison attribute, suggest that most of the
376 new information exchange ties occurred between individuals with different affiliations. Out of
377 the eighteen respondents, four individuals (22%) reported new connections entirely from the
378 same affiliation (E-I index = -1), while eight individuals (44%) reported new connections
379 entirely from different affiliations (E-I index=1). The remaining respondents reported ties with at
380 least one individual from a different affiliation group. Using ANOVA, affiliation groups did not
381 differ in their E-I indices (F-statistic = 0.934, p-value = 0.474).


382 Table 5. Distribution of E-I indices by comparison attributes.

Comparison attribute	% E-I index = -1	% E-I index (-1, 0)	% E-I index =0	% E-I index (0, 1)	% E-I index = 1
Breakout groups	17	0	17	17	50
Affiliation	22	0	11	22	44
ASP-not resilient- resilient	100	0	0	0	0
ASP-ordinary-innovative	100	0	0	0	0
ASP-no additional environmental benefit- environmental benefit	57	7	14	0	21
ASP-unprofitable- profitable	36	14	7	0	43
ASP – not easily managed by farmers – easily managed by farmers	21	0	7	7	64

383 Note. Percentages were rounded to the nearest integer, resulting in the sum of the percentages
384 exceeding or below 100%.

385

386 All the eighteen respondents who reported an information exchange tie rated ASP as
 387 resilient and innovative (Figure 5), resulting in 100% E-I indices by these two criteria equaling to
 388 -1 (Table 5). The majority of the respondents rated ASP as profitable (61%) and being able to
 389 enhance environmental benefits (94%) (Figure 5); however, they tended to share information
 390 with those who agreed with them on environmental benefits, indicated by 57% of respondents
 391 with E-I index=-1, but disagreed with them on profitability, indicated by only 36% of
 392 respondents with E-I index=-1 (Table 5). There was more variability in whether individuals
 393 viewed the proposed ASP system as easily managed by farmers (64% EI-index=1).

395 **Figure 5. Percent of individuals assessing of proposed ASP system by criteria.**

396 **DISCUSSION**

397 This study builds on the premise, adapted from Teodoro et al. (2021), that social
 398 interactions at stakeholder engagement events, under certain conditions, can form social ties,
 399 including information exchange ties. These ties, in turn, facilitate changes in perceptions and
 400 actions at both the individual and network levels. We observed this process through a stakeholder
 401 engagement event for the KBS LTAR project, designed to receive feedback on its research plans
 402 and build and strengthen relationships with existing and new partners. Using two types of
 403 network data—two-mode data connecting individuals with stakeholder groups and individual-to-
 404 individual data—we observed three networks: a pre-event network showing how individuals
 405 expressed interest in connecting with various stakeholder groups, a post-event network showing
 406 which groups individuals formed new connections with, and a post-event network showing a
 407 sample of the emergent information exchange ties.

408 The processes of social learning, social networks, and stakeholder participation are
 409 interconnected. Changes in social network structures, network growth, integration, and

410 transformation are important conditions and indicators for social learning. Our results align with
411 those of Hoffman et al. (2015), Luján Soto et al. (2021), and Teodoro et al. (2021), supporting
412 the close connection between social networks and social learning. Through the description of
413 three networks, we detailed how participants, driven by an interest in connecting with others,
414 utilized interaction opportunities at stakeholder engagement events and formed new information
415 exchange ties with individuals from different affiliations and those with different views. A self-
416 reported sample of new information exchange ties (network 3) revealed connections not only
417 between individuals with different affiliations but also between individuals who have different
418 perspectives on ASP, creating opportunities for social learning.

419 Our findings highlight a key benefit of stakeholder engagement events: bringing multiple
420 stakeholders together and offering opportunities for sustained interaction and discussion. This
421 does not diminish the importance of engagement with single stakeholder groups, such as
422 engagement only with producers, as individuals within the same affiliation may hold different
423 views and beliefs (Armitage 2005; Bodin and Prell 2011). Interactions among people with the
424 same affiliation but different perceptions are an important and effective component of the social
425 learning process. However, for problems that require actions from multiple stakeholder groups,
426 academic institutions may serve as conveners and initiators of multi-stakeholder initiatives,
427 working to counter the natural tendency of homophily and promote connections between
428 different groups (Denton and Bitzer 2015). Academic institutions can benefit society and
429 stakeholders by using their resources to promote collaborations and networks (Holifield and
430 Williams 2019; Pagliarino et al. 2020).

431 Challenges arise in individual researchers' capacity and interests in connecting with
432 stakeholders. In our study, researchers showed a stronger interest in connecting with other

433 researchers and tended to have more within-group connections. The event had a significant
434 presence of university-affiliated researchers and staff, including graduate students whose
435 network capacity and motivations might differ from faculty members. Other studies have
436 identified challenges for researchers in engaging with stakeholders, such as a lack of training and
437 confidence, a lack of professional recognition for engagement efforts, and the tendency to
438 outsource engagement entirely to practitioners and social scientists (Jensen et al. 2008; Canfield
439 et al. 2022). With the growing recognition of stakeholder engagement and knowledge co-
440 production by funding agencies and institutions, more researchers are seeking to increase their
441 engagement capacity by attending training, collaborating with social scientists and boundary
442 organizations, and dedicating resources to hiring stakeholder engagement specialists. The
443 transformation of researchers themselves is also an outcome of social learning.

444 The agency of stakeholders in making connections is highlighted by our analysis of
445 participants' connection interests and actual connection activities. Studies have found that
446 stakeholder motivations, expectations, and involvement are critical to the success of stakeholder
447 engagement (Blackstock et al. 2012; Sterling et al. 2017; Canfield et al. 2022). Our results
448 revealed a high level of openness from stakeholders to connect with other groups. Although not
449 tested directly, openness may be a key condition for the emergence of ties among people with
450 different affiliations, along with interaction opportunities, facilitation, and participant
451 composition. The intricate relationship between stakeholder agency, design intentions, and
452 facilitation is demonstrated by the finding that realized individual-group connections did not
453 entirely match the individual-group interests. For example, there were more university-affiliated
454 researchers and staff at the event, and they were more likely to form new connections.

455 Meanwhile, non-profit affiliates and extension participants, although present in smaller numbers,
456 actively reached out to other groups, serving as bridges and initiators in social learning.

457 This study functions as an interim evaluation of the ongoing stakeholder engagement
458 effort. Instead of conducting a summative evaluation at the end of the project, like Van Der Wal
459 et al. (2014), Tran et al. (2018), Luján Soto et al. (2021), we presented a formative evaluation at
460 the early stage of a long-term project. Blackstock et al. (2007) listed four purposes for
461 evaluation, which would take different weights in summative and formative evaluation: proving
462 (illustrating efficiency or value), controlling (monitoring quality control), improving (reaching
463 objectives), and learning (transforming the individual participant). The goal of our evaluation
464 was to improve the stakeholder engagement effort at the KBS LTAR project and learn about
465 relationship building and knowledge co-production in the process. For example, the results
466 revealed nuances in stakeholder perception about aspirational agriculture practices. Individuals
467 showed greater agreement with some criteria for assessing the proposed ASP (resilience,
468 innovation) but greater disagreement with other criteria (manageability, profitability). This result
469 can inform the common experiment to provide data on the economic performance and time costs
470 to the stakeholders. It also establishes a baseline for stakeholder perceptions and will inform
471 future efforts in assessing the social learning outcomes of the project's stakeholder engagement
472 efforts.

473 The evaluation also suggested that stakeholder engagement events can be designed to
474 foster social learning by incorporating facilitated discussions and allowing for sustained
475 interactions during unstructured social time. One of the event's goals was to build and strengthen
476 relationships with both existing and new partners. This goal was communicated to participants
477 verbally and in writing, as it was printed on the second page of the agenda handout each

478 individual received. The pre-survey, which asked individuals about their intentions to connect,
479 might have served as a prompt, encouraging people to focus on making new connections.
480 Including stakeholder presentations, in addition to researchers' talks, diversified the perspectives
481 at the event and may have promoted connections with the speakers, as evidenced by the new
482 connections formed with them. The connection between the breakout groups and new
483 connections was unclear, possibly because the breakout groups were pre-determined by the event
484 organizers to balance new and existing connections. This also indicates that there were ample
485 opportunities for individuals to connect outside of the designated discussion times.

486 A few limitations of the study are worth noting. The study was not designed to assert
487 direct cause-and-effect relationships between variables. There were no control groups in an
488 experiment setting that varied in the networking process and stakeholder design. The study did
489 not assess whether social learning occurred either, as it did not directly measure the emergence of
490 shared understanding or changes in participants' views of other groups. We intend to add this to
491 our future data collection efforts, however. We interpret the observed stakeholder event design
492 and respondent networks as a process in which stakeholder engagement leads to new connections
493 that result in social learning, but it should not be taken as causality claims. Networking or
494 sustained interaction does not always lead to shared understanding or positive results, even with
495 well-designed stakeholder engagement events (Reed et al. 2018; Jalonens et al. 2020). Using the
496 foundation established by previous studies (e.g., Luján Soto et al., 2021; Teodoro, et al., 2021),
497 our study highlighted the connection between the processes of social learning, social network,
498 and participatory research. More studies are needed to test the relationships between variables
499 that measure, articulate, and assess the process.

500 We recognize that the dataset is not extensive or complex. Although the design was to
501 follow participants before and after the event, fewer individuals filled out the post-survey than
502 the pre-survey, and even fewer individuals finished the network exercise on the post-survey. The
503 limitations of collecting detailed network data using quantitative surveys and the impact of
504 multiple contacts on response rates have been noted. As a result, the emergent information
505 exchange network missed many new but weaker connections, limiting our ability to examine
506 network-level characteristics. In addition, the post-survey was collected a month after the event
507 through a self-administered online survey, suggesting challenges with recalling information and
508 thus fully completing the connection detail. We checked that there was no statistical difference in
509 the number of reported ties by affiliation groups.

510 We suggest a few future research directions that could advance the study of the
511 participatory research process and its outcomes for social learning. Interviews with stakeholders
512 that include a network exercise are more likely to collect information on the whole network.
513 Studying the emergent network at various time intervals will also be important as it will
514 demonstrate the evolvement of the network and identify which ties will be deepened or fade over
515 time. Lastly, future research could document how ideas for new practices exchanged in a
516 network can be planted, confirmed, germinated into actions, and supported through the trial
517 period, and how individuals on the receiving end of ideas in the network can switch their roles
518 and become idea disseminators themselves at some future date.

519 CONCLUSION

520 Agroecosystems face many challenges such as climate change, soil degradation,
521 biodiversity losses, and nutrient pollution that require coordinated and voluntary actions from a
522 wide range of stakeholders including agricultural producers, agribusinesses, researchers and

523 educators, policymakers, and environmental and agricultural organizations. Stakeholder
524 engagement efforts initiated by research institutions can provide space, opportunities, and
525 motivations for network expansion between different stakeholder groups to allow social learning
526 to occur. The ultimate goal is to build a mutual understanding of an issue and a willingness to
527 take action despite individual or group differences. The social learning approach supported by a
528 framework including social network analysis can help researchers design their stakeholder
529 engagement activities based on stakeholder interests in order to maximize outcomes. Successful
530 solutions to many natural resource problems will rely on the ability of or how well different
531 groups learn and act together. At the individual level, new ties, especially those with individuals
532 who are different, expose people to new information or challenge how they view the world,
533 providing opportunities for learning through interactions.

534 Our study demonstrates the importance of understanding stakeholders' interests in
535 stakeholder engagement events. Depending on stakeholders' previous experience with research
536 projects and other stakeholders, and on whether there are existing relationships among
537 stakeholder groups, people's interests in networking with others could be vastly different.
538 Researchers and stakeholder engagement practitioners should not make assumptions that
539 activities aimed at networking will always receive positive feedback. The potential burden on
540 farmers is also worth considering, since various groups showed interest in connecting with
541 farmers, prompting the key question of what benefits farmers can receive from the new
542 connections. Stakeholder engagement efforts should have clear outcome goals along with an
543 assessment plan. If possible, stakeholder engagement should be considered a long-term effort as
544 the building of trust and coordination capacity takes time. Having a strategic plan and dedicated

545 resources and personnel for stakeholder engagement is essential for stakeholder engagement to
546 achieve long-term social learning outcomes.

547 **APPENDIX**

548 **Survey question gauging stakeholders on the proposed ASP system**

Thank you for your insights on the KBS LTAR experiment plans, including measurements and metrics. The long-term experiment contrasts an "aspirational" system of the future against today's "business as usual" cash grain system. The aspirational system includes a 5-year rotation and management practices intended to optimize production efficiency along with environmental and rural prosperity outcomes such as soil health, greenhouse gas mitigation, biodiversity, water quality, and profitability.

1. Based on the information provided, how would you evaluate the proposed Aspirational System (5-year rotation and management practices over time) according to the following criteria?

	1	2	3-Neutral	4	5	
Ordinary	<input type="radio"/>	Innovative				
Unprofitable	<input type="radio"/>	Profitable				
Not resilient	<input type="radio"/>	Resilient				
No additional environmental benefits	<input type="radio"/>	Enhanced environmental benefits				
Not easily managed by farmers	<input type="radio"/>	Easily managed by farmers				

549

550 **REFERENCES**

551 Amblard, Laurence. 2021. Collective action as a tool for agri-environmental policy
552 implementation. The case of diffuse pollution control in European rural areas. *Journal of
553 Environmental Management* 280. Academic Press.
554 <https://doi.org/10.1016/j.jenvman.2020.111845>.

555 Armitage, Derek. 2005. Adaptive capacity and community-based natural resource management.

556 *Environmental Management*. <https://doi.org/10.1007/s00267-004-0076-z>.

557 Barnes, Michele L., Lorien Jasny, Andrew Bauman, Jon Ben, Ramiro Berardo, Örjan Bodin,

558 Joshua Cinner, et al. 2022. 'Bunkering down': How one community is tightening social-

559 ecological network structures in the face of global change. *People and Nature* 4. John Wiley

560 and Sons Inc: 1032–1048. <https://doi.org/10.1002/pan3.10364>.

561 Blackstock, K. L., G. J. Kelly, and B. L. Horsey. 2007. Developing and applying a framework to

562 evaluate participatory research for sustainability. *Ecological Economics* 60: 726–742.

563 <https://doi.org/10.1016/j.ecolecon.2006.05.014>.

564 Blackstock, K. L., K. A. Waylen, J. Dunglinson, and K. M. Marshall. 2012. Linking process to

565 outcomes - Internal and external criteria for a stakeholder involvement in River Basin

566 Management Planning. *Ecological Economics* 77: 113–122.

567 <https://doi.org/10.1016/j.ecolecon.2012.02.015>.

568 Bodin, O., and C. Prell. 2011. *Social networks and natural resource management: uncovering*

569 *the social fabric of environmental governance*. Cambridge, UK: Cambridge University

570 Press.

571 Borgatti, S. P, and D.S. Halgin. 2011. Analyzing affiliation networks. In *The SAGE Handbook of*

572 *Social Network Analysis*.

573 Borgatti, S.B., M.G. Everett, and J.C. Johnson. 2013. *Analyzing Social Networks*. Sage

574 Publication UK.

575 Borgatti, S.P., M.G. Everett, and L.C. Freeman. 2002. Ucinet for Windows: Software for Social
576 Network Analysis. Harvard, MA: Analytic Technologies.

577 Brymer, B. Amanda L., J. D. Wulfhorst, and Mark W. Brunson. 2018. Analyzing stakeholders'
578 workshop dialogue for evidence of social learning. *Ecology and Society* 23. Resilience
579 Alliance. <https://doi.org/10.5751/ES-09959-230142>.

580 Buchecker, Matthias, Marius Fankhauser, and Raphael Gaus. 2023. Finding shared solutions in
581 landscape or natural resource management through social learning: A quasi-experimental
582 evaluation in an Alpine region. *Landscape Ecology* 38. Springer Science and Business
583 Media B.V.: 4117–4137. <https://doi.org/10.1007/s10980-021-01274-y>.

584 Canfield, Katherine N., Kate Mulvaney, and Casey D. Chatelain. 2022. Using researcher and
585 stakeholder perspectives to develop promising practices to improve stakeholder engagement
586 in the solutions-driven research process. *Socio-Ecological Practice Research* 4. Springer:
587 189–203. <https://doi.org/10.1007/s42532-022-00119-5>.

588 Charnley, Susan, Erin C. Kelly, and A. Paige Fischer. 2020. Fostering collective action to reduce
589 wildfire risk across property boundaries in the American West. *Environmental Research
590 Letters* 15. Institute of Physics Publishing. <https://doi.org/10.1088/1748-9326/ab639a>.

591 Cundill, G., and R. Rodela. 2012. A review of assertions about the processes and outcomes of
592 social learning in natural resource management. *Journal of Environmental Management*.
593 Academic Press. <https://doi.org/10.1016/j.jenvman.2012.08.021>.

594 Dentoni, Domenico, and Verena Bitzer. 2015. The role(s) of universities in dealing with global
595 wicked problems through multi-stakeholder initiatives. In *Journal of Cleaner Production*,
596 106:68–78. Elsevier Ltd. <https://doi.org/10.1016/j.jclepro.2014.09.050>.

597 Eaton, Weston M., Kathryn J. Brasier, Mark E. Burbach, Walt Whitmer, Elyzabeth W. Engle,
598 Morey Burnham, Barbara Quimby, et al. 2021. A Conceptual framework for social,
599 behavioral, and environmental change through stakeholder engagement in water resource
600 management. *Society and Natural Resources* 34. Routledge: 1111–1132.
601 <https://doi.org/10.1080/08941920.2021.1936717>.

602 Fernández-Giménez, María E., David J. Augustine, Lauren M. Porensky, Hailey Wilmer, Justin
603 D. Derner, David D. Briske, and Michelle O. Stewart. 2019. Complexity fosters learning in
604 collaborative adaptive management. *Ecology and Society* 24. Resilience Alliance.
605 <https://doi.org/10.5751/ES-10963-240229>.

606 Fischer, A. Paige, and Lorien Jasny. 2017. Capacity to adapt to environmental change: Evidence
607 from a network of organizations concerned with increasing wildfire risk. *Ecology and
608 Society* 22. Resilience Alliance. <https://doi.org/10.5751/ES-08867-220123>.

609 Hoffman, Matthew, Mark Lubell, and Vicken Hillis. 2015. Network-smart extension could
610 catalyze social learning. *California Agriculture* 69. University of California, Oakland: 113–
611 122. <https://doi.org/10.3733/ca.E.v069n02p113>.

612 Holifield, Ryan, and Kathleen C. Williams. 2019. Recruiting, integrating, and sustaining
613 stakeholder participation in environmental management: A case study from the Great Lakes
614 Areas of Concern. *Journal of Environmental Management* 230. Academic Press: 422–433.
615 <https://doi.org/10.1016/j.jenvman.2018.09.081>.

616 Hutchins, Karen, Laura A. Lindenfeld, Kathleen P. Bell, Jessica Leahy, and Linda Silka. 2013.
617 Strengthening knowledge co-production capacity: Examining interest in community-

618 university partnerships. *Sustainability (Switzerland)* 5. MDPI: 3744–3770.

619 <https://doi.org/10.3390/su5093744>.

620 Jackson-Smith, D., S. Ewing, C. Jones, A. Sigler, and A. Armstrong. 2018. The road less
621 traveled: Assessing the impacts of farmer and stakeholder participation in groundwater
622 nitrate pollution research. *Journal of Soil and Water Conservation* 73. Soil Conservation
623 Society of America: 610–622. <https://doi.org/10.2489/jswc.73.6.610>.

624 Jalonens, Harri, Alisa Puustinen, and Harri Raisio. 2020. The hidden side of co-creation in a
625 complex multi-stakeholder environment: When self-organization fails and emergence
626 overtakes. In *Society as an interaction space: a systemic approach*, ed. Hanna Lehtimäki,
627 Petri Uusikylä, and Anssi Smedlund, 3–22.

628 Jensen, Pablo, Jean Baptiste Rouquier, Pablo Kreimer, and Yves Croissant. 2008. Scientists who
629 engage with society perform better academically. *Science and Public Policy* 35. Beech Tree
630 Publishing: 527–541. <https://doi.org/10.3152/030234208X329130>.

631 Kadushin, C. 2012. *Understanding Social Networks: Theories, Concepts, and Findings*. New
632 York: Oxford University Press.

633 Luján Soto, Raquel, Mamen Cuéllar Padilla, María Rivera Méndez, Teresa Pinto-Correia,
634 Carolina Boix-Fayos, and Joris de Vente. 2021. Participatory monitoring and evaluation to
635 enable social learning, adoption, and out-scaling of regenerative agriculture. *Ecology and
636 Society* 26. Resilience Alliance. <https://doi.org/10.5751/ES-12796-260429>.

637 McPherson, Miller, Lynn Smith-Lovin, and James M Cook. 2001. *Birds of a Feather: Homophily
638 in Social Networks*.

639 Moody, James, and Pamela Paxton. 2009. Building bridges: Linking social capital and social
640 networks to improve theory and research. *American Behavioral Scientist* 52: 1491–1506.
641 <https://doi.org/10.1177/0002764209331523>.

642 Mostert, Erik, Claudia Pahl-Wostl, Yvonne Rees, Brad Searle, David Tàbara, and Joanne Tippett.
643 2007. Social Learning in European River-Basin Management: Barriers and Fostering
644 Mechanisms from 10 River Basins. *Ecology and Society* 12. and Society: xx–xx.

645 Muro, M., and P. Jeffrey. 2008. A critical review of the theory and application of social learning
646 in participatory natural resource management processes. *Journal of Environmental Planning
647 and Management*. <https://doi.org/10.1080/09640560801977190>.

648 Neef, Andreas, and Dieter Neubert. 2011. Stakeholder participation in agricultural research
649 projects: A conceptual framework for reflection and decision-making. *Agriculture and
650 Human Values* 28. Kluwer Academic Publishers: 179–194. <https://doi.org/10.1007/s10460-010-9272-z>.

652 Nikkels, Melle J., Peat Leith, Saideepa Kumar, Neville Mendham, and Art Dewulf. 2021. The
653 social learning potential of participatory water valuation workshops: A case study in
654 Tasmania, Australia. *Environmental Policy and Governance* 31. John Wiley and Sons Ltd:
655 474–491. <https://doi.org/10.1002/eet.1939>.

656 O'Connor, Ruth A., Jeanne L. Nel, Dirk J. Roux, Lilly Lim-Camacho, Lorrae van Kerkhoff, and
657 Joan Leach. 2019. Principles for evaluating knowledge co-production in natural resource
658 management: Incorporating decision-maker values. *Journal of Environmental Management*
659 249. Academic Press. <https://doi.org/10.1016/j.jenvman.2019.109392>.

660 Pagliarino, Elena, Francesca Orlando, Valentina Vaglia, Secondo Rolfo, and Stefano Bocchi.

661 2020. Participatory research for sustainable agriculture: the case of the Italian

662 agroecological rice network. *European Journal of Futures Research* 8. Springer.

663 <https://doi.org/10.1186/s40309-020-00166-9>.

664 Reed, Mark S, Anna C Evely, Georgina Cundill, Ioan Fazey, Jayne Glass, Adele Laing, Jens

665 Newig, et al. 2010. What is social learning? *Ecology and Society* 15. and Society: xx–xx.

666 Reed, Mark S., Steven Vella, Edward Challies, Joris de Vente, Lynne Frewer, Daniela

667 Hohenwallner-Ries, Tobias Huber, et al. 2018. A theory of participation: what makes

668 stakeholder and public engagement in environmental management work? *Restoration*

669 *Ecology*. Blackwell Publishing Inc. <https://doi.org/10.1111/rec.12541>.

670 Reimer, Adam P., Riva C.H. Denny, and Diana Stuart. 2018. The Impact of Federal and State

671 Conservation Programs on Farmer Nitrogen Management. *Environmental Management* 62.

672 Springer New York LLC: 694–708. <https://doi.org/10.1007/s00267-018-1083-9>.

673 Robins, G. 2015. *Doing Social Network Research: Network-based Research Design for Social*

674 *Scientists*. SAGE Publications Ltd.

675 Sachet, Erwan, Ole Mertz, Jean François Le Coq, Gisella S. Cruz-Garcia, Wendy Francesconi,

676 Muriel Bonin, and Marcela Quintero. 2021. Agroecological transitions: A systematic review

677 of research approaches and prospects for participatory action methods. *Frontiers in*

678 *Sustainable Food Systems*. Frontiers Media S.A. <https://doi.org/10.3389/fsufs.2021.709401>.

679 Skaalsveen, Kamilla, Julie Ingram, and Julie Urquhart. 2020. The role of farmers' social

680 networks in the implementation of no-till farming practices. *Agricultural Systems* 181.

681 Elsevier Ltd. <https://doi.org/10.1016/j.aggsy.2020.102824>.

682 Sterling, Eleanor J., Erin Betley, Amanda Sigouin, Andres Gomez, Anne Toomey, Georgina

683 Cullman, Cynthia Malone, et al. 2017. Assessing the evidence for stakeholder engagement

684 in biodiversity conservation. *Biological Conservation*. Elsevier Ltd.

685 <https://doi.org/10.1016/j.biocon.2017.02.008>.

686 Teodoro, Jose Daniel, Christina Prell, and Laixiang Sun. 2021. Quantifying stakeholder learning

687 in climate change adaptation across multiple relational and participatory networks. *Journal*

688 *of Environmental Management* 278. Academic Press.

689 <https://doi.org/10.1016/j.jenvman.2020.111508>.

690 Tran, Thong Anh, Helen James, and Jamie Pittock. 2018. Social learning through rural

691 communities of practice: Empirical evidence from farming households in the Vietnamese

692 Mekong Delta. *Learning, Culture and Social Interaction* 16. Elsevier Ltd: 31–44.

693 <https://doi.org/10.1016/j.lcsi.2017.11.002>.

694 US Department of Agriculture. 2024. *Strategic Plan Long-Term Agroecosystem Research*

695 *Network*.

696 de Vente, Joris, Mark S. Reed, Lindsay C. Stringer, Sandra Valente, and Jens Newig. 2016. How

697 does the context and design of participatory decision making processes affect their

698 outcomes? Evidence from sustainable land management in global drylands. *Ecology and*

699 *Society* 21. Resilience Alliance. <https://doi.org/10.5751/ES-08053-210224>.

700 Wade, Belinda, Bishal Bharadwaj, Amrita Kambo, Mikayla Jensen, Katherine Witt, Franzisca

701 Weder, Anna Phelan, and Peta Ashworth. 2024. Stakeholder engagement: the role of

702 facilitators and gender in ‘opening up’ conversations and enabling participation.

703 *Australasian Journal of Environmental Management* 31. Taylor and Francis Ltd.: 7–39.

704 <https://doi.org/10.1080/14486563.2023.2298195>.

705 Van Der Wal, Merel, Joop De Kraker, Astrid Offermans, Carolien Kroeze, Paul A. Kirschner, and

706 Martin van Ittersum. 2014. Measuring social learning in participatory approaches to natural

707 resource Management. *Environmental Policy and Governance* 24: 1–15.

708 <https://doi.org/10.1002/eet.1627>.

709 Wilmer, Hailey, Terri Schulz, María E. Fernández-Giménez, Justin D. Derner, Lauren M.

710 Porensky, David J. Augustine, John Ritten, Angela Dwyer, and Rachel Meade. 2022. Social

711 learning lessons from Collaborative Adaptive Rangeland Management. *Rangelands* 44.

712 Society for Range Management: 316–326. <https://doi.org/10.1016/j.rala.2021.02.002>.

713

714

715

716