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ABSTRACT

Comprehensive assessments of hydrological components are crucial for enhancing operational water
supply simulations. However, hydrological models are often evaluated based on their surface flow
simulations, while the validation of subsurface and groundwater components tends to be overlooked
or not well documented. In this study, we evaluated the outputs of two hydrological models, the Large

ARTICLE HISTORY
Received 28 September 2023
Accepted 13 June 2024

EDITOR
S. Archfield

Basin Runoff Model (LBRM) and the Weather Research and Forecasting — Hydrological modeling exten-

sion package (WRF-Hydro), for potential implementation in operational water balance forecasting in the
Great Lakes region. We examined the simulated hydrological variables including surface (e.g. snow water
equivalent, evapotranspiration, and streamflow), subsurface (e.g. soil moisture at different layers), and
groundwater components with observed or reference data from ground-based stations and remotely
sensed images. The findings of this study provide valuable insights into the capabilities and limitations of
each model. These findings contribute to more informed water management strategies for the Great

Lakes region.

1 Introduction

Hydrological models employed in operational basin-scale
water balance forecasting are commonly evaluated by the
skill with which they simulate surface flows at daily, monthly,
or even annual time steps (Fry et al. 2014, 2020, Gaborit et al.
2017). This relatively streamlined approach to skill assessment
can lead to the transition of experimental models into real-
world operational environments without a comprehensive
understanding of how model representation of other surface
(such as evapotranspiration, and snow accumulation and melt)
and subsurface (e.g. soil moisture storage) processes improves
or deteriorates model skill (Liu and Gupta 2007, Montanari
and Koutsoyiannis 2012). In other words, hydrological land
surface models adopted in operational environments can often
be considered “right” (or acceptable) because they provide
reasonable simulations of surface flow, but for the “wrong”
reasons because they (often unknowingly) misrepresent other
surface and subsurface hydrological processes (Hrachowitz
et al. 2014, Garavaglia et al. 2017). Similarly, land surface
models are often classified as “wrong” because they provide
erroneous surface flow simulations, but without
a corresponding robust analysis of what hydrological processes
are represented poorly and therefore propagate into erroneous
surface flow simulations (Shen and Phanikumar 2010,
Archfield et al. 2015, Clark et al. 2015, Devia et al. 2015).
This common protocol for operational model development
and analysis leaves several gaps in scientific knowledge,
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including the opportunity to identify and correct those
model components leading to erroneous surface flow simula-
tions (Kirchner 2006, Garavaglia et al. 2017). Understandably,
opportunities for evaluating land surface models for opera-
tional forecasting (including, but not limited to, forecasting at
basin scales) can be limited both by time constraints and by the
availability of observational data to support validation at sui-
table spatial (including both across the land surface and at
depth) and temporal scales (Biondi et al. 2012, Arsenault
et al. 2018). Validation of the groundwater component of
land surface models, for example, is typically ignored or con-
sidered impractical (Bingeman et al. 2006, Rajib et al. 2016,
Ala-aho et al. 2017, Mai et al. 2022).

Here, we address the challenge of testing hydrological models
for potential implementation in operational water balance fore-
casting by evaluating two models, one representing a general
classification of lumped conceptual models (Croley 1983, Croley
and He 2005) and another representing a state-of-the-art high-
resolution physically-based model, each evaluated using a range
of skill criteria across multiple model components (above and
beyond surface flow alone). We apply these two models within
the Laurentian Great Lakes basin, a region that holds roughly
20% of all the Earth’s fresh (unfrozen) surface water, intersects
multiple sovereign nations (including the United States,
Canada, and numerous First Nations), and within which there
is an ongoing effort by regional federal agencies to advance
seasonal and long-term water supply forecasts, and to better
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understand future lake water level variability (Wilcox et al. 2007,
Gronewold et al. 2013, Gronewold and Rood 2019, Fry et al.
2020).

Understanding future water level variability on the Great
Lakes (and, implicitly, the contribution of land runoff to the
water balance) is critical from human and environmental
health as well as socioeconomic perspectives; the Great Lakes
shoreline is an area of significant economic development but
also poses risks and challenges caused by erosion, rip currents,
and water level variability that threatens safe recreational and
commercial boating (EPA 2023). Importantly, Great Lakes
water level variability is driven by a complex interplay between
over-lake precipitation and over-lake evaporation (both of
which are very high, given the vast surface areas of the Great
Lakes), runoff, and groundwater discharge (Hunter et al. 2015,
Fry et al. 2020, Xu et al. 2021). Multiple studies have focused
on improving models of regional precipitation and evapora-
tion (Holman et al. 2012, Charusombat et al. 2018, Gronewold
et al. 2019, Hong et al. 2022); our study here focuses on
developing hydrological land surface models for improving
long-term Great Lakes runoff simulations and forecasts as
a component of broader water level projection systems.

Multiple hydrological modeling studies have been con-
ducted on the Laurentian Great Lakes (Croley 1983,
Pietroniro et al. 2007, Kult et al. 2014, Gaborit et al. 2017)
including, notably, the most recent iteration of the Great Lakes
Runoff Intercomparison Project (GRIP). The GRIP study was
initiated in the early 2010s to evaluate the performance of
different hydrological models in simulating streamflow across
the Great Lakes, with specific studies on Lake Michigan (Fry
et al. 2014), Lake Ontario (Gaborit et al. 2017), Lake Erie (Mai
et al. 2021) and, most recently, the entire Great Lakes basin
(Mai et al. 2022). Notably, the recent Mai et al. (2022) study
evaluated surface soil moisture, evapotranspiration (ET), and
snow water equivalent (SWE) across 10 models with varying
structures and levels of complexity. The main findings of the
GRIP study are the identification of the strengths and weak-
nesses of various hydrological models in their ability to esti-
mate runoff over the Great Lakes regions, which can help
researchers and operational modelers better understand the
differences between various hydrological models. However,
despite these efforts, there are still grand challenges facing
the advancement of land surface models into operational
water balance modeling across the Great Lakes, many of
which are comparable to challenges facing operational seaso-
nal and long-term forecasting in other continental basins.
These challenges range from appropriately representing ET
rates in response to changing solar inputs (Lofgren et al.
2013, Milly and Dunne 2017), to representing areas of abun-
dant groundwater and the correspondingly high baseflow
index (that, particularly for the Great Lakes, has been histori-
cally underrepresented in regional models; Erler et al. 2019,
Costa et al. 2021).

The overarching goal of this study is to enhance our under-
standing of how hydrological models employed for operational
water balance modeling represent the diverse range of hydro-
logical processes and to evaluate their performance against
various observed or reference data. The findings of this study
are expected to provide valuable insights into the potential and

limitations of each model, contributing to more informed
water management plans in the Great Lakes region. The two
hydrological models selected for our study have been identified
by Great Lakes regional federal agencies as potential compo-
nents of next-generation long-term basin-scale runoff models
to simulate distributions of water supply and water levels for
scenarios of climate change. The first candidate, the Weather
Research and Forecasting hydrological sub-routine (WREF-
Hydro), was also selected as the hydrological engine for the
first phase of the National Water Model (https://water.noaa.
gov/about/nwm, last access: 14 September 2023) and, as part of
that effort, was prepared for extension across the entire (i.e.
multinational extent of the) Great Lakes basin (Mason et al.
2019). The second candidate, the Large Basin Runoff Model
(LBRM) has been used for decades in both experimental and
operational seasonal water supply forecasting on the Great
Lakes (Gronewold et al. 2011) and was included in each of
the previous phases of the long-term GRIP study (Fry et al.
2014, Gaborit et al. 2017, Mai et al. 2021, 2022). To date,
however, we know of no study that has conducted a rigorous
cross-comparison between LBRM and WRF-Hydro, nor any
study that rigorously analyzed both the surface and subsurface
hydrological components of either model (within the Great
Lakes basin or elsewhere).

2 Methods

In the following sections, we provide an overview of our
methodology including a summary of key features of our
study area, a description of the two hydrological models
selected for evaluation (along with a basis for their selection),
a description of the datasets used, and a summary of our model
development, testing, and assessment procedure.

2.1 Study area

We evaluated the performance of our two candidate hydro-
logical models (described below) across selected catchments
(hereafter referred to as sub-basins) within the watershed of
Lake Michigan (Fig. 1). The Lake Michigan watershed is
the second largest of the Great Lakes watersheds (after the
Lake Superior watershed) and is the only Great Lakes
watershed located entirely within the United States (EC and
USEAP 2003, Fry et al. 2014). The total area of the Lake
Michigan basin (including the lake itself) is 173 683 km?,
roughly 33% of which (57 514 km?) is the lake surface area
(Hunter et al. 2015). The dominant land cover classifications
across the Lake Michigan watershed are irrigated cropland and
pasture (27%), deciduous broadleaf forest (24%), and wooded
wetland (15%) (National Land Cover Database; Homer et al.
2015). The elevation of the basin ranges from 175 to 578 m,
with an average slope of 0.33 (33%) (National Elevation
Dataset; Gesch et al. 2002). The study area is covered by tills
and coarse-textured sediments, which are associated with
above-average groundwater infiltration (Neff et al. 2005).
Over the period 2000 to 2019, the 20-year annual average
rainfall and temperature were 916 mm and 7.4°C, respectively,
in the Lake Michigan watershed. The annual average runoft of
362 mm is estimated using the lumped conceptual model,
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Figure 1. Detailed map of the Lake Michigan basin including numbered sub-basins (those used in our study are shaded in grey), locations of USGS flow gages at the
outlet of the sub-basins in our study, and all basin-wide readily-available GHCN SWE stations.

LBRM, which is one of the hydrological models selected in this
study (details of the model description can be found in the
following section). The majority of the annual rainfall (60%)
falls between May and October, and 40% of the annual flow
comes from spring (approximately 20% of the annual flow
occurs in summer, fall, and winter).

We selected the Lake Michigan basin for our study due to
the abundance of observed data available for model evaluation.
This basin has the highest number of observed gage stations
for both streamflow and SWE (e.g. the number of stations for
flow and SWE is 119 and 511, respectively), surpassing the
other lake watersheds (e.g. the average number of streamflow
and SWE stations for other watersheds, including Lake
Superior, Erie, Huron, and Ontario, was 87 and 213, respec-
tively; see the Supplementary material, Fig. S1). In addition,
the groundwater contribution of the Lake Michigan watershed
is known to be significant due to highly permeable soils and
low available water capacity (Fry et al. 2014, Mei et al. 2023).
Groundwater discharge comprises a large fraction of stream-
flow in the basin, with one estimate suggesting that

groundwater contributes 66% of streamflow (details of the
baseflow index map for the Lake Michigan basin can be
found in the Supplementary material, Fig. S2, based on
Wolock 2003). Through its contribution to streamflow,
groundwater plays a crucial role in sustaining the overall
water balance and hydrological processes within the Lake
Michigan watershed. Understanding and accurately represent-
ing this groundwater contribution is essential for comprehen-
sive hydrological modeling and water resource management in
the Lake Michigan basin.

Notably, we chose seven sub-basins within the Lake
Michigan basin for our study since the lumped conceptual
model allows simulation outputs in each sub-basin considering
it as a homogeneous and lumped hydrologic unit (Fig. 1).
However, streamflow observations are not available at the
sub-basin outlets. As streamflow gages are not located at the
sub-basin outlets, we delineated the sub-basins based on their
location for comparison between simulations and observa-
tions. In the Lake Michigan basin, there are many streamflow
gage stations, but seven in particular were carefully chosen to
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represent streamflow in each sub-basin. Located closest to the
sub-basin outlets, these stations ensure a robust validation
process. Moreover, the overall contribution of runoff dis-
charged into the lake inflow in the selected sub-basins is
estimated to be about 43% based on the simulation results of
the lumped model. Two of the selected sub-basins, 16 and 20,
produce the most (11.8%) and second most (11.1%) runoff
discharge among the 27 sub-basins. Consequently, the simu-
lated flow outputs from the selected sub-basins represent
a substantial part of the Lake Michigan basin’s total runoff
discharge. More details about the model structure and data can
be found in the following sections.

2.2 Model selection and description

In this study, we employed two operational hydrological mod-
els already calibrated by operators, the United States Army
Corps of Engineers (USACE) Detroit District and National
Oceanic and Atmospheric Administration (NOAA) for
LBRM and WREF-Hydro, respectively. The objective of this
study is to assess the performance of two important opera-
tional models representing various hydrological processes in
the Great Lakes. Therefore, rather than customizing or mod-
ifying them, we keep the original configuration and parame-
terization of both models as they are used for actual operation
of water balance and streamflow forecasting over the Great
Lakes (LBRM) and the entire continental United States (WRF-
Hydro) and suggest the strengths and weaknesses of the cur-
rent operational set-up by examining the performance of the
two models in representing various hydrological processes,
which has never been explored before.

The WRF-Hydro model was originally developed by the
National Center for Atmospheric Research (NCAR) as an
extension of the WRF atmospheric modeling package
(Gochis and Chen 2003, Gochis et al. 2020). It simulates land
surface hydrology and energy states and fluxes using physics-
based and conceptual approaches (Gochis et al. 2020) and has
been applied across a range of global settings (Li et al. 2017,
Xiang et al. 2017). The WRF-Hydro model is forced by either
coupling regional atmospheric models such as the WRF model
with land surface modeling or standalone land surface hydro-
logic modeling by employing external meteorological forcing
datasets (i.e. uncoupled or offline mode). The model provides
several options for land surface modeling including Noah (Ek
et al. 2003) and Noah-Multiparameterization (Noah-MP; Niu
et al. 2011), which is a one-dimensional column land surface
model simulating the vertical fluxes of energy and moisture in
land surface. These land surface processes are dynamically
coupled with terrestrial hydrological processes representing
surface, subsurface, channel routing, and groundwater
systems.

The Large Basin Runoff Model (LBRM) is a lumped con-
ceptual rainfall-runoff model designed to simulate sub-basin-
scale runoff from the Great Lakes (Croley 1983), and was
originally developed by the NOAA Great Lakes
Environmental Research Laboratory (GLERL). In response to
a suite of studies and workshops aimed at outlining recom-
mended improvements to long-term hydrological forecasting
models (Lofgren et al. 2011, 2013, Lofgren and Gronewold

2013, Lofgren and Rouhanaa 2016), the LBRM potential eva-
potranspiration (PET) formulation was recently updated by
incorporating the Clausius-Clapeyron relationship (Lofgren
and Rouhanaa 2016) to ensure the conservation of energy
and reduce the long-term sensitivity to temperature changes.
The updated LBRM model is hereafter referred to as the
LBRM-CC (more details of LBRM-CC can be found in the
Supplementary material, Text 1).

In this study, we employed the configuration and calibrated
parameter sets of the National Water Model version 2.1
(NWMv2.1) for the WRF-Hydro simulation. Specifically, we
employed the standalone Noah-MP land surface model with
routing options of the steepest descent method and the
Muskingum-Cunge method to represent surface overland
flow routing and reach-based channel routing, respectively.
For the groundwater model, we activated the exponential
bucket model, which is a conceptual model used to estimate
groundwater discharge based on a conceptual depth of water
in the exponential bucket (detailed equations for the ground-
water bucket model can be found in Gochis et al. (2020, p. 41).
The same model parameter sets employed by the NWMv2.1
were adopted. The model parameters for NWMv2.1 were
calibrated using the climate forcings with the Analysis of
Record for Calibration (AORC; NWS-OWP 2021); Notably,
AORC was specifically designed for the NWM calibration;
however, AORC is not well documented in the peer-reviewed
literature, and it is not a conventional source of forcing data
apart from the calibration and retrospective simulation of
NWM. Thus, this study employed different climate forcings
for the WRF-Hydro simulation than those used to calibrate it
(the details of climate forcings in this study can be found in
section 2.3.1, Data for model input).

Regarding LBRM-CC, it comprises a total of 10 lumped
parameters that have been successfully calibrated and used
for simulating the historical basin runoff within the Great
Lakes region (Fry et al. 2014, Gaborit et al. 2017). We utilized
the calibrated model parameters and initial conditions for each
sub-basin provided by the USACE Detroit District (via perso-
nal communication with Jonathan Waddell). The set of model
parameters for LBRM-CC was calibrated for each sub-basin
(Fig. 1). The calibration was performed using station-based
climate forcing dataset with the Thiessen weighted interpola-
tion, and the original data sources were obtained from the
Global Historical Climatology Network - Daily (GHCN-D;
Menne et al. 2012). This study employed the same climate
forcings. Further details of climate forcings in this study can
be found in section 2.3.1 (Data for model input).

This study employed the hydrological models calibrated
exclusively for streamflow (details of model calibration can
be found in the Supplementary material, Table S1). Notably,
there is no official documentation of the detailed calibration
and validation results specifically tailored to the Great Lakes
region for both models. Therefore, our comprehensive verifi-
cation in this study will provide informative insights to better
understand the performance and accuracy of these models’
ability to represent the Great Lakes hydrology.

The structures of subsurface and groundwater layers dif-
fered between the two models (see the Supplementary mate-
rial, Fig. $3). WRF-Hydro incorporates a 2 m soil profile with



four soil layers, including depths of 10, 30, 60, and 100 cm,
while LBRM-CC has a simpler soil profile with two layers,
including an upper soil zone of 5 cm and a lower soil zone of
55 cm. In WRF-Hydro, subsurface lateral flow is estimated by
considering exfiltration from a saturated soil column, which is
then added to infiltration excess from the land surface model
(Gochis et al. 2020). Moreover, WRE-Hydro employs separate
surface overland flow routing and channel routing schemes to
calculate surface runoff based on the land surface model
(Gochis et al. 2020). In contrast, LBRM-CC represents surface
and subsurface flow as fluxes from the upper and lower zone
soil layers, respectively. LBRM-CC calculates all fluxes, includ-
ing surface, subsurface, and groundwater fluxes, based on mass
balance equations using 10 empirical parameters. Both models
incorporate a highly conceptualized groundwater bucket
under the soil layers. For WRF-Hydro, this groundwater
bucket employed a simple exponential model controlled by
three empirical parameters to calculate groundwater fluxes.

2.3 Data for model development and validation

2.3.1 Data for model input

In this study, the spatial and temporal resolution of input and
output in WRF-Hydro is 1 km/hourly. Therefore, various
input datasets with different spatial resolutions were regridded
to 1 km resolution and then incorporated into the model
(Table 1). For the meteorological forcings for WRF-Hydro,
the fifth-generation European Centre for Medium-Range
Weather Forecasts (ECMWF)’s atmospheric reanalysis data
(ERAS5; Hersbach et al. 2020) were selected to provide rainfall,

Table 1. Summary of the data types and sources used in this study.
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air temperature, surface pressure, specific humidity, short- and
longwave radiation, and wind speed (u-, v-direction) with
a spatial resolution of 0.25° and an hourly temporal resolution.
LBRM-CC needs daily rainfall and minimum and maximum
air temperature for each sub-basin, which were derived from
the interpolation of stations across the sub-basin using the
Thiessen polygon-based weighting algorithm (Gronewold
et al. 2011), and the station data was from the Global
Historical Climatology Network - Daily (GHCN-D; Menne
et al. 2012) operated by the NOAA National Centers for
Environmental Information (NOAA-NCEI; https://www.
glerl.noaa.gov/pubs/tech_reports/glerl-083/UpdatedFiles/
daily, last access: 14 September 2023). Due to the different
meteorological inputs required for the two models, we
employed ERA5 and GHCN to drive WRF-Hydro and
LBRM, respectively. To compare whether ERA5 and GHCN
are comparable, we conducted a t-test and calculated correla-
tion coefficients for average precipitation and temperature of
27 sub-basins in the Lake Michigan basin (see the
Supplementary material, Table S2). ERA5 is a gridded hourly
dataset, while GHCN is a sub-basin-wide average daily dataset.
To compare the two forcings, the areal averages of ERA5 were
calculated for each sub-basin and the minimum and maximum
temperature of ERA5 was selected based on its hourly tem-
perature in each day. ERA5 and GHCN were compared for
monthly average precipitation and minimum and maximum
temperature from 2013 to 2019 (Table S2). We found that the
means of the two datasets are equal (i.e. p values in t-test
greater than .05) in most cases except for the minimum tem-
perature of the two sub-basins. In addition, the correlation

Data type ltem WRF-Hydro

Spatial/temporal

LBRM-CC resolution

Model input Spatial data Digital elevation

National Elevation Dataset

NA 1 arc-second (= 30 m)/-

map (Gesch et al. 2002)
Soil State Soil Geographic (STATSGO; 1 km/-
Miller and White 1998)
Land use National Land Cover Database 30 m/-

(Homer et al. 2015)

River network

(McKay et al. 2012)

Meteorological data

National Hydrography Dataset Plus V2

Fifth-generation European Centre for
Medium-Range Weather Forecasts’
atmospheric reanalysis data

(ERAS5; Hersbach et al. 2020)°

1 arc-second (= 30 m)/-

Interpolation using Thiessen polygon
from Global Historical Climatology
Network

(GHCN; Menne et al. 2012), provided by
National Oceanic and Atmospheric
Administration Great Lakes
Environmental Research Laboratory
(NOAA-GLERL)®

ERAS5: 0.25°/hourly
GHCN: Sub-basin/daily

Model Snow water equivalent (SWE) GHCN stations Point/daily
output Evapotranspiration (ET) Moderate Resolution Imaging Spectroradiometer 500 m/8-day
validation (MODIS; Running et al. 2017)¢

Streamflow US Geological Survey (USGS) stations Point/daily

Soil moisture Global Land Evaporation Amsterdam Model 0.25°/daily
(GLEAM; Martens et al. 2017)
Soil Moisture Active Passive 9 km/daily
(SMAP; O'Neill et al. 2023)

Groundwater Baseflow separation from streamflow observed at the USGS stations Point/daily

2Hourly ERA5 variables used for WRF-Hydro: Rainfall (mm/s), air temperature (K), surface pressure (Pa), specific humidity (kg/kg), short- and longwave radiation (W/m?),

and wind speed (u-, v-direction) (m/s).

®Daily GHCN variables used for LBRM-CC: rainfall (mm), and minimum and maximum air temperature (°C). NOAA-GLERL provides meteorological data aggregated by
major basins (https://www.glerl.noaa.gov/pubs/tech_reports/glerl-083/UpdatedFiles/daily/, last access: 14 September 2023).
“MODIS ET data are updated every 8 days based on the Penman-Monteith equation using daily meteorological reanalysis data and 8-day remotely sensed vegetation

property dynamics (Running et al. 2017).

9The baseflow index (BFI) standard method was employed to separate the baseflow using the USGS hydrologic toolbox (Barlow et al. 2015).
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coefficients are greater than 0.5 in most cases. Considering the
overall trend of the two forcings is similar, we believe both
forcings can be used to drive the two models. However, we
acknowledge that using two different precipitation forcings
may influence our study’s results. Harmonizing these inputs
could be a potential aim for future research to improve robust-
ness and accuracy.

WREF-Hydro needs spatial information including a digital
elevation map (DEM), land uses, and soils for the simulation
domain (Table 1). The spatial domain employed in this study
is the subset of the NWMv2.1, which used hydro-DEM data
from the National Hydrography Dataset Plus version 2
(NHDPlus v2) with the National Elevation Dataset (NED)
and streamflow developed by the United States Geological
Survey (USGS; https://nhdplus.com/NHDPlus/, last access:
14 September 2023). The land use and soil data came from
the National Land Cover Database (NLCD) produced by
USGS (https://www.mrlc.gov/, last access:
14 September 2023), and from the STATSGO database
(Miller and White 1998; raw data available at http://websoilsur
vey.nrcs.usda.gov/, last access: 14 September 2023), respec-
tively. More details about the spatial information can be
found in Gochis et al. (2020). No spatial data was required
for LBRM-CC as it is a lumped hydrological model, which
considers an entire watershed as a single unit or “lump” with
empirical parameters to control the various hydrological pro-
cesses within the lumped unit (Croley 1983, Croley and He
2005); thus, it does not require detailed spatial data for its
implementation. The sub-basin boundaries (Fig. 1) were used
for the post-processing of the LBRM-CC outputs. For instance,
the sub-basin boundaries were delineated based on the loca-
tions of the streamflow stations to validate simulated flow with
observed flow (see section 2.4, Assessment strategy, for more
details).

2.3.2 Validation data

The simulated outputs such as SWE, ET, streamflow, soil
moisture storage, and groundwater flow were compared with
observed (or reference) data collected from 2016 to 2019. The
simulation period is notably wet in the Great Lakes region,
with higher annual average rainfall (1027 mm), compared to
the 20-year average from 1996 to 2015 (874 mm). This study
could not evaluate the model performance in dry periods;
however, wet periods can significantly impact water availabil-
ity, making it vital to study how rainfall affects various hydro-
logical components such as streamflow, soil moisture, and
groundwater. Additionally, in this limited period, we could
maximize our capacity to obtain various data sources for the
evaluation of the various hydrological components. Future
studies might consider extending the temporal scale of the
simulations for a more comprehensive comparison between
the two models. The SWE and streamflow data were collected
at gaged stations, while ET and soil moisture storage data were
obtained from the gridded remote sensed data. The SWE data
were collected at GHCN-D stations within the study area
(Fig. 1) and the average value of each sub-basin was calculated
for the comparisons. The SWE data were obtained through the
repository operated by NOAA-NCEI (https://www.ncei.noaa.
gov/products/land-based-station/global-historical-climatol

ogy-network-daily, last access: 14 September 2023). The
streamflow data were obtained from the USGS gage stations
(https://waterdata.usgs.gov/nwis/rt, last access:
14 September 2023). The observed daily flow data were directly
compared with the simulated outputs. In addition, we com-
pared the simulated baseflow (or groundwater flux) with the
reference baseflow data, which was estimated by applying the
baseflow separation method to observed streamflow data. We
employed the standard baseflow index method (Institute of
Hydrology 1980), computed using the publicly available soft-
ware program USGS Hydrologic Toolbox (Barlow et al. 2015).

Studies employed the satellite-based products to evaluate
the performance of the hydrological simulation outputs
(Garavaglia et al. 2017, Lépez Lopez et al. 2017, Srivastava
et al. 2017, Bajracharya et al. 2023). In this study, we used
the MOD16A2 version 6 product from Moderate Resolution
Imaging Spectroradiometer (MODIS; Running et al. 2017)
satellite imagery as the reference ET dataset. MODIS ET is
an 8-day composite dataset with a spatial resolution of 500 m,
which was used to evaluate the LBRM-CC and WRF-Hydro ET
simulations. MODIS ET products utilize a combination of
satellite observations (e.g. daily meteorological reanalysis data
and 8-day vegetation property dynamics) and modeling tech-
niques (Penman-Monteith equation; Monteith 1965) to esti-
mate ET (Running et al. 2017). For the reference soil water
storage dataset, we used two satellite-based products, Global
Land Evaporation Amsterdam Model (GLEAM) version 3.5b
(Martens et al. 2017) and Soil Moisture Active Passive (SMAP)
enhanced L3 surface soil moisture version 6 (O’Neill et al.
2023). GLEAM and SMAP measure surface soil moisture
from satellites, whereas the root zone soil moisture is derived
from land surface modeling and data assimilation (Martens
et al. 2017, O’Neill et al. 2023). For both products, surface soil
depth is 5 cm, while root zone depth varies depending on land
cover type (e.g. 5 cm to maximum rooting depth for vegeta-
tion) (Fig. S3). We evaluated surface soil moisture simulations
using both satellite-based products from GLEAM and SMAP.
We evaluated the other layers’ soil moisture simulations using
the root zone soil moisture output from GLEAM, since both
GLEAM and SMAP provide land surface modeling output for
the root zone layer, so we just used one product. The surface
soil moisture of GLEAM and SMAP was compared with the
simulated soil moisture at the first layer of each model (i.e. the
soil layer 1 of WRF-Hydro’s layer and the upper soil zone of
LBRM-CC in Fig. S3), and soil moisture in the root zone of
GLEAM was compared with the simulated soil moisture in the
rest of the model (i.e. the soil layers 2, 3, and 4 of WREF-Hydro
and the lower soil zone of LBRM-CC in Fig. S3).

2.4 Assessment strategy

The simulation period for this study spans 4 years, from 2016
to 2019, with a spin-up period of 3 years. The model perfor-
mance was evaluated at the sub-basin scale. Thus, an area
average value was calculated for each sub-basin.
Comparisons were performed with a coarser temporal resolu-
tion to match temporal resolution between datasets. The
assessment of various hydrological components was divided
into three parts: surface (SWE, ET, and streamflow),
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subsurface (soil water storage in each layer), and groundwater
components. For the surface components, we calculated three
types of goodness-of-fit statistics including daily and monthly
Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970) and
the absolute percentage bias (PBIAS) for the seven selected
sub-basins in the Lake Michigan basin. NSE measures the
absolute difference between the simulated and observed values
normalized by the observation’s variance, ranging from —eo to
1 with an optimal value of 1. We also employed PBIAS, which
measures the relative errors of simulated values with an opti-
mal value of 0%. These statistics were then visualized using
radar charts to identify spatial consistencies or trends in the
model performance. Additionally, we conducted a qualitative
comparison by plotting daily and monthly time-series data, as
well as monthly biases, for one sub-basin as an example (the
time-series plots for all other sub-basins are included in the
Supplementary material, Figs. S8 to S14). We focused on
monthly biases rather than daily biases because the study
aimed to address long-term operational water supply model-
ing, and monthly scale biases are more relevant for this pur-
pose. For the subsurface and groundwater components, we
used only the PBIAS statistic for evaluation due to the chal-
lenges in directly comparing the reference and simulated data.
For instance, all the soil moisture data sources (GLEAM,
WRE-Hydro, and LBRM-CC) had different definitions of soil
layers (Fig. S3), and the reference data for groundwater com-
ponents were estimated using the baseflow separation method
(or linear regression). Thus, a qualitative comparison was
deemed more helpful for these variables to understand the
overall trends and behavior of the reference and simulated
data.

For streamflow and baseflow, we directly compared the
simulated and observed data at each streamflow gage station.
In the case of WRF-Hydro, streamflow outputs were available at
every reach, allowing for straightforward comparison with the
observed data. For LBRM-CC, which represents total runoff
volume at the sub-basin outlet, we delineated the sub-basins
based on the locations of the streamflow gage stations (Fig. 1)
and applied areal ratios to the simulated flow for direct compar-
isons with the observed flow based on the assumption of uni-
form flow within the sub-basin, implying that the flow
simulated by LBRM at a specific gage is proportional to the
upstream area of that sub-basins relative to the total area of the
sub-basin. For other variables such as SWE, ET, and soil moist-
ure, the median of observed stations (e.g. GHCN stations for
SWE as seen in Fig. 1) or reference remote sensing products (e.g.
MODIS for ET and GLEAM for soil moisture content) was
calculated within each sub-basin area as a representative value
for each sub-basin. Similarly, WRE-Hydro provides gridded
land surface modeling outputs with 1 km resolution; thus, the
median values within each sub-basin area were used to calculate
goodness-of-fit measures compared to the observed or reference
datasets. LBRM-CC provides simulated outputs for each sub-
basin, which were directly used to calculate goodness-of-fit
statistics. The soil water storage dataset in GLEAM and WREF-
Hydro represents volumetric soil water content, which is the
fraction of the total volume of water to the total volume of soil,
while those in LBRM-CC are soil water depth. To ensure
a consistent comparison, we converted the soil water depth in
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LBRM-CC to volumetric soil water content (e.g. soil water
depth/total soil depth in each layer) and then compared it
with the reference data.

3 Results
3.1 Surface components: SWE, ET, and streamflow

The results of the study indicate that LBRM-CC performed
better than WRF-Hydro in simulating SWE and streamflow,
while WRF-Hydro exhibited better performance in simulating
ET (Fig. 2). In the case of SWE, LBRM-CC showed higher NSE
in most sub-basins, except for sub-basins 5 and 16. However,
both models struggled to accurately simulate daily SWE, show-
ing a wide range of NSE values (e.g. —0.94 to 0.58 for WRF-
Hydro and —1.06 to 0.70 for LBRM-CC) in the selected sub-
basins (Fig. 2). The performance of simulating daily SWE
varied depending on the location, which can be attributed to
the models’ inability to accurately simulate the daily dynamics
of SWE as well as the quality of the observed SWE datasets due
to the discrepancy in station density. There were substantial
variations in the number of SWE monitoring stations among
sub-basins, ranging from 2 in sub-basin 8 to 55 in sub-basin 20
(Fig. 1), which may have impacted the quality of the observed
SWE data and influenced the accuracy statistics at the daily
scale. Monthly averaging helps to smooth out the variability
and noise that may be present in daily data and capture the
cumulative effects of temperature, solar radiation, and snow-
pack characteristics. The accuracy statistics for monthly NSE
showed improved performance compared to the daily scale.
For example, the range of monthly NSE values in the selected
sub-basins was 0.32 to 0.74 for WRF-Hydro and 0.30 to 0.91
for LBRM-CC. The average PBIAS of SWE for all sub-basins
was around 30% for both models. Overall, both models are
capable of capturing the general trends in observed SWE,
including timing and average amount (Fig. 3 and the time-
series comparison for other sub-basins can be found in the
Supplementary material, Figs. S8 to 14).

When evaluating the performance in simulating ET,
WREF-Hydro demonstrated superior results compared to
LBRM-CC in both daily and monthly NSE (Fig. 2).
Specifically, the average daily NSE values for the selected
sub-basins were 0.74 for WRF-Hydro and —1.49 for LBRM-
CC. Both models showed improved NSE values at the
monthly scale compared to the daily scale, with average
monthly NSEs of 0.88 for WRF-Hydro and 0.59 for LBRM-
CC across the sub-basins. LBRM-CC exhibited a significant
improvement in NSE values from daily to monthly scale,
likely due to the smoothing effect that diminished large
daily fluctuations when aggregated to monthly values
(Fig. 3). The lower performance of LBRM-CC in estimating
ET can be attributed to its ET calculation algorithm, which
utilizes the Clausius-Clapeyron relationship (details can be
found in the Supplementary material, Equations S1 to S9).
The calculation involves several empirical parameters
defined by the user to estimate potential ET (Lofgren et al.
2011, Lofgren and Rouhana 2016). Additionally, the ET
estimation in LBRM-CC is influenced by the water content
in both the upper and lower soil zones. Since LBRM-CC is
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Figure 2. Evaluation of simulated surface components from WRF-Hydro and LBRM-CC across all Lake Michigan sub-basins in our study (labeled only in subplot “a” for
clarity) including SWE (top row), ET (middle row), and streamflow (bottom row) based on NSE calculated at daily (left column) and monthly (middle column) time steps,

and on PBIAS (right column).

a conceptual and lumped model, its results heavily rely on
the selection of parameters and initial conditions. To gain
further insights, we performed a global sensitivity analysis of
the model parameters to identify the most influential ones
for LBRM-CC modeling (see the Supplementary material,
Text 2). This analysis confirmed the significant role of the
“T base” parameter associated with the base temperature in
accurately simulating ET in LBRM-CC (Lofgren and
Rouhanaa 2016). Detailed discussions on the outcomes of

the sensitivity analysis for LBRM-CC’s model parameters can
be found in the Discussion section.

The performance of simulating streamflow exhibited con-
trasting trends compared to ET simulations, with LBRM-CC
surpassing WRF-Hydro in terms of daily and monthly NSE
(Fig. 2). For instance, LBRM-CC demonstrated daily NSE
ranges from 0.63 to 0.77 and monthly NSE ranges from 0.67
to 0.86. In contrast, WRF-Hydro exhibited NSE ranges of 0.03
to 0.41 for daily streamflow and 0.07 to 0.82 for monthly
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Figure 3. Time series of observed and simulated (both WRF-Hydro and LBRM-CC) SWE (top row), ET (middle row), and streamflow (bottom row) at daily (left column)
and monthly (middle column) time steps, and monthly biases (right column) from Lake Michigan sub-basin 5. Similar results for all other sub-basins are included in the

Supplementary material.

streamflow. This outcome can be attributed to the different
calibration strategies employed by the two models. LBRM-CC
utilizes a local calibration approach, tuning 10 model para-
meters for each individual sub-basin focusing on the modeling
accuracy of the streamflow (Croley and He 2005, Lofgren and
Rouhanaa 2016). Thus, we can see that the substantial varia-
tions in daily ET simulated by LBRM-CC did not significantly
impact the daily streamflow simulation (Fig. 3). On the other
hand, WREF-Hydro adopts a regional calibration approach,
where model parameters are determined based on the spatial
characteristics of the region (e.g. lower values of surface reten-
tion depth in steep slope or surface roughness assigned by land
cover types; Yucel et al. 2015, Naabil et al. 2017). Previous
studies have also reported that lumped models often exhibit
higher accuracy in simulating specific variables of interest
compared to complex advanced models (Kumar et al. 2015,
Kumari et al. 2021, Mai et al. 2022).

3.2 Subsurface components: soil moisture

WRE-Hydro performed better than LBRM-CC in terms of accu-
rately simulating soil moisture (Figs. 4 and 5). Due to the diffi-
culties of direct comparison (Fig. S3), we used the PBIAS to
measure the overall bias or tendency of the simulated soil moist-
ure. In comparison with GLEAM and SMAP, WRF-Hydro’s

average PBIAS values for the first soil layer were 17.2% and
21.2%, while those for LBRM-CC were 64.9% and 73.1%, respec-
tively. Overall, LBRM-CC showed large variations, while WREF-
Hydro demonstrated similar trends to GLEAM and SMAP. The
average PBIAS values for soil layers 2, 3, and 4 of WRF-Hydro
were 15.0%, 11.6%, and 10.5%, respectively, while for soil layer 2
of LBRM it was 82.3%. In the selected sub-basins, SMAP showed
average surface soil moisture values ranging from 0.25 to 0.41 m>/
m’®, and GLEAM indicated average surface and root zone soil
moisture values ranging from 0.29 to 0.37 m*/m’. For all soil
layers, WRF-Hydro and LBRM-CC showed average soil moisture
values from 0.22 to 0.28 m>/m’ and from 0.0003 to 0.47 m>/m’,
respectively. As reported in a previous study (Xu et al. 2021), soil
moisture contents in the western part of the Lake Michigan basin
ranged from 0.1 to 0.4 m>/m’, based on in situ observations from
2015 to 2019.

In the case of WRF-Hydro, the PBIAS values for all soil
layers exhibited consistency across all selected sub-basins
(Fig. 4), and the simulated values closely followed the reference
trends observed in GLEAM data (Fig. 5; and the time-series
comparison for other sub-basins can be found in the
Supplementary material, Figs. S8 to 14), indicating that the
model’s parameterization related to soil moisture is reason-
able,  physically-based, and  spatially  distributed
(Xiang et al. 2017, Sofokleous et al. 2023). Meanwhile, in the
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Figure 4. The performance statistics of WRF-Hydro and LBRM-CC in simulating subsurface components including soil moisture in different soil layers for the seven sub-

basins located in the Lake Michigan basin.

case of LBRM-CC, the PBIAS values for soil moisture at soil
layer 1 varied depending on the locations, while those at soil
layer 2 remained consistent. Through the model parameter
sensitivity analysis conducted for LBRM-CC outputs, it was
found that a single model parameter related to surface flow had
the most significant influence on soil moisture in soil layer 1
(or upper zone soil moisture) (Figs. S6 and S7), indicating
substantial impacts of this parameter in the soil moisture
modeling at soil layer 1, which likely contributes to the spatial
inconsistency in the simulated soil moisture of LBRM-CC at
this layer. On the other hand, multiple model parameters
related to interflow and deep percolation were identified as
the most influential factors for the simulated soil moisture in
soil layer 2 (or lower zone soil moisture), which denotes sig-
nificant interactions with other model parameters in the mod-
eling of soil moisture in this layer. As a result, the individual
parameters had relatively minor effects on soil moisture in the
lower zone compared to the upper zone.

3.3 Groundwater components: baseflow

Both WRF-Hydro and LBRM-CC exhibited similar trends to
the reference baseflow data, with correlation coefficients
greater than 0.5 between the reference baseflow and simulated

ones at all sub-basins (Fig. 6). The PBIAS ranges for WRE-
Hydro and LBRM-CC were 15.8% to 58.3% (mean of 30.6%)
and 12.4% to 42.1% (mean of 30.1%), respectively. Despite
having different conceptualizations of underground layers,
both models performed well in capturing the characteristics
of the reference baseflow data. However, the simulated base-
flow of WRF-Hydro displayed inconsistent trends between
sub-basins, with underestimation of the baseflow in sub-basins
5 and 9. This inconsistency is likely due to the highly concep-
tualized formulation of the groundwater bucket model in
WREF-Hydro, which relies on four empirical parameters (i.e.
the bucket model coefficient, the bucket model exponent, the
initial depth of water in the bucket model, and the maximum
storage in the bucket before “spilling” occurs; Gochis et al.
2020). Fine-tuning these parameter values through model cali-
bration would improve the accuracy of the groundwater
bucket models. On the other hand, LBRM-CC displayed
large variations in baseflow at sub-basins 16 and 22, while
exhibiting smoother curves at sub-basins 5 and 20. The results
of the model parameter sensitivity analysis for LBRM-CC out-
puts indicated that a single parameter related to groundwater
had the most significant influence on baseflow (Figs. S6 and
S7). This suggests that the simulated baseflow in LBRM-CC
heavily relies on this parameter, which controls the shape of
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Figure 5. Time series of simulated and reference (GLEAM and SMAP) soil moisture (as a volumetric proportion) in different conceptual subsurface layers in the LBRM-CC
(left) and WRF-Hydro (right) from Lake Michigan sub-basin 5. GLEAM and SMAP soil moisture at the surface layer (0-5 cm) was compared with each model’s soil
moisture output at soil layer #1. GLEAM soil moisture at the root zone (5 cm — vary) was compared with soil moisture outputs at soil layers #2, #3, and #4. WRF-Hydro
provided soil moisture and soil water depth. LBRM-CC only provided soil water depth, which was converted to soil moisture.

the baseflow hydrograph, highlighting the importance of
selecting appropriate model parameters in LBRM-CC.

The selected sub-basins exhibited subsurface or baseflow
dominance, with an average runoff ratio (i.e. the proportion
of total runoff to total rainfall) of 30% and a baseflow index
(i.e. the proportion of baseflow to total runoff) of 68%
(Table 2). These values align with findings from previous
studies (Fry et al. 2014, Mei et al. 2023) and indicate the
substantial contribution of baseflow to streamflow (Neff
et al. 2005). The runoff ratio is affected by various factors
such as physical characteristics (e.g. slope, land use, and soil),

rainfall characteristics (e.g. intensity and duration), hydro-
logical conditions, and anthropogenic factors such as artifi-
cial storage created by water control structures (Yadav et al.
2007, Munyaneza et al. 2012, Kult et al. 2014, Shin et al.
2023a). The low runoff ratio suggests that rainfall events
have limited influence on the discharge at the basin outlet,
potentially due to significant impacts from the subsurface
and groundwater processes. It has been noted in previous
research that basins dominated by baseflow often exhibit
lower accuracy in streamflow simulation (Fry et al. 2014,
Mei et al. 2023), which could explain the lower performance



1550 (%) S.SHIN ET AL.

(a) Subbasin 5 (b) Subbasin7
4 4
Reference mean 0.62 Reference mean 0.79
WRF-Hydro mean 0.29 WRF-Hydro mean 0.63
‘E‘ 3 | LBRM mean 0.38 ‘é‘ 3 | LBRMmean 0.62
E E
H 32
® k7
w "
@1 a1
0 0
2016 2017 2018 2019 2016 2017 2018 2019
(c)Subbasin 8 (d) Subbasin9
4 4
Reference mean 0.65 Reference mean 0.64
WRF-Hydro mean 0.52 WRF-Hydro mean 0.27
'g 3 LBRM mean 0.43 'g 3 LBRM mean 0.56
E E
g2 32
= S
] o
(%) "
@l a1
0 0
2016 2017 2018 2019 2016 2017 2018 2019
(e) Subbasin 16 (f) Subbasin 20
4 4
Reference mean 0.72 Reference mean 0.32
WRF-Hydro mean 0.61 WRF-Hydro mean 0.39
€3 | LBRMmean0.91 E3 | LBRMmean0.19
E E
g2 g2
= =
a @
@l a1
0 0
2016 2017 2018 2019 2016 2017 2018 2019
(9) Subbasin 22 (h) PBIAS
4 9
Reference mean 0.65
WRF-Hydro mean 0.81
'g 3 | LBRM mean 0.88 22
E
H
=
.
ml
20 8

0
2016

2017 2018

2019

=== Baseflow separation

mmm= | BRM === \\/RF-Hydro

Figure 6. The simulation results of the groundwater component of WRF-Hydro and LBRM-CC at the selected sub-basins in the Lake Michigan basin compared to the
reference data from baseflow separation, which was conducted using the baseflow index (BFI) standard method for the observed USGS streamflow data.

of WRF-Hydro in this study. To improve the representation
of groundwater processes, the simple conceptualization
employed in WRF-Hydro could be enhanced through inte-
gration with more advanced modules (Rummler et al. 2022,
Mei et al. 2023, Sofokleous et al. 2023).

16 9
O--0 LBRM e—e WRF-Hydro

4 Discussion

4.1 Performance of the hydrological models

The overall performance of LBRM-CC in simulating SWE was
relatively better than that of WRF-Hydro. However, there was
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Table 2. Summary of the average runoff ratio and baseflow index of the selected sub-basins in the Lake Michigan basin. P, R, and B represent precipitation, runoff, and

baseflow, respectively.

Sub-basin Iltem P (mm/year)? R (mm/year) B (mm/year)b Runoff ratio (%)° Baseflow index (%)
5 Observation - 460.0 256.0 - 55.7
WRF-Hydro 1325.2 482.7 129.5 36.4 26.8
LBRM-CC 1084.2 391.9 167.4 36.1 427
7 Observation - 467.6 344.2 - 73.6
WRF-Hydro 1330.8 405.3 272.9 30.5 67.3
LBRM-CC 1147.6 436.3 276.4 38.0 63.3
8 Observation - 4423 284.2 - 64.3
WRF-Hydro 1354.8 388.0 222.5 28.6 57.3
LBRM-CC 1191.9 403.9 185.3 33.9 459
9 Observation - 417.3 277.8 - 66.6
WRF-Hydro 1272.6 374.5 114.5 29.4 30.6
LBRM-CC 1214.2 364.3 2435 30.0 66.9
16 Observation - 396.8 311.8 - 78.6
WRF-Hydro 1422.2 431.9 258.6 30.4 59.9
LBRM-CC 1385.2 410.2 385.0 29.6 93.8
20 Observation - 214.9 137.2 - 63.9
WRF-Hydro 1271.9 209.9 163.8 16.5 78.0
LBRM-CC 1271.5 237.5 79.1 18.7 333
22 Observation - 388.1 290.2 - 74.8
WRF-Hydro 1314.6 464.0 344.7 353 743
LBRM-CC 1213.2 397.3 382.4 32.7 96.3

®Precipitation data for WRF-Hydro and LBRM-CC is ERA5 and GHCN, respectively.

bBaseflow for observations is derived by the baseflow separation method applied for the observed runoff.

“Runoff ratio is R/P*100; baseflow index is calculated as B/R*100.

inconsistency in performance between sub-basins, likely due
to the fact that the simulated SWE was controlled by a single
parameter, with the effects of other parameters being negligible
(Figs. S6 and S7). It is important to carefully consider the
values of model parameters in LBRM-CC to avoid unrealistic
modeling results. Even though monthly fluctuations in simu-
lated ET were relatively small, there were large variations on
the daily scale and poor performance statistics (Figs. 2 and 3).
The performance of hydrological models often improves when
evaluated at a monthly scale compared to a daily scale because
(1) daily noise in both input data and simulated values is
smoothed out when aggregated to a monthly scale, resulting
in a clear signal and improved model performance, and (2) the
time scale resolutions in a model become finer, making it
difficult to reproduce accurate timing of hydrological pro-
cesses in a model (Engel et al. 2007, Moriasi et al. 2007,
2015). The sensitivity analysis of model parameters revealed
that ET is particularly sensitive to some specific parameters
(Figs. S6 and S7). A parameter related to the base temperature
(i.e. Tbase) was identified as the most influential parameter for
the average and variance of simulated ET in LBRM-CC.
Parameters associated with percolation between the upper
soil zone and lower soil zone, as well as between the lower
soil zone and groundwater zone, have significant impacts on
the regulation of soil water levels in the conceptual tanks
within LBRM-CC. The values of ET in LBRM-CC are closely
linked to the storage of soil water in the first and second tanks.
The amount of ET at each tank is directly influenced by
conceptual parameters (e.g. USZevap and LSZevap), as these
parameters are multiplied by the soil water storage values
(Equations S1.1 and S1.2).

Although this study did not specifically examine the sensi-
tivity of initial conditions (e.g. initial water storage in the
upper soil zone, lower soil zone, and groundwater zone),
these values are also crucial for modeling accuracy (Croley
and He 2005). Local calibration of the models can yield good

results for specific variables in particular regions and periods,
but it may lead to unrealistic modeling outcomes beyond the
calibration period or for unaccounted variables (Seiller et al.
2012, Mai et al. 2022). Due to the inaccurate representation of
physical processes, employing these models to predict uncer-
tain future conditions becomes problematic (Niel et al. 2003).
For example, the changes in rainfall and temperature may alter
runoff responses, while the responses of other variables such as
ET, SWE, soil moisture, and groundwater might not be the
same and could affect the runoff responses, as these are not
targeted in the calibration process. This prompts the need for
further examination of hydrological model responses to cli-
mate changes in future studies.

Can we use a lumped model for operational purposes, given
its good performance in simulating streamflow, despite its
unrealistic representation of other physical processes such as
ET, soil moisture, and groundwater? The simple lumped
model demonstrates good performance in simulating stream-
flow due to localized parameter calibration, and its computa-
tional efficiency makes it suitable for large spatial and temporal
scales (Fry et al. 2014, Gaborit et al. 2017). Historically, LBRM-
CC has been used for simulating runoft over monthly or inter-
annual time scales for more than two decades; thus, it is not
expected to exhibit good performance in simulating other
hydrological components. However, under changing climate
conditions, the potential for unrealistic representation of other
variables can be problematic. To address the issue of unrealis-
tic representation of other variables, careful consideration of
parameter ranges is necessary. Additionally, advanced calibra-
tion techniques or ensemble modeling can be explored to
improve the accuracy of modeling results (Mai 2023, Shin
et al. 2023b).

The performance of complex or advanced models, such as
WRE-Hydro, can vary depending on the specific application
and scale of analysis. In the case of the WRF-Hydro model, it
demonstrated good performance in simulating both surface
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and subsurface components, although it exhibited relatively
lower performance in streamflow simulation. The model also
exhibited a consistent level of performance across the entire
modeling domain, and even its simplified conceptualization of
groundwater components matched well with the reference
baseflow data.

This study employed different forcings than those used to
calibrate the NWMv2.1. The use of different climate forcings
in this study, compared to the NWMv2.1, may have resulted in
lower performance in streamflow simulation specifically in the
study area. The climate forcings, such as precipitation and
temperature data, play a crucial role in driving hydrological
models, and differences in the input data can impact model
performance. In this study, the model parameter configuration
for WRF-Hydro was based on the NWMv2.1, which incorpo-
rated the expansion of the Great Lakes basin into Canada and
included calibration over the entire Great Lakes basin (Mason
et al. 2019). At the regional scale, further modifications may be
necessary to adjust the model parameters through the calibra-
tion process for improving the accuracy of streamflow simula-
tion in the study area. Future studies may try advanced
techniques such as data assimilation (Yucel et al. 2015) and
machine learning algorithms (Cho and Kim 2022) for model
calibration to effectively improve model accuracy.

Nonetheless, advanced models like WRF-Hydro can be
valuable as reference tools to represent physical processes
and interactions in the hydrological systems. Process-based
models are based on fundamental physical principles rather
than region-specific parameterizations, making them more
transferable to different regions and catchments. This inherent
characteristic also renders them suitable for various scenario
applications (e.g. land-use or climate changes) (Fatichi et al.
2016, Abbaszadeh et al. 2020, Pal et al. 2023). In addition, they
provide spatially distributed outputs considering spatial varia-
tions of land surface, soil types, and topography, which is
particularly useful for large and heterogeneous watersheds
such as the Great Lakes region.

We compared the model performance between this study
and a previous model intercomparison study for the entire
Great Lakes basin (Mai et al. 2022; hereafter referred to
GRIP-GL) (see the Supplementary material, Table S3). In
terms of the performance of LBRM-CC, we found that the
performance of flow and surface soil moisture simulations
between this study and GRIP-GL was similar, while that of
ET and SWE showed substantial differences. This difference
can be attributed to the different reference datasets used in
each study. For instance, the two studies utilized the same
reference datasets for flow and surface soil moisture (USGS
flow and GLEAM surface soil moisture), which resulted in
similar performance between this study and GRIP-GL.
Meanwhile, different reference datasets were adopted for ET
and SWE (e.g. MODIS ET for this study vs. GLEAM ET for
GRIP-GL, GHCN SWE for this study vs. ERA5 SWE for GRIP-
GL), leading to substantial differences in performance between
the two studies. WRF-Hydro was employed for the first time in
this study for model intercomparison; therefore, the perfor-
mance of WRF-Hydro cannot be directly compared to GRIP-
GL. Nonetheless, the results of GRIP-GL’s more complex and
advanced models were consistent with those of WRF-Hydro,

showing low performance for flow simulations, but good per-
formance for ET and surface soil moisture simulations (see the
Supplementary material, Table S3). Though there are many
differences between the two studies, such as the simulation
domain, comparison period, model inputs, calibration techni-
ques, and validation datasets, this study aligns with GRIP-GL
and adds more information on the state-of-the-art land surface
model, which has never been examined before. In this study,
we did not recommend a specific model for water management
in the Great Lakes region. Instead, we identified the capabil-
ities and limitations of each model based on comprehensive
evaluations of various hydrological processes. We believe the
findings of this study will provide useful information for water
managers in the Great Lakes basins since we examined the two
models with their original operational settings (e.g. the same
configuration and model parameters used by the operators)
rather than customizing or modifying them. Hence, the
strengths and weaknesses identified in this study can be used
to improve both models.

4.2 Seasonal and long-term water balance

Four years of simulation is a relatively short period to capture
natural variability. It is noteworthy, however, that the two
models were not calibrated and validated during the evaluation
period selected in this study (Table S1), which comprised
recent wet periods that may have a significant impact on the
regional water balance. An earlier study (Wilcox et al. 2007)
identified a period of 160 + 40 years as capable of capturing
a natural rise-and-fall pattern in Lake Michigan-Huron using
a reconstructed (pre-historical) hydrograph of lake level
changes over the past 4700 years. Nevertheless, simulations
of hundreds of years are beyond our capacity, especially when
it comes to the more computationally expensive and complex
model, WRF-Hydro. Due to the short simulation periods in
this study, the natural variability of the study area is not
captured; however, the goal is to explore various hydrological
responses of two important operational models during recent
wet periods, a period in which both models have not been
evaluated previously. The limited time frame gives us the
opportunity to obtain data from a variety of sources for eval-
uating the different hydrological components.

To investigate the implications of the seasonal and long-
term water balance modeling, we compared the performance
of the two models in simulating seasonal and long-term hydro-
logical components compared to the reference datasets
(Fig. 7). We calculated area-weighted averages of streamflow,
baseflow, ET, SWE, and soil moisture for the selected sub-
basins using reference datasets and simulation results. The
hydrological simulations of both models performed better at
coarse temporal scales than at finer temporal scales, due to
cancelling out noise and bias in finer temporal scales. For
instance, LBRM-CC showed substantial differences in ET per-
formances between daily and other temporal scales (monthly,
seasonal, and long-term scales) (Figs. 2 and 7). The simulated
ET showed large fluctuations, with poor performance on
a daily scale, but the performance greatly improved on
monthly and seasonal scales. In addition, LBRM-CC per-
formed substantially better on the seasonal and long-term
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Figure 7. The monthly and seasonal average flow (a), ET (b), SWE (c), and soil moisture (d) from reference and simulations. The area-weighted values were calculated
based on the reference dataset and simulated results for the selected seven sub-basins. Monthly values are represented starting from May. The warm season mean is
calculated using the average from May to October, and the cold season mean is calculated based on the rest of the year. Line plots in plot (a) show baseflow, and those
in (d) show various soil moisture values in different soil layers. SWE was considered only for December, January, and February.

scale for other variables such as streamflow, baseflow, and
SWE, indicating consistent patterns with the reference data-
sets; however, the soil moisture simulations displayed unrea-
listic representations, significantly underestimating the
reference datasets (Fig. 7). Seasonal and long-term WREF-
Hydro performances were improved compared to perfor-
mances evaluated daily or monthly. The warm season ET
and soil moisture simulations using WRF-Hydro showed
a slight underestimation but demonstrated reasonable perfor-
mances consistent with the reference datasets; however, SWE
simulations showed large underestimations, causing spring
flow to be underestimated as well. On a seasonal and long-
term scale, LBRM-CC well captured streamflow, warm season
ET, and SWE better than WRF-Hydro, while WRF-Hydro did
cold season ET and soil moisture simulations better than
LBRM-CC.

Both models captured seasonal and long-term trends of
flow and ET well. Streamflow increased during spring due to
snowmelt, peaked in April, and decreased during summer with
the lowest flow in August. In the cold season, streamflow was
greater than in the warm season due to lower ET and more
snow. Baseflow decreased in summer and increased in spring,
showing substantial contributions from groundwater to total

runoff, with an average baseflow index of 70%. Though the two
models adopted similar conceptual representations of ground-
water processes (e.g. simple groundwater bucket model with
empirical parameters), the groundwater simulations were con-
sistent with the reference dataset. The model accuracy could be
improved by further calibration of empirical parameters or
employing more advanced groundwater modules. There were
significant seasonal differences in ET, with warm-season ET
exceeding 3.5 times cold-season ET. Both models underesti-
mated the peak ET in July and overestimated it through
September to November, while the overall amount of seasonal
ET was well captured. Monthly SWE increased from
December to February; LBRM-CC well captured the overall
amount of SWE, while WRF-Hydro underestimated it, which
resulted in lower spring flow. Studies have suggested that snow
processes in WRF-Hydro can be enhanced by fine-tuning
algorithms of the land surface model, such as snow albedo
schemes (Abolafia-Rosenzweig et al. 2022, Liu et al. 2022) and
soil freeze-thaw processes (Yang et al. 2023). Soil moisture in
the cold season was greater than that in the warm season. In
WRE-Hydro and reference datasets, soil moisture remained
high and stable during the cold season due to lower ET and
snow accumulation and decreased during the warm season due
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to higher ET rates and increased vegetation. LBRM-CC, how-
ever, produced unrealistic soil moisture simulations, and
further calibration should be considered to improve the
accuracy.

5 Conclusions

In this study, we conducted a comprehensive evaluation of
candidate models for operational water balance and water
supply simulation and forecasting across Earth’s largest lake
system. This study compared the simulated outputs with
observed data from ground-based stations and remotely
sensed images and validated the simulated surface variables
(e.g. snow water equivalent, evapotranspiration, and stream-
flow), subsurface variables (e.g. soil moisture at different
layers), and groundwater components to improve the under-
standing of these models. The results indicated that LBRM-CC
outperformed WRF-Hydro in simulating SWE and stream-
flow, while WRF-Hydro exhibited better performance in simu-
lating ET and soil moisture. The simple lumped model
demonstrated good performance in streamflow simulation
due to localized parameter calibration. However, this simpli-
city resulted in unrealistic representations of other variables
and spatial inconsistencies. Therefore, careful consideration of
model parameters is crucial to address these issues. WRE-
Hydro showed consistent performance across the entire mod-
eling domain, although its performance in streamflow simula-
tion was relatively lower compared to LBRM-CC. Further
calibration would be necessary to improve the accuracy of
the streamflow simulations in the Great Lakes region.
However, they can serve as valuable reference tools for provid-
ing a more comprehensive and detailed understanding of
hydrological processes. This detailed representation of physi-
cal processes and interactions in the hydrological system can
be particularly useful for conducting various scenario analyses,
which are essential for water resource management planning.
Here, we first incorporated WRF-Hydro, the state-of-the-art
land surface hydrological model, into the comprehensive eva-
luation of its performance with LBRM-CC in representing
Great Lakes hydrology. In addition, our evaluation covered
a wide range of hydrological components, from surface to
groundwater, which is not well documented in previous stu-
dies. The findings of this study contribute to our understand-
ing of these two hydrological models and test the potential of
the state-of-the-art land surface model in simulating Great
Lakes hydrology. By assessing multiple hydrological processes,
we gain valuable insights into the strengths and limitations of
both models, which is crucial for making informed decisions in
water resource management and operational water supply
forecasting in the Great Lakes region.
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