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TECHNICAL NOTE

Evaluating surface and subsurface fluxes in hydrological models to advance 
basin-scale operational water supply forecasting
Satbyeol Shin a, Andrew D. Gronewold a, Lauren M. Fry b, Aubrey Duggerc and James Kesslerb

aSchool for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA; bNOAA Great Lakes Environmental Research Laboratory, Ann 
Arbor, MI, USA; cNational Center for Atmospheric Research, Boulder, CO, USA

ABSTRACT
Comprehensive assessments of hydrological components are crucial for enhancing operational water 
supply simulations. However, hydrological models are often evaluated based on their surface flow 
simulations, while the validation of subsurface and groundwater components tends to be overlooked 
or not well documented. In this study, we evaluated the outputs of two hydrological models, the Large 
Basin Runoff Model (LBRM) and the Weather Research and Forecasting – Hydrological modeling exten
sion package (WRF-Hydro), for potential implementation in operational water balance forecasting in the 
Great Lakes region. We examined the simulated hydrological variables including surface (e.g. snow water 
equivalent, evapotranspiration, and streamflow), subsurface (e.g. soil moisture at different layers), and 
groundwater components with observed or reference data from ground-based stations and remotely 
sensed images. The findings of this study provide valuable insights into the capabilities and limitations of 
each model. These findings contribute to more informed water management strategies for the Great 
Lakes region.
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1 Introduction

Hydrological models employed in operational basin-scale 
water balance forecasting are commonly evaluated by the 
skill with which they simulate surface flows at daily, monthly, 
or even annual time steps (Fry et al. 2014, 2020, Gaborit et al.  
2017). This relatively streamlined approach to skill assessment 
can lead to the transition of experimental models into real- 
world operational environments without a comprehensive 
understanding of how model representation of other surface 
(such as evapotranspiration, and snow accumulation and melt) 
and subsurface (e.g. soil moisture storage) processes improves 
or deteriorates model skill (Liu and Gupta 2007, Montanari 
and Koutsoyiannis 2012). In other words, hydrological land 
surface models adopted in operational environments can often 
be considered “right” (or acceptable) because they provide 
reasonable simulations of surface flow, but for the “wrong” 
reasons because they (often unknowingly) misrepresent other 
surface and subsurface hydrological processes (Hrachowitz 
et al. 2014, Garavaglia et al. 2017). Similarly, land surface 
models are often classified as “wrong” because they provide 
erroneous surface flow simulations, but without 
a corresponding robust analysis of what hydrological processes 
are represented poorly and therefore propagate into erroneous 
surface flow simulations (Shen and Phanikumar 2010, 
Archfield et al. 2015, Clark et al. 2015, Devia et al. 2015).

This common protocol for operational model development 
and analysis leaves several gaps in scientific knowledge, 

including the opportunity to identify and correct those 
model components leading to erroneous surface flow simula
tions (Kirchner 2006, Garavaglia et al. 2017). Understandably, 
opportunities for evaluating land surface models for opera
tional forecasting (including, but not limited to, forecasting at 
basin scales) can be limited both by time constraints and by the 
availability of observational data to support validation at sui
table spatial (including both across the land surface and at 
depth) and temporal scales (Biondi et al. 2012, Arsenault 
et al. 2018). Validation of the groundwater component of 
land surface models, for example, is typically ignored or con
sidered impractical (Bingeman et al. 2006, Rajib et al. 2016, 
Ala-aho et al. 2017, Mai et al. 2022).

Here, we address the challenge of testing hydrological models 
for potential implementation in operational water balance fore
casting by evaluating two models, one representing a general 
classification of lumped conceptual models (Croley 1983, Croley 
and He 2005) and another representing a state-of-the-art high- 
resolution physically-based model, each evaluated using a range 
of skill criteria across multiple model components (above and 
beyond surface flow alone). We apply these two models within 
the Laurentian Great Lakes basin, a region that holds roughly 
20% of all the Earth’s fresh (unfrozen) surface water, intersects 
multiple sovereign nations (including the United States, 
Canada, and numerous First Nations), and within which there 
is an ongoing effort by regional federal agencies to advance 
seasonal and long-term water supply forecasts, and to better 
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understand future lake water level variability (Wilcox et al. 2007, 
Gronewold et al. 2013, Gronewold and Rood 2019, Fry et al.  
2020).

Understanding future water level variability on the Great 
Lakes (and, implicitly, the contribution of land runoff to the 
water balance) is critical from human and environmental 
health as well as socioeconomic perspectives; the Great Lakes 
shoreline is an area of significant economic development but 
also poses risks and challenges caused by erosion, rip currents, 
and water level variability that threatens safe recreational and 
commercial boating (EPA 2023). Importantly, Great Lakes 
water level variability is driven by a complex interplay between 
over-lake precipitation and over-lake evaporation (both of 
which are very high, given the vast surface areas of the Great 
Lakes), runoff, and groundwater discharge (Hunter et al. 2015, 
Fry et al. 2020, Xu et al. 2021). Multiple studies have focused 
on improving models of regional precipitation and evapora
tion (Holman et al. 2012, Charusombat et al. 2018, Gronewold 
et al. 2019, Hong et al. 2022); our study here focuses on 
developing hydrological land surface models for improving 
long-term Great Lakes runoff simulations and forecasts as 
a component of broader water level projection systems.

Multiple hydrological modeling studies have been con
ducted on the Laurentian Great Lakes (Croley 1983, 
Pietroniro et al. 2007, Kult et al. 2014, Gaborit et al. 2017) 
including, notably, the most recent iteration of the Great Lakes 
Runoff Intercomparison Project (GRIP). The GRIP study was 
initiated in the early 2010s to evaluate the performance of 
different hydrological models in simulating streamflow across 
the Great Lakes, with specific studies on Lake Michigan (Fry 
et al. 2014), Lake Ontario (Gaborit et al. 2017), Lake Erie (Mai 
et al. 2021) and, most recently, the entire Great Lakes basin 
(Mai et al. 2022). Notably, the recent Mai et al. (2022) study 
evaluated surface soil moisture, evapotranspiration (ET), and 
snow water equivalent (SWE) across 10 models with varying 
structures and levels of complexity. The main findings of the 
GRIP study are the identification of the strengths and weak
nesses of various hydrological models in their ability to esti
mate runoff over the Great Lakes regions, which can help 
researchers and operational modelers better understand the 
differences between various hydrological models. However, 
despite these efforts, there are still grand challenges facing 
the advancement of land surface models into operational 
water balance modeling across the Great Lakes, many of 
which are comparable to challenges facing operational seaso
nal and long-term forecasting in other continental basins. 
These challenges range from appropriately representing ET 
rates in response to changing solar inputs (Lofgren et al.  
2013, Milly and Dunne 2017), to representing areas of abun
dant groundwater and the correspondingly high baseflow 
index (that, particularly for the Great Lakes, has been histori
cally underrepresented in regional models; Erler et al. 2019, 
Costa et al. 2021).

The overarching goal of this study is to enhance our under
standing of how hydrological models employed for operational 
water balance modeling represent the diverse range of hydro
logical processes and to evaluate their performance against 
various observed or reference data. The findings of this study 
are expected to provide valuable insights into the potential and 

limitations of each model, contributing to more informed 
water management plans in the Great Lakes region. The two 
hydrological models selected for our study have been identified 
by Great Lakes regional federal agencies as potential compo
nents of next-generation long-term basin-scale runoff models 
to simulate distributions of water supply and water levels for 
scenarios of climate change. The first candidate, the Weather 
Research and Forecasting hydrological sub-routine (WRF- 
Hydro), was also selected as the hydrological engine for the 
first phase of the National Water Model (https://water.noaa. 
gov/about/nwm, last access: 14 September 2023) and, as part of 
that effort, was prepared for extension across the entire (i.e. 
multinational extent of the) Great Lakes basin (Mason et al.  
2019). The second candidate, the Large Basin Runoff Model 
(LBRM) has been used for decades in both experimental and 
operational seasonal water supply forecasting on the Great 
Lakes (Gronewold et al. 2011) and was included in each of 
the previous phases of the long-term GRIP study (Fry et al.  
2014, Gaborit et al. 2017, Mai et al. 2021, 2022). To date, 
however, we know of no study that has conducted a rigorous 
cross-comparison between LBRM and WRF-Hydro, nor any 
study that rigorously analyzed both the surface and subsurface 
hydrological components of either model (within the Great 
Lakes basin or elsewhere).

2 Methods

In the following sections, we provide an overview of our 
methodology including a summary of key features of our 
study area, a description of the two hydrological models 
selected for evaluation (along with a basis for their selection), 
a description of the datasets used, and a summary of our model 
development, testing, and assessment procedure.

2.1 Study area

We evaluated the performance of our two candidate hydro
logical models (described below) across selected catchments 
(hereafter referred to as sub-basins) within the watershed of 
Lake Michigan (Fig. 1). The Lake Michigan watershed is 
the second largest of the Great Lakes watersheds (after the 
Lake Superior watershed) and is the only Great Lakes 
watershed located entirely within the United States (EC and 
USEAP 2003, Fry et al. 2014). The total area of the Lake 
Michigan basin (including the lake itself) is 173 683 km2, 
roughly 33% of which (57 514 km2) is the lake surface area 
(Hunter et al. 2015). The dominant land cover classifications 
across the Lake Michigan watershed are irrigated cropland and 
pasture (27%), deciduous broadleaf forest (24%), and wooded 
wetland (15%) (National Land Cover Database; Homer et al.  
2015). The elevation of the basin ranges from 175 to 578 m, 
with an average slope of 0.33 (33%) (National Elevation 
Dataset; Gesch et al. 2002). The study area is covered by tills 
and coarse-textured sediments, which are associated with 
above-average groundwater infiltration (Neff et al. 2005). 
Over the period 2000 to 2019, the 20-year annual average 
rainfall and temperature were 916 mm and 7.4°C, respectively, 
in the Lake Michigan watershed. The annual average runoff of 
362 mm is estimated using the lumped conceptual model, 
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LBRM, which is one of the hydrological models selected in this 
study (details of the model description can be found in the 
following section). The majority of the annual rainfall (60%) 
falls between May and October, and 40% of the annual flow 
comes from spring (approximately 20% of the annual flow 
occurs in summer, fall, and winter).

We selected the Lake Michigan basin for our study due to 
the abundance of observed data available for model evaluation. 
This basin has the highest number of observed gage stations 
for both streamflow and SWE (e.g. the number of stations for 
flow and SWE is 119 and 511, respectively), surpassing the 
other lake watersheds (e.g. the average number of streamflow 
and SWE stations for other watersheds, including Lake 
Superior, Erie, Huron, and Ontario, was 87 and 213, respec
tively; see the Supplementary material, Fig. S1). In addition, 
the groundwater contribution of the Lake Michigan watershed 
is known to be significant due to highly permeable soils and 
low available water capacity (Fry et al. 2014, Mei et al. 2023). 
Groundwater discharge comprises a large fraction of stream
flow in the basin, with one estimate suggesting that 

groundwater contributes 66% of streamflow (details of the 
baseflow index map for the Lake Michigan basin can be 
found in the Supplementary material, Fig. S2, based on 
Wolock 2003). Through its contribution to streamflow, 
groundwater plays a crucial role in sustaining the overall 
water balance and hydrological processes within the Lake 
Michigan watershed. Understanding and accurately represent
ing this groundwater contribution is essential for comprehen
sive hydrological modeling and water resource management in 
the Lake Michigan basin.

Notably, we chose seven sub-basins within the Lake 
Michigan basin for our study since the lumped conceptual 
model allows simulation outputs in each sub-basin considering 
it as a homogeneous and lumped hydrologic unit (Fig. 1). 
However, streamflow observations are not available at the 
sub-basin outlets. As streamflow gages are not located at the 
sub-basin outlets, we delineated the sub-basins based on their 
location for comparison between simulations and observa
tions. In the Lake Michigan basin, there are many streamflow 
gage stations, but seven in particular were carefully chosen to 

Figure 1. Detailed map of the Lake Michigan basin including numbered sub-basins (those used in our study are shaded in grey), locations of USGS flow gages at the 
outlet of the sub-basins in our study, and all basin-wide readily-available GHCN SWE stations.
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represent streamflow in each sub-basin. Located closest to the 
sub-basin outlets, these stations ensure a robust validation 
process. Moreover, the overall contribution of runoff dis
charged into the lake inflow in the selected sub-basins is 
estimated to be about 43% based on the simulation results of 
the lumped model. Two of the selected sub-basins, 16 and 20, 
produce the most (11.8%) and second most (11.1%) runoff 
discharge among the 27 sub-basins. Consequently, the simu
lated flow outputs from the selected sub-basins represent 
a substantial part of the Lake Michigan basin’s total runoff 
discharge. More details about the model structure and data can 
be found in the following sections.

2.2 Model selection and description

In this study, we employed two operational hydrological mod
els already calibrated by operators, the United States Army 
Corps of Engineers (USACE) Detroit District and National 
Oceanic and Atmospheric Administration (NOAA) for 
LBRM and WRF-Hydro, respectively. The objective of this 
study is to assess the performance of two important opera
tional models representing various hydrological processes in 
the Great Lakes. Therefore, rather than customizing or mod
ifying them, we keep the original configuration and parame
terization of both models as they are used for actual operation 
of water balance and streamflow forecasting over the Great 
Lakes (LBRM) and the entire continental United States (WRF- 
Hydro) and suggest the strengths and weaknesses of the cur
rent operational set-up by examining the performance of the 
two models in representing various hydrological processes, 
which has never been explored before.

The WRF-Hydro model was originally developed by the 
National Center for Atmospheric Research (NCAR) as an 
extension of the WRF atmospheric modeling package 
(Gochis and Chen 2003, Gochis et al. 2020). It simulates land 
surface hydrology and energy states and fluxes using physics- 
based and conceptual approaches (Gochis et al. 2020) and has 
been applied across a range of global settings (Li et al. 2017, 
Xiang et al. 2017). The WRF-Hydro model is forced by either 
coupling regional atmospheric models such as the WRF model 
with land surface modeling or standalone land surface hydro
logic modeling by employing external meteorological forcing 
datasets (i.e. uncoupled or offline mode). The model provides 
several options for land surface modeling including Noah (Ek 
et al. 2003) and Noah-Multiparameterization (Noah-MP; Niu 
et al. 2011), which is a one-dimensional column land surface 
model simulating the vertical fluxes of energy and moisture in 
land surface. These land surface processes are dynamically 
coupled with terrestrial hydrological processes representing 
surface, subsurface, channel routing, and groundwater 
systems.

The Large Basin Runoff Model (LBRM) is a lumped con
ceptual rainfall–runoff model designed to simulate sub-basin- 
scale runoff from the Great Lakes (Croley 1983), and was 
originally developed by the NOAA Great Lakes 
Environmental Research Laboratory (GLERL). In response to 
a suite of studies and workshops aimed at outlining recom
mended improvements to long-term hydrological forecasting 
models (Lofgren et al. 2011, 2013, Lofgren and Gronewold  

2013, Lofgren and Rouhanaa 2016), the LBRM potential eva
potranspiration (PET) formulation was recently updated by 
incorporating the Clausius-Clapeyron relationship (Lofgren 
and Rouhanaa 2016) to ensure the conservation of energy 
and reduce the long-term sensitivity to temperature changes. 
The updated LBRM model is hereafter referred to as the 
LBRM-CC (more details of LBRM-CC can be found in the 
Supplementary material, Text 1).

In this study, we employed the configuration and calibrated 
parameter sets of the National Water Model version 2.1 
(NWMv2.1) for the WRF-Hydro simulation. Specifically, we 
employed the standalone Noah-MP land surface model with 
routing options of the steepest descent method and the 
Muskingum-Cunge method to represent surface overland 
flow routing and reach-based channel routing, respectively. 
For the groundwater model, we activated the exponential 
bucket model, which is a conceptual model used to estimate 
groundwater discharge based on a conceptual depth of water 
in the exponential bucket (detailed equations for the ground
water bucket model can be found in Gochis et al. (2020, p. 41). 
The same model parameter sets employed by the NWMv2.1 
were adopted. The model parameters for NWMv2.1 were 
calibrated using the climate forcings with the Analysis of 
Record for Calibration (AORC; NWS-OWP 2021); Notably, 
AORC was specifically designed for the NWM calibration; 
however, AORC is not well documented in the peer-reviewed 
literature, and it is not a conventional source of forcing data 
apart from the calibration and retrospective simulation of 
NWM. Thus, this study employed different climate forcings 
for the WRF-Hydro simulation than those used to calibrate it 
(the details of climate forcings in this study can be found in 
section 2.3.1, Data for model input).

Regarding LBRM-CC, it comprises a total of 10 lumped 
parameters that have been successfully calibrated and used 
for simulating the historical basin runoff within the Great 
Lakes region (Fry et al. 2014, Gaborit et al. 2017). We utilized 
the calibrated model parameters and initial conditions for each 
sub-basin provided by the USACE Detroit District (via perso
nal communication with Jonathan Waddell). The set of model 
parameters for LBRM-CC was calibrated for each sub-basin 
(Fig. 1). The calibration was performed using station-based 
climate forcing dataset with the Thiessen weighted interpola
tion, and the original data sources were obtained from the 
Global Historical Climatology Network – Daily (GHCN-D; 
Menne et al. 2012). This study employed the same climate 
forcings. Further details of climate forcings in this study can 
be found in section 2.3.1 (Data for model input).

This study employed the hydrological models calibrated 
exclusively for streamflow (details of model calibration can 
be found in the Supplementary material, Table S1). Notably, 
there is no official documentation of the detailed calibration 
and validation results specifically tailored to the Great Lakes 
region for both models. Therefore, our comprehensive verifi
cation in this study will provide informative insights to better 
understand the performance and accuracy of these models’ 
ability to represent the Great Lakes hydrology.

The structures of subsurface and groundwater layers dif
fered between the two models (see the Supplementary mate
rial, Fig. S3). WRF-Hydro incorporates a 2 m soil profile with 
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four soil layers, including depths of 10, 30, 60, and 100 cm, 
while LBRM-CC has a simpler soil profile with two layers, 
including an upper soil zone of 5 cm and a lower soil zone of 
55 cm. In WRF-Hydro, subsurface lateral flow is estimated by 
considering exfiltration from a saturated soil column, which is 
then added to infiltration excess from the land surface model 
(Gochis et al. 2020). Moreover, WRF-Hydro employs separate 
surface overland flow routing and channel routing schemes to 
calculate surface runoff based on the land surface model 
(Gochis et al. 2020). In contrast, LBRM-CC represents surface 
and subsurface flow as fluxes from the upper and lower zone 
soil layers, respectively. LBRM-CC calculates all fluxes, includ
ing surface, subsurface, and groundwater fluxes, based on mass 
balance equations using 10 empirical parameters. Both models 
incorporate a highly conceptualized groundwater bucket 
under the soil layers. For WRF-Hydro, this groundwater 
bucket employed a simple exponential model controlled by 
three empirical parameters to calculate groundwater fluxes.

2.3 Data for model development and validation

2.3.1 Data for model input
In this study, the spatial and temporal resolution of input and 
output in WRF-Hydro is 1 km/hourly. Therefore, various 
input datasets with different spatial resolutions were regridded 
to 1 km resolution and then incorporated into the model 
(Table 1). For the meteorological forcings for WRF-Hydro, 
the fifth-generation European Centre for Medium-Range 
Weather Forecasts (ECMWF)’s atmospheric reanalysis data 
(ERA5; Hersbach et al. 2020) were selected to provide rainfall, 

air temperature, surface pressure, specific humidity, short- and 
longwave radiation, and wind speed (u-, v-direction) with 
a spatial resolution of 0.25° and an hourly temporal resolution. 
LBRM-CC needs daily rainfall and minimum and maximum 
air temperature for each sub-basin, which were derived from 
the interpolation of stations across the sub-basin using the 
Thiessen polygon-based weighting algorithm (Gronewold 
et al. 2011), and the station data was from the Global 
Historical Climatology Network – Daily (GHCN-D; Menne 
et al. 2012) operated by the NOAA National Centers for 
Environmental Information (NOAA-NCEI; https://www. 
glerl.noaa.gov/pubs/tech_reports/glerl-083/UpdatedFiles/ 
daily, last access: 14 September 2023). Due to the different 
meteorological inputs required for the two models, we 
employed ERA5 and GHCN to drive WRF-Hydro and 
LBRM, respectively. To compare whether ERA5 and GHCN 
are comparable, we conducted a t-test and calculated correla
tion coefficients for average precipitation and temperature of 
27 sub-basins in the Lake Michigan basin (see the 
Supplementary material, Table S2). ERA5 is a gridded hourly 
dataset, while GHCN is a sub-basin-wide average daily dataset. 
To compare the two forcings, the areal averages of ERA5 were 
calculated for each sub-basin and the minimum and maximum 
temperature of ERA5 was selected based on its hourly tem
perature in each day. ERA5 and GHCN were compared for 
monthly average precipitation and minimum and maximum 
temperature from 2013 to 2019 (Table S2). We found that the 
means of the two datasets are equal (i.e. p values in t-test 
greater than .05) in most cases except for the minimum tem
perature of the two sub-basins. In addition, the correlation 

Table 1. Summary of the data types and sources used in this study.

Data type Item WRF-Hydro LBRM-CC
Spatial/temporal 

resolution

Model input Spatial data Digital elevation 
map

National Elevation Dataset 
(Gesch et al. 2002)

NA 1 arc-second (≈ 30 m)/–

Soil State Soil Geographic (STATSGO;  
Miller and White 1998)

1 km/–

Land use National Land Cover Database 
(Homer et al. 2015)

30 m/–

River network National Hydrography Dataset Plus V2 
(McKay et al. 2012)

1 arc-second (≈ 30 m)/–

Meteorological data Fifth-generation European Centre for 
Medium-Range Weather Forecasts’ 
atmospheric reanalysis data 

(ERA5; Hersbach et al. 2020)a

Interpolation using Thiessen polygon 
from Global Historical Climatology 
Network 

(GHCN; Menne et al. 2012), provided by 
National Oceanic and Atmospheric 
Administration Great Lakes 
Environmental Research Laboratory 
(NOAA-GLERL)b

ERA5: 0.25°/hourly 
GHCN: Sub-basin/daily

Model  
output 
validation

Snow water equivalent (SWE) GHCN stations Point/daily
Evapotranspiration (ET) Moderate Resolution Imaging Spectroradiometer 

(MODIS; Running et al. 2017)c
500 m/8-day

Streamflow US Geological Survey (USGS) stations Point/daily
Soil moisture Global Land Evaporation Amsterdam Model 

(GLEAM; Martens et al. 2017)
0.25°/daily

Soil Moisture Active Passive 
(SMAP; O’Neill et al. 2023)

9 km/daily

Groundwater Baseflow separation from streamflow observed at the USGS stationsd Point/daily
aHourly ERA5 variables used for WRF-Hydro: Rainfall (mm/s), air temperature (K), surface pressure (Pa), specific humidity (kg/kg), short- and longwave radiation (W/m2), 

and wind speed (u-, v-direction) (m/s). 
bDaily GHCN variables used for LBRM-CC: rainfall (mm), and minimum and maximum air temperature (°C). NOAA-GLERL provides meteorological data aggregated by 

major basins (https://www.glerl.noaa.gov/pubs/tech_reports/glerl-083/UpdatedFiles/daily/, last access: 14 September 2023). 
cMODIS ET data are updated every 8 days based on the Penman-Monteith equation using daily meteorological reanalysis data and 8-day remotely sensed vegetation 

property dynamics (Running et al. 2017). 
dThe baseflow index (BFI) standard method was employed to separate the baseflow using the USGS hydrologic toolbox (Barlow et al. 2015).
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coefficients are greater than 0.5 in most cases. Considering the 
overall trend of the two forcings is similar, we believe both 
forcings can be used to drive the two models. However, we 
acknowledge that using two different precipitation forcings 
may influence our study’s results. Harmonizing these inputs 
could be a potential aim for future research to improve robust
ness and accuracy.

WRF-Hydro needs spatial information including a digital 
elevation map (DEM), land uses, and soils for the simulation 
domain (Table 1). The spatial domain employed in this study 
is the subset of the NWMv2.1, which used hydro-DEM data 
from the National Hydrography Dataset Plus version 2 
(NHDPlus v2) with the National Elevation Dataset (NED) 
and streamflow developed by the United States Geological 
Survey (USGS; https://nhdplus.com/NHDPlus/, last access: 
14 September 2023). The land use and soil data came from 
the National Land Cover Database (NLCD) produced by 
USGS (https://www.mrlc.gov/, last access: 
14 September 2023), and from the STATSGO database 
(Miller and White 1998; raw data available at http://websoilsur 
vey.nrcs.usda.gov/, last access: 14 September 2023), respec
tively. More details about the spatial information can be 
found in Gochis et al. (2020). No spatial data was required 
for LBRM-CC as it is a lumped hydrological model, which 
considers an entire watershed as a single unit or “lump” with 
empirical parameters to control the various hydrological pro
cesses within the lumped unit (Croley 1983, Croley and He  
2005); thus, it does not require detailed spatial data for its 
implementation. The sub-basin boundaries (Fig. 1) were used 
for the post-processing of the LBRM-CC outputs. For instance, 
the sub-basin boundaries were delineated based on the loca
tions of the streamflow stations to validate simulated flow with 
observed flow (see section 2.4, Assessment strategy, for more 
details).

2.3.2 Validation data
The simulated outputs such as SWE, ET, streamflow, soil 
moisture storage, and groundwater flow were compared with 
observed (or reference) data collected from 2016 to 2019. The 
simulation period is notably wet in the Great Lakes region, 
with higher annual average rainfall (1027 mm), compared to 
the 20-year average from 1996 to 2015 (874 mm). This study 
could not evaluate the model performance in dry periods; 
however, wet periods can significantly impact water availabil
ity, making it vital to study how rainfall affects various hydro
logical components such as streamflow, soil moisture, and 
groundwater. Additionally, in this limited period, we could 
maximize our capacity to obtain various data sources for the 
evaluation of the various hydrological components. Future 
studies might consider extending the temporal scale of the 
simulations for a more comprehensive comparison between 
the two models. The SWE and streamflow data were collected 
at gaged stations, while ET and soil moisture storage data were 
obtained from the gridded remote sensed data. The SWE data 
were collected at GHCN-D stations within the study area 
(Fig. 1) and the average value of each sub-basin was calculated 
for the comparisons. The SWE data were obtained through the 
repository operated by NOAA-NCEI (https://www.ncei.noaa. 
gov/products/land-based-station/global-historical-climatol 

ogy-network-daily, last access: 14 September 2023). The 
streamflow data were obtained from the USGS gage stations 
(https://waterdata.usgs.gov/nwis/rt, last access: 
14 September 2023). The observed daily flow data were directly 
compared with the simulated outputs. In addition, we com
pared the simulated baseflow (or groundwater flux) with the 
reference baseflow data, which was estimated by applying the 
baseflow separation method to observed streamflow data. We 
employed the standard baseflow index method (Institute of 
Hydrology 1980), computed using the publicly available soft
ware program USGS Hydrologic Toolbox (Barlow et al. 2015).

Studies employed the satellite-based products to evaluate 
the performance of the hydrological simulation outputs 
(Garavaglia et al. 2017, López López et al. 2017, Srivastava 
et al. 2017, Bajracharya et al. 2023). In this study, we used 
the MOD16A2 version 6 product from Moderate Resolution 
Imaging Spectroradiometer (MODIS; Running et al. 2017) 
satellite imagery as the reference ET dataset. MODIS ET is 
an 8-day composite dataset with a spatial resolution of 500 m, 
which was used to evaluate the LBRM-CC and WRF-Hydro ET 
simulations. MODIS ET products utilize a combination of 
satellite observations (e.g. daily meteorological reanalysis data 
and 8-day vegetation property dynamics) and modeling tech
niques (Penman-Monteith equation; Monteith 1965) to esti
mate ET (Running et al. 2017). For the reference soil water 
storage dataset, we used two satellite-based products, Global 
Land Evaporation Amsterdam Model (GLEAM) version 3.5b 
(Martens et al. 2017) and Soil Moisture Active Passive (SMAP) 
enhanced L3 surface soil moisture version 6 (O’Neill et al.  
2023). GLEAM and SMAP measure surface soil moisture 
from satellites, whereas the root zone soil moisture is derived 
from land surface modeling and data assimilation (Martens 
et al. 2017, O’Neill et al. 2023). For both products, surface soil 
depth is 5 cm, while root zone depth varies depending on land 
cover type (e.g. 5 cm to maximum rooting depth for vegeta
tion) (Fig. S3). We evaluated surface soil moisture simulations 
using both satellite-based products from GLEAM and SMAP. 
We evaluated the other layers’ soil moisture simulations using 
the root zone soil moisture output from GLEAM, since both 
GLEAM and SMAP provide land surface modeling output for 
the root zone layer, so we just used one product. The surface 
soil moisture of GLEAM and SMAP was compared with the 
simulated soil moisture at the first layer of each model (i.e. the 
soil layer 1 of WRF-Hydro’s layer and the upper soil zone of 
LBRM-CC in Fig. S3), and soil moisture in the root zone of 
GLEAM was compared with the simulated soil moisture in the 
rest of the model (i.e. the soil layers 2, 3, and 4 of WRF-Hydro 
and the lower soil zone of LBRM-CC in Fig. S3).

2.4 Assessment strategy

The simulation period for this study spans 4 years, from 2016 
to 2019, with a spin-up period of 3 years. The model perfor
mance was evaluated at the sub-basin scale. Thus, an area 
average value was calculated for each sub-basin. 
Comparisons were performed with a coarser temporal resolu
tion to match temporal resolution between datasets. The 
assessment of various hydrological components was divided 
into three parts: surface (SWE, ET, and streamflow), 
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subsurface (soil water storage in each layer), and groundwater 
components. For the surface components, we calculated three 
types of goodness-of-fit statistics including daily and monthly 
Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970) and 
the absolute percentage bias (PBIAS) for the seven selected 
sub-basins in the Lake Michigan basin. NSE measures the 
absolute difference between the simulated and observed values 
normalized by the observation’s variance, ranging from −∞ to 
1 with an optimal value of 1. We also employed PBIAS, which 
measures the relative errors of simulated values with an opti
mal value of 0%. These statistics were then visualized using 
radar charts to identify spatial consistencies or trends in the 
model performance. Additionally, we conducted a qualitative 
comparison by plotting daily and monthly time-series data, as 
well as monthly biases, for one sub-basin as an example (the 
time-series plots for all other sub-basins are included in the 
Supplementary material, Figs. S8 to S14). We focused on 
monthly biases rather than daily biases because the study 
aimed to address long-term operational water supply model
ing, and monthly scale biases are more relevant for this pur
pose. For the subsurface and groundwater components, we 
used only the PBIAS statistic for evaluation due to the chal
lenges in directly comparing the reference and simulated data. 
For instance, all the soil moisture data sources (GLEAM, 
WRF-Hydro, and LBRM-CC) had different definitions of soil 
layers (Fig. S3), and the reference data for groundwater com
ponents were estimated using the baseflow separation method 
(or linear regression). Thus, a qualitative comparison was 
deemed more helpful for these variables to understand the 
overall trends and behavior of the reference and simulated 
data.

For streamflow and baseflow, we directly compared the 
simulated and observed data at each streamflow gage station. 
In the case of WRF-Hydro, streamflow outputs were available at 
every reach, allowing for straightforward comparison with the 
observed data. For LBRM-CC, which represents total runoff 
volume at the sub-basin outlet, we delineated the sub-basins 
based on the locations of the streamflow gage stations (Fig. 1) 
and applied areal ratios to the simulated flow for direct compar
isons with the observed flow based on the assumption of uni
form flow within the sub-basin, implying that the flow 
simulated by LBRM at a specific gage is proportional to the 
upstream area of that sub-basins relative to the total area of the 
sub-basin. For other variables such as SWE, ET, and soil moist
ure, the median of observed stations (e.g. GHCN stations for 
SWE as seen in Fig. 1) or reference remote sensing products (e.g. 
MODIS for ET and GLEAM for soil moisture content) was 
calculated within each sub-basin area as a representative value 
for each sub-basin. Similarly, WRF-Hydro provides gridded 
land surface modeling outputs with 1 km resolution; thus, the 
median values within each sub-basin area were used to calculate 
goodness-of-fit measures compared to the observed or reference 
datasets. LBRM-CC provides simulated outputs for each sub- 
basin, which were directly used to calculate goodness-of-fit 
statistics. The soil water storage dataset in GLEAM and WRF- 
Hydro represents volumetric soil water content, which is the 
fraction of the total volume of water to the total volume of soil, 
while those in LBRM-CC are soil water depth. To ensure 
a consistent comparison, we converted the soil water depth in 

LBRM-CC to volumetric soil water content (e.g. soil water 
depth/total soil depth in each layer) and then compared it 
with the reference data.

3 Results

3.1 Surface components: SWE, ET, and streamflow

The results of the study indicate that LBRM-CC performed 
better than WRF-Hydro in simulating SWE and streamflow, 
while WRF-Hydro exhibited better performance in simulating 
ET (Fig. 2). In the case of SWE, LBRM-CC showed higher NSE 
in most sub-basins, except for sub-basins 5 and 16. However, 
both models struggled to accurately simulate daily SWE, show
ing a wide range of NSE values (e.g. −0.94 to 0.58 for WRF- 
Hydro and −1.06 to 0.70 for LBRM-CC) in the selected sub- 
basins (Fig. 2). The performance of simulating daily SWE 
varied depending on the location, which can be attributed to 
the models’ inability to accurately simulate the daily dynamics 
of SWE as well as the quality of the observed SWE datasets due 
to the discrepancy in station density. There were substantial 
variations in the number of SWE monitoring stations among 
sub-basins, ranging from 2 in sub-basin 8 to 55 in sub-basin 20 
(Fig. 1), which may have impacted the quality of the observed 
SWE data and influenced the accuracy statistics at the daily 
scale. Monthly averaging helps to smooth out the variability 
and noise that may be present in daily data and capture the 
cumulative effects of temperature, solar radiation, and snow
pack characteristics. The accuracy statistics for monthly NSE 
showed improved performance compared to the daily scale. 
For example, the range of monthly NSE values in the selected 
sub-basins was 0.32 to 0.74 for WRF-Hydro and 0.30 to 0.91 
for LBRM-CC. The average PBIAS of SWE for all sub-basins 
was around 30% for both models. Overall, both models are 
capable of capturing the general trends in observed SWE, 
including timing and average amount (Fig. 3 and the time- 
series comparison for other sub-basins can be found in the 
Supplementary material, Figs. S8 to 14).

When evaluating the performance in simulating ET, 
WRF-Hydro demonstrated superior results compared to 
LBRM-CC in both daily and monthly NSE (Fig. 2). 
Specifically, the average daily NSE values for the selected 
sub-basins were 0.74 for WRF-Hydro and −1.49 for LBRM- 
CC. Both models showed improved NSE values at the 
monthly scale compared to the daily scale, with average 
monthly NSEs of 0.88 for WRF-Hydro and 0.59 for LBRM- 
CC across the sub-basins. LBRM-CC exhibited a significant 
improvement in NSE values from daily to monthly scale, 
likely due to the smoothing effect that diminished large 
daily fluctuations when aggregated to monthly values 
(Fig. 3). The lower performance of LBRM-CC in estimating 
ET can be attributed to its ET calculation algorithm, which 
utilizes the Clausius-Clapeyron relationship (details can be 
found in the Supplementary material, Equations S1 to S9). 
The calculation involves several empirical parameters 
defined by the user to estimate potential ET (Lofgren et al.  
2011, Lofgren and Rouhana 2016). Additionally, the ET 
estimation in LBRM-CC is influenced by the water content 
in both the upper and lower soil zones. Since LBRM-CC is 
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a conceptual and lumped model, its results heavily rely on 
the selection of parameters and initial conditions. To gain 
further insights, we performed a global sensitivity analysis of 
the model parameters to identify the most influential ones 
for LBRM-CC modeling (see the Supplementary material, 
Text 2). This analysis confirmed the significant role of the 
“T base” parameter associated with the base temperature in 
accurately simulating ET in LBRM-CC (Lofgren and 
Rouhanaa 2016). Detailed discussions on the outcomes of 

the sensitivity analysis for LBRM-CC’s model parameters can 
be found in the Discussion section.

The performance of simulating streamflow exhibited con
trasting trends compared to ET simulations, with LBRM-CC 
surpassing WRF-Hydro in terms of daily and monthly NSE 
(Fig. 2). For instance, LBRM-CC demonstrated daily NSE 
ranges from 0.63 to 0.77 and monthly NSE ranges from 0.67 
to 0.86. In contrast, WRF-Hydro exhibited NSE ranges of 0.03 
to 0.41 for daily streamflow and 0.07 to 0.82 for monthly 

Figure 2. Evaluation of simulated surface components from WRF-Hydro and LBRM-CC across all Lake Michigan sub-basins in our study (labeled only in subplot “a” for 
clarity) including SWE (top row), ET (middle row), and streamflow (bottom row) based on NSE calculated at daily (left column) and monthly (middle column) time steps, 
and on PBIAS (right column).
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streamflow. This outcome can be attributed to the different 
calibration strategies employed by the two models. LBRM-CC 
utilizes a local calibration approach, tuning 10 model para
meters for each individual sub-basin focusing on the modeling 
accuracy of the streamflow (Croley and He 2005, Lofgren and 
Rouhanaa 2016). Thus, we can see that the substantial varia
tions in daily ET simulated by LBRM-CC did not significantly 
impact the daily streamflow simulation (Fig. 3). On the other 
hand, WRF-Hydro adopts a regional calibration approach, 
where model parameters are determined based on the spatial 
characteristics of the region (e.g. lower values of surface reten
tion depth in steep slope or surface roughness assigned by land 
cover types; Yucel et al. 2015, Naabil et al. 2017). Previous 
studies have also reported that lumped models often exhibit 
higher accuracy in simulating specific variables of interest 
compared to complex advanced models (Kumar et al. 2015, 
Kumari et al. 2021, Mai et al. 2022).

3.2 Subsurface components: soil moisture

WRF-Hydro performed better than LBRM-CC in terms of accu
rately simulating soil moisture (Figs. 4 and 5). Due to the diffi
culties of direct comparison (Fig. S3), we used the PBIAS to 
measure the overall bias or tendency of the simulated soil moist
ure. In comparison with GLEAM and SMAP, WRF-Hydro’s 

average PBIAS values for the first soil layer were 17.2% and 
21.2%, while those for LBRM-CC were 64.9% and 73.1%, respec
tively. Overall, LBRM-CC showed large variations, while WRF- 
Hydro demonstrated similar trends to GLEAM and SMAP. The 
average PBIAS values for soil layers 2, 3, and 4 of WRF-Hydro 
were 15.0%, 11.6%, and 10.5%, respectively, while for soil layer 2 
of LBRM it was 82.3%. In the selected sub-basins, SMAP showed 
average surface soil moisture values ranging from 0.25 to 0.41 m3/ 
m3, and GLEAM indicated average surface and root zone soil 
moisture values ranging from 0.29 to 0.37 m3/m3. For all soil 
layers, WRF-Hydro and LBRM-CC showed average soil moisture 
values from 0.22 to 0.28 m3/m3 and from 0.0003 to 0.47 m3/m3, 
respectively. As reported in a previous study (Xu et al. 2021), soil 
moisture contents in the western part of the Lake Michigan basin 
ranged from 0.1 to 0.4 m3/m3, based on in situ observations from 
2015 to 2019.

In the case of WRF-Hydro, the PBIAS values for all soil 
layers exhibited consistency across all selected sub-basins 
(Fig. 4), and the simulated values closely followed the reference 
trends observed in GLEAM data (Fig. 5; and the time-series 
comparison for other sub-basins can be found in the 
Supplementary material, Figs. S8 to 14), indicating that the 
model’s parameterization related to soil moisture is reason
able, physically-based, and spatially distributed 
(Xiang et al. 2017, Sofokleous et al. 2023). Meanwhile, in the 

Figure 3. Time series of observed and simulated (both WRF-Hydro and LBRM-CC) SWE (top row), ET (middle row), and streamflow (bottom row) at daily (left column) 
and monthly (middle column) time steps, and monthly biases (right column) from Lake Michigan sub-basin 5. Similar results for all other sub-basins are included in the 
Supplementary material.
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case of LBRM-CC, the PBIAS values for soil moisture at soil 
layer 1 varied depending on the locations, while those at soil 
layer 2 remained consistent. Through the model parameter 
sensitivity analysis conducted for LBRM-CC outputs, it was 
found that a single model parameter related to surface flow had 
the most significant influence on soil moisture in soil layer 1 
(or upper zone soil moisture) (Figs. S6 and S7), indicating 
substantial impacts of this parameter in the soil moisture 
modeling at soil layer 1, which likely contributes to the spatial 
inconsistency in the simulated soil moisture of LBRM-CC at 
this layer. On the other hand, multiple model parameters 
related to interflow and deep percolation were identified as 
the most influential factors for the simulated soil moisture in 
soil layer 2 (or lower zone soil moisture), which denotes sig
nificant interactions with other model parameters in the mod
eling of soil moisture in this layer. As a result, the individual 
parameters had relatively minor effects on soil moisture in the 
lower zone compared to the upper zone.

3.3 Groundwater components: baseflow

Both WRF-Hydro and LBRM-CC exhibited similar trends to 
the reference baseflow data, with correlation coefficients 
greater than 0.5 between the reference baseflow and simulated 

ones at all sub-basins (Fig. 6). The PBIAS ranges for WRF- 
Hydro and LBRM-CC were 15.8% to 58.3% (mean of 30.6%) 
and 12.4% to 42.1% (mean of 30.1%), respectively. Despite 
having different conceptualizations of underground layers, 
both models performed well in capturing the characteristics 
of the reference baseflow data. However, the simulated base
flow of WRF-Hydro displayed inconsistent trends between 
sub-basins, with underestimation of the baseflow in sub-basins 
5 and 9. This inconsistency is likely due to the highly concep
tualized formulation of the groundwater bucket model in 
WRF-Hydro, which relies on four empirical parameters (i.e. 
the bucket model coefficient, the bucket model exponent, the 
initial depth of water in the bucket model, and the maximum 
storage in the bucket before “spilling” occurs; Gochis et al.  
2020). Fine-tuning these parameter values through model cali
bration would improve the accuracy of the groundwater 
bucket models. On the other hand, LBRM-CC displayed 
large variations in baseflow at sub-basins 16 and 22, while 
exhibiting smoother curves at sub-basins 5 and 20. The results 
of the model parameter sensitivity analysis for LBRM-CC out
puts indicated that a single parameter related to groundwater 
had the most significant influence on baseflow (Figs. S6 and 
S7). This suggests that the simulated baseflow in LBRM-CC 
heavily relies on this parameter, which controls the shape of 

Figure 4. The performance statistics of WRF-Hydro and LBRM-CC in simulating subsurface components including soil moisture in different soil layers for the seven sub- 
basins located in the Lake Michigan basin.
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the baseflow hydrograph, highlighting the importance of 
selecting appropriate model parameters in LBRM-CC.

The selected sub-basins exhibited subsurface or baseflow 
dominance, with an average runoff ratio (i.e. the proportion 
of total runoff to total rainfall) of 30% and a baseflow index 
(i.e. the proportion of baseflow to total runoff) of 68% 
(Table 2). These values align with findings from previous 
studies (Fry et al. 2014, Mei et al. 2023) and indicate the 
substantial contribution of baseflow to streamflow (Neff 
et al. 2005). The runoff ratio is affected by various factors 
such as physical characteristics (e.g. slope, land use, and soil), 

rainfall characteristics (e.g. intensity and duration), hydro
logical conditions, and anthropogenic factors such as artifi
cial storage created by water control structures (Yadav et al.  
2007, Munyaneza et al. 2012, Kult et al. 2014, Shin et al.  
2023a). The low runoff ratio suggests that rainfall events 
have limited influence on the discharge at the basin outlet, 
potentially due to significant impacts from the subsurface 
and groundwater processes. It has been noted in previous 
research that basins dominated by baseflow often exhibit 
lower accuracy in streamflow simulation (Fry et al. 2014, 
Mei et al. 2023), which could explain the lower performance 

Figure 5. Time series of simulated and reference (GLEAM and SMAP) soil moisture (as a volumetric proportion) in different conceptual subsurface layers in the LBRM-CC 
(left) and WRF-Hydro (right) from Lake Michigan sub-basin 5. GLEAM and SMAP soil moisture at the surface layer (0–5 cm) was compared with each model’s soil 
moisture output at soil layer #1. GLEAM soil moisture at the root zone (5 cm – vary) was compared with soil moisture outputs at soil layers #2, #3, and #4. WRF-Hydro 
provided soil moisture and soil water depth. LBRM-CC only provided soil water depth, which was converted to soil moisture.
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of WRF-Hydro in this study. To improve the representation 
of groundwater processes, the simple conceptualization 
employed in WRF-Hydro could be enhanced through inte
gration with more advanced modules (Rummler et al. 2022, 
Mei et al. 2023, Sofokleous et al. 2023).

4 Discussion

4.1 Performance of the hydrological models

The overall performance of LBRM-CC in simulating SWE was 
relatively better than that of WRF-Hydro. However, there was 

Figure 6. The simulation results of the groundwater component of WRF-Hydro and LBRM-CC at the selected sub-basins in the Lake Michigan basin compared to the 
reference data from baseflow separation, which was conducted using the baseflow index (BFI) standard method for the observed USGS streamflow data.
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inconsistency in performance between sub-basins, likely due 
to the fact that the simulated SWE was controlled by a single 
parameter, with the effects of other parameters being negligible 
(Figs. S6 and S7). It is important to carefully consider the 
values of model parameters in LBRM-CC to avoid unrealistic 
modeling results. Even though monthly fluctuations in simu
lated ET were relatively small, there were large variations on 
the daily scale and poor performance statistics (Figs. 2 and 3). 
The performance of hydrological models often improves when 
evaluated at a monthly scale compared to a daily scale because 
(1) daily noise in both input data and simulated values is 
smoothed out when aggregated to a monthly scale, resulting 
in a clear signal and improved model performance, and (2) the 
time scale resolutions in a model become finer, making it 
difficult to reproduce accurate timing of hydrological pro
cesses in a model (Engel et al. 2007, Moriasi et al. 2007,  
2015). The sensitivity analysis of model parameters revealed 
that ET is particularly sensitive to some specific parameters 
(Figs. S6 and S7). A parameter related to the base temperature 
(i.e. Tbase) was identified as the most influential parameter for 
the average and variance of simulated ET in LBRM-CC. 
Parameters associated with percolation between the upper 
soil zone and lower soil zone, as well as between the lower 
soil zone and groundwater zone, have significant impacts on 
the regulation of soil water levels in the conceptual tanks 
within LBRM-CC. The values of ET in LBRM-CC are closely 
linked to the storage of soil water in the first and second tanks. 
The amount of ET at each tank is directly influenced by 
conceptual parameters (e.g. USZevap and LSZevap), as these 
parameters are multiplied by the soil water storage values 
(Equations S1.1 and S1.2).

Although this study did not specifically examine the sensi
tivity of initial conditions (e.g. initial water storage in the 
upper soil zone, lower soil zone, and groundwater zone), 
these values are also crucial for modeling accuracy (Croley 
and He 2005). Local calibration of the models can yield good 

results for specific variables in particular regions and periods, 
but it may lead to unrealistic modeling outcomes beyond the 
calibration period or for unaccounted variables (Seiller et al.  
2012, Mai et al. 2022). Due to the inaccurate representation of 
physical processes, employing these models to predict uncer
tain future conditions becomes problematic (Niel et al. 2003). 
For example, the changes in rainfall and temperature may alter 
runoff responses, while the responses of other variables such as 
ET, SWE, soil moisture, and groundwater might not be the 
same and could affect the runoff responses, as these are not 
targeted in the calibration process. This prompts the need for 
further examination of hydrological model responses to cli
mate changes in future studies.

Can we use a lumped model for operational purposes, given 
its good performance in simulating streamflow, despite its 
unrealistic representation of other physical processes such as 
ET, soil moisture, and groundwater? The simple lumped 
model demonstrates good performance in simulating stream
flow due to localized parameter calibration, and its computa
tional efficiency makes it suitable for large spatial and temporal 
scales (Fry et al. 2014, Gaborit et al. 2017). Historically, LBRM- 
CC has been used for simulating runoff over monthly or inter- 
annual time scales for more than two decades; thus, it is not 
expected to exhibit good performance in simulating other 
hydrological components. However, under changing climate 
conditions, the potential for unrealistic representation of other 
variables can be problematic. To address the issue of unrealis
tic representation of other variables, careful consideration of 
parameter ranges is necessary. Additionally, advanced calibra
tion techniques or ensemble modeling can be explored to 
improve the accuracy of modeling results (Mai 2023, Shin 
et al. 2023b).

The performance of complex or advanced models, such as 
WRF-Hydro, can vary depending on the specific application 
and scale of analysis. In the case of the WRF-Hydro model, it 
demonstrated good performance in simulating both surface 

Table 2. Summary of the average runoff ratio and baseflow index of the selected sub-basins in the Lake Michigan basin. P, R, and B represent precipitation, runoff, and 
baseflow, respectively.

Sub-basin Item P (mm/year)a R (mm/year) B (mm/year)b Runoff ratio (%)c Baseflow index (%)

5 Observation – 460.0 256.0 – 55.7
WRF-Hydro 1325.2 482.7 129.5 36.4 26.8
LBRM-CC 1084.2 391.9 167.4 36.1 42.7

7 Observation – 467.6 344.2 – 73.6
WRF-Hydro 1330.8 405.3 272.9 30.5 67.3
LBRM-CC 1147.6 436.3 276.4 38.0 63.3

8 Observation – 442.3 284.2 – 64.3
WRF-Hydro 1354.8 388.0 222.5 28.6 57.3
LBRM-CC 1191.9 403.9 185.3 33.9 45.9

9 Observation – 417.3 277.8 – 66.6
WRF-Hydro 1272.6 374.5 114.5 29.4 30.6
LBRM-CC 1214.2 364.3 243.5 30.0 66.9

16 Observation – 396.8 311.8 – 78.6
WRF-Hydro 1422.2 431.9 258.6 30.4 59.9
LBRM-CC 1385.2 410.2 385.0 29.6 93.8

20 Observation – 214.9 137.2 – 63.9
WRF-Hydro 1271.9 209.9 163.8 16.5 78.0
LBRM-CC 1271.5 237.5 79.1 18.7 33.3

22 Observation – 388.1 290.2 – 74.8
WRF-Hydro 1314.6 464.0 344.7 35.3 74.3
LBRM-CC 1213.2 397.3 382.4 32.7 96.3

aPrecipitation data for WRF-Hydro and LBRM-CC is ERA5 and GHCN, respectively. 
bBaseflow for observations is derived by the baseflow separation method applied for the observed runoff. 
cRunoff ratio is R/P*100; baseflow index is calculated as B/R*100.
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and subsurface components, although it exhibited relatively 
lower performance in streamflow simulation. The model also 
exhibited a consistent level of performance across the entire 
modeling domain, and even its simplified conceptualization of 
groundwater components matched well with the reference 
baseflow data.

This study employed different forcings than those used to 
calibrate the NWMv2.1. The use of different climate forcings 
in this study, compared to the NWMv2.1, may have resulted in 
lower performance in streamflow simulation specifically in the 
study area. The climate forcings, such as precipitation and 
temperature data, play a crucial role in driving hydrological 
models, and differences in the input data can impact model 
performance. In this study, the model parameter configuration 
for WRF-Hydro was based on the NWMv2.1, which incorpo
rated the expansion of the Great Lakes basin into Canada and 
included calibration over the entire Great Lakes basin (Mason 
et al. 2019). At the regional scale, further modifications may be 
necessary to adjust the model parameters through the calibra
tion process for improving the accuracy of streamflow simula
tion in the study area. Future studies may try advanced 
techniques such as data assimilation (Yucel et al. 2015) and 
machine learning algorithms (Cho and Kim 2022) for model 
calibration to effectively improve model accuracy.

Nonetheless, advanced models like WRF-Hydro can be 
valuable as reference tools to represent physical processes 
and interactions in the hydrological systems. Process-based 
models are based on fundamental physical principles rather 
than region-specific parameterizations, making them more 
transferable to different regions and catchments. This inherent 
characteristic also renders them suitable for various scenario 
applications (e.g. land-use or climate changes) (Fatichi et al.  
2016, Abbaszadeh et al. 2020, Pal et al. 2023). In addition, they 
provide spatially distributed outputs considering spatial varia
tions of land surface, soil types, and topography, which is 
particularly useful for large and heterogeneous watersheds 
such as the Great Lakes region.

We compared the model performance between this study 
and a previous model intercomparison study for the entire 
Great Lakes basin (Mai et al. 2022; hereafter referred to 
GRIP-GL) (see the Supplementary material, Table S3). In 
terms of the performance of LBRM-CC, we found that the 
performance of flow and surface soil moisture simulations 
between this study and GRIP-GL was similar, while that of 
ET and SWE showed substantial differences. This difference 
can be attributed to the different reference datasets used in 
each study. For instance, the two studies utilized the same 
reference datasets for flow and surface soil moisture (USGS 
flow and GLEAM surface soil moisture), which resulted in 
similar performance between this study and GRIP-GL. 
Meanwhile, different reference datasets were adopted for ET 
and SWE (e.g. MODIS ET for this study vs. GLEAM ET for 
GRIP-GL, GHCN SWE for this study vs. ERA5 SWE for GRIP- 
GL), leading to substantial differences in performance between 
the two studies. WRF-Hydro was employed for the first time in 
this study for model intercomparison; therefore, the perfor
mance of WRF-Hydro cannot be directly compared to GRIP- 
GL. Nonetheless, the results of GRIP-GL’s more complex and 
advanced models were consistent with those of WRF-Hydro, 

showing low performance for flow simulations, but good per
formance for ET and surface soil moisture simulations (see the 
Supplementary material, Table S3). Though there are many 
differences between the two studies, such as the simulation 
domain, comparison period, model inputs, calibration techni
ques, and validation datasets, this study aligns with GRIP-GL 
and adds more information on the state-of-the-art land surface 
model, which has never been examined before. In this study, 
we did not recommend a specific model for water management 
in the Great Lakes region. Instead, we identified the capabil
ities and limitations of each model based on comprehensive 
evaluations of various hydrological processes. We believe the 
findings of this study will provide useful information for water 
managers in the Great Lakes basins since we examined the two 
models with their original operational settings (e.g. the same 
configuration and model parameters used by the operators) 
rather than customizing or modifying them. Hence, the 
strengths and weaknesses identified in this study can be used 
to improve both models.

4.2 Seasonal and long-term water balance

Four years of simulation is a relatively short period to capture 
natural variability. It is noteworthy, however, that the two 
models were not calibrated and validated during the evaluation 
period selected in this study (Table S1), which comprised 
recent wet periods that may have a significant impact on the 
regional water balance. An earlier study (Wilcox et al. 2007) 
identified a period of 160 ± 40 years as capable of capturing 
a natural rise-and-fall pattern in Lake Michigan–Huron using 
a reconstructed (pre-historical) hydrograph of lake level 
changes over the past 4700 years. Nevertheless, simulations 
of hundreds of years are beyond our capacity, especially when 
it comes to the more computationally expensive and complex 
model, WRF-Hydro. Due to the short simulation periods in 
this study, the natural variability of the study area is not 
captured; however, the goal is to explore various hydrological 
responses of two important operational models during recent 
wet periods, a period in which both models have not been 
evaluated previously. The limited time frame gives us the 
opportunity to obtain data from a variety of sources for eval
uating the different hydrological components.

To investigate the implications of the seasonal and long- 
term water balance modeling, we compared the performance 
of the two models in simulating seasonal and long-term hydro
logical components compared to the reference datasets 
(Fig. 7). We calculated area-weighted averages of streamflow, 
baseflow, ET, SWE, and soil moisture for the selected sub- 
basins using reference datasets and simulation results. The 
hydrological simulations of both models performed better at 
coarse temporal scales than at finer temporal scales, due to 
cancelling out noise and bias in finer temporal scales. For 
instance, LBRM-CC showed substantial differences in ET per
formances between daily and other temporal scales (monthly, 
seasonal, and long-term scales) (Figs. 2 and 7). The simulated 
ET showed large fluctuations, with poor performance on 
a daily scale, but the performance greatly improved on 
monthly and seasonal scales. In addition, LBRM-CC per
formed substantially better on the seasonal and long-term 
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scale for other variables such as streamflow, baseflow, and 
SWE, indicating consistent patterns with the reference data
sets; however, the soil moisture simulations displayed unrea
listic representations, significantly underestimating the 
reference datasets (Fig. 7). Seasonal and long-term WRF- 
Hydro performances were improved compared to perfor
mances evaluated daily or monthly. The warm season ET 
and soil moisture simulations using WRF-Hydro showed 
a slight underestimation but demonstrated reasonable perfor
mances consistent with the reference datasets; however, SWE 
simulations showed large underestimations, causing spring 
flow to be underestimated as well. On a seasonal and long- 
term scale, LBRM-CC well captured streamflow, warm season 
ET, and SWE better than WRF-Hydro, while WRF-Hydro did 
cold season ET and soil moisture simulations better than 
LBRM-CC.

Both models captured seasonal and long-term trends of 
flow and ET well. Streamflow increased during spring due to 
snowmelt, peaked in April, and decreased during summer with 
the lowest flow in August. In the cold season, streamflow was 
greater than in the warm season due to lower ET and more 
snow. Baseflow decreased in summer and increased in spring, 
showing substantial contributions from groundwater to total 

runoff, with an average baseflow index of 70%. Though the two 
models adopted similar conceptual representations of ground
water processes (e.g. simple groundwater bucket model with 
empirical parameters), the groundwater simulations were con
sistent with the reference dataset. The model accuracy could be 
improved by further calibration of empirical parameters or 
employing more advanced groundwater modules. There were 
significant seasonal differences in ET, with warm-season ET 
exceeding 3.5 times cold-season ET. Both models underesti
mated the peak ET in July and overestimated it through 
September to November, while the overall amount of seasonal 
ET was well captured. Monthly SWE increased from 
December to February; LBRM-CC well captured the overall 
amount of SWE, while WRF-Hydro underestimated it, which 
resulted in lower spring flow. Studies have suggested that snow 
processes in WRF-Hydro can be enhanced by fine-tuning 
algorithms of the land surface model, such as snow albedo 
schemes (Abolafia-Rosenzweig et al. 2022, Liu et al. 2022) and 
soil freeze–thaw processes (Yang et al. 2023). Soil moisture in 
the cold season was greater than that in the warm season. In 
WRF-Hydro and reference datasets, soil moisture remained 
high and stable during the cold season due to lower ET and 
snow accumulation and decreased during the warm season due 

Figure 7. The monthly and seasonal average flow (a), ET (b), SWE (c), and soil moisture (d) from reference and simulations. The area-weighted values were calculated 
based on the reference dataset and simulated results for the selected seven sub-basins. Monthly values are represented starting from May. The warm season mean is 
calculated using the average from May to October, and the cold season mean is calculated based on the rest of the year. Line plots in plot (a) show baseflow, and those 
in (d) show various soil moisture values in different soil layers. SWE was considered only for December, January, and February.
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to higher ET rates and increased vegetation. LBRM-CC, how
ever, produced unrealistic soil moisture simulations, and 
further calibration should be considered to improve the 
accuracy.

5 Conclusions

In this study, we conducted a comprehensive evaluation of 
candidate models for operational water balance and water 
supply simulation and forecasting across Earth’s largest lake 
system. This study compared the simulated outputs with 
observed data from ground-based stations and remotely 
sensed images and validated the simulated surface variables 
(e.g. snow water equivalent, evapotranspiration, and stream
flow), subsurface variables (e.g. soil moisture at different 
layers), and groundwater components to improve the under
standing of these models. The results indicated that LBRM-CC 
outperformed WRF-Hydro in simulating SWE and stream
flow, while WRF-Hydro exhibited better performance in simu
lating ET and soil moisture. The simple lumped model 
demonstrated good performance in streamflow simulation 
due to localized parameter calibration. However, this simpli
city resulted in unrealistic representations of other variables 
and spatial inconsistencies. Therefore, careful consideration of 
model parameters is crucial to address these issues. WRF- 
Hydro showed consistent performance across the entire mod
eling domain, although its performance in streamflow simula
tion was relatively lower compared to LBRM-CC. Further 
calibration would be necessary to improve the accuracy of 
the streamflow simulations in the Great Lakes region. 
However, they can serve as valuable reference tools for provid
ing a more comprehensive and detailed understanding of 
hydrological processes. This detailed representation of physi
cal processes and interactions in the hydrological system can 
be particularly useful for conducting various scenario analyses, 
which are essential for water resource management planning. 
Here, we first incorporated WRF-Hydro, the state-of-the-art 
land surface hydrological model, into the comprehensive eva
luation of its performance with LBRM-CC in representing 
Great Lakes hydrology. In addition, our evaluation covered 
a wide range of hydrological components, from surface to 
groundwater, which is not well documented in previous stu
dies. The findings of this study contribute to our understand
ing of these two hydrological models and test the potential of 
the state-of-the-art land surface model in simulating Great 
Lakes hydrology. By assessing multiple hydrological processes, 
we gain valuable insights into the strengths and limitations of 
both models, which is crucial for making informed decisions in 
water resource management and operational water supply 
forecasting in the Great Lakes region.
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