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Abstract—In today’s world, embedded systems and 
microcontroller-based modules have become increasingly 
integrated into our daily lives. However, the security of 
these embedded devices and the assurance of hardware 
authenticity have raised concerns within the expanding 
realm of the Internet of Things (IoT). In this study, 
we established an experimental environment to observe 
the disturbance of SLC flash memory programming for 
the purpose of designing a physical unclonable function 
(PUF). Our findings revealed that intra-page disturbance is 
more easily generated compared to inter-page disturbance. 
Additionally, we observed a pairing pattern where adjacent 
pages are paired in a (2n, 2n+1) manner, and disturbances 
only occur within a pair. Finally, we discovered that as 
the page number increases from 0 to 63, it becomes 
progressively more challenging to detect the initial bit flip 
within a page, thereby making it more difficult to achieve 
a stable disturbance state. 

I. INTRODUCTION 

Authentication has emerged as a potential solution 
to address the integrity concerns in the IoT ecosystem. 
As traditional methods of distinguishing and identifying 
individuals based on physical traits became increasingly 
challenging, biometric authentication stepped in to fill 
the gap [1]. Similarly, electronic devices such as RFIDs 
often share a similar physical appearance. The primary 
distinguishing factor among them lies in the unique 
identification (ID) stored in the chip memory. However, 
the vulnerability of this ID makes it susceptible to attacks 
and compromises. PUF is a technique used to establish 
a digital fingerprint on physical semiconductor devices. 
This fingerprint is highly unique and remains mostly 
unaffected by variations in temperature, humidity, or 
stability. Research that investigates PUF from volatile 
memories and non-volatile memories can be found in [2] 
and [3] respectively. 

In electronic devices, memory plays a crucial role 
in storing information. With the advantages like lower 
power consumption, faster write and erase times (high 
access speed), and a low cost per bit, NAND flash stands 
out as one of the most widely used among all. These 

qualities make NAND Flash a preferred choice in many 
electronic devices such as USB drives, media players, 
digital cameras, and smartphones. 

With the introduction of PUF, IoT security, especially 
in healthcare domain [4], [5], can be enhanced as PUF 
provides a unique, unclonable ID. Additionally, if data 
is stored with PUF encryption on memory, the data is 
secured as it is not possible to decrypt without the PUF. 
Moreover, PUF can generate random output values, and 
there are numerous applications of a good and reliable 
random number generator. This function is unpredictable 
for even an attacker with physical access to the system. 
Also, it is impossible to produce a copy of the same 
physical system even when the functionality is known. 
PUFs offer a unique signature [6], [7], which comprises 
the bits that remain stable regardless of the number 
of read and write operations performed on a particular 
memory cell. This extracted signature serves as a mean 
to authenticate a chip and generate a random number 
suitable for cryptographic key generation. 

In this paper, we specifically conducted a novel PUF 
extraction using the Samsung NAND Flash Memory 
(K9F1G08U0E) and the Flexible Memory Controller 
(FMC) interface of the experimental discovery board 
(STM32F429ZIT6). The software utilized was STM-
CUBE32IDE, and we employed the C programming 
language. Our work focused on exploring various new 
program disturb algorithms and applying them to the 
NAND flash for PUF extraction purposes. We also 
evaluated the performance of these algorithms during the 
extraction process. 

II. RELATED WORKS 

Shijie et al. [8] introduced a PUF-based key gener-
ator specifically designed for NAND flash chips. Their 
approach involved proposing three distinct methods for 
extracting raw PUF output numbers. These methods 
included utilizing a position map, partial programming, 
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and partial erasure techniques to identify and select reli-
able keys from the PUF output. Prabhu et al. [9] tested 
seven NAND flash-based PUFs that leverage program 
disturb, read disturb, and program operation latency. 
They conducted experiments involving fourteen devices 
to evaluate the proposed PUFs. The evaluation process 
employed Pearson correlation as a metric to assess the 
robustness of the generated signatures. The results indi-
cated that NAND flash PUFs based on program latency 
and program disturb exhibited the highest utility and 
effectiveness among the tested approaches. They have 
observed that NFPUF based on program disturb is the 
best one to distinguish between different chips but takes 
more time for extraction and NFPUF based on program 
latency is the fastest among all PUFs. Cai et al. [10] 
demonstrated the effects of two-step programming on 
MLC NAND flash. Their work exposed the dangers of 
two-step programming and how it could be exploited. 
The process of two-step programming involves program-
ming a single cell’s LSB and MSB at different times. 
Most of the existing work is limited to analyzing and 
generating PUF for a single NAND flash chip either SLC 
or MLC. In this paper, we will observe SLC Single Page 
Program disturbance with different approaches. 

III. BACKGROUND 

A. NAND Flash 

The NAND flash cell is made of a floating gate 
transistor, where the electrons held by the floating gate 
decide the threshold voltage (Vth) of the cell. Normally, 
to switch on an NMOS transistor we need Vg > Vth. 
During the program stage, if we inject electrons in the 
floating gate, we will require a relatively higher voltage 
(Vg) to offset the negative charge of electrons and turn 
on the channel (Vg −Vδ > Vth). If there are no electrons 
captured in the floating gate, a relatively small gate 
voltage is sufficient to make Vg > Vth and turn on 
the transistor. NAND Flash memory is a non-volatile 
storage technology that retains data even without power. 
A metal-oxide-semiconductor known as the Floating gate 
provides additional charges to the memory cell, which 
helps in preserving the stored data in the absence of 
power. Distinguished by the number of bits stored per 
cell, NAND flash storage is available in various types, 
including SLC (Single-Level Cell), MLC (Multi-Level 
Cell), TLC (Triple-Level Cell), QLC (Quad-Level Cell), 
and 3D NAND. NAND Flash memory organizes data 
into blocks, with the block being the fundamental unit for 
erase operations, while the page serves as the basic unit 
for write operations. Each page comprises a data area and 

Fig. 1: Flash Memory Organization 

a spare area. Flash memory organization is described in 
Figure‘1. 

B. PUF within NAND Flash Memories 
The dense packing of flash cells makes process vari-

ations in feature geometry have a notable impact on the 
interaction between neighboring cells and the behavior 
of individual cells. As a result of these variations, certain 
cells may exhibit varying levels of susceptibility to 
write/read disturbances and wear. PUFs offer a dis-
tinctive signature consisting of stable bits that remain 
unchanged regardless of the number of read and write 
operations performed on a specific cell. This unique 
signature serves multiple purposes: it can authenticate a 
chip, verify its integrity, and generate a random number 
suitable for cryptographic key generation. The variations 
in signatures occur between blocks and pages within 
the chip. Consequently, the chip can possess multiple 
extractable unique signatures in different locations. 

C. PUF Generation Techniques 
Various techniques exist for deriving raw PUF output 

values from NAND Flash memories. Firstly, Program 
disturb, a block gets wiped out first, followed by con-
tinuous programming of a single page within that block. 
The pages adjacent to the programmed page must be read 
between each programming sequence to detect errors 
induced by the Program disturb. For every bit on the 
neighboring page, the count of programming instances 
required to generate the first bit error is documented. 
This information collectively forms the signature. The 
extraction of a signature necessitates one erasure and 
numerous programming operations, but these procedures 
do not compromise the reliability of the chip. The 
disadvantage of program disturb technique is that it 
causes irreparable damage to the page, and it is quite 
slow. 
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The second technique is known as Read disturb. 
With this method, the entire block is initially erased 
and subsequently programmed with random data. After 
this, each page is read multiple times, often reaching 
several million reads in order to generate a read-disturb. 
Following every 1,000 read cycles, every page in the 
block is examined for potential errors. If an error is 
detected on a page, the bit, the page, and the error’s 
cycle are all recorded. This procedure is repeated up to 
10 million times. As a result, the read cycle counts for 
all the bits within the block are utilized as the signature. 
While the Read disturb method is less destructive and 
generates less signature noise compared to the Program 
disturb method, it is a slower process. Another technique 
is called the Program operation latency; each bit is 
programmed individually on a page, keeping track of the 
latency for each operation. The benefit of this method is 
its speed, as well as the fact that it does not result in 
wear and tear on flash device. 

IV. SETUP AND IMPLEMENTATION 

A. Hardware Setup 
The STM32F429I and NAND Flash are connected 

using female jumper wires. Among the 16 required 
connections to the NAND Flash, there are 8 data pins, 6 
control pins, Vcc (Voltage supply), and GND (Ground). 
The same 8 data pins on the NAND Flash are used 
to transmit command, address, and data. The 6 control 
pins on the NAND Flash include: CLE (Command Latch 
Enable), ALE (Address Latch Enable), R/B (Ready/Busy 
Output), WE (Write Enable), RE (Read Enable), and 
CE (Chip Enable). Power is supplied to the NAND 
Flash from the microcontroller by connecting the Vcc 
3V of the microcontroller to the Vcc of the NAND 
Flash, and the GND of the microcontroller to the GND 
of the NAND Flash. The corresponding FMC (Flexible 
Memory Controller) pins from the microcontroller are 
connected to the control and data pins of the NAND 
Flash. This integrated development environment includes 
the STM32CubeMX graphic tool and STM32CubeIDE. 

B. Software Setup and Configuration 
STM32CubeIDE, an integrated development environ-

ment, is utilized for the creation of software code in the 
C programming language. It comes equipped with the 
STM32CubeMX graphic tool, which allows for board 
visualization, pin selection, and configuration. Further-
more, STM32CubeIDE offers the capability to generate 
definitions and library files that correspond with the pins 
configured via the graphic tool. 

As a part of the setup process, we first initialize 
the Hardware Abstraction Layer (HAL), followed by 
the configuration of the System clock. Subsequently, 
other peripherals such as GPIO, FMC, and USART1 
are initialized. Next, we create an instance of a NAND 
Controller and configure the required setup values. These 
values include SetupTime, WaitTime, NandBank, ECC-
computation, BlockSize, PageSize, and more. 

C. Erase and Read Operations 
Before programming the page, an erase operation be-

gins by issuing an Erase setup command (60h), followed 
by the row address. While setting the R/B pin to low, the 
Erase confirm command (D0h) then initiates the internal 
Block Erase operation. In the Write Status bit (I/O 0), 
a value of 0 indicates that the erase operation has been 
completed, whereas a value of 1 signifies an error in the 
erase operation. The read operation is initiated with the 
opcode 0x00 while setting the CLE pin to HIGH, and 
the CE pin to LOW. Then the row and column address 
is provided. After signaling the completion of writing 
the address by using the opcode 0x30, the device now 
knows which bytes to read from its flash array. The data 
from the address is loaded onto the page register and 
sent through each of the 8 I/O pins to be read by the 
STM32F4 micro-controller. 

D. Program Operation 
At the page level, the program operation is initiated by 

issuing a Serial data input command (80h), followed by 
column and row addresses. Subsequently, the transmitter 
buffer, which comprises the data to be written on the 
page is set and passed in the next cycle. The NAND 
instance is initialized with parameters such as frequency, 
setup timing, and hold timing. A Read operation is 
performed to verify the data that has been written. The 
column and row addresses are passed in the following 
4 cycles. The data is then read in the subsequent cycle. 
The output of the Read Page operation is stored in the 
receiver buffer, which holds the data that has been read 
from the page, thus initiating the programming process. 
While setting the R/B pin to low, the status of write 
operation is checked by issuing command 70h. 

V. METHODOLOGY AND APPROACH 

A. Algorithm 
After evaluating various methods for signature ex-

traction, we elected to utilize the Program disturb tech-
nique for our project. We decided based on the higher 
frequency of disturbance observed in cells compared 
to the Read disturb method. Program disturb appears 
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earlier, usually around ten thousand iterations, while 
Read disturb doesn’t show significant disturbance within 
ten thousand iterations; more iterations are needed to 
detect Read disturb. Hence, we opted for the program 
disturb method. 

B. Procedure 
We identified stable bits within the NAND Flash 

memory in a variety of ways: on the same page, on the 
adjacent page, and across all pages within the block. 
The algorithm 1 and 2 outlines the NAND flash ID 
extraction using single page program disturb and multi 
page program disturb respectively. It is important to note 
that Error Correction Code (ECC) needs to be disabled 
so that it would not automatically correct any errors and 
interfere with our process. 

1) PUF observing the same page: Firstly, regarding 
the method of locating stable bits on the same page, we 
began by erasing block zero and programming page one 
with the value AA in hexadecimal. We then tracked the 
bit changes happening on the same page by comparing 
the bit values on that page with AA. If the value differed, 
it signified that the bit was not stable. If not, they were 
deemed stable bits and were stored in an array. This 
process of programming and the subsequent steps were 
repeated over ten thousand iterations. By the end of these 
iterations, we had stable bits that could generate a PUF. 
The technique is described in Algorithm 1. 

2) PUF observing the adjacent pages: The second 
approach bears similarities to the first, but this time we 
are reading from the adjacent pages. In this method, 
we erased block zero, and then programmed page two 
with the hexadecimal value AA. Subsequently, we read 
from the adjacent pages, which are page one and page 
three. For these adjacent pages, we compared their bits 
with the value FF (FF is the value resulting from the 
erase operation, which sets all bits to ones). If the value 
remains the same, it indicates stability. However, if it 
changes, the bit is considered unstable. We then stored 
the stable bits in an array, and continued comparing them 
through each of the ten thousand iterations. During each 
iteration, we wrote to the same page, page 2, and read 
bits from page 1 and page 3. 

3) PUF observing a number of pages: In the final 
approach, we erased block zero and programmed all 
pages with the value AA. We then selected page one 
and programmed it again with AA ten thousand times. 
Subsequently, we read the adjacent pages, which are 
page zero and page two, and compared their bit values 
with AA. If there was any change, the bit was deemed 
unstable; otherwise, it was considered stable and stored 

in an array. We then proceeded to the next page, page 
two, and programmed it ten thousand times with AA. 
The adjacent pages, page one and page three, were then 
read, and the values were compared with AA. If there 
was no change, they were added to the stableBits array. 
We applied the same steps to all 64 pages in the block. 
The technique is described in Algorithm 2. 

Algorithm 1: NAND Flash ID Extraction Using 
Single Page Program Disturb 

Result: Read the flipped bits 
while While true do 

for i ← 1 to 64 do 
Write 0xAA to every byte of the page 0; 
Read page 0 and store to a buffer; 
Print 128 bytes of buffer through USB CDC 

stack; 
Delay 100 ms 

end 
end 

Algorithm 2: NAND Flash ID Extraction Using 
Multi-page Program Disturb 

for i ← 1 to 64 do 
Erase Block 
for j ← 0 to 10k do 

Program Page i is programmed by 0XAA if 
(j+1) % 1000 then 
end 
Read page (i-1), i, and (i+1) 

end 
end 

VI. EXPERIMENTAL RESULTS 

A. PUF Identification 
1) PUF observing the same page: Algorithm 1 has 

been implemented on the Discovery board to showcase 
single-page program disturbance. This technique was 
tested on two different NAND Flash devices. Both 
devices used the same page programming and observed 
the page for program disturbance. The number of iter-
ations conducted on both devices was 10,000. During 
the experiment, stable index bytes were identified for 
each NAND Flash device. The number of stable bytes 
identified differed between the two devices, and the 
indexes of the stable bytes varied as well. Interestingly, 
through the experiment, it was observed that after ap-
proximately 306 iterations, the bits began to flip and the 
situation deteriorated significantly thereafter. The above 
observation is explained as follow: 
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Flash memory can only transition from a state of 1 to 0 
during the write process. Once it has reached the state of 
0, it can only be switched back to 1 through an erasure. 
Initially, each cell of the flash memory is programmed 
with 1s, and then repeatedly overwritten with 0xAA to 
each byte. In an ideal scenario, the constant read output 
would be 0xAA. However, after several iterations, some 
bits unavoidably flip from 1 to 0 and remain so. Since 
we did not implement an erase operation at each step, 
these irreversible bit flips accumulated over time, leading 
to an increasingly disordered state. 

2) PUF observing the adjacent pages: After execut-
ing 10,000 cycles of writing and reading, we successfully 
determined the count of stable bytes. To evaluate if the 
results were unique, we carried out similar operations 
on two different devices. The outcome showed that all 
the bytes on page number two in both devices remained 
stable. However, only a finite number of bytes were 
stable on page number 4. 

3) PUF observing a number of pages: We utilized 
Algorithm 2 to examine both intra-page and adjacent-
page disturbances across pages 1 to 64. However, in this 
study, our evaluation was confined to 7 pages. Table I 
shows the iteration point at which program disturbs on a 
page starts to affect itself and its neighboring pages. We 
can see that, disturbances from page 1 starts affecting 
Page 0, which occurs within less than 1,000 write iter-
ations. Interestingly, Page 2 remains undisturbed. This 
leads us to infer that disturbances only occur in paired 
pages. However, this characteristic is dependent on the 
physical layout of Samsung’s SLC NAND flash memory 
and the proximity between two of every three pages. 

The page distance is close enough to trigger bit flip-
ping, while the pairing distance is far enough to prevent 
one pair from interfering with another. Pages tend to 
become more resistant to bit flipping as their distance 
from page 0 increases. While we lack exact information 
about the physical layout of Samsung’s SLC NAND flash 
memory, we hypothesize that page 0 is nearest to the 
block’s voltage source (or plane), given that the page 
pairs are stacked vertically. The speed at which program 
disturbances occur is not only dictated by the physical 
proximity of the pages, but also by the heat generated 
from the voltage source. As we ascend the vertical page 
stack, heat dissipation occurs, resulting in an exponential 
increase in the number of iterations to generate program 
disturbances. This increases the complexity of signature 
extraction in the ensuing manuscript, a subject we will 
delve into as we compare the signature extraction of 
pages 1 and 2. Following data recording into log files, we 

Fig. 2: Estimating Bit Flip Pattern. 

Fig. 3: Page 1 signature after 100k multi-page writes. 

created a Python script to analyze the data and visualize 
our findings through plots. 

Our analysis confirmed that the pages are physically 
programmed in pairs, conforming to the equation (2n, 
2n + 1), where ’n’ represents the pair number (0 to 31). 
Therefore, programming to page 0 only disturbs page 1, 
programming on page 2 exclusively affects page 3 and 
vice versa. Further analysis reveals that the instances of 
program disturbances necessitate more iterations as we 
progress from page 0. This pattern is evident when we 
plot Table I in Fig. 2. We have applied an exponential 
curve fit to both inter- and intra- page disturbances, 
which facilitates the estimation of when a given page 
and its pair will experience their first bit flips. 

The black colored entries in the heatmap from Fig. 3 
shows bytes that have completely flipped. Meaning after 
erasing the page, all the bits in a byte have changed from 
0xFF to 0x00. The white entries show erased bytes that 
remained 0xFF after page erase. Using the non black 
colored entries, we can use these markings to show the 
bytes and bits of a page that have not flipped from 
program disturbs. The colored entries in Fig. 4 represents 
bit flips within a byte. In Page 2’s signature, it is quite 
evident that all the bits in each of the 2,048 bytes do not 
completely flip. Only a few of the 8 bits flip. We can use 
the colored entries to show the bytes. Similar to page 
1’s heatmap where the black colored entries represent 
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Program on Page n Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 
First bit flip in Page n-1 <1 No bit flip 4 No bit flip 28 No bit flip 64 
First bit flip in Page n <1 <1 1 3 5 7 15 
First bit flip in Page n+1 No bit flip 2 No bit flip 13 No bit flip 39 No bit flip 

TABLE I: Iteration points of disturbances on individual pages and their neighbors (in thousands). 

Fig. 4: Page 2 signature after 100k multi-page writes. 

the flipped bytes and white entries show stable bytes, 
we observe that 100k iterations is not enough program 
writes to observe a stable signature specifically for page 
2. Examples can be seen in Fig. 3 and Fig. 4. The higher
numbers are represented by warmer colors, which are
indicative of bits that were highly resistant to disturbance
and only flipped after running the experiment for high
number of cycles.

VII. CONCLUSION

PUF can play a significant role in strengthening the 
security of hardware and systems. The strength of a PUF 
against attacks is directly linked to the uniqueness of its 
generation process. In this paper, we employed various 
techniques of program disturb to extract PUF from 
NAND flash memory devices. The PUF was captured on 
the same page, on adjacent pages, and across all pages. 
As we observed, a large number of bits remain stable 
even after 50,000 operations when performing bit-wise 
operations on data read from a page. To manage this, we 
designed an algorithm that can execute the outer loop for 
100,000 writes and ascertain the number of stable bits 
to an array after every 10,000 writes. Consequently, we 
will have 10 arrays of stableBits [0-9]. By comparing all 
of these arrays against each other, we can further reduce 
the number of stable bits. We then utilize these stable 
bit information to generate PUF. To proof the PUFs 
uniqueness, we conducted our research on two different 
NAND flash memory devices. The results from these two 
devices were then compared to examine the signature 
differences. We observed that PUF generated from both 
devices are different and unique. This extracted PUF 

could potentially be utilized as a key to strengthen 
hardware authentication and system security. 

VIII. LIMITATIONS AND FUTURE WORKS 

Our study is primarily constrained by its exclusive 
focus on SLC NAND Flash. In future research work, we 
aspire to address this limitation by extending the scope 
of our study to encompass various types of NAND Flash, 
including MLC, TLC, and QLC technologies. 
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