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Abstract—An increasing array of intelligent computing devices
operate within vulnerable environments where they are suscep-
tible to capture or physical assault. The data and intellectual
property (IP) stored within these devices are often compassionate.
This paper explores the potential advantages and challenges
of integrating biometrics into electronic devices. By combining
cutting-edge biometrics, such as physiological data, with inno-
vative system-level obfuscation techniques, we aim to prevent
hardware attacks. We term this approach human-to-device (H2D)
authentication. ECG biometrics offer high security as they are
difficult to replicate or guess, making them ideal for high-stakes
applications. ECG biometrics are easy to use, as they only require
a few seconds of ECG signal recording, making them a convenient
option.

Index Terms—H2D, Bimetrics, Security, Authentication, Ob-
fuscation

I. INTRODUCTION

The widespread adoption of smart computing devices (such
as smartphones, smart glasses, and wearables) and the growing
Internet of Things (IoT) ecosystem [1] have made secure op-
eration in hostile and unprotected environments a top priority.
In military contexts, smart devices play a crucial role in gath-
ering information, rapid information dissemination, tracking
troop health and safety, providing navigation and instructions
(e.g., through augmented reality displays [2]), and more. In
healthcare, the use of smart medical devices and wearables
has revolutionized patient care, enabling remote monitoring
and personalized treatment. However, these devices also pose
significant security risks, as they often contain sensitive patient
data and can be vulnerable to hacking. If compromised, these
devices could compromise patient privacy and even put lives at
risk. Therefore, it is essential to develop and implement robust
security measures, such as encryption, secure authentication,
and intrusion detection, to ensure the integrity and reliability
of these critical systems.

However, most of the proposed countermeasures are vulner-
able to physical attacks [3], leaving it vulnerable to tampering
or reverse engineering [4] if it is captured by an adversary.
In light of these threats, there is an urgent need to enhance
the access control mechanisms of electronic devices. In this
paper, we combine two innovative concepts - hardware obfus-
cation and biometric-based authentication - to address these
challenges and threats. Our approach, dubbed human-to-device
(H2D) authentication, offers the following advantages:

« We propose a comprehensive biometric template protec-
tion and hardware obfuscation based on physical unclon-
able function and biokeys.

o In contrast to conventional software methods, our ap-
proach eliminates the need to permanently store any
biometric template or key on the device. This notably
decreases the risk of compromising biometric data and
keys.

II. EXPERIMENT SETUP
A. Data Acquisition

In our study, we utilized three public ECG databases such as
(MITDB), PTB Diagnostic ECG Database (PTDB), and The
ECG identification database (ECG-ID). We used only a single
ECG lead from collecting ECG for realistic scenarios.

B. Data Processing

ECG biometric system comprises filtering, segmentation,
feature extraction, and matching [5], [6]. In this work, we used
Savitzky-Golay filter to clean up the signal. Once the ECG
signal is filtered, we segment it into different heartbeats. To
address the existing study for feature extraction, we developed
reliable mathematical models that capture ECG dynamics to
estimate states like noise, emotion, and exercises and built a
deep learning model based on the ECG model for a robust
authentication framework.

We employed Bayesian estimation to model an ECG signal,
extracting both its model parameters and observation noise.
Assuming the ECG signal comprises a clean component
and noise, represented as x;(t) = @;(¢;0) + e;(t), where
@;(t; @) represents a parametric ECG model and e;(t) denotes
measurement noise. To extract the dynamic parameters of
the ECG, we applied autoregressive (AR) dynamics, defined
as z;(t + 1) = ya;(t) + e;(¢t), where x;(t) corresponds to
any of the 15 Gaussian parameters «y, b, and 6y, with e;(t)
representing the corresponding ECG noise. To maintain valid
equations, we set v to 1, reflecting the expected variation
between successive beats in a normal ECG within the Gaussian
parameters. Estimation of the ECG noise is conducted using
the extended Kalman filter (EKF), considering their dynamics
(Haykin, 2004) [7]. Subsequently, after modeling the ECG
signal to mitigate noise and variation, we delve into the
time-frequency domain for feature extraction. Our proposed
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Fig. 1. Proposed method for noise cancellation and 2D-scalogram images
extraction using wavelet transform.
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Fig. 2. Flow of operations in two major biometric template protection
approaches.

methodology involves transforming the ECG signal into a 2D
image scalogram, leveraging a family of wavelet functions for
signal decomposition in the time-frequency domain. Specifi-
cally, we explore various mother wavelets such as Daubechies,
Biorthogonal, Coiflets, Symlets, Morlet, and Mexican Hat.
By transitioning the ECG signal from the time to frequency
domain and extracting 2D-scalogram images using continuous
wavelet transform, we can capture more discriminative image
features from the ECG, facilitating the utilization of advanced
deep learning architectures such as LSTM, Vision Transform-
ers (Dosovitskiy et al., 2020) [8], Conv-CapsNet (Sabour et
al., 2017) [9], and RBM-CapsNet models, among others.

III. BIOMETRIC TEMPLATE PROTECTION

The existing template protection schemes are broadly di-
vided into two major categories: (i) biometric cryptosystems
y [10] and (ii) feature transformation approaches [11].

As can be seen in Fig. 2(a)), upon receiving the input
biometric template (x) from a user, the transformation pa-
rameters (AD) will be applied on x to create the protected
biometric template (PI) [12] during enrollment stage [11].
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Fig. 3. Biokey generation scheme using LSTM weight transfer and homo-
morphic encryption.

In the authentication stage, when a biometric template (z’)
is queried, AD may be used to reconstruct a PI. After the
transformation, another protected template, PI' is constructed
and compared to PI using a matcher module. Based on the
match/no-match result, the query template is authenticated,
and access is granted. Since AD is public here, it is possible
to retrieve the = from the PI utilizing the AD; hence, the
desired non-invertibility requirement can be violated. Non-
invertible feature transformation using cancelable biometrics
has been studied to tackle this issue. [13]). However, some
of these techniques exhibit poor recognition performance in
practice [14]. On the other hand, as shown in Fig. 2(b), the
enrollment stage of biometric cryptosystems [11] involves a
secure sketch generator (SSG) as AD. Existing biometric
templates are not only vulnerable to different described
attacks, and have low performance, but studies on ECG
biometrics are also very limited.

Proposed work: Unlike other biometric systems where
the matching module is implemented to compare similar-
ity between enrollment and verification phase, our proposed
schemes, however, rather than having an authentication step,
use an activation step, where the obfuscated design is un-
locked. To achieve this goal, we first generated binary strings
(Biokey) from ECG biometric traits. Then, BioKey will be
used as a challenge of strong physical unclonable function
(PUF). The challenge is fed into the strong PUF model to
compute a unique device and biometric-dependent response,
which will behave as an obfuscation key (ObsKey). The
obfuscated bitstream will be sent to the user and loaded into
the device.

A. Phase I: Binary Encoding

Our approach begins with an initialization phase. ECG
identification using the LSTM model and feature encoding. To
generate a reliable feature vector, we first implemented ECG-
based identification based on the novel ECG identification
model. We propose novel ECG identification techniques that
consist of wavelet transformation and multiple, long short-term
memory (LSTM) recurrent neural networks (RNN). To better
capture the ECG patterns, we used both classical features,
i.e., wavelet, and LSTM at the same time. The reliable and
discriminate features of ECG is learned through identification
techniques with wavelet transform and multiple long short-
term memory (LSTM). We employed multiple smaller parallel
RNNs instead of one larger RNN, which will increase the
accuracy without significantly increasing the computational
costs. The outputs of the two branches are concatenated and
fed into a fully connected neural network layer in order to pro-
duce the probability score for identification. Then, the weights
for the identification model layers is transferred from
a model trained for identification to the key generation
model where each reliable feature is encoded into binary
strings. The difference is that the last layer after a fully-
connected layer is replaced by an encoding technique. Fig. 3).

The training methodology of transferring weights from an
identification model aimed to take advantage of the training
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Fig. 4. Proposed ECG biometric Template Protection mechanism using PUF
and Hardware Obfuscation.

process of identifying deep neural networks and assess how
it could benefit a neural network for BioKey generation.
Next, we used the Fuzzy Labeled Private Set Intersection
(FLPSI) protocol for binary key generation. To build an FLPSI
protocol, we adopted the AES block cipher, homomorphic
encryption, garbled circuits, and t-out-of-T secret sharing
suggested in USENIX Security [15] to handle noisy data. To
eliminate noisy bits in BioKey, we used a hash function to
generate HashedBioKey. The HashedBioKey is considered as
the challenge of a strong PUF.

B. Phase II: Integrating PUF & Hardware Obfuscation

In order to generate the strong PUF challenge, the BioKey
generated in Phase I is processed by the hash function to the
desired length.

The designer builds a strong PUF model using Hashed-
BioKey. A hash function is any function that can be used to
map data of arbitrary size to data of fixed size. Due to the non-
invertible property of PUF, the original biometric feature can
not be reconstructed. To address issues with noisy behavior
(voltage variation, aging, temperature variation) of the PUF,
helper data is employed for performing error correction at the
output of the PUF. We used provable strong PUF as designing
strong PUFs does not fall within the scope of this career. The
response from a strong PUF is to behave as an obfuscation key
(ObsKey) which produces an obfuscated bitstream (sequence
of bits). The obfuscated bitstream is sent to the user and
loaded into the device to lock the device. The bitstream
obfuscation allows the key to change for every chip/user due to
the configurable hardware. This is an essential feature since
a biometric-derived key will be different from user to user.
The proposed ECG biometric template protection is depicted
in Fig. 4. During the authentication phase, the user provides
his/her biometric as an input. The process in phases I and II of
the enrollment process is applied to generate the Bio-Key with
respect to error correction and helper data. A correct ObsKey
unlocks the obfuscated bitstream and brings the device into
functional (unlocked) mode. Without the correct key, the
device could not work correctly. Since our proposed work
does not store any raw iometric data, which addresses the
irreversibility property,. It will allow the user to re-issue a

new template if the system is compromised, confirming the
revocability of the system. The system parameters (AD) are
not public in our proposed model. Therefore, the attackers
cannot take advantage of AD to find links among multiple
templates of a user.

IV. CONCLUSION

This paper examines the potential benefits and challenges
of integrating biometrics into electronic devices, proposing
the concept of human-to-device (H2D) authentication. Uti-
lizing advanced biometrics, such as physiological data like
Electrocardiogram (ECG), along with innovative obfuscation
techniques at the system level, aims to deter hardware attacks.
ECG biometrics offer high security due to their uniqueness,
resistance to spoofing, and ease of use, making them suitable
for high-stakes applications.
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