

1    **A Comparative Analytical Study for the Different Water Pools Present in**  
2    **Alginate Hydrogels: Qualitative vs. Quantitative Approaches**

3    Mustapha El Hariri El Nokab <sup>a\*</sup>, Julien Es Sayed <sup>b</sup>, Fien De Witte <sup>c</sup>, Koen Dewettinck <sup>c</sup>, Ahmed Elshewy <sup>d, e</sup>,  
4    Zhenlei Zhang <sup>f</sup>, Paul H. M. Van Steenberge <sup>g</sup>, Tuo Wang <sup>a</sup>, Khaled O. Sebakhy <sup>g\*</sup>

5    <sup>a</sup> Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.

6    <sup>b</sup> Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG,  
7    the Netherlands.

8    <sup>c</sup> Food Structure & Function Research Group, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.

9    <sup>d</sup> Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.

10    <sup>e</sup> Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.

11    <sup>f</sup> College of Chemical Engineering and Environment, China University of Petroleum, Beijing  
12    102249, P. R. China.

13    <sup>g</sup> Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering,  
14    Ghent University, Technologiepark 125, 9052 Ghent, Belgium.

15    \* Correspondence: elhariri@msu.edu; khaled.sebakhy@ugent.be

16    **Abstract**

17    Alginate hydrogels have garnered significant attention due to their promising applications in  
18    the food, biomedical, and pharmaceutical industries. The detection and quantification of  
19    distinct water phases within these hydrogels offer valuable insights into their dynamic,  
20    absorptive, and mechanical properties. Despite being comprised solely of 2 wt. % polymeric  
21    materials, the alginate hydrogels exhibit a highly porous morphology, characterized by  
22    distinct water pools exhibiting varying mobility and dynamic behaviors. These phases can be  
23    delineated as largely free water phase with high mobility, which occupies the macropores, and  
24    bound water with restricted mobility, which interacts with the fibrous polymeric structure.  
25    Water pools interacting with their surrounding environments possess variable crystal  
26    structures on variable freezing points, this could be easily detected using X-ray scattering  
27    techniques. A comparative study was conducted based on the information derived from each  
28    technique, with differential scanning calorimetry (DSC) yielding quantitative information for  
29    the water phases in alginate hydrogels (i.e., 58 % free and 42 % bound water in 0.75 wt. % -  
30    6 h aging sample), whereas cryogenic scanning electron microscopy (Cryo-SEM), wide and  
31    small-angle X-ray scattering (WAXS and SAXS), Fourier Transform Infrared (FT-IR), and  
32    rheology provided valuable qualitative insights. In this study, deep insights into the molecular  
33    structure of alginates were obtained including the alteration in morphology and macropore

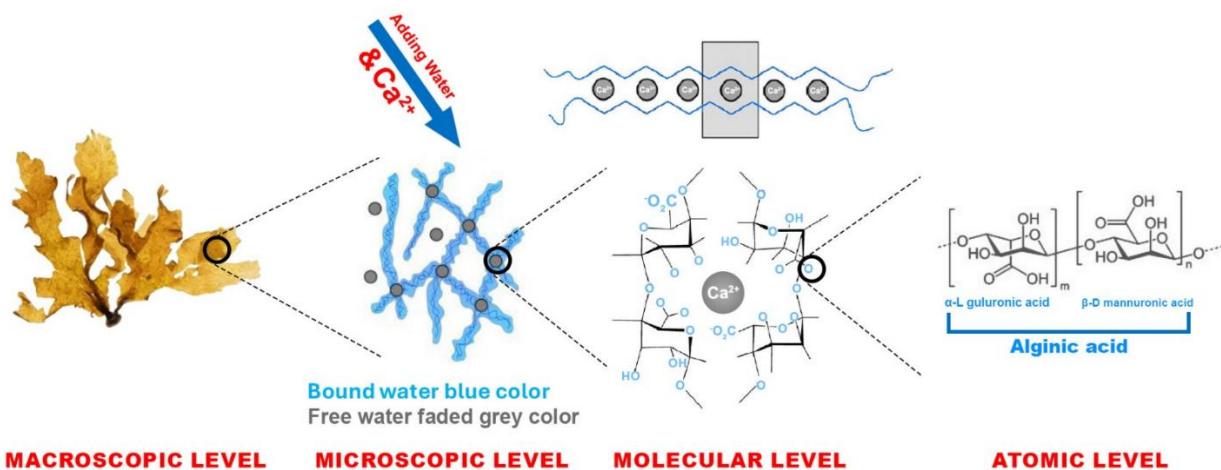
34 distribution, increase in the wall thickness, density, and mechanical properties upon  
35 increasing the  $\text{Ca}^{2+}$  concentration and aging period.

36 *Keywords:* Alginate, hydrogels, water phases, macropores, interconnected fibrous structure,  
37 quantitative analysis, qualitative analysis, drug delivery applications

## 38 1. Introduction

39 Alginates are natural polysaccharides obtained from brown seaweed (Abka-khajouei et al.,  
40 2022). Naturally extracted alginate consist of linear polyanionic polysaccharide chains  
41 connected through a 1-4 glycosidic linkage between  $\alpha$ -guluronic acid (G) and  $\beta$ -mannuronic  
42 acid (M) (Saji et al., 2022). These chains consist of homopolymeric blocks of either G or M  
43 (poly-MM or poly-GG), as well as heteropolymeric blocks formed by alternating M and G  
44 residues (poly-MG) (Sharma et al., 2023). Alginates have the capacity to create hydrogels  
45 with a substantial water content when combined with divalent cations, such as  $\text{Ca}^{2+}$ , which  
46 facilitates the crosslinking of alginate polymeric chains, to form three-dimensional  
47 hydrophilic gel matrices (Daemi and Barikani, 2012; Nagaraja et al., 2021). Alginate  
48 hydrogels are well known in the food (Gheorghita Puscaselu et al., 2020) and biomedical  
49 industry (Hoffman, 2012) including drug delivery (Tønnesen and Karlsen, 2002), tissue  
50 engineering (Sharma et al., 2023), regeneration of cartilages (Neves et al., 2020), 3D  
51 bioprinting and wound healing due to their high-water content, biocompatibility,  
52 biodegradability, and cell encapsulation (Andersen et al., 2015; Tønnesen and Karlsen, 2002).

53 The ultimate properties of alginate materials are regulated by a variety of factors such as the  
54 chemical structure of carbohydrate constituents, the molecular weight of polymeric chain, the  
55 concentration of ions for crosslinking, the extent of hydration and the mobility of the matrix  
56 (Urbanova et al., 2019). Hence, in the design of a drug delivery system employing alginate for  
57 encapsulating membranes, nanoparticles, beads, thin films or scaffolds (Tønnesen and  
58 Karlsen, 2002), the controlled degree of hydration (Forgács et al., 2021), and the various  
59 water phases present, along with the exchange processes between these water phases and their  
60 surroundings, significantly influence the self-assembly and hydrocolloidal organization of  
61 alginate molecules and subsequently impact their viscosity (Akamatsu et al., 2011).


62 The content, distribution and dynamics of water molecules play a crucial role in regulating the  
63 overall chemical and physical properties of the resulting hydrogel (Ostrowska-Czubenko and  
64 Gierszewska-Drużyńska, 2009). The significance of the water composition within the  
65 hydrogel becomes evident through the valuable insights it offers into phenomena such as

66 swelling behavior, transport of nutrients and drugs, mobility, dynamic equilibrium, exchange  
67 processes within various water phases in the hydrogels, their interactions with the external  
68 environment, and numerous diffusive properties (Gun'ko et al., 2017; Hoffman, 2012; Rossi  
69 et al., 2015). To date, insufficient research has been conducted, and limited focus has been  
70 given to this subject, even though water may constitute as much as 99.9 wt. % of the  
71 hydrogel. Recently, two distinct water phases within alginate hydrogels have been identified  
72 using solid-state nuclear magnetic resonance (ssNMR) spectroscopy (El Hariri El Nokab,  
73 2023; El Hariri El Nokab et al., 2022). These phases exhibit divergent chemical shifts, NMR  
74 relaxational behaviors, and line broadening characteristics. The aging period has shown  
75 significant effect on the molecular structure of the alginate hydrogel, where upon aging the  
76 pore formation and distribution increases thus resulting in the alteration and increase in free  
77 water ratio, of the water phase ratios.

78 Many analytical techniques have been established for investigating water characteristics in  
79 polymeric biomaterials, including polysaccharide hydrogels (Cavalieri et al., 2006; Gun'ko et  
80 al., 2017). The most reliable approach involves the combined use of multiple qualitative and  
81 quantitative techniques to assess water content and environments. These techniques  
82 encompass spectroscopic methods, such as ssNMR for studying water phases in  
83 neurodegenerative diseases, poly-peptides and chitosan films (Böckmann et al., 2009;  
84 Capitani et al., 2001; El Hariri El Nokab and van der Wel, 2020; Wang et al., 2017), pulsed  
85 field gradient diffusion NMR for studying water and ion diffusion into interpenetrating  
86 polymeric networks (Meo et al., 2021), FT-IR for investigating the structural changes  
87 occurring during hydrogel formation (Garcia et al., 2008; Pasqui et al., 2012; Roget et al.,  
88 2021) and Raman spectroscopy for studying the hydrophilic/hydrophobic interaction and  
89 degree of entanglement for gel formation (Rossi et al., 2015). Additionally, diffraction and X-  
90 ray scattering techniques provide information on the hydrogen bonding arrangements and  
91 their heat conduction in hydrogels through dynamical inter-molecular interactions (Naohara et  
92 al., 2017; Zhou et al., 2020) are employed, as well as other methods, including differential  
93 scanning calorimetry for quantifying the different water phases and their freezing behaviors  
94 (DSC) (Buchtová et al., 2018; Miyazaki et al., 2002; Panagopoulou et al., 2013), Quasi-elastic  
95 neutron scattering (Noferini et al., 2019), Cryo-electron tomography shows the crystalline  
96 liquid phases (Demurtas et al., 2015), Cryo-SEM provides information on the morphological  
97 and pores structures available (Aston et al., 2016; Buchtová et al., 2018). Small molecular  
98 probes investigate the flowability and diffusability of small nanoparticles in the

99 interconnected fibers and biofilms structures (Amsden, 1998; Rodríguez-Suárez et al., 2020),  
100 thermogravimetric analysis examines the thermal degradation and water dehydration of  
101 polymeric materials (Ostrowska-Czubenko and Gierszewska-Drużyńska, 2009) and rheology  
102 assesses the mechanical properties and density (Liparoti et al., 2021).

103 The formation of alginate hydrogels, as depicted in **Scheme 1**, and its physical and chemical  
104 properties are affected by several conditions including, but not limited to, the crosslinking ion  
105 concentration, pH, temperature, and aging period (Agulhon et al., 2012; Bhujbal et al., 2014;  
106 Brus et al., 2017; Forgács et al., 2021; Urbanova et al., 2019). The tuning of these variables  
107 affects the ratios of water phase inside the alginate hydrogel.



108

109 **Scheme 1.** Schematic representation of the formation of alginate hydrogels via calcium ions crosslinking  
110 extracted from brown seaweed.

111

## 112 2. Experimental Section

113

114 *2.1. Alginate hydrogel sample preparation*

115 Twelve alginate samples were prepared according to the procedure reported in our previous  
116 work (El Hariri El Nokab et al., 2022). Briefly, Alginate gels were prepared by dissolving  
117 alginic acid sodium salt (Sigma Aldrich, CAS: 9005-38-3) in D<sub>2</sub>O-based NaOH (0.025 M)  
118 solution followed by crosslinking the solution into a gel by D<sub>2</sub>O-based CaCl<sub>2</sub> solutions. Four

119 different calcium concentrations were used including 0.75, 1.1, 1.4 and 2.4 wt. % and 3  
120 batches of different aging periods (5 min, 6 and 48 h) were prepared for all the calcium  
121 concentrations (Salomonsen et al., 2009). All samples were freeze dried and rehydrated  
122 according to the following procedure: 30 mg of dehydrated alginate powder were rehydrated  
123 with 100  $\mu$ L deuterated water ( $D_2O$ ). The  $D_2O$  (CAS: 7789-20-0, 99.9 atom %) was supplied  
124 by Sigma-Aldrich and used as received. All hydrogel samples were freshly prepared and there  
125 was no water detected outside the gel (i.e., homogeneous samples with water integrated inside  
126 the gel).

127 All samples were frozen at  $-80$   $^{\circ}C$  for 6 h and then lyophilized using a bench top freeze  
128 dryer (Martin Christ (Osterode am Harz, Germany) Alpha 2-4 LDplus), condenser  
129 temperature  $-80$   $^{\circ}C$ , pressure 100 Pa. The lyophilization time was 48 h for all hydrogels to  
130 ensure that not only free water is lyophilized, but also bound water.

131 *2.2. Alginate hydrogels characterization techniques*

132 *2.2.1. Cryogenic scanning electron microscopy (Cryo-SEM)*

133 Cryo-scanning electron microscopy was used to visualize the fibrous and porous structure for  
134 the alginate gels. Hereto, the field-emission gun scanning electron microscope  
135 (JEOL JSM 7100F) equipped with a cryo-transfer system (Quorum PP3000T) operating at an  
136 accelerated voltage of 3 keV was used. The cryo- and SEM-stage were conditioned at  $-140$   $^{\circ}C$   
137 using liquid nitrogen. Prior to sample transfer from the cryo-preparation device to the  
138 microscope, the samples were coated with a thin layer of Pt using Argon gas. The samples  
139 were mounted on a stub using colloidal graphite/glue 50/50, vitrified in liquid nitrogen and  
140 fractured. To reveal the inner microstructure, sublimation at  $-70$   $^{\circ}C$  for 20 min was applied.

141 *2.2.2. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS)*

142 WAXS and SAXS profiles were measured one after another on a Xeuss 3.0 (Xenocs,  
143 Grenoble, France) equipped with a Genix 3D Cu-source ( $\lambda = 1.54$   $\text{\AA}$ , 50 kV and 0.60 mA) and  
144 an Eiger 1M detector (Dectris, Baden, Switzerland). Sample to detector distance was set at 55  
145 and 360 mm respectively. The combined  $2\theta$ -range captured varies between 0.01-50  $^{\circ}$ . The Ca-  
146 alginate sample was put in a capillary (WJM glass, Berlin, Germany) after which it was  
147 brought in contact with deuterated water to let it hydrate and form the gel. The capillary was  
148 sealed with wax and put in a temperature-controlled stage TMHS600 (Linkam, Salfords,  
149 United Kingdom) after which it was subjected to a temperature profile (from 20  $^{\circ}C$  cooled to -  
150 85  $^{\circ}C$ , heated to 40  $^{\circ}C$  and back cooled to -85  $^{\circ}C$ , all at 10  $^{\circ}C/\text{min}$ ). Acquisition time was set

151 to 60 s. Furthermore, Na-alginate and the dry Ca-alginate before hydration were measured as  
152 reference samples. In this case, acquisition time was set to 600 sec. All profiles were  
153 corrected for background intensity, which resulted in an overhead time of about 10% per  
154 measurement. Scattering coming from the capillary was subtracted. Graphs were made using  
155 Xsact 2.7 (Xenocs, Grenoble, France). Data conversions between  $q$ ,  $2\theta$  and  $d$  were made by  
156 applying the Bragg's law.

157

158 *2.2.3. Differential scanning calorimetry (DSC) protocol*

159 All twelve dry alginate powders (5 min, 6 and 48 h aging time with 0.75, 1.1, 1.4 and 2.4  
160 wt. % Ca concentrations) and their hydrogel counterparts were analyzed by DSC. Four  
161 samples were weighed from each gel batch with different aging times (i.e., 12 hydrated gel  
162 samples in total) and analyzed by DSC. The thermal analysis was performed three times on  
163 each individual sample from the 12 total hydrogel samples to ensure reproducibility of the  
164 measurements (i.e., 36 total measurements for the 12 hydrogel samples). Thermal analysis  
165 was performed using a DSC 25, TA Instruments equipped with a cooling system. 5 mg of  
166 each sample were weighed accurately using a micro-balance and the material was then sealed  
167 in a Tzero hermetic aluminum pan prior to analysis. Thermogravimetric analysis (TGA) was  
168 conducted prior with samples sealed in the hermetic pan to confirm no moisture leakage from  
169 the pan. DSC was performed on all samples to investigate the transition temperatures and  
170 contents of different water phases (i.e., free, and bound water). The thermal analysis of the  
171 dry alginate powders was conducted as a control/reference sample. The samples in the pans  
172 were gradually cooled to -85 °C at 10 °C·min<sup>-1</sup> and kept at this temperature for 15 min (i.e.,  
173 iso-thermal conditions) to ensure all water was frozen. Following that a heating cycle to a  
174 final temperature of 40 °C (using 10 °C/min ramp) was carried out on the samples followed by  
175 a cooling cycle to a final temperature of -85 °C using the same ramp (i.e., 10 °C·min<sup>-1</sup>). 10  
176 cycles from -85 to + 40 °C and back were realized with 10 °C·min<sup>-1</sup> speed. All the  
177 thermograms were normalized (i.e., normalized heat flow). The melting temperatures ( $T_m$ )  
178 and the corresponding enthalpies  $\Delta H_{endo}$  (J/g) were determined for each sample as average  
179 values over 10 heating cycles.

180 *2.2.4. Fourier transform infrared (FT-IR) spectroscopy*

181 FT-IR was employed in transmittance mode using a Shimadzu IRTracer-100 to ascertain the  
182 distinctive functional groups of the dry alginate powders, their hydrogels and pure deuterated  
183 water ( $D_2O$ ). Measurements were conducted within the range of 400 to 4000  $cm^{-1}$ , with 64

184 scans performed at a resolution of 4 cm<sup>-1</sup>.

185

186

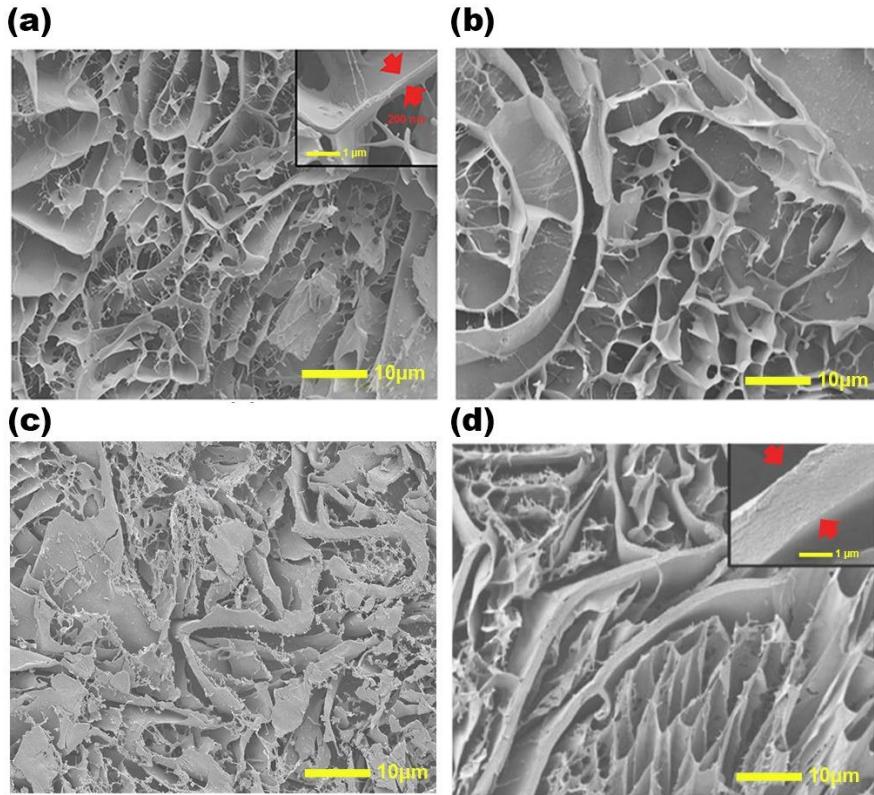
187 *2.2.5. Rheology measurements*

188

189 The linear viscoelasticity of the alginate-Ca<sup>2+</sup> hydrogels were determined 5 min, 6 and 48 h  
190 after mixing alginate and calcium chloride solutions by small-amplitude oscillatory shear  
191 measurements on an Anton Paar MCR302e strain-controlled instrument using a 10 mm  
192 diameter cross-hatched stainless-steel plate-plate (PP-10/S), to prevent wall-slip. Stock  
193 solutions of alginic acid and CaCl<sub>2</sub>·2H<sub>2</sub>O were injected successively in a 2:1 volume ratio in  
194 cylindrical mold (diameter = 10 mm and thickness = 3 mm) to obtain cylindrical hydrogels  
195 with flat surfaces with a 3 wt./vol% alginic acid concentration. The hydrogels were then  
196 transferred with a spatula on the bottom-plate of the rheometer and squeezed until a gap of 2.8  
197 mm is reached between the top and bottom plates. The exceeding hydrogel parts were  
198 carefully cut with a scalpel blade to fit the 10 mm top geometry. All the measurements were  
199 performed with a normal force below 0.1 N ensuring full contact between top plate and  
200 hydrogel without damaging the hydrogel structure. Strain amplitude measurements from 0.1  
201 to 10 % at a fixed angular frequency of 10 rad/s were first conducted to determine the linear  
202 viscoelastic region. Following this step, frequency sweeps were conducted over a range of  
203 frequencies from 10 to 0.1 rad/s at fixed strain of 1 %, well within the linear viscoelastic  
204 regime. The temperature was controlled via a Peltier cell connected to a recirculating bath and  
205 fixed to 20 °C for all the measurements.

206

207 **3. Results and Discussion**


208 Prior to the characterization and the detection of water phases in the alginate hydrogels, the  
209 alginate monomeric fractions and the weight-average molecular weight for the starting  
210 material alginic acid was determined using variable temperature Proton NMR spectroscopy  
211 and size exclusion chromatography in our previous work (El Hariri El Nokab et al., 2022).  
212 The results have shown the following fractions determined to be F<sub>G</sub> = 0.50, F<sub>M</sub> = 0.50,  
213 F<sub>GG</sub> = 0.35, F<sub>GM</sub>=F<sub>MG</sub> = 0.16 and F<sub>MM</sub> = 0.34, with an estimated error of ±5%. The weight-  
214 average molecular weight (M<sub>n</sub> = 118000 g/mol, M<sub>w</sub> = 430700 g/mol) and polydispersity index  
215 (PDI) of 3.65 for the alginate. The diverse water pools within the gels were investigated using  
216 an array of characterization techniques, including WAXS and SAXS, DSC, FT-IR, rheology,

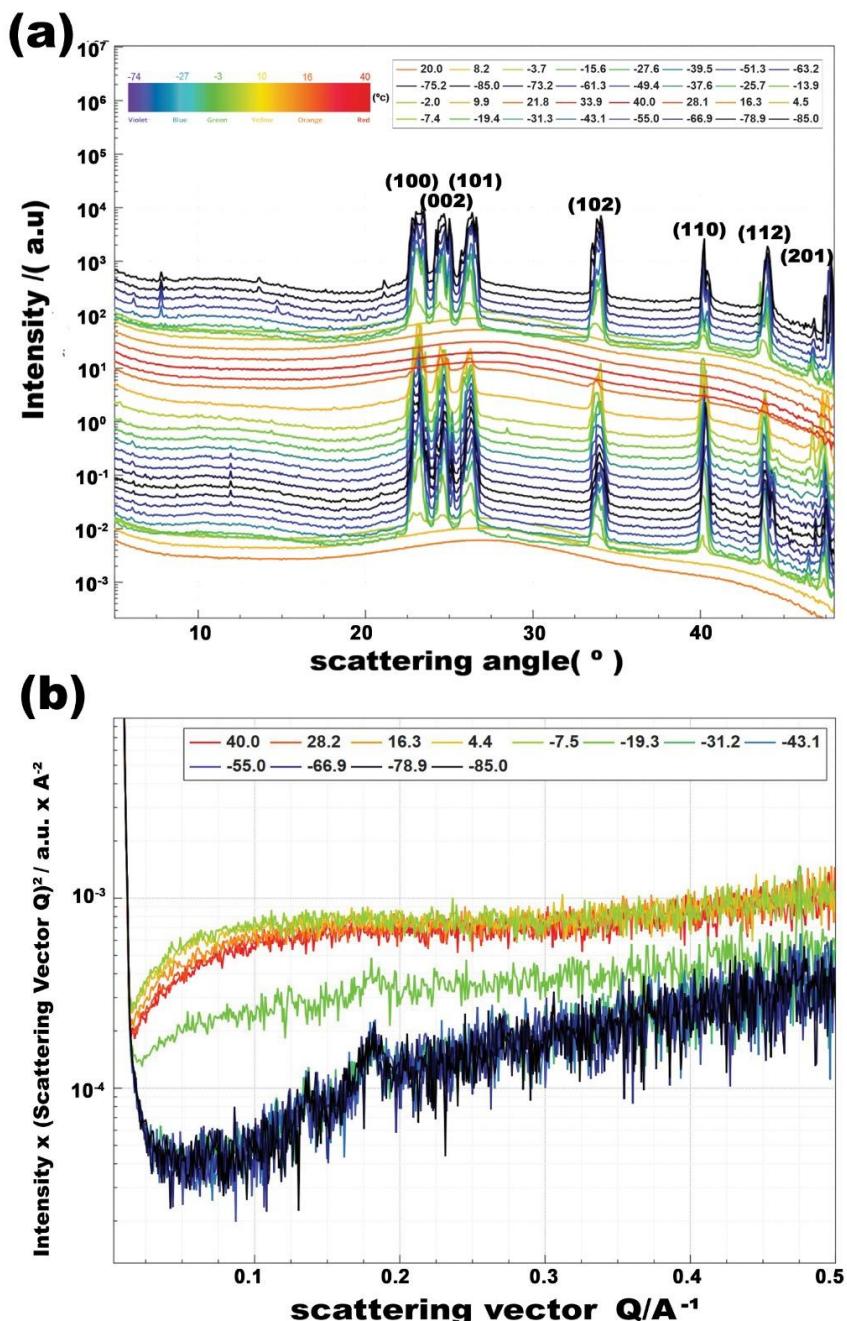
217 and Cryo-SEM. The obtained results were subsequently compared to data previously acquired  
218 through ssNMR spectroscopy (El Hariri El Nokab et al., 2022).

219 The prepared hydrogels underwent Cryo-SEM analysis both before and after the sublimation  
220 of water droplets, following the method outlined by Aston et al. (Aston et al., 2016). Prior to  
221 water sublimation, SEM images depicted in the supplementary material section (**Fig. S1**) for  
222 all measured hydrogels reveal a glassy water phase covering the entire surface, seemingly  
223 confined within the structure with no droplets adsorbed onto the surface. After water  
224 sublimation, the SEM images in **Fig. 1a** illustrate the interconnected fibrous structure of the  
225 alginate cryogel, along with the distribution of pores interspersed within the fibrous network.

226 Following aging, as depicted in **Fig. 1b, d**, the morphological structure undergoes a  
227 smoothing effect, with the fibrous wall exhibiting a significant increase in thickness compared  
228 to the non-aged samples in **Fig. 1a**. The latter showcases a rough surface and a thinner fibrous  
229 wall, approximately 200 nm in thickness, as indicated in the insert. These observed effects are  
230 likely attributed to Ostwald's ripening phenomenon, a well-known occurrence in colloid  
231 chemistry and material science. In this phenomenon, smaller particles dissolve in the solution  
232 upon aging and subsequently re-precipitate onto larger particles, specifically onto the inner  
233 walls of the fibrous structure, aiming to attain a stable thermodynamic state.

234 Conversely, when the calcium concentration is increased to 2.4 wt. %, as shown in **Fig. 1c**,  
235 the morphological surface appears rougher, and the interconnected fibrous structure becomes  
236 less distinct. These morphological alterations diminish with aging, as illustrated in **Fig. 1d**,  
237 where the fibrous structure re-emerges clearly, accompanied by an increase in the degree of  
238 crosslinking. The alginate cross linked particles appear in the inserts of **Fig. 1d** where the  
239 particle size distribution is uniform and size ranging from 60 to 80 nm, perfectly matching  
240 with our previously published data obtained using dynamic light scattering (El Hariri El  
241 Nokab et al., 2022; Smaniotti et al., 2020).




242

243 **Fig. 1.** (a) Cryo-SEM images of (a) 0.75 wt. % Ca alginate hydrogel aged for 5 min, insert for the pore wall  
 244 thickness. (b) 0.75 wt. % Ca concentration and 48 h aging, (c) 2.4 wt. % Ca concentration and 5 min aging, and  
 245 (d) 2.4 wt. % Ca concentration and 48 h aging. Insert for the pore wall thickness and the particle size  
 246 distribution.

247 **Fig. 2a** illustrates the behaviour of the hydrated Ca-crosslinked alginate 0.75 wt. % with 6 h  
 248 aging upon cooling to -85 °C, subsequent heating to 40 °C and once more cooling to -85 °C.  
 249 The sample with 1.4 wt. % and 48 h aging in **Fig. S2a** was also measured with WAXS, but  
 250 the profiles encountered were very similar.

251 At room temperature, the hydrogel was found not to have crystalline material present, as only  
 252 a liquid-like broad feature was present, situated around 27.5°. The profile change upon  
 253 hydration of the gel is comparable to the low and high water content gels (Naohara et al.,  
 254 2017). Already at the third profile, when reaching -3.7 °C, crystalline peaks become present at  
 255 23.2°, 24.7°, 26.2°, 34.0°, 40.2° and 44.1°. These peaks signify the formation of water  
 256 crystals during freezing providing evidence of the presence of free water (Esmaeildoust et al.,  
 257 2022; Malkin et al., 2012). An overview of the peak positions and their spacings is presented  
 258 in **Table S1**. The peak intensity increases when cooling further to -85 °C and decreases again  
 259 when heating to 40 °C is started. The crystalline water peaks remained prevalent until 21.8 °C  
 260 was reached for 0.75 wt. % - 6 h aging and until 9.6 °C for 1.4 wt. % - 48 h aging. During the

261 second cooling cycle, the first profile containing the crystalline peaks is around -7.4 °C. A  
 262 similar profile as for the first cooling cycle was found. The temperatures at which the  
 263 measurements were conducted were not deliberately selected, but are intrinsically associated  
 264 with a measurement time of 60 seconds and certain additional overhead time during the  
 265 measurement process.



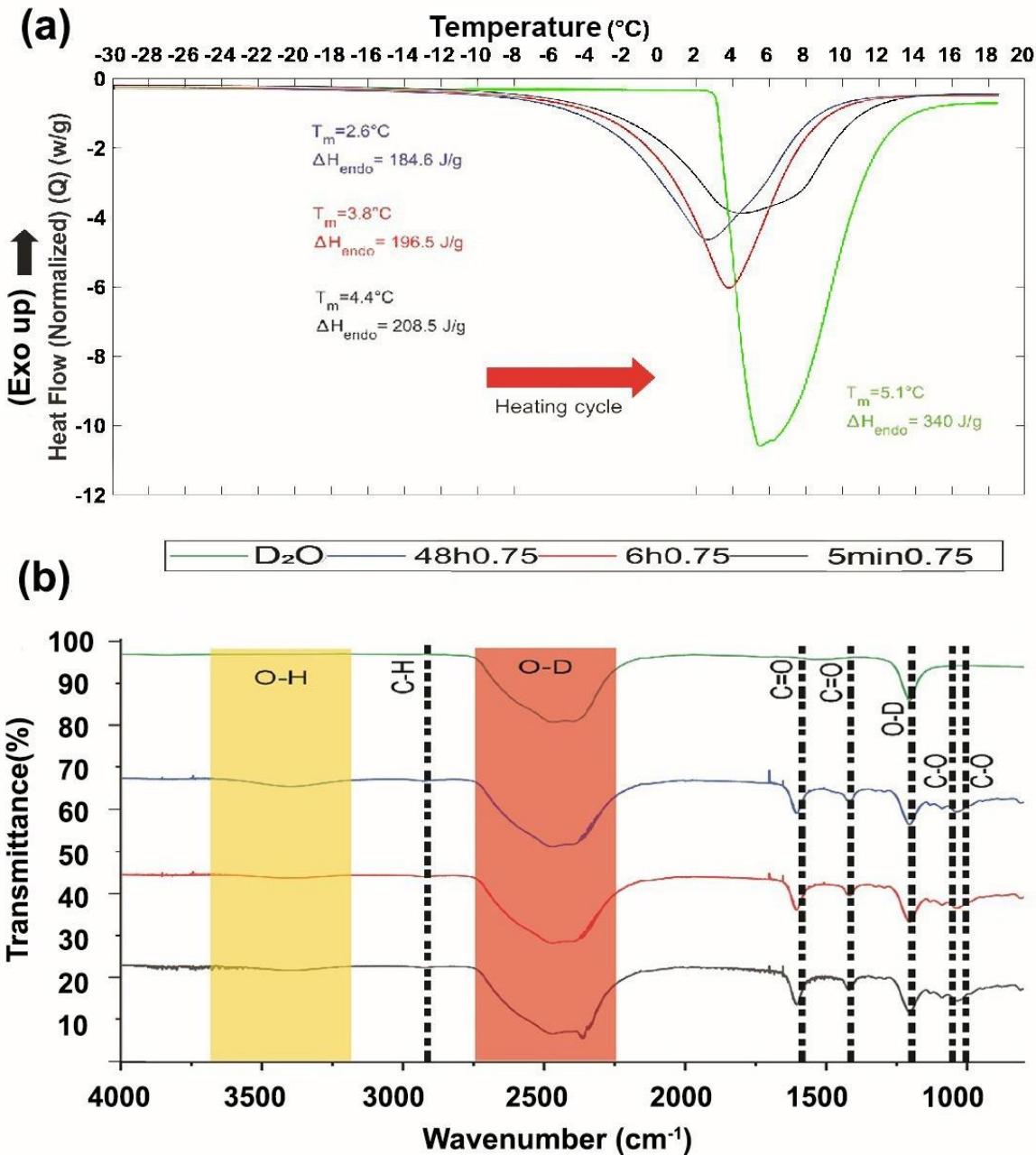
266  
 267 **Fig. 2.** (a) Variable temperature WAXS experiments with cycle profiles from 20 to -85 °C for the first cycle and  
 268 then from 40 to -85 °C for the second cycle (b) variable temperature SAXS patterns with same temperature  
 269 program for 0.75 wt. % Ca alginate 6-h aging hydrogel.

270 The SAXS analysis of alginate hydrogels presented in **Fig. 2b** and **Fig. S2b** only present the  
271 data of the second cooling cycle, i.e. from 40 °C to -85 °C. At 40 °C, for both samples, a clear  
272 structure caused by the association of the alginate chains was detected. Upon cooling and  
273 crystallization of the water present, the structure disappeared. Nonetheless, in the case of  
274 0.75 wt. % - 6 h aging the peak was identified at approximately  $0.10 \text{ \AA}^{-1}$ , while for 1.4 wt. % -  
275 48 h aging the maximum was shifted towards a lower  $q$  value of  $0.04 \text{ \AA}^{-1}$ . According to the  
276 analysis made by (Hermansson et al., 2016), this indicated that the gel with higher  $\text{Ca}^{2+}$   
277 concentration and longer aging time has a denser structure. It was indeed shown by (Stokke et  
278 al., 2000) that the SAXS profiles can change based on the  $\text{Ca}^{2+}$  concentration.

279 When freezing the water present in 0.75 wt. % - 6 h aging, two small peaks around  
280  $q = 0.138 \text{ \AA}^{-1}$  and  $0.183 \text{ \AA}^{-1}$ , consistent with spacings of  $d = 45.5 \text{ \AA}$  and  $34.3 \text{ \AA}$  were  
281 identified. Although it is unclear where these spacings can be related to, it has been reported  
282 before for peaks in the region between 0.1 and 0.2 for alginate gels (Reig-Vano et al., 2023).  
283 The formation of the gel and the subsequent freezing of the water was reversible for both  
284 samples.

285 **Fig. S2c,d** show the WAXS and SAXS data obtained for Na-alginate and the dehydrated Ca-  
286 alginate gels 0.75 wt. % with 6 h aging and 1.4 wt. % with 48 h aging. It is clear that the  
287 SAXS profiles showed no characteristic features in all cases. On the other hand in WAXS, it  
288 can be seen that the Na-alginate profile consists of two broad amorphous-like features,  
289 situated around  $13.5^\circ$  and  $21.5^\circ$ . These features were also encountered for samples with low  
290 water content (Naohara et al., 2017). Furthermore, no crystalline peaks could be detected.  
291 Conversely, WAXS measurements for the dehydrated gels revealed a crystalline peak situated  
292 at  $32.2^\circ$  and superimposed upon broad amorphous-like features, indicating the dual nature of  
293 the dehydrated Ca-alginate gels.

294 Polymers, whether natural or synthetic, featuring hydrophilic groups like hydroxyl, carboxyl,  
295 and carbonyl groups, as in the case of alginates, exhibit distinct interactions with water,  
296 ranging from strong to weak (Guan et al., 2011; Hatakeyama and Hatakeyama, 1998;  
297 Hatakeyama et al., 1985; Ostrowska-Czubenko and Gierszewska-Drużyńska, 2009). This  
298 interaction significantly impacts the thermal properties of both polymers and water. The  
299 characterization of water states within a polymer provides valuable insights into the  
300 absorption, diffusion, and permeation properties of hydrophilic materials. The mechanical and  
301 physical attributes of hydrophilic materials can undergo significant alterations upon water  
302 absorption, attributed to the modification of the polymer chain structure. Differential scanning


303 calorimetry is a commonly used technique for characterizing such transitions.  
304 Due to phase transition behaviour and molecular mobility (Hatakeyama et al., 1985; Yoshida  
305 et al., 1990) during the interaction between water and polymer molecules, three forms of  
306 water are classified: (i) *non-freezing bound water*, (ii) *freezing bound water* and (iii) *bulk/free*  
307 *water*. Observing the first-order phase transition of water fractions (i.e., non-freezing bound  
308 water) closely associated with the polymer matrix is typically challenging and does not show  
309 a phase transition by calorimetric analysis (Yoshida et al., 1993, 1990). Water fractions less  
310 closely associated with the polymer matrix demonstrate melting/crystallization, exhibiting  
311 considerable supercooling and significantly lower enthalpy compared to bulk/free water.  
312 These water fractions are denoted as freezing bound water. The water fractions described as  
313 freezing bound water collectively constitute the bound water content when combined with  
314 non-freezing water fractions (i.e., total bound water = freezing bound water + non-freezing  
315 bound water) (Yoshida et al., 1993, 1992, 1990). Water exhibiting melting/crystallization  
316 characteristics like normal (bulk/free) water is termed freezing water. In water-insoluble  
317 hydrophilic polymers like alginates, bound water disrupts hydrogen bonding among the  
318 hydroxyl groups of the polymer (Hatakeyama and Hatakeyama, 1998). The content of bound  
319 water is contingent upon the chemical composition and high-order structure of each polymer  
320 and cannot be generalized for all polymers.

321 **Fig. 3a** displays the DSC heating thermograms and **Fig. S3** displays both the heating and  
322 cooling thermograms, with the melting temperatures and corresponding enthalpies indicated  
323 for each melting peak. It is noteworthy to mention that the aqueous solution, whether in bulk  
324 or confined within each hydrogel, contains salts essential for the synthesis of the hydrogels.  
325 Upon increasing the aging time, the water in the alginate hydrogel sample melts close to the  
326 melting temperature of D<sub>2</sub>O. This can be seen from the shift in the melting temperature (T<sub>m</sub>)  
327 upon increasing the aging time of the hydrogel. The freezing bound water's melting  
328 temperature (T<sub>m</sub>) typically exhibits a lower value than that of bulk/free water, primarily  
329 influenced by hydrogen bonding (Guan et al., 2011; Hatakeyama and Hatakeyama, 1998;  
330 Ostrowska-Czubenko and Gierszewska-Drużyńska, 2009). However, this T<sub>m</sub> may undergo  
331 slight changes or remain constant across various polymer/water mixtures (Guan et al., 2011).  
332 More noticeable and important, the melting enthalpies of the three alginate hydrogels (184.6,  
333 196.5 and 208.5 J/g) are lower than the melting enthalpy of pure D<sub>2</sub>O (340 J/g). This might  
334 be attributed to the fact that extending the aging duration of the Ca<sup>2+</sup> cross-linked alginate  
335 from 5 min to 6 h induces the generation of more pores in the alginate microstructure. This  
336 alteration prompts a shift in the water pools, causing them to exhibit behaviours more closely

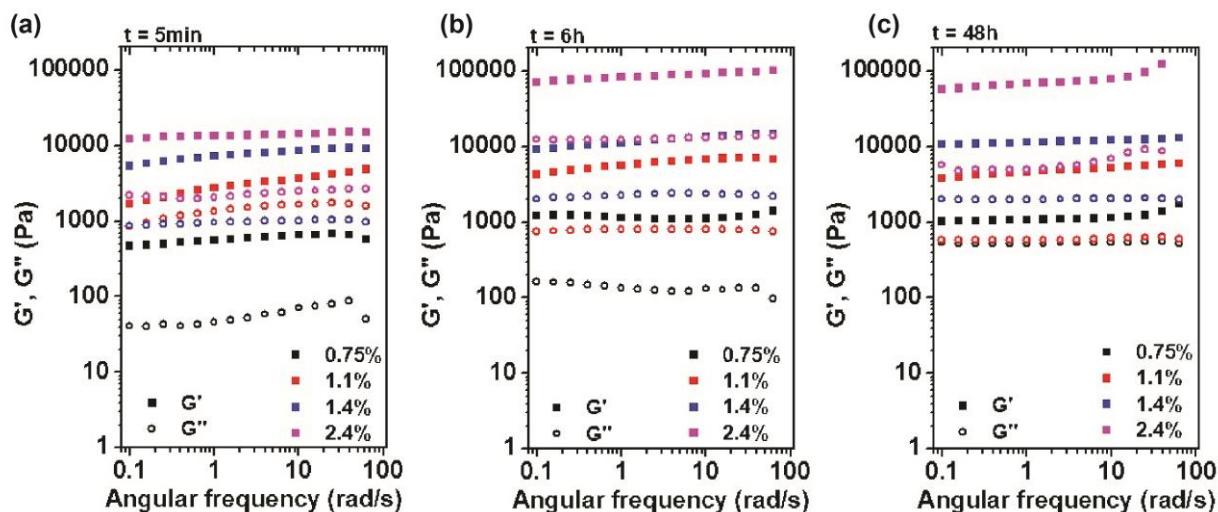
337 resembling free water, including crystallization, and melting characteristics akin to bulk  
338 deuterated water ( $D_2O$ ). The anticipated consequence of this aging effect is a diminished  
339 interaction between water molecules and the walls of interconnected alginate fibers. This  
340 process is thought to reach a steady state slightly after 6 h as the ratios of bound to free water  
341 do not significantly change between 6 and 48 h of aging. All results including enthalpies,  $T_m$   
342 values, and ratios of free/bound water, are summarized in **Table S2**.

343 Observing the separation of free water and freezable bound water in the cooling cycle poses  
344 challenges due to their continuous crystallization process (Buchtová et al., 2018; Guan et al.,  
345 2011; Hatakeyama and Hatakeyama, 1998; Hatakeyama et al., 1985; Ostrowska-Czubenko  
346 and Gierszewska-Drużyńska, 2009; Yoshida et al., 1993, 1992, 1990). Consequently, heating  
347 traces, specifically endothermic peaks, are selected for a quantitative analysis of water content  
348 (Buchtová et al., 2018). The results reveal that approximately 54 wt. % of waters within the  
349 5 min aged hydrogel, 58 wt. % within the 6 h aged hydrogel, and 61 wt. % confined in the  
350 48 h aged hydrogel undergo solid-to-liquid phase transition in the explored temperature range  
351 (- 85 °C to 40 °C). The remaining water, approximately 46 wt. %, 42 wt. % and 39 wt. %  
352 respectively, remains unchanged until at least -85 °C. Overall, DSC analysis indicates that  
353 alginate-based hydrogels house confined water exhibiting two distinct physical behaviours,  
354 with varying amounts depending on aging time. Generally, confined water undergoing a  
355 phase transition near bulk water temperatures is labelled free or bulk-like water (Buchtová et  
356 al., 2018). Conversely, water undergoing phase change at different temperatures is  
357 categorized as interfacial, "*bound*," or hydration water (Jhon and Andrade, 1973; Li et al.,  
358 2008; Qu et al., 2000; Sekine and Ikeda-Fukazawa, 2009).

359



360  
361 **Fig. 3.** (a) DSC thermograms of the heating/melting cycle of 1.4 wt. % Ca cross-linked alginate hydrogels at  
362 different aging times (5 min, 6 and 48 h). (b) FT-IR data for 0.75 wt. % Ca cross-linked alginate hydrogels at  
363 different aging times (5 min, 6 and 48 h). Deuterated water ( $\text{D}_2\text{O}$ ) was used as a reference sample in both  
364 techniques.


365 In conclusion, the water confined in 6 h aged hydrogel is composed of approx. 58 wt. % of  
366 bulk-like water and 42 wt. % of *bound* hydration water. The latter is presumably situated at  
367 the interfaces with the hydrophilic hydrogel matrix where it may interact via hydrogen  
368 bonding with the alginate polymer chains. Consequently, the behaviour of bound water is  
369 modified as referred to the bulk/free-like water. The bound water forms a physical transition

370 layer between the pore wall of the hydrogel matrix and the bulk-like water which is located  
371 far from the interfaces. The amounts of bound water present in alginate-based hydrogels are  
372 like the results already reported, like for example in chitosan-based hydrogels (Qu et al.,  
373 2000).

374 FT-IR spectroscopy was performed on alginate hydrogels with different aging times in  
375 **Fig. 3b** and various calcium concentrations in **Fig. S4a, b**, then compared to the alginate in  
376 powder form in **Fig. S4c, d** and to pure D<sub>2</sub>O reference sample in **Fig. 3b**. The alginate shift  
377 assignment summarized in **Table S3** includes the O-H stretching appearing as a small peak in  
378 the hydrogel at 3400 cm<sup>-1</sup>, while appearing significantly as a broad peak in the powder  
379 samples extended between 3000-3600 cm<sup>-1</sup> (Daemi and Barikani, 2012). The C-H stretching appears at  
380 2850-2920 cm<sup>-1</sup>, following that the two peaks at 1650 and 1460 cm<sup>-1</sup> correspond to the C=O  
381 asymmetric and symmetric stretching, respectively (Daemi and Barikani, 2012). The C-O  
382 stretching within the pyranose region and the outside appear at 1110 and 1010 cm<sup>-1</sup>,  
383 respectively (Daemi and Barikani, 2012). The O-D stretching and bending peaks (Kim et al.,  
384 2002) appear significantly in the alginate hydrogel samples and the pure D<sub>2</sub>O reference  
385 sample, between 2250-2750 cm<sup>-1</sup> and 1200 cm<sup>-1</sup>, respectively (Kim et al., 2002). The O-D  
386 stretching could be deconvoluted into overlapped three peaks at 2395, 2479 and 2587 cm<sup>-1</sup>  
387 (Perakis et al., 2016). Upon increasing the aging time negligible difference was detected  
388 between the hydrogels, meanwhile upon increasing the calcium concentration the intensity  
389 increased for the C-O stretching vibration between 1100-700 cm<sup>-1</sup> and this could be related to  
390 the deformation in the C-C-H and C-O-H stretching mode in the pyranose region of the  
391 polymannuronate part of the alginate which could be partially cross-linked with the calcium  
392 ions (Daemi and Barikani, 2012).

393 The formation of alginate hydrogels by mixing alginic acid and CaCl<sub>2</sub>.2H<sub>2</sub>O was also  
394 followed by linear rheology (**Fig. 4**) (Kuo and Ma, 2008). Several ratios between Ca<sup>2+</sup> and  
395 alginic acid were investigated, namely 0.75, 1.1, 1.4 and 2.4 wt. %, and the linear viscoelastic  
396 properties of the final hydrogels were measured 5 min, 6 h and 48 h after preparation. First,  
397 we can observe that 5 min after mixing alginic acid and Ca<sup>2+</sup> all the samples already behave  
398 rheologically speaking as a hydrogel with a storage modulus (G') overpassing the loss  
399 modulus (G'') on the whole range of frequencies investigated (**Fig. 4a**). This indicates the  
400 strong and long-lived interactions between Ca<sup>2+</sup> and G-units that form the “egg-box” structure  
401 commonly reported in the literature (Atkins et al., 1973; Grant et al., 1973) In parallel, upon  
402 increasing the Ca<sup>2+</sup> to alginic acid weight ratio from 0.75 to 2.4 wt. %, the stiffness of the

403 hydrogels increased with plateau moduli values of  $\approx 0.6$  kPa and  $\approx 10$  kPa, respectively. This  
 404 drastic increase reflects the higher density of ionic associations upon increasing the  $\text{Ca}^{2+}$   
 405 content of the hydrogel. Second, after 6 h of aging time, all the prepared hydrogels showed an  
 406 increase of the stiffness (**Fig. 4b**). While for the hydrogels prepared with 0.75, 1.1 or  
 407 1.4 wt. %  $\text{Ca}^{2+}$  this increase of plateau modulus appears to roughly double ( $\approx 0.6$  kPa to  
 408  $\approx 1$  kPa,  $\approx 2.5$  kPa to  $\approx 5$  kPa,  $\approx 7$  kPa to  $\approx 10$  kPa, respectively), meanwhile the modulus of  
 409 the hydrogel prepared with 2.4 wt %  $\text{Ca}^{2+}$  shows almost a 9-fold increase (from  $\approx 10$  kPa to  
 410  $\approx 90$  kPa). By further increasing the aging time to 48 h (**Fig. 4c**), no significant change in the  
 411 linear viscoelastic response was observed for any of the  $\text{Alg}-\text{Ca}^{2+}$  hydrogels, indicating that  
 412 the maximum crosslinking degree was obtained within the first 6 h after mixing. This aging  
 413 process is probably due to the limited diffusion speed of the free  $\text{Ca}^{2+}$  ions within the  $\text{Alg}-$   
 414  $\text{Ca}^{2+}$  crosslinked matrix explaining why this process is more prominent at higher  $\text{Ca}^{2+}$  to  
 415 alginic acid ratios (Holte et al., 2006; Pasut et al., 2008). The increase in the mechanical  
 416 properties of the alginate hydrogels upon increasing the  $\text{Ca}^{2+}$  concentration or the aging time  
 417 supports Ostward's ripening mechanism (increase in the wall thickness of the interconnecting  
 418 fibers) which happens during aging periods of several materials in food industry (Khazzar et  
 419 al., 2023; Nájera et al., 2021).



420

421 **Fig. 4.** Linear rheology measurements performed on alginate hydrogels with  $\text{Ca}^{2+}$  to alginic acid ratios of 0.75,  
 422 1.1, 1.4 and 2.4 wt. % at (a) 5 min, (b) 6 h and (c) 48 h aging time.

423

424 Alginate is known to serve as an encapsulating material due to its ability to form hydrogels  
 425 under mild conditions, protecting small drug molecules such as antioxidants from degradation  
 426 while facilitating controlled release (Pedrali et al., 2023). This encapsulation process involves

427 the formation of alginate beads or microspheres, where drug molecules are entrapped within  
428 the gel matrix. Alginates perform better when chemically modified or mixed with other  
429 carbohydrates and proteins.

430 Modifying alginate can have a significant impact on the behavior of drug molecules  
431 encapsulated within it. By altering the chemical composition (e.g., graft modification of  
432 alginate) or physical properties of alginate (interactions with other carbohydrates and  
433 proteins), the structure can be tuned to enhance the drug release kinetics, gel stability, and  
434 release selectivity (Zheng et al., 2007). Chemical modifications like grafting functional  
435 groups onto alginate chains can impart specific properties such as photo and pH  
436 responsiveness, which can be advantageous for targeted drug delivery to specific sites within  
437 the body. Additionally, physical modification such as blending alginate with other  
438 carbohydrates or protein polymers e.g., soy protein or whey protein can further tailor the gels  
439 properties, thus leading to improved drug loading capacity and enhanced biocompatibility  
440 (Pedrali et al., 2023; Zheng et al., 2007).

441 In the current work we have alternated the crosslinking ion concentration and the aging period  
442 (in two different batches) and investigated their effect on the alginate hydrogels. Increasing  
443 calcium concentration leads to rougher morphological surfaces and less distinct  
444 interconnected fibrous structures, as shown by Cryo-SEM, while aging smoothens the  
445 morphological structure and thickens the fibrous wall. WAXS and SAXS analyses revealed  
446 the coexistence of amorphous and crystalline phases in Ca-alginate gels, with Variable-  
447 Temperature WAXS identifying the transition temperature for water crystal formation, while  
448 SAXS indicated that gels with higher  $\text{Ca}^{2+}$  concentration and longer aging time exhibited  
449 denser structures. DSC shows that confined water exhibits two distinct physical behaviors,  
450 influenced by aging time, while in FT-IR analysis, increased calcium concentration correlates  
451 with crucial structural changes in the poly-MM part essential for  $\text{Ca}^{2+}$  crosslinking. Linear  
452 rheology further indicates that  $\text{Ca}^{2+}$  enhances hydrogel mechanical strength, reaching peak  
453 crosslinking within the initial 6 h post-mixing. Comparing and coupling different analytical  
454 techniques (i.e., qualitative versus quantitative approaches) allows us to understand distinct  
455 water phases present in alginate hydrogels.

456

457

458

459 **4. Conclusions**

460 In summary, a comparative study was carried out using an array of advanced analytical  
461 techniques to compare their capabilities in detecting and quantifying the two water phases in  
462 present alginate hydrogels. Alginate hydrogels composed of only 2 wt. % have shown to  
463 possess highly porous morphology with interconnected fibrous structure dominating the  
464 polymeric region. DSC has shown several advantages over all other techniques regarding its  
465 accessibility, rapid testing, and quantitative results in detecting the two different populations  
466 of water inside the hydrogel. Meanwhile, all other analytical techniques could perform  
467 qualitatively in detecting the free-like water phase which appears confined in the macroporous  
468 structure of the hydrogel, but still possesses high mobility at ambient condition and presents  
469 the freezing transitions state at around 4 °C. Cryo-SEM has brought deep insights into the  
470 interconnected fibrous structure of the gel where bound-like water phase exists additionally to  
471 the macropores where free-like water dominates and possess high mobility. X-ray scattering  
472 techniques with variable temperature control units are promising in detecting the different  
473 water phases, since water phases with different interactions with their surroundings possess  
474 variable freezing points, thus forming different crystallizing structures and using different  
475 mechanisms and pathways to crystallize which can be detected easily using the X-ray  
476 scattering techniques. Alginate hydrogels are considered promising sustainable materials for  
477 the biomedical industry including tissue engineering, drug delivery and wound healing since  
478 they have a high ratio of free-like water with high mobility which is beneficial for the  
479 diffusion of active pharmaceutical ingredients, nutrients, and waste products, and insures the  
480 survivability, migration, and proliferation of the encapsulated cells.

481 **CRediT authorship contribution statement**

482 **Mustapha El Hariri El Nokab:** Conceptualization, Investigation, Formal analysis,  
483 Visualization, Writing – original draft. **Julien Es Sayed:** Investigation, Formal analysis,  
484 Visualization. **Fien De Witte:** Conceptualization, Investigation, Formal analysis,  
485 Visualization. **Koen Dewettinck:** Supervision. **Ahmed Elshewy:** Conceptualization,  
486 Investigation. **Zhenlei Zhang:** Formal analysis. **Paul H. M. Van Steenberge:**  
487 Conceptualization. **Tuo Wang:** Writing – review & editing. **Khaled O. Sebakhy:**  
488 Conceptualization, Investigation, Formal analysis, Visualization, Supervision, Writing –  
489 original draft and Project administration.

490

491 **Declaration of competing interest**

492 The authors declare that they have no known competing financial interests or personal  
493 relationships that could have appeared to influence the work reported in this paper.

494 **Acknowledgements**

495 We would like to thank the Hercules foundation for its financial support in the acquisition of  
496 the scanning electron microscope JEOL JSM-7100F equipped with the cryo-transfer system  
497 Quorum PP3010T (grant no. AUGE-09-029) used in this research. The Hercules foundation is  
498 recognized for funding the Xenocs Xeuss 3.0 X-ray Scattering (XRS) equipment (FWO  
499 Hercules Grant AUGE/17/29). Sincere appreciation to the Food Structure & Function  
500 Research Group, Ghent University for providing access to SAXS and WAXS. T.W. thanks  
501 the support from National Science Foundation (NSF) under the grant number of MCB-  
502 2308660. The authors thank Engineer Mohamed Saeed Elgamasy for the artwork provided.

503  
504 **Appendix A. Supplementary data**

505 The following is the Supplementary data to this article: **Fig. S1.** Cryo-SEM images before  
506 D<sub>2</sub>O sublimation for alginate hydrogels with different Ca concentration and aging time, (a)  
507 0.75 wt. % Ca concentration and 5 min aging, and (b) 2.4 wt. % Ca concentration and 48 h  
508 aging. **Fig. S2.** (a) WAXS and (b) SAXS patterns for alginate hydrogel with 1.4 wt. % Ca  
509 concentration and 48 h aging time. (c) WAXS and (d) SAXS patterns for sodium alginate  
510 powder (alginic acid starting material) and calcium alginate (dehydrated alginate hydrogel).  
511 **Table S1.** Wide-angle X-ray scattering peaks assessed for frozen water in Ca-alginate  
512 hydrogels. Peaks were assessed based on 0.75 wt. % - 6 h aging gel at -85 °C. **Figure S3.**  
513 DSC thermograms of the cooling cycle (upper part: blue arrow) and the heating cycle (lower  
514 part: red arrow) of 0.75 wt. % Ca<sup>2+</sup> cross-linked alginate hydrogels at different aging times (5  
515 min, 6 and 48 h) and the deuterated water (D<sub>2</sub>O) as a reference sample for comparison. **Table**  
516 **S2.** Summary of DSC results of different alginate hydrogels. **Fig. S4.** FT-IR sack plots for  
517 alginate hydrogels with different Ca concentrations and aging time. (a) 0.75 wt. % Ca  
518 concentration hydrogels with different aging time, (b) 2.4 wt. % Ca concentration hydrogels  
519 with different aging time (c) 0.75 wt. % Ca concentration powders with different aging time,  
520 (b) 2.4 wt. % Ca concentration powders with different aging time. **Table S3.** Peak positions  
521 and assignments for FT-IR spectra of alginate hydrogels.

522

Abka-khajouei, R., Tounsi, L., Shahabi, N., Patel, A.K., Abdelkafi, S., Michaud, P., 2022. Structures, Properties and Applications of Alginates. *Marine Drugs* 20, 364. <https://doi.org/10.3390/md20060364>.

Agulhon, P., Robitzer, M., David, L., Quignard, F., 2012. Structural Regime Identification in Ionotropic Alginate Gels: Influence of the Cation Nature and Alginate Structure. *Biomacromolecules* 13, 215–220. <https://doi.org/10.1021/bm201477g>.

Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., Nakao, S., 2011. Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. *Journal of Colloid and Interface Science* 363, 707–710. <https://doi.org/10.1016/j.jcis.2011.08.014>.

Amsden, B., 1998. Solute Diffusion within Hydrogels. Mechanisms and Models. *Macromolecules* 31, 8382–8395. <https://doi.org/10.1021/ma980765f>.

Andersen, T., Auk-Emblem, P., Dornish, M., 2015. 3D Cell Culture in Alginate Hydrogels. *Microarrays* 4, 133–161. <https://doi.org/10.3390/microarrays4020133>.

Aston, R., Sewell, K., Klein, T., Lawrie, G., Grøndahl, L., 2016. Evaluation of the impact of freezing preparation techniques on the characterisation of alginate hydrogels by cryo-SEM. *European Polymer Journal* 82, 1–15. <https://doi.org/10.1016/j.eurpolymj.2016.06.025>.

Atkins, E.D.T., Nieduszynski, I.A., Mackie, W., Parker, K.D., Smolko, E.E., 1973. Structural components of alginic acid. II. The crystalline structure of poly- $\alpha$ -L-guluronic acid. Results of X-ray diffraction and polarized infrared studies. *Biopolymers* 12, 1879–1887. <https://doi.org/10.1002/bip.1973.360120814>.

Bhujbal, S.V., Paredes-Juarez, G.A., Niclou, S.P., de Vos, P., 2014. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. *Journal of the Mechanical Behavior of Biomedical Materials* 37, 196–208. <https://doi.org/10.1016/j.jmbbm.2014.05.020>.

Böckmann, A., Gardiennet, C., Verel, R., Hunkeler, A., Loquet, A., Pintacuda, G., Emsley, L., Meier, B.H., Lesage, A., 2009. Characterization of different water pools in solid-state NMR protein samples. *J Biomol NMR* 45, 319–327. <https://doi.org/10.1007/s10858-009-9374-3>.

Brus, J., Urbanova, M., Czernek, J., Pavelkova, M., Kubova, K., Vyslouzil, J., Abbrent, S., Konefal, R., Horský, J., Vetchy, D., Vysloužil, J., Kulich, P., 2017. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. *Biomacromolecules* 18, 2478–2488. <https://doi.org/10.1021/acs.biomac.7b00627>.

Buchtová, N., D'Orlando, A., Judeinstein, P., Chauvet, O., Weiss, P., Le Bideau, J., 2018. Water dynamics in silanized hydroxypropyl methylcellulose based hydrogels designed for tissue engineering. *Carbohydrate Polymers* 202, 404–408. <https://doi.org/10.1016/j.carbpol.2018.08.143>.

Capitani, D., Crescenzi, V., A. A. De Angelis, and, Segre, A.L., 2001. Water in Hydrogels. An NMR Study of Water/Polymer Interactions in Weakly Cross-Linked Chitosan Networks. *Macromolecules* 34, 4136–4144. <https://doi.org/10.1021/ma002109x>.

Cavalieri, F., Chiessi, E., Finelli, I., Natali, F., Paradossi, G., Telling, M.F., 2006. Water, Solute, and Segmental Dynamics in Polysaccharide Hydrogels. *Macromol. Biosci.* 6, 579–589. <https://doi.org/10.1002/mabi.200600077>.

Daemi, H., Barikani, M., 2012. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. *Scientia Iranica* 19, 2023–2028. <https://doi.org/10.1016/j.scient.2012.10.005>.

Demurtas, D., Guichard, P., Martiel, I., Mezzenga, R., Hébert, C., Sagalowicz, L., 2015. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. *Nat Commun* 6, 8915. <https://doi.org/10.1038/ncomms9915>.

El Hariri El Nokab, M., 2023. Alginate a valuable blend from nature investigated using solid state NMR spectroscopy (PhD thesis). University of Groningen, Groningen. <https://doi.org/10.33612/diss.639196779>.

El Hariri El Nokab, M., Lasorsa, A., Sebakhy, K.O., Picchioni, F., van der Wel, P.C.A., 2022. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. *Food Hydrocolloids* 127, 107500. <https://doi.org/10.1016/j.foodhyd.2022.107500>.

El Hariri El Nokab, M., van der Wel, P.C.A., 2020. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. *Carbohydrate Polymers* 240, 116276. <https://doi.org/10.1016/j.carbpol.2020.116276>.

Esmaeildoost, N., Jönsson, O., McQueen, T.A., Ladd-Parada, M., Laksmono, H., Loh, N.-T.D., Sellberg, J.A., 2022. Heterogeneous Ice Growth in Micron-Sized Water Droplets Due to Spontaneous Freezing. *Crystals* 12, 65. <https://doi.org/10.3390/crust12010065>.

Forgács, A., Papp, V., Paul, G., Marchese, L., Len, A., Dudás, Z., Fábián, I., Gurikov, P., Kalmár, J., 2021. Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel. *ACS Appl. Mater. Interfaces* 13, 2997–3010. <https://doi.org/10.1021/acsami.0c17012>.

Garcia, H., Barros, A.S., Gonçalves, C., Gama, F.M., Gil, A.M., 2008. Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. *European Polymer Journal* 44, 2318–2329. <https://doi.org/10.1016/j.eurpolymj.2008.05.013>.

Gheorghita Puscaselu, R., Lobuc, A., Dimian, M., Covasa, M., 2020. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. *Polymers* 12. <https://doi.org/10.3390/polym12102417>.

Grant, G.T., Mon, E.R., Rees, S.D.A., 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model. *FEBS LETTERS* 32, 195–198. [https://doi.org/10.1016/0014-5793\(73\)80770-7](https://doi.org/10.1016/0014-5793(73)80770-7).

Guan, L., Xu, H., Huang, D., 2011. The investigation on states of water in different hydrophilic polymers by DSC and FTIR. *Journal of Polymer Research* 18, 681–689. <https://doi.org/10.1007/s10965-010-9464-7>.

Gun'ko, V., Savina, I., Mikhalkovsky, S., 2017. Properties of Water Bound in Hydrogels. *Gels* 3, 37. <https://doi.org/10.3390/gels3040037>.

Hatakeyama, H., Hatakeyama, T., 1998. Interaction between water and hydrophilic polymers. *Thermochimica Acta* 308, 3–22. [https://doi.org/10.1016/S0040-6031\(97\)00325-0](https://doi.org/10.1016/S0040-6031(97)00325-0).

Hatakeyama, T., Nakamura, K., Yoshida, H., Hatakeyama, H., 1985. Phase transition on the water-sodium poly(styrenesulfonate) system. *Thermochimica Acta* 88, 223–228. [https://doi.org/10.1016/0040-6031\(85\)85433-2](https://doi.org/10.1016/0040-6031(85)85433-2).

Hermansson, E., Schuster, E., Lindgren, L., Altskär, A., Ström, A., 2016. Impact of solvent quality on the network strength and structure of alginate gels. *Carbohydrate Polymers* 144, 289–296. <https://doi.org/10.1016/j.carbpol.2016.02.069>.

Hoffman, A.S., 2012. Hydrogels for biomedical applications. *Advanced Drug Delivery Reviews* 64, 18–23. <https://doi.org/10.1016/j.addr.2012.09.010>.

Holte, O., Tonnesen, H.H., Karlsen, J., 2006. Measurement of diffusion through calcium alginate gel matrices. *Pharmazie* 61, 30–34.

Jhon, M.S., Andrade, J.D., 1973. Water and hydrogels. *Journal of Biomedical Materials Research* 7, 509–522. <https://doi.org/10.1002/jbm.820070604>.

Khazzar, S., Segato, S., Riuzzi, G., Serva, L., Garbin, E., Gerardi, G., Tenti, S., Mirisola, M., Catellani, P., 2023. Influence of Ageing Time and Method on Beef Quality and Safety. *Foods* 12, 3250. <https://doi.org/10.3390/foods12173250>.

Kim, J., Schmitt, U.W., Gruetzmacher, J.A., Voth, G.A., Scherer, N.E., 2002. The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. *J. Chem. Phys.* 116, 737–746. <https://doi.org/10.1063/1.1423327>.

Kuo, C.K., Ma, P.X., 2008. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. *Journal of Biomedical Materials Research Part A* 84A, 899–907. <https://doi.org/10.1002/jbm.a.31375>.

Li, X., Cui, Y., Xiao, J., Liao, L., 2008. Hydrogel-hydrogel composites: The interfacial structure and interaction between water and polymer chains. *Journal of Applied Polymer Science* 108, 3713–3719. <https://doi.org/10.1002/app.27854>.

Liparoti, S., Speranza, V., Marra, F., 2021. Alginate hydrogel: The influence of the hardening on the rheological behaviour. *Journal of the Mechanical Behavior of Biomedical Materials* 116, 104341. <https://doi.org/10.1016/j.jmbbm.2021.104341>.

Malkin, T.L., Murray, B.J., Brukhno, A.V., Anwar, J., Salzmann, C.G., 2012. Structure of ice crystallized from supercooled water. *PNAS* 109, 1041–1045. <https://doi.org/10.1073/pnas.1113059109>.

Meo, C.D., Coviello, T., Matricardi, P., Lamanna, R., 2021. Anomalous enhanced water diffusion in polysaccharide interpenetrating hydrogels. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 613, 125892. <https://doi.org/10.1016/j.colsurfa.2020.125892>.

Miyazaki, T., Kaneko, T., Gong, J.P., Osada, Y., Demura, M., Suzuki, M., 2002. Water-Induced Crystallization of Hydrogels. *Langmuir* 18, 965–967. <https://doi.org/10.1021/la010922v>.

Nagaraja, K., Rao, K.M., Rao, K.S.V.K., 2021. Chapter 11 - Alginate-based hydrogels, in: Giri, T.K., Ghosh, B. (Eds.), *Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine*. Woodhead Publishing, pp. 357–393. <https://doi.org/10.1016/B978-0-12-821649-1.00010-6>.

Nájera, A.I., Nieto, S., Barron, L.J.R., Albisu, M., 2021. A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. *ijerph* 18, 9789. <https://doi.org/10.3390/ijerph18189789>.

Naohara, R., Narita, K., Ikeda-Fukazawa, T., 2017. Change in hydrogen bonding structures of a hydrogel with dehydration. *Chemical Physics Letters* 670, 84–88. <https://doi.org/10.1016/j.cplett.2017.01.006>.

Neves, M.I., Moroni, L., Barrias, C.C., 2020. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. *Frontiers in Bioengineering and Biotechnology* 8. <https://doi.org/10.3389/fbioe.2020.00665>.

Noferini, D., Faraone, A., Rossi, M., Mamontov, E., Fratini, E., Baglioni, P., 2019. Disentangling Polymer Network and Hydration Water Dynamics in Polyhydroxyethyl Methacrylate Physical and Chemical Hydrogels. *J. Phys. Chem. C* 123, 19183–19194. <https://doi.org/10.1021/acs.jpcc.9b04212>.

Ostrowska-Czubenko, J., Gierszewska-Drużyńska, M., 2009. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. *Carbohydrate Polymers* 77, 590–598. <https://doi.org/10.1016/j.carbpol.2009.01.036>.

Panagopoulou, A., Molina, J.V., Kyritsis, A., Pradas, M.M., Lluch, A.V., Ferrer, G.G., Pissis, P., 2013. Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels. *Food Biophysics* 8, 192–202. <https://doi.org/10.1007/s11483-013-9295-2>.

Pasqui, D., De Cagna, M., Barbucci, R., 2012. Polysaccharide-Based Hydrogels: The Key Role of Water in Affecting Mechanical Properties. *Polymers* 4, 1517–1534. <https://doi.org/10.3390/polym4031517>.

Pasut, E., Toffanin, R., Voinovich, D., Pedersini, C., Murano, E., Grassi, M., 2008. Mechanical and diffusive properties of homogeneous alginate gels in form of particles and cylinders. *Journal of Biomedical Materials Research Part A* 87A, 808–818. <https://doi.org/10.1002/jbm.a.31680>.

Pedrali, D., Scarafoni, A., Giorgi, A., Lavelli, V., 2023. Binary Alginate-Whey Protein Hydrogels for Antioxidant Encapsulation. *Antioxidants* 12, 1192. <https://doi.org/10.3390/antiox12061192>.

Perakis, F., Marco, L.D., Shalit, A., Tang, F., Kann, Z.R., Ku, T.D., Torre, R., Bonn, M., Nagata, Y., 2016. Vibrational Spectroscopy and Dynamics of Water. *Chem. Rev.* 116, 7590–7607. <https://doi.org/10.1021/acs.chemrev.5b00640>.

Qu, X., Wirsén, A., Albertsson, A.-C., 2000. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. *Polymer* 41, 4589–4598. [https://doi.org/10.1016/S0032-3861\(99\)00685-0](https://doi.org/10.1016/S0032-3861(99)00685-0).

Reig-Vano, B., Huck-Iriart, C., de la Flor, S., Trojanowska, A., Tylkowski, B., Giamberini, M., 2023. Structural and mechanical analysis on mannuronate-rich alginate gels and xerogels beads based on Calcium, Copper and Zinc as crosslinkers. *International Journal of Biological Macromolecules* 246, 125659. <https://doi.org/10.1016/j.ijbiomac.2023.125659>.

Rodríguez-Suárez, J.M., Butler, C.S., Gershenson, A., Lau, B.L.T., 2020. Heterogeneous Diffusion of Polystyrene Nanoparticles through an Alginate Matrix: The Role of Cross-linking and Particle Size. *Environ. Sci. Technol.* 54, 5159–5166. <https://doi.org/10.1021/acs.est.9b06113>.

Roget, S.A., Piskulich, Z.A., Thompson, W.H., Fayer, M.D., 2021. Identical Water Dynamics in Acrylamide Hydrogels, Polymers, and Monomers in Solution: Ultrafast IR Spectroscopy and Molecular Dynamics Simulations. *J. Am. Chem. Soc.* 143, 14855–14868. <https://doi.org/10.1021/jacs.1c07151>.

Rossi, B., Venuti, V., D'Amico, F., Gessini, A., Castiglione, F., Mele, A., Punta, C., Melone, L., Crupi, V., Majolino, D., Trotta, F., Masciovecchio, C., 2015. Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance. *Phys. Chem. Chem. Phys.* 17, 963–971. <https://doi.org/10.1039/C4CP04045G>.

Saji, S., Hebden, A., Goswami, P., Du, C., 2022. A Brief Review on the Development of Alginic Extraction Process and Its Sustainability. *Sustainability* 14, 5181. <https://doi.org/10.3390/su14095181>.

Salomonsen, T., Jensen, H.M., Larsen, F.H., Steuernagel, S., Engelsen, S.B., 2009. Alginic monomer composition studied by solution- and solid-state NMR – A comparative chemometric study. *Food Hydrocolloids* 23, 1579–1586. <https://doi.org/10.1016/j.foodhyd.2008.11.009>.

Sekine, Y., Ikeda-Fukazawa, T., 2009. Structural changes of water in a hydrogel during dehydration. *The Journal of Chemical Physics* 130, 034501. <https://doi.org/10.1063/1.3058616>.

Sharma, R., Malviya, R., Singh, S., Prajapati, B., 2023. A Critical Review on Classified Excipient Sodium-Alginic-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. *Gels* 9, 430. <https://doi.org/10.3390/gels9050430>.

Smaniotto, F., Prospalio, V., Zafeiri, I., Spyropoulos, F., 2020. Freeze drying and rehydration of alginic fluid gels. *Food Hydrocolloids* 99, 105352. <https://doi.org/10.1016/j.foodhyd.2019.105352>.

Stokke, B.T., Draget, K.I., Smidsrød, O., Yuguchi, Y., Urakawa, H., Kajiwara, K., 2000. Small-Angle X-ray Scattering and Rheological Characterization of Alginic Gels. 1. Ca-Alginic Gels. *Macromolecules* 33, 1853–1863. <https://doi.org/10.1021/ma991559q>.

Tønnesen, H.H., Karlsen, J., 2002. Alginic in Drug Delivery Systems. *Drug Development and Industrial Pharmacy* 28, 621–630. <https://doi.org/10.1081/DDC-120003853>.

Urbanova, M., Pavelkova, M., Czernek, J., Kubova, K., Vyslouzil, Jakub, Pechova, A., Molinkova, D., Vyslouzil, Jan, Vetchy, D., Brus, J., 2019. Interaction Pathways and Structure–Chemical Transformations of Alginic Gels in Physiological Environments. *Biomacromolecules* 20, 4158–4170. <https://doi.org/10.1021/acs.biomac.9b01052>.

Wang, T., Jo, H., DeGrado, W.F., Hong, M., 2017. Water Distribution, Dynamics, and Interactions with Alzheimer's  $\beta$ -Amyloid Fibrils Investigated by Solid-State NMR. *J. Am. Chem. Soc.* 139, 6242–6252. <https://doi.org/10.1021/jacs.7b02089>.

Yoshida, H., Hatakeyama, T., Hatakeyama, H., 1993. Characterization of water in polysaccharide hydrogels by DSC. *Journal of Thermal Analysis* 40, 483–489. <https://doi.org/10.1007/BF02546617>.

Yoshida, H., Hatakeyama, T., Hatakeyama, H., 1992. Effect of Water on the Main Chain Motion of Polysaccharide Hydrogels, in: Viscoelasticity of Biomaterials, ACS Symposium Series. American Chemical Society, pp. 217–230. <https://doi.org/10.1021/bk-1992-0489.ch014>.

Yoshida, H., Hatakeyama, T., Hatakeyama, H., 1990. Phase transitions of the water-xanthan system. *Polymer* 31, 693–698. [https://doi.org/10.1016/0032-3861\(90\)90291-6](https://doi.org/10.1016/0032-3861(90)90291-6).

Zheng, H., Zhou, Z., Chen, Y., Huang, J., Xiong, F., 2007. pH-sensitive alginate/soy protein microspheres as drug transporter. *Journal of Applied Polymer Science* 106, 1034–1041. <https://doi.org/10.1002/app.26725>.

Zhou, J., Lin, S., Zeng, H., Liu, J., Li, B., Xu, Y., Zhao, X., Chen, G., 2020. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. *Mater. Horiz.* 7, 2936–2943. <https://doi.org/10.1039/D0MH00735H>.