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Abstract

We study the persistent homology of an Erd6s—Rényi random clique complex filtration
on n vertices. Here, each edge e appears independently at a uniform random time
Pe € [0, 1], and the persistence of a cycle o is defined as p>(o)/pi1(0o), where p1(o)
and p, (o) are the birth and death times of o. We show that if £ > 1 is fixed, then with
high probability the maximal persistence of a k-cycle is of order n!/K*+D.
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1 Introduction

Recently, the topology of random simplicial complexes has been an active area of study
— see, for example, the surveys (Kahle 2017; Bobrowski and Kahle 2018). This study
has had applications in topological data analysis, including in neuroscience (Giusti
et al. 2015). One of the main methodologies of topological data analysis is persistent
homology. We will assume that the reader is familiar with the notions of persistent
homology and of a persistence diagram (Edelsbrunner et al. 2002). In topological infer-
ence, one sometimes considers points far from the diagonal in the persistence diagram
to be representing “signal” and points near the diagonal as representing “noise”.
With this in mind, Bobrowski, Kahle, and Skraba studied maximally persistent
cycles in random geometric complexes in Bobrowski et al. (2017). Both the Vietoris—
Rips and Cech filtrations have an underlying parameter r. Persistence of a cycle is
measured multiplicatively as 7, /r1 where r1 and r; are the birth and death radius. We
write f =< g if f and g grow at the same rate in the sense that there exist constants
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c1,¢2 > Osuchthatcy f(n) < g(n) < cp f(n) for all large enough n. They showed that
with high probability the maximal persistence of a k-dimensional cycle in a random
geometric complex in R? is < (log n/ log log n)!'/*. Here the implied constants depend
on d and k, but not on 7.

Our main result is that for fixed £ > 1, the maximal persistence of k-cycles in
an Erd6s—Rényi random clique complex filtration X (n, p) is of order n!/K*+D_The
definition of random clique complex is given in Sect.2 and a precise statement of the
theorem is given in Theorem 4.1. In a similar way, we measure the persistence of a
cycle multiplicatively, but now as p»/p; where p; and p; are the birth and death edge
probabilities, respectively.

The comparison between the Erdés—Rényi and random geometric settings may be
more apparent if we renormalize so that the persistence of the associated filtrations
can be measured on the same scale. One natural way to do this is to reconsider the
earlier results for maximal persistence in random geometric complexes, using instead
birth and death edge probability rather than radius.

The edge probability P in a random geometric complex is of order P < r?. So if

ro/ry X (logn/loglogn)l/k,

then

P/ P =< (logn/loglogn)d/k.

As long as d is fixed, (logn/loglogn)®/¥ is still much smaller than the maximal
persistence of cycles in the random clique complex. However, this parameterization
makes it clear that if d grows, we expect cycles to persist for longer. It is known
that random geometric graphs in dimension growing quickly enough converge in total
variation distance to Erds-Rényi random graphs, and this connection has been further
explored and quantified in a number of recent papers — see, for example (Bubeck
et al. 2016; Brennan et al. 2020; Paquette and Werf 2021). From this point of view, our
main result can be seen as a “curse of dimensionality” for topological inference—as
the ambient dimension gets bigger, noisy cycles persist for much longer.

2 Topology of random clique complexes

In this section, we review the definition of the random clique complex, and briefly
survey the literature on topology of random clique complexes.

We use the notation [n] := {1, 2, ..., n}. The following random graph is sometimes
called the Erdds—Rényi model.

Definition 2.1 Forn > 1 and p € [0, 1], G(n, p) is the probability space of all graphs
on vertex set [n] where every edge is included with probability p, jointly independently.

We use the notation G ~ G(n, p) to indicate that a graph G is chosen according
to this distribution. We say that G has a given property with high probability (w.h.p.)
if the probability that G has the property tends to one as n — 00.
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Maximal persistence in random clique complexes 1451

The cliqgue complex of a graph H is an abstract simplicial complex whose faces
are sets of vertices in H which form cliques. We define the random clique complex
X (n, p) tobe the clique complex of the Erd6s—Rényi random graph G (n, p). We write
X ~ X(n, p) to indicate that X is a random simplicial complex chosen according to
this distribution.

In Kahle (2009), Kahle studied the topology of random clique complexes, and the
following theorem identified the threshold for homology to appear as p = n~ /%, We
use the notation f < g to indicate lim, ., f/g = 0.

Theorem 2.2 Let X ~ X(n, p) be the random clique complex, and assume k > 1 is
fixed.
(1) If p <n~*witha > %, then w.h.p. H,(X) = 0. On the other hand,

(2) Ifnt <« p < n~ & then wh.p. Hy(X) # 0.

The following is the main result of a later paper, Kahle (2014), showing that the

threshold for kth cohomology with coefficients in QQ to vanish is approximately p =
—1/(k+1)
n .

Theorem 2.3 Letk > 1 and € > 0 be fixed, and X ~ X(n, p). If

1/(k+1

><(§+1+e>logn> [

ps (G Otoen
n

then w.h.p. H*(X, Q) = 0.

Theorem 2.3 describes a sharp threshold for cohomology to vanish, in the same
spirit as in Linial and Meshulam’s work (Linial and Meshulam 2006). By the universal
coefficient theorem for cohomology, these results hold for homology vanishing as well.

The proof of Theorem 2.3 in Kahle (2014) depends on new results on spectral gaps
of random graphs which appeared in Hoffman et al. (2021), together with Garland’s
method, which is similar in spirit to combinatorial Hodge theory, relating spectra of
Laplacians on k forms with kth cohomology. As such, the proof only works over a
field of characteristic zero. Extending Theorem 2.3 to Z coefficients remains one of the
main open problems about the topology of random clique complexes, and is equivalent
to the “bouquet-of—spheres conjecture.” See the discussion in Kahle (2014).

Since we depend here on an extension of Theorem 2.3 that we will prove in Sect. 4,
our results also only hold with Q coefficients, or over a field of characteristic zero.

Malen gave a topological strengthening of part (1) of Theorem 2.2 in Malen (2019).

Theorem 2.4 (Malen, 2019). Let k > 1 be fixed and X ~ X(n, p). If p < n=% with
o > % then w.h.p. X collapses onto a subcomplex of dimension at most k — 1.

This implies, in particular, that Hy_1(X) is torsion-free, so this represents an
important step toward the “bouquet-of-spheres conjecture” described in Kahle (2009,
2014).

Newman recently refined Malen’s collapsing argument to give a probabilistic
refinement (Newman 2021).
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Theorem 2.5 (Newman, 2021). Let k > 1 be fixed and X ~ X (n, p). If

JZRSS n— 1k

then w.h.p. X collapses onto a subcomplex of dimension at most k — 1.

In summary, earlier results show that there is one threshold where homology is born
for the first time, when p ~ n™ 1/k "and another where homology dies for the last time,
when p ~ n~1/%*+D_Our main result is that there exist cycles that persist for nearly
the entire interval of nontrivial homology.

3 The second moment method
We briefly review the second moment method, i.e. the use of Chebyshev’s inequality,

which is our main probabilistic tool. The variance of a random variable X is defined
by

o2 = Var(X) := E (X2> — E(X)z.
The covariance of a pair of random variables X, Y is defined by
Cov(X;, X;) = E(XY) — E(X)E(Y).

Theorem 3.1 (Chebyshev’s Inequality). For any A > 0,

2

o
PAX —pul=2) < z

Where w is the expectation and o? is the variance.

If X can be written as a sum of indicator random variables X = Z X;, then the
1

following is easy to derive and its proof appears, for example, in Chapter 4 of Alon
and Spencer’s book (Alon and Spencer 2016).

Var(X) = Y Var(X;) + »_ Cov(X;, X;)
i i#]

< E(X)+ ) _ Cov(X;. X)).
i#j

It follows from Theorem 3.1 that if E(X) — oo and

> Cov(Xi, X)) = 0 (B(X)?),
i%
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then X > Ow.h.p.Infact, X ~ E(X) w.h.p., meaning that X /E(X) — 1inprobability.
Finally, we note that if are X;, X ; are indicator random variables for events A;, A,
we have that

Cov(X;, Xj) = E(X; X ;) — E(X;))E(X;) = P(A; A A}) — P(ADP(A;).

Here A; A A denotes the event that both A; and A occur.

4 Main result and proof

We consider the random graph G (n, p) as a stochastic process, as follows. Consider
the random filtration of the complete graph K,, where each edge e appears at time p,,
chosen uniform randomly in the interval [0, 1]. Similarly, the random clique complex
X (n, p) is a random filtration of the simplex on n vertices A,,.

We assume the reader is familiar with persistence diagrams (Edelsbrunner et al.
2002; Cohen-Steiner et al. 2007). A point (x, y) in the persistence diagram for Hy
with Q coefficients and k > 1 represents a k-dimensional cycle with birth time x and
death time y. We measure the persistence of that cycle multiplicatively, as y/x. Define

Mj(n) = max{y/x},

where the maximum is taken over all points in the persistence diagram for homology
in degree k.

An equivalent definition is the following. Consider the natural inclusion map i :
X(n, p1) = X(n, p2),where 0 < p; < p» < 1.Forevery k > 1, there is an induced
map on homology i, : Hy(X (n, p1)) — Hi(X(n, p2)). We define

M (n) :=max {p2/p1 | ix : H(X(n, p1)) > Hi(X(n, p2)) is nontrivial}

where the maximum is taken as p; and p, range over all values with0 < p; < p» < 1.
Our main result is the following.

Theorem 4.1 For fixedk > 1 and € > 0,

pl/kGD=€ — prp ) < pl/kGtDe

with high probability.
Equivalently, if

Mk () = log My (n)

’

logn
then Mk (n) converges in probability to 1 /k(k + 1).
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1454 A. Ababneh, M. Kahle

Our results are actually slightly sharper than this. We show in the following that if
L) < nl/k(k+1)
and
Ur(n) > n'/KEFD (1o gy 1/ D)
then w.h.p.
Li(n) < Mi(n) < Ur(n).

So our results are sharp, up to a small power of logn.

Proof of Theorem 4.1 First we prove an upper bound on My (n). Suppose that p; <
n=Vk. By Theorem 2.5, w.h.p. we have that Hy (X(n, p1)) = 0. Now let ¢ > 0, and
suppose that

((,% Lig e)logn)l/(kH)
nz\——mm .
n
By Theorem 2.3, w.h.p. Hy (X(n, p2), Q) = 0. So for any cycle o that is born after
time p; and before time p», the persistence of o is at most py/pj.

This seems like it might already imply an upper bound on My (n), but unfortunately
it is not quite enough. Theorem 2.5 does not state that w.h.p. Hy (X (n, p)) = 0 for
all p € [0, p1]. Similarly, Theorem 2.3 does not state that w.h.p. Hy (X(n, p)) =0
for all p € [p2, 1]. Although we believe such statements are almost certainly true, we
have another way to get the desired upper bound on persistence.

Let/ ={0,1,...k—1}U{k+2,k+3,...,2k(k+ 1)}, and set

i .
S:{—k(k+1)|lel}'

By repeatedly applying Theorems 2.5 and 2.3, w.h.p. Hy (X (n, p)) = 0 whenever
p =n~% with o € S. The point is that there are only a constant number of elements
in S, since we are assuming throughout that & is fixed and n — oo.

For any k-cycles that are born and die after time p;, the multiplicative persistence
is at most n!/¥*+1D 'which is smaller than our desired upper bound. We can make the
same argument for any k-cycles that are born and die before time p;. It suffices to
consider indices in / only up to 2k(k + 1) since w.h.p. G(n, p) has no edges when
pLn2

Set

fk(n) — nl/k(k-i—l) (logn)l/(k-i-l) ,
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and let Uy (n) be any function such that Ui (n) > fi(n). We have showed that

My (n) < Ur(n).

Most of our work is in proving a lower bound for My (n). We focus our atten-
tion on a particular type of nontrivial k-cycle, namely simplicial spheres which are
combinatorially isomorphic to cross-polytope boundaries.

In the following, let Y and Z denote distinct subsets of 2k 4- 2 vertices. That is, we
suppose that Y, Z C [n] with |Y| = |Z| = 2k + 2. A notation we can use for this is

[n]
Y.z e <2k+2>'

Suppose that Y = {uy, ... ugp+1}U{v1, ..., V1), Whereuy < ... upqp1 <vp--- <
vr+1. Recall that every vertex is an element of [r], so they come with a natural ordering.
We use x ~ y and x ~ y to denote adjacency and non-adjacency of vertices x and y.
For any choice of 0 < p; < py < 1, we say that Y is a (p1, p2) special persistent
cycle in the random clique complex filtration if

(1) u; ~uj,v; ~vj,andu; ~ v; forevery i # j at time py,
(2) u; ~ v; for every i at time py, and
(3) {u1,...urs+1} have no common neighbors outside of vertex set Y at time p».

Condition (1) implies that Y spans a k-dimensional cycle at time p, namely a cycle
that is combinatorially equivalent to the boundary of k+ 1-dimensional cross-polytope.
Conditions (2) and (3) together imply that Y is still not a boundary at time p>. So then
it is not only a nontrivial cycle at time pp, but it persists at least until time p,. Note
that condition (2) already implies that {u1, . . . ux+1} have no common neighbor within
vertex set Y. So condition (3) implies that they have no common neighbor at all, and
then {u1, ...ux4+1} is a maximal k-dimensional face.

Let Ny = Nx(p1, p2) be the number of (p1, p2) special persistent cycles. We want
to show that P (Ny > 0) — 1, which in turn will imply that My (n) > p2/p; with
high probability. In the following, we will assume whenever necessary that

n VR <« pr < py < n VD,

In particular, we assume that np¥ — 0o and nps*! — 0.
Let Ay be the event that the set of vertices in Y form a (p1, p2) special persistent
cycle, and let Iy be its indicator random variable for this event. Then we can write

Ne= Y Iy
ve(,l,

where the sum is taken over all subsets Y C [n] of size |Y| = 2k + 2.
By edge independence, the probability of condition (1) is pfk(kH) , and the

probability of condition (2) is (1 — pz)k“, the probability of condition (3) is
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1456 A. Ababneh, M. Kahle

n—2k—2
1— p]2“H . Moreover, these events are independent since they involve disjoint

sets of edges. So we have
klkt1 n—2k-2
Ely) = P(Ay) = p1 0 (1 = pp)f ! (1= pht1) "
By linearity of expectation,

E(Ny) = Y E(ly)
_( n 2%k (k+1) k+1 ( k+1)"_2k_2
= 1— 1 -

<2k + 2)1’1 ( pP2) P>
n2k+2

= mp?"“‘*” (1—o(l)),

since nplz“H — 0. Since we also assume that npll‘ — 00, we have E(N;) — oco. By
Chebyshev’s inequality, if we show that Var(Ny) = o(E(Ny)?), then Ny > 0 w.h.p.
We have the standard inequality

Var(Ny) < E(Nx) + Y Cov(ly, Iz).
Y#Z

We recall that

Cov(ly, Iz) =P(Ay A Az) — P(Ay)P(Az).

We always have

’

2(n—2k—2)
P(Ay)P(Ay) = pzltk(k+1) (1— p2)2k+2 (1 _ p/2<+1)

and we note the simpler estimate

4k (k
P(Ay)P(Az) = pi*“V (1 = o(1)
since k > 1 is fixed and nplz‘H — 0.
Let m :=|Y N Z|. In estimating P(Ay A Az), we consider cases depending on the
value of m.

CaseI:

First, consider m = 0. It might be tempting to believe that if Y N Z = ) then
Ay and Az are independent sets and the covariance is zero. Unfortunately, this is not
the case. Conditions (1) and (2) for a (p1, p2) special persistent cycle only depend
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on adjacency between vertices within the (2k + 2)-set, but condition (3) depends on
connections with the rest of the graph and these are not independent.
Nevertheless, we still have in this case

P(Ay A Az) = pitD (1 —0(1)),

as follows.

The term p‘fk(kH) is the probability of condition (1) holding for both vertex sets
Y and Z. So this is also an upper bound on the probability of conditions (1), (2), and
(3) holding for both vertex sets. For a lower bound on P (Ay A Az), we consider a
slightly smaller event, slightly simpler but whose probability is of the same order of
magnitude.

LetY = {uy,...up41} U {vr, ..., vgs1}, where uy < .. upq) < 1+ < V41,
as before. Similarly, let Z = {u], ... M;c-f—l} Ufvl, ..., v,’(H}, where 1} < .. '”;<+1 <
Vo< v,

The event A}, is defined as follows.

(1) We have u; ~ uj, v; ~vj,and u; ~ vj, u; ~ u; v ~ v;., and u; ~ v; for every
i # j attime pj. That is, condition (1) holds for both Y and Z. Some edges may
be listed more than once if Y and Z overlap. This does not happen when m = 0
but these are the cases we consider below.

(2) Besides the edges that appear in the previous condition, no other edges occur
between vertices in vertex set Y U Z, at time p. This happens with probability
1= 0(p2) =1-o(D).

(3) Neither {uy,...uxq1} nor {uf,...u;, ;} has any mutual neighbors outside of
vertex set Y U Z, at time p,. The probability of this condition being satisfied can
be bounded below by a union bound by 1 — 2}1[)12”rl , which is again 1 — o(1) since

anZ‘H — 0.

Putting it all together, we have that P (A;‘,Z) > p?k(kH) (1 —o(1)). We note that
A; » imples Ay A Az. Indeed, condition (1) is the same, condition (2) of A’f, » implies
condition (2) of Ay A Az, and conditions (2) and (3) of A}, together imply condition
B)of Ay A Ag.

Then
P = P Ay A Az) = P(A},) = pFCTV (1= 0(1)),
and
P(Ay A Az) = p{ "V (1= 0(1))
as desired.
So then

P(Ay A Az) —P(Ay)P(Az) =0 (pf""‘*“) _
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4k+4

Since the number of pairs Y, Z is bounded by n we have that the total contribution

to the variance, S, is bounded by
So = o (n4k+4 péllk(k+l)) '

Comparing this to

2
E 2 _ Ahk+D) 1 _ o
(Nk) (2k n 2) 12 (I —o(D))
we see that
So=o0 (E(Nk)2) .
Case II:

An essentially identical calculation shows that when m = 1, we have
P(Ay A Az) = p "V (1= o(1).
So in this case we have again
4k (k
P(Ay A Az) = P(ANP(A2) = o (p{**+)).
Hence, the total contribution to the variance, Sy, is
Si=o (n4k+3p411k(k+1))
and then,
S1/E(NY)? = o (n_1>

and in particular S| = o (E(Nk)z).

Case III:

When 2 < m < 2k + 1, we consider two sub-cases. The first subcase is that events
Ay and Az are not compatible in the sense that they cannot both occur due to the ways
in which Y and Z overlap. This happens if for a certain pair of vertices u, v € Y N Z,
u, v are required to be adjacent in one of Y, Z and non-adjacent in the other. In this
subcase, we have

P(Ay AAz) =0,
SO

P(Ay A Az) — P(Ay)P(Az) = —p**+D (1 —o(1)) < 0.
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Maximal persistence in random clique complexes 1459

The second subcase is that the events Ay and Az are compatible, in the sense that
they could possibly both happen. In this case, let j denote the number of pairsin Y N Z
that are forced to be non-adjacent in Ay A Az. Then the same argument as in Case |
shows that

. Ak 1)— (") +j
P(Ay A Az) > P(AS,) = pi "G 1 _oqy).

So

P(AVP(AZ) _ (3=

P(Ay g =PI (I —=o(1))

Since p; — 0 asn — oo, we have

P(Ay)P(Az)
P(Ay A Ay)

So,
P(Ay AAz) = P(Ay)P(Az) = (1 —0(1)) P(Ay A AZ).

The total contribution S, of a pair of events Ay and Az with ¥ N Z = m to the
variance is then bounded by

k(k+1)—(5)+j
Sm S n4k""4—ﬂ’lpél1 (k+1) (2)+-/ (] +0(])) .

Comparing this to

E(Ny)? = (2k +2)2p‘1"‘(k+” (1—o(1).
we get
S /E(N)? = 0 (n—m py ) .
We have

_ 7(n1)+j m—1\ —™M .
n"p = npy pi-

We are assuming that np’l‘ — 00. Since m < 2k + 1, we have k > (m — 1)/2. Then
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p] — 0,and S, = o (E(Ny)?).
Summing the inequalities from the different cases, we conclude that

2k+1
> Covlly. 1) = Y S =0 (EWN?),
Y47 m=0

since S, = o (E(Ny)?) for each m and k is fixed.
We conclude that as long as

n VR < pp < pp < nT /D,

then Ny > 0 with high probability.
It follows that if Ly (n) < n'/*®+D then w.h.p. My(n) > Li(n), as desired.

5 Future directions
Recall that we earlier defined
fin) = nVEERD (1og /6D

We believe that the My (n) is likely of order fi(n), in the following sense.
Let w(n) be any function that tends to infinity with n. We showed in the proof of
Theorem 4.1 that

Mi(n) < fr(mw(n).

We believe that an analogous lower bound should hold.

Conjecture 5.1 Let My (n) denote the maximal persistence over all k-dimensional
cycles in X (n, p). Then

Se(n)
w(n)

< My(n)

with high probability.

The following kind of limit theorem would provide precise answers to questions
like, “Given a prior of this kind of distribution, what is the probability P (A) that there
exists a cycle of persistence greater than A?”

Conjecture 5.2 Let My (n) denote the maximal persistence over all k-dimensional
cycles in X(n, p). Then

My (n)
fi(n)

@ Springer



Maximal persistence in random clique complexes 1461
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Fig. 1 Maximally persistent 1-cycles. On the left, a histogram for log M1 (n)/logn. We prove that this
converges to 1/2 as n — 00. On the right, a histogram for M| (n)/ f1(n). Both these figures are based on
1000 samples on n = 250 vertices

500

400

0.2 0.4 0.6 0.8 1 0.5 1 15 4 25 3

Fig. 2 Maximally persistent 2-cycles. On the left, a histogram for log M5 (n)/logn. We prove that this
converges to 1/6 as n — o00. On the right, a histogram for M (n)/ f2(n). Both these figures are based on
1000 samples on n = 150 vertices

converges in law to a limiting distribution supported on an interval [Ai, 00) for some
A > 0.

See Figs.1 and 2 for some numerical experiments illustrating these conjec-
tures. These experiments were computed with the aid of Ulrich Bauer’s software
Ripser (Bauer 2021). We note that even though we have proved that asymptotically
log Mi(n)/logn — 1/2 and log M>(n)/logn — 1/6, this is not apparent from our
numerical experiments. So this is a hint that the rate of convergence may be slow.

It also seems natural to study more about the “rank invariant” of a random clique
complex filtration. That is, given k > 1, p1, and p», how large do we expect the rank
of the map i, : Hy (X(n, p1)) = Hy (X(n, p2)) to be?

Conjecture 5.3 Suppose that k > 1 is fixed, and
n VR pr < py < nVERD,
Ifi : X(n, p1) = X(n, p2) is the inclusion map, and

ix : Hy (X (n, p1)) = Hi (X (n, p2))
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1462 A. Ababneh, M. Kahle

is the induced map on homology, then

rank(i,) = (1 — o(1)) (k j— l)pfky).

In Kahle (2009), it is shown that

_ no\ (5
dim Hy (X (n, p1), Q) = (I —o(1)) <k+ 1>p1 ’

so this conjecture is that almost all of the homology persists for as long as possible.

Bobrowski and Skraba study limiting distributions for maximal persistence in their
recent preprint (Bobrowski and Skraba 2022). They describe experimental evidence
that there is a universal distribution for persistence over a wide class of models, includ-
ing random Cech and Vietoris—Rips complexes. We do not know whether we should
expect the random clique complex filtration studied here to be in the same conjectural
universality class.

Acknowledgements We thank both anonymous referees for their corrections and helpful comments. MK
also thanks Greg Malen and Andrew Newman for several helpful conversations.

Funding Both authors gratefully acknowledge the support of NSF-DMS #2005630.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

References

Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)

Bauer, U.: Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Comput. Topol.
5(3), 391423 (2021)

Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey. J. Appl. Comput. Topol.
1(3-4), 331-364 (2018)

Bobrowski, O., Kahle, M., Skraba, P.: Maximally persistent cycles in random geometric complexes. Ann.
Appl. Probab. 27(4), 2032-2060 (2017)

Bobrowski, O., Skraba, P On the Universality of Random Persistence Diagrams. (submitted),
arXiv:2207.03926, (2022)

Brennan, M., Bresler, G., Nagaraj, D.: Phase transitions for detecting latent geometry in random graphs.
Probab. Theory Related Fields 178(3—4), 1215-1289 (2020)

Bubeck, S., Ding, J., Eldan, R., Ricz, M.Z.: Testing for high-dimensional geometry in random graphs.
Random Struct. Algorithms 49(3), 503-532 (2016)

Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom.
37(1), 103-120 (2007)

Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete
Comput. Geom. 28(4), 511-533 (2002)

Giusti, C., Pastalkova, E., Curto, C., Itskov, V.: Clique topology reveals intrinsic geometric structure in
neural correlations. Proc. Natl. Acad. Sci. 112(44), 1345513460 (2015)

Hoffman, C., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications. Int. Math. Res.
Not. IMRN 2021(11), 8353-8404 (2021)

@ Springer


http://arxiv.org/abs/2207.03926

Maximal persistence in random clique complexes 1463

Kahle, M.: Topology of random clique complexes. Discrete Math. 309(6), 1658—1671 (2009)

Kahle, M.: Sharp vanishing thresholds for cohomology of random flag complexes. Ann. Math. 179(3),
1085-1107 (2014)

Kahle, M.: Random simplicial complexes. In Handbook of Discrete and Computational Geometry, pp.
581-603. Chapman and Hall/CRC, (2017)

Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4),475-487
(2006)

Malen, G.: Collapsibility of random clique complexes. arXiv:1903.05055, (2019)

Newman, A.: One-sided sharp thresholds for homology of random flag complexes. arXiv:2108.04299,
(2021)

Paquette, E., Werf, A.V.: Random geometric graphs and the spherical Wishart matrix. arXiv:2110.10785,
(2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer


http://arxiv.org/abs/1903.05055
http://arxiv.org/abs/2108.04299
http://arxiv.org/abs/2110.10785

	Maximal persistence in random clique complexes
	Abstract
	1 Introduction
	2 Topology of random clique complexes
	3 The second moment method
	4 Main result and proof
	5 Future directions
	Acknowledgements
	References




