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Abstract
We study the persistent homology of an Erdős–Rényi random clique complex filtration
on n vertices. Here, each edge e appears independently at a uniform random time
pe ∈ [0, 1], and the persistence of a cycle σ is defined as p2(σ )/p1(σ ), where p1(σ )

and p2(σ ) are the birth and death times of σ . We show that if k ≥ 1 is fixed, then with
high probability the maximal persistence of a k-cycle is of order n1/k(k+1).

Keywords Random graphs · Persistent homology

Mathematics Subject Classification 55N31 · 05C80

1 Introduction

Recently, the topology of random simplicial complexes has been an active area of study
— see, for example, the surveys (Kahle 2017; Bobrowski and Kahle 2018). This study
has had applications in topological data analysis, including in neuroscience (Giusti
et al. 2015). One of the main methodologies of topological data analysis is persistent
homology. We will assume that the reader is familiar with the notions of persistent
homology and of a persistence diagram (Edelsbrunner et al. 2002). In topological infer-
ence, one sometimes considers points far from the diagonal in the persistence diagram
to be representing “signal” and points near the diagonal as representing “noise”.

With this in mind, Bobrowski, Kahle, and Skraba studied maximally persistent
cycles in random geometric complexes in Bobrowski et al. (2017). Both the Vietoris–
Rips and Čech filtrations have an underlying parameter r . Persistence of a cycle is
measured multiplicatively as r2/r1 where r1 and r2 are the birth and death radius. We
write f � g if f and g grow at the same rate in the sense that there exist constants
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c1, c2 > 0 such that c1 f (n) ≤ g(n) ≤ c2 f (n) for all large enough n. They showed that
with high probability the maximal persistence of a k-dimensional cycle in a random
geometric complex inR

d is� (log n/ log log n)1/k . Here the implied constants depend
on d and k, but not on n.

Our main result is that for fixed k ≥ 1, the maximal persistence of k-cycles in
an Erdős–Rényi random clique complex filtration X(n, p) is of order n1/k(k+1). The
definition of random clique complex is given in Sect. 2 and a precise statement of the
theorem is given in Theorem 4.1. In a similar way, we measure the persistence of a
cycle multiplicatively, but now as p2/p1 where p1 and p2 are the birth and death edge
probabilities, respectively.

The comparison between the Erdős–Rényi and random geometric settings may be
more apparent if we renormalize so that the persistence of the associated filtrations
can be measured on the same scale. One natural way to do this is to reconsider the
earlier results for maximal persistence in random geometric complexes, using instead
birth and death edge probability rather than radius.

The edge probability P in a random geometric complex is of order P � rd . So if

r2/r1 � (log n/ log log n)1/k ,

then

P2/P1 � (log n/ log log n)d/k .

As long as d is fixed, (log n/ log log n)d/k is still much smaller than the maximal
persistence of cycles in the random clique complex. However, this parameterization
makes it clear that if d grows, we expect cycles to persist for longer. It is known
that random geometric graphs in dimension growing quickly enough converge in total
variation distance to Erdős-Rényi random graphs, and this connection has been further
explored and quantified in a number of recent papers — see, for example (Bubeck
et al. 2016; Brennan et al. 2020; Paquette andWerf 2021). From this point of view, our
main result can be seen as a “curse of dimensionality” for topological inference—as
the ambient dimension gets bigger, noisy cycles persist for much longer.

2 Topology of random clique complexes

In this section, we review the definition of the random clique complex, and briefly
survey the literature on topology of random clique complexes.

We use the notation [n] := {1, 2, . . . , n}. The following random graph is sometimes
called the Erdős–Rényi model.

Definition 2.1 For n ≥ 1 and p ∈ [0, 1], G(n, p) is the probability space of all graphs
onvertex set [n]where every edge is includedwith probability p, jointly independently.

We use the notation G ∼ G(n, p) to indicate that a graph G is chosen according
to this distribution. We say that G has a given property with high probability (w.h.p.)
if the probability that G has the property tends to one as n → ∞.
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Maximal persistence in random clique complexes 1451

The clique complex of a graph H is an abstract simplicial complex whose faces
are sets of vertices in H which form cliques. We define the random clique complex
X(n, p) to be the clique complex of the Erdős–Rényi random graphG(n, p). Wewrite
X ∼ X(n, p) to indicate that X is a random simplicial complex chosen according to
this distribution.

In Kahle (2009), Kahle studied the topology of random clique complexes, and the
following theorem identified the threshold for homology to appear as p = n−1/k . We
use the notation f 	 g to indicate limn→∞ f /g = 0.

Theorem 2.2 Let X ∼ X(n, p) be the random clique complex, and assume k ≥ 1 is
fixed.

(1) If p ≤ n−α with α > 1
k , then w.h.p. Hk(X) = 0. On the other hand,

(2) If n− 1
k 	 p 	 n− 1

k+1 then w.h.p. Hk(X) 
= 0.

The following is the main result of a later paper, Kahle (2014), showing that the
threshold for kth cohomology with coefficients in Q to vanish is approximately p =
n−1/(k+1).

Theorem 2.3 Let k ≥ 1 and ε > 0 be fixed, and X ∼ X(n, p). If

p ≥
(

( k2 + 1 + ε) log n

n

)1/(k+1)

then w.h.p. Hk(X , Q) = 0.

Theorem 2.3 describes a sharp threshold for cohomology to vanish, in the same
spirit as in Linial andMeshulam’s work (Linial andMeshulam 2006). By the universal
coefficient theorem for cohomology, these results hold for homology vanishing aswell.

The proof of Theorem 2.3 in Kahle (2014) depends on new results on spectral gaps
of random graphs which appeared in Hoffman et al. (2021), together with Garland’s
method, which is similar in spirit to combinatorial Hodge theory, relating spectra of
Laplacians on k forms with kth cohomology. As such, the proof only works over a
field of characteristic zero. Extending Theorem 2.3 toZ coefficients remains one of the
main open problems about the topology of random clique complexes, and is equivalent
to the “bouquet-of–spheres conjecture.” See the discussion in Kahle (2014).

Since we depend here on an extension of Theorem 2.3 that we will prove in Sect. 4,
our results also only hold with Q coefficients, or over a field of characteristic zero.

Malen gave a topological strengthening of part (1) of Theorem 2.2 inMalen (2019).

Theorem 2.4 (Malen, 2019). Let k ≥ 1 be fixed and X ∼ X(n, p). If p ≤ n−α with
α > 1

k , then w.h.p. X collapses onto a subcomplex of dimension at most k − 1.

This implies, in particular, that Hk−1(X) is torsion-free, so this represents an
important step toward the “bouquet-of-spheres conjecture” described in Kahle (2009,
2014).

Newman recently refined Malen’s collapsing argument to give a probabilistic
refinement (Newman 2021).
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Theorem 2.5 (Newman, 2021). Let k ≥ 1 be fixed and X ∼ X(n, p). If

p 	 n−1/k

then w.h.p. X collapses onto a subcomplex of dimension at most k − 1.

In summary, earlier results show that there is one threshold where homology is born
for the first time, when p ≈ n−1/k , and another where homology dies for the last time,
when p ≈ n−1/(k+1). Our main result is that there exist cycles that persist for nearly
the entire interval of nontrivial homology.

3 The secondmomentmethod

We briefly review the second moment method, i.e. the use of Chebyshev’s inequality,
which is our main probabilistic tool. The variance of a random variable X is defined
by

σ 2 := Var(X) := E

(
X2

)
− E(X)2.

The covariance of a pair of random variables X ,Y is defined by

Cov(Xi , X j ) = E(XY ) − E(X)E(Y ).

Theorem 3.1 (Chebyshev’s Inequality). For any λ > 0,

P (|X − μ| ≥ λ) ≤ σ 2

λ2
.

Where μ is the expectation and σ 2 is the variance.

If X can be written as a sum of indicator random variables X =
∑

i
Xi , then the

following is easy to derive and its proof appears, for example, in Chapter 4 of Alon
and Spencer’s book (Alon and Spencer 2016).

Var(X) =
∑
i

Var(Xi ) +
∑
i 
= j

Cov(Xi , X j )

≤ E(X) +
∑
i 
= j

Cov(Xi , X j ).

It follows from Theorem 3.1 that if E(X) → ∞ and

∑
i 
= j

Cov(Xi , X j ) = o
(
E(X)2

)
,
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then X > 0w.h.p. In fact, X ∼ E(X)w.h.p.,meaning that X/E(X) → 1 in probability.
Finally, we note that if are Xi , X j are indicator random variables for events Ai , A j ,

we have that

Cov(Xi , X j ) = E(Xi X j ) − E(Xi )E(X j ) = P(Ai ∧ A j ) − P(Ai )P(A j ).

Here Ai ∧ A j denotes the event that both Ai and A j occur.

4 Main result and proof

We consider the random graph G(n, p) as a stochastic process, as follows. Consider
the random filtration of the complete graph Kn where each edge e appears at time pe,
chosen uniform randomly in the interval [0, 1]. Similarly, the random clique complex
X(n, p) is a random filtration of the simplex on n vertices �n .

We assume the reader is familiar with persistence diagrams (Edelsbrunner et al.
2002; Cohen-Steiner et al. 2007). A point (x, y) in the persistence diagram for Hk

with Q coefficients and k ≥ 1 represents a k-dimensional cycle with birth time x and
death time y. Wemeasure the persistence of that cycle multiplicatively, as y/x . Define

Mk(n) = max{y/x},

where the maximum is taken over all points in the persistence diagram for homology
in degree k.

An equivalent definition is the following. Consider the natural inclusion map i :
X(n, p1) ↪→ X(n, p2), where 0 ≤ p1 ≤ p2 ≤ 1. For every k ≥ 1, there is an induced
map on homology i∗ : Hk(X(n, p1)) → Hk(X(n, p2)). We define

Mk(n) := max {p2/p1 | i∗ : Hk(X(n, p1)) → Hk(X(n, p2)) is nontrivial} ,

where themaximum is taken as p1 and p2 range over all values with 0 ≤ p1 ≤ p2 ≤ 1.
Our main result is the following.

Theorem 4.1 For fixed k ≥ 1 and ε > 0,

n1/k(k+1)−ε ≤ Mk(n) ≤ n1/k(k+1)+ε,

with high probability.
Equivalently, if

M̃k(n) = logMk(n)

log n
,

then M̃k(n) converges in probability to 1/k(k + 1).
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Our results are actually slightly sharper than this. We show in the following that if

Lk(n) 	 n1/k(k+1)

and

Uk(n) � n1/k(k+1)(log n)1/(k+1),

then w.h.p.

Lk(n) ≤ Mk(n) ≤ Uk(n).

So our results are sharp, up to a small power of log n.

Proof of Theorem 4.1 First we prove an upper bound on Mk(n). Suppose that p1 	
n−1/k . By Theorem 2.5, w.h.p. we have that Hk (X(n, p1)) = 0. Now let ε > 0, and
suppose that

p2 ≥
(

( k2 + 1 + ε) log n

n

)1/(k+1)

.

By Theorem 2.3, w.h.p. Hk (X(n, p2), Q) = 0. So for any cycle σ that is born after
time p1 and before time p2, the persistence of σ is at most p2/p1.

This seems like it might already imply an upper bound on Mk(n), but unfortunately
it is not quite enough. Theorem 2.5 does not state that w.h.p. Hk (X(n, p)) = 0 for
all p ∈ [0, p1]. Similarly, Theorem 2.3 does not state that w.h.p. Hk (X(n, p)) = 0
for all p ∈ [p2, 1]. Although we believe such statements are almost certainly true, we
have another way to get the desired upper bound on persistence.

Let I = {0, 1, . . . k − 1} ∪ {k + 2, k + 3, . . . , 2k(k + 1)}, and set

S =
{

i

k(k + 1)
| i ∈ I

}
.

By repeatedly applying Theorems 2.5 and 2.3, w.h.p. Hk (X(n, p)) = 0 whenever
p = n−α with α ∈ S. The point is that there are only a constant number of elements
in S, since we are assuming throughout that k is fixed and n → ∞.

For any k-cycles that are born and die after time p2, the multiplicative persistence
is at most n1/k(k+1), which is smaller than our desired upper bound. We can make the
same argument for any k-cycles that are born and die before time p1. It suffices to
consider indices in I only up to 2k(k + 1) since w.h.p. G(n, p) has no edges when
p 	 n−2.

Set

fk(n) = n1/k(k+1) (log n)1/(k+1) ,
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and let Uk(n) be any function such that Uk(n) � fk(n). We have showed that

Mk(n) ≤ Uk(n).

Most of our work is in proving a lower bound for Mk(n). We focus our atten-
tion on a particular type of nontrivial k-cycle, namely simplicial spheres which are
combinatorially isomorphic to cross-polytope boundaries.

In the following, let Y and Z denote distinct subsets of 2k + 2 vertices. That is, we
suppose that Y , Z ⊆ [n] with |Y | = |Z | = 2k + 2. A notation we can use for this is

Y , Z ∈
( [n]
2k + 2

)
.

Suppose that Y = {u1, . . . uk+1}∪{v1, . . . , vk+1}, where u1 < . . . uk+1 < v1 · · · <

vk+1. Recall that every vertex is an element of [n], so they comewith a natural ordering.
We use x ∼ y and x � y to denote adjacency and non-adjacency of vertices x and y.
For any choice of 0 ≤ p1 ≤ p2 ≤ 1, we say that Y is a (p1, p2) special persistent
cycle in the random clique complex filtration if

(1) ui ∼ u j , vi ∼ v j , and ui ∼ v j for every i 
= j at time p1,
(2) ui � vi for every i at time p2, and
(3) {u1, . . . uk+1} have no common neighbors outside of vertex set Y at time p2.

Condition (1) implies that Y spans a k-dimensional cycle at time p1, namely a cycle
that is combinatorially equivalent to the boundary of k+1-dimensional cross-polytope.
Conditions (2) and (3) together imply that Y is still not a boundary at time p2. So then
it is not only a nontrivial cycle at time p1, but it persists at least until time p2. Note
that condition (2) already implies that {u1, . . . uk+1} have no common neighbor within
vertex set Y . So condition (3) implies that they have no common neighbor at all, and
then {u1, . . . uk+1} is a maximal k-dimensional face.

Let Nk = Nk(p1, p2) be the number of (p1, p2) special persistent cycles. We want
to show that P (Nk > 0) → 1, which in turn will imply that Mk(n) ≥ p2/p1 with
high probability. In the following, we will assume whenever necessary that

n−1/k 	 p1 ≤ p2 	 n−1/(k+1).

In particular, we assume that npk1 → ∞ and npk+1
2 → 0.

Let AY be the event that the set of vertices in Y form a (p1, p2) special persistent
cycle, and let IY be its indicator random variable for this event. Then we can write

Nk =
∑

Y∈( [n]
2k+2)

IY ,

where the sum is taken over all subsets Y ⊆ [n] of size |Y | = 2k + 2.
By edge independence, the probability of condition (1) is p2k(k+1)

1 , and the
probability of condition (2) is (1 − p2)k+1, the probability of condition (3) is

123



1456 A. Ababneh, M. Kahle

(
1 − pk+1

2

)n−2k−2
.Moreover, these events are independent since they involve disjoint

sets of edges. So we have

E(IY ) = P(AY ) = p2k(k+1)
1 (1 − p2)

k+1
(
1 − pk+1

2

)n−2k−2
.

By linearity of expectation,

E(Nk) =
∑

E(IY )

=
(

n

2k + 2

)
p2k(k+1)
1 (1 − p2)

k+1
(
1 − pk+1

2

)n−2k−2

= n2k+2

(2k + 2)! p
2k(k+1)
1 (1 − o(1)) ,

since npk+1
2 → 0. Since we also assume that npk1 → ∞, we have E(Nk) → ∞. By

Chebyshev’s inequality, if we show that Var(Nk) = o(E(Nk)
2), then Nk > 0 w.h.p.

We have the standard inequality

Var(Nk) ≤ E(Nk) +
∑
Y 
=Z

Cov(IY , IZ ).

We recall that

Cov(IY , IZ ) = P(AY ∧ AZ ) − P(AY )P(AZ ).

We always have

P(AY )P(AZ ) = p4k(k+1)
1 (1 − p2)

2k+2
(
1 − pk+1

2

)2(n−2k−2)
,

and we note the simpler estimate

P(AY )P(AZ ) = p4k(k+1)
1 (1 − o(1))

since k ≥ 1 is fixed and npk+1
2 → 0.

Let m :=|Y ∩ Z |. In estimating P(AY ∧ AZ ), we consider cases depending on the
value of m.

Case I:
First, consider m = 0. It might be tempting to believe that if Y ∩ Z = ∅ then

AY and AZ are independent sets and the covariance is zero. Unfortunately, this is not
the case. Conditions (1) and (2) for a (p1, p2) special persistent cycle only depend
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on adjacency between vertices within the (2k + 2)-set, but condition (3) depends on
connections with the rest of the graph and these are not independent.

Nevertheless, we still have in this case

P (AY ∧ AZ ) = p4k(k+1)
1 (1 − o(1)) ,

as follows.
The term p4k(k+1)

1 is the probability of condition (1) holding for both vertex sets
Y and Z . So this is also an upper bound on the probability of conditions (1), (2), and
(3) holding for both vertex sets. For a lower bound on P (AY ∧ AZ ), we consider a
slightly smaller event, slightly simpler but whose probability is of the same order of
magnitude.

Let Y = {u1, . . . uk+1} ∪ {v1, . . . , vk+1}, where u1 < . . . uk+1 < v1 · · · < vk+1,
as before. Similarly, let Z = {u′

1, . . . u
′
k+1} ∪ {v′

1, . . . , v
′
k+1}, where u′

1 < . . . u′
k+1 <

v′
1 · · · < v′

k+1.
The event A∗

Y Z is defined as follows.

(1) We have ui ∼ u j , vi ∼ v j , and ui ∼ v j , u′
i ∼ u′

j , v
′
i ∼ v′

j , and u
′
i ∼ v′

j for every
i 
= j at time p1. That is, condition (1) holds for both Y and Z . Some edges may
be listed more than once if Y and Z overlap. This does not happen when m = 0
but these are the cases we consider below.

(2) Besides the edges that appear in the previous condition, no other edges occur
between vertices in vertex set Y ∪ Z , at time p2. This happens with probability
1 − O(p2) = 1 − o(1).

(3) Neither {u1, . . . uk+1} nor {u′
1, . . . u

′
k+1} has any mutual neighbors outside of

vertex set Y ∪ Z , at time p2. The probability of this condition being satisfied can
be bounded below by a union bound by 1−2npk+1

2 , which is again 1−o(1) since
npk+1

2 → 0.

Putting it all together, we have that P
(
A∗
Y Z

) ≥ p4k(k+1)
1 (1 − o(1)). We note that

A∗
Y Z imples AY ∧ AZ . Indeed, condition (1) is the same, condition (2) of A∗

Y Z implies
condition (2) of AY ∧ AZ , and conditions (2) and (3) of A∗

Y Z together imply condition
(3) of AY ∧ AZ .

Then

p4k(k+1)
1 ≥ P (AY ∧ AZ ) ≥ P

(
A∗
Y Z

) ≥ p4k(k+1)
1 (1 − o(1)) ,

and

P(AY ∧ AZ ) = p4k(k+1)
1 (1 − o(1)) ,

as desired.
So then

P (AY ∧ AZ ) − P(AY )P(AZ ) = o
(
p4k(k+1)
1

)
.
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Since the number of pairs Y , Z is bounded by n4k+4 we have that the total contribution
to the variance, S0, is bounded by

S0 = o
(
n4k+4 p4k(k+1)

1

)
.

Comparing this to

E(Nk)
2 =

(
n

2k + 2

)2

p4k(k+1)
1 (1 − o(1))

we see that

S0 = o
(
E(Nk)

2
)

.

Case II:
An essentially identical calculation shows that when m = 1, we have

P (AY ∧ AZ ) = p4k(k+1)
1 (1 − o(1)) .

So in this case we have again

P (AY ∧ AZ ) − P(AY )P(AZ ) = o
(
p4k(k+1)
1

)
.

Hence, the total contribution to the variance, S1, is

S1 = o
(
n4k+3 p4k(k+1)

1

)
and then,

S1/E(Nk)
2 = o

(
n−1

)

and in particular S1 = o
(
E(Nk)

2
)
.

Case III:
When 2 ≤ m ≤ 2k + 1, we consider two sub-cases. The first subcase is that events

AY and AZ are not compatible in the sense that they cannot both occur due to the ways
in which Y and Z overlap. This happens if for a certain pair of vertices u, v ∈ Y ∩ Z ,
u, v are required to be adjacent in one of Y , Z and non-adjacent in the other. In this
subcase, we have

P(AY ∧ AZ ) = 0,

so

P(AY ∧ AZ ) − P(AY )P(AZ ) = −p4k(k+1) (1 − o(1)) ≤ 0.
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The second subcase is that the events AY and AZ are compatible, in the sense that
they could possibly both happen. In this case, let j denote the number of pairs in Y ∩ Z
that are forced to be non-adjacent in AY ∧ AZ . Then the same argument as in Case I
shows that

P (AY ∧ AZ ) ≥ P
(
A∗
Y Z

) = p
4k(k+1)−(m2)+ j
1 (1 − o(1)) .

So

P(AY )P(AZ )

P(AY ∧ AZ )
≤ p

(m2)− j
1 (1 − o(1))

Since p1 → 0 as n → ∞, we have

P(AY )P(AZ )

P(AY ∧ AZ )
→ 0.

So,

P (AY ∧ AZ ) − P(AY )P(AZ ) = (1 − o(1)) P (AY ∧ AZ ) .

The total contribution Sm of a pair of events AY and AZ with Y ∩ Z = m to the
variance is then bounded by

Sm ≤ n4k+4−m p
4k(k+1)−(m2)+ j
1 (1 + o(1)) .

Comparing this to

E(Nk)
2 =

(
n

2k + 2

)2

p4k(k+1)
1 (1 − o(1)) .

we get

Sm/E(Nk)
2 = O

(
n−m p

−(m2)+ j
1

)
.

We have

n−m p
−(m2)+ j
1 =

(
np

m−1
2

1

)−m

p j
1 .

We are assuming that npk1 → ∞. Since m ≤ 2k + 1, we have k ≥ (m − 1)/2. Then

(
np

m−1
2

1

)−m

→ 0,

123
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p j
1 → 0, and Sm = o

(
E(Nk)

2
)
.

Summing the inequalities from the different cases, we conclude that

∑
Y 
=Z

Cov(IY , IZ ) =
2k+1∑
m=0

Sm = o
(
E(Nk)

2
)

,

since Sm = o
(
E(Nk)

2
)
for each m and k is fixed.

We conclude that as long as

n−1/k 	 p1 ≤ p2 	 n−1/(k+1),

then Nk > 0 with high probability.
It follows that if Lk(n) 	 n1/k(k+1) then w.h.p. Mk(n) ≥ Lk(n), as desired.

��

5 Future directions

Recall that we earlier defined

fk(n) = n1/k(k+1) (log n)1/(k+1) .

We believe that the Mk(n) is likely of order fk(n), in the following sense.
Let ω(n) be any function that tends to infinity with n. We showed in the proof of

Theorem 4.1 that

Mk(n) ≤ fk(n)ω(n).

We believe that an analogous lower bound should hold.

Conjecture 5.1 Let Mk(n) denote the maximal persistence over all k-dimensional
cycles in X(n, p). Then

fk(n)

ω(n)
≤ Mk(n)

with high probability.

The following kind of limit theorem would provide precise answers to questions
like, “Given a prior of this kind of distribution, what is the probability P(λ) that there
exists a cycle of persistence greater than λ?”

Conjecture 5.2 Let Mk(n) denote the maximal persistence over all k-dimensional
cycles in X(n, p). Then

Mk(n)

fk(n)
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Fig. 1 Maximally persistent 1-cycles. On the left, a histogram for logM1(n)/ log n. We prove that this
converges to 1/2 as n → ∞. On the right, a histogram for M1(n)/ f1(n). Both these figures are based on
1000 samples on n = 250 vertices

Fig. 2 Maximally persistent 2-cycles. On the left, a histogram for logM2(n)/ log n. We prove that this
converges to 1/6 as n → ∞. On the right, a histogram for M2(n)/ f2(n). Both these figures are based on
1000 samples on n = 150 vertices

converges in law to a limiting distribution supported on an interval [λk,∞) for some
λk > 0.

See Figs. 1 and 2 for some numerical experiments illustrating these conjec-
tures. These experiments were computed with the aid of Ulrich Bauer’s software
Ripser (Bauer 2021). We note that even though we have proved that asymptotically
logM1(n)/ log n → 1/2 and logM2(n)/ log n → 1/6, this is not apparent from our
numerical experiments. So this is a hint that the rate of convergence may be slow.

It also seems natural to study more about the “rank invariant” of a random clique
complex filtration. That is, given k ≥ 1, p1, and p2, how large do we expect the rank
of the map i∗ : Hk (X(n, p1)) → Hk (X(n, p2)) to be?

Conjecture 5.3 Suppose that k ≥ 1 is fixed, and

n−1/k 	 p1 ≤ p2 	 n−1/(k+1).

If i : X(n, p1) → X(n, p2) is the inclusion map, and

i∗ : Hk (X (n, p1)) → Hk (X (n, p2))
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is the induced map on homology, then

rank(i∗) = (1 − o(1))

(
n

k + 1

)
p
(k+1

2 )
1 .

In Kahle (2009), it is shown that

dim Hk(X(n, p1), Q) = (1 − o(1))

(
n

k + 1

)
p
(k+1

2 )
1 ,

so this conjecture is that almost all of the homology persists for as long as possible.
Bobrowski and Skraba study limiting distributions for maximal persistence in their

recent preprint (Bobrowski and Skraba 2022). They describe experimental evidence
that there is a universal distribution for persistence over a wide class of models, includ-
ing random Čech and Vietoris–Rips complexes. We do not know whether we should
expect the random clique complex filtration studied here to be in the same conjectural
universality class.
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