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Numerous quantum algorithms require the use of quantum error correction to overcome the intrinsic unre-
liability of physical qubits. However, quantum error correction imposes a unique performance bottleneck,
known as T -complexity, that can make an implementation of an algorithm as a quantum program run more
slowly than on idealized hardware. In this work, we identify that programming abstractions for control flow,
such as the quantum if-statement, can introduce polynomial increases in the T -complexity of a program. If
not mitigated, this slowdown can diminish the computational advantage of a quantum algorithm.

To enable reasoning about the costs of control flow, we present a cost model that a developer can use to
accurately analyze the T -complexity of a program under quantum error correction and pinpoint the sources
of slowdown. To enable the mitigation of these costs, we present a set of program-level optimizations that a
developer can use to rewrite a program to reduce its T -complexity, predict the T -complexity of the optimized
program using the cost model, and then compile it to an efficient circuit via a straightforward strategy.

We implement the program-level optimizations in Spire, an extension of the Tower quantum compiler.
Using a set of 11 benchmark programs that use control flow, we empirically show that the cost model is
accurate, and that Spire’s optimizations recover programs that are asymptotically efficient, meaning their
runtime T -complexity under error correction is equal to their time complexity on idealized hardware.

Our results show that optimizing a program before it is compiled to a circuit can yield better results than
compiling the program to an inefficient circuit and then invoking a quantum circuit optimizer found in prior
work. For our benchmarks, only 2 of 8 tested quantum circuit optimizers recover circuits with asymptotically
efficient T -complexity. Compared to these 2 optimizers, Spire uses 54×–2400× less compile time.
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1 INTRODUCTION

Quantum algorithms promise computational advantage over classical algorithms across numerous
domains, including cryptography and communication [Bennett and Brassard 2014; Bennett et al.
1993; Proos and Zalka 2003; Shor 1997], search and optimization [Farhi et al. 2014; Grover 1996],
data analysis and machine learning [Biamonte et al. 2017; Lloyd et al. 2014; Rebentrost et al. 2018],
and physical simulation [Abrams and Lloyd 1997; Babbush et al. 2018; Childs et al. 2018].

The power of quantum algorithms is rooted in their ability to manipulate quantum information,
which exists in a superposition of weighted classical states. A quantum computer may use quantum
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logic gates to modify the states and weights within a superposition, and measure quantum data to
obtain a classical outcome with probability determined by the weights in the superposition.

A common representation of a quantum algorithm is as a quantum circuit, a sequence of quantum
logic gates that operate over individual qubits, which are the quantum analogue of bits.

Error Correction. Whereas an idealized quantum computer can execute any quantum algorithm,
a realistic device must contend with the fact that every known physical implementation of a qubit
is unreliable, meaning its state becomes irreversibly corrupted after a small number of logic gates
are performed. To execute the algorithms that possess a provable asymptotic advantage in time
complexity, including Grover [1996]; Shor [1997], a quantum computer must employ quantum error

correction to encode a reliable logical qubit within a number of unreliable physical qubits.

Resource Estimation. A quantum algorithm that executes more logic gates requires logical qubits
to be more reliable, which in turn demands more physical qubits, a scarce hardware resource. Given
an algorithm, it is thus essential to determine its time complexity in terms of the number of logic
gates that it executes. This task, known as resource estimation [Hoefler et al. 2023; Leymann and
Barzen 2020; Suchara et al. 2013], is key to recognizing the scale of hardware needed to execute a
quantum algorithm and the problem size at which it offers advantage over classical algorithms.

T-Complexity Bottleneck. In principle, conducting resource estimation for a quantum algorithm
involves simply writing it out as a circuit and counting the number of logic gates used. A practical
challenge is that quantum error correction affects the available logic gates and their costs.
An idealized quantum computer supports any physically realizable quantum logic gate, includ-

ing analogues of classical NAND gates known as multiply-controlled NOT (MCX) gates that are
necessary for arithmetic [Gidney and Ekerå 2021; Rines and Chuang 2018] and memory [Low et al.
2018] within a quantum algorithm. By contrast, the prevailing surface code [Fowler et al. 2012]
architecture for error correction that has been implemented in practice by quantum hardware from
Google [Google Quantum AI 2023] and IBM [Takita et al. 2016] supports only a restricted set of
gates known as the Clifford+T gates, into which all MCX gates must be decomposed.

In turn, the decomposition of MCX uses the single-qubit T gate, a performance bottleneck on the
surface code. Unlike Clifford gates such as NOT and the two-qubit controlled-NOT (CNOT) that are
natively supported by the code, the T gate is realized separately via magic state distillation [Bravyi
and Kitaev 2005] at an area-latency cost1 of about 102 times that of a CNOT gate [Gidney and
Fowler 2019] and 1010 times that of a NAND gate in classical transistors [Babbush et al. 2021].

Although deriving an efficient quantum circuit requires navigating all of its gate costs, the order
of magnitude increase in cost for T gates relative to other gates has contributed to a contemporary
consensus that “The number of T gates . . . typically dominates the cost when implementing a fault
tolerant algorithm” [Reiher et al. 2017]. It is therefore broad practice to quantify the runtime cost
of a quantum algorithm under error correction using its T-complexity [Babbush et al. 2018], i.e.
number of T gates, which is often greater than its number of MCX gates.

1.1 T-Complexity Costs of Control Flow in �antum Programs

Resource estimation is made even more challenging by the reality that it is often impractical for
a developer to explicitly write quantum circuits by hand. Instead, the developer uses quantum
programming languages [Green et al. 2013; Paykin et al. 2017; Selinger 2004; Svore et al. 2018], which
provide programming abstractions over quantum data that are ultimately compiled to circuits.

1By area-latency cost, we refer to the product of the number of qubits and the number of processing cycles of the device.
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Control Flow. One abstraction provided by languages [Altenkirch and Grattage 2005; Bichsel
et al. 2020; JavadiAbhari et al. 2014; Voichick et al. 2023; Ying et al. 2012; Yuan and Carbin 2022] is
a quantum if-statement that conditions on the value of qubit in superposition. This concept of
control flow in superposition enables algorithms for simulation [Babbush et al. 2018], factoring [Shor
1997], and search [Ambainis 2004] to be expressed as a program more concisely than without the
abstraction. In turn, the language compiler produces a circuit for a program that utilizes quantum
if by translating the abstraction into individual qubit-controlled logic gates.

Costs of Control Flow. The problem is that quantum error correction can make the use of control
flow abstractions significantly more inefficient than on idealized hardware. In this work, we identify
that the usage of programming abstractions for control flow in superposition, such as quantum
if, in a program can cause its asymptotic T -complexity to be polynomially larger than the time
complexity found by a standard analysis that assumes idealized hardware. This blowup arises
because a quantum if compiles to significantly more T gates than it does to MCX gates.

In turn, a polynomial increase in T -complexity diminishes the theoretical advantage of quantum
algorithms for tasks such as search [Brassard et al. 2002; Grover 1996] and optimization [Sanders
et al. 2020] that have only polynomial advantage over classical algorithms. Moreover, emerging
evidence suggests that “at least cubic or quartic speedups are required for a practical quantum
advantage” [Hoefler et al. 2023], which implies that even a linear slowdown jeopardizes the practical
advantage of an algorithm that is otherwise marginally over the cubic speedup threshold.

1.2 Cost Model for Accurately Predicting T-Complexity Costs

To optimize away this overhead, the developer must pinpoint the specific locations in a quantum
program that incur the overhead. A challenge is that without the ability to accurately reason about
the program at syntax level, the developer must repeatedly compile it to a large circuit and count
its gates, which does not efficiently or precisely identify the cause of the slowdown.

As an alternative, we present a cost model for reasoning about the T -complexity of programming
abstractions for control flow in superposition within a quantum program. Using the cost model, a
developer can pinpoint the sources of slowdown through a syntax-level analysis that accurately
determines the runtime cost of each program statement under quantum error correction.

1.3 Program-Level Optimizations for Mitigating T-Complexity Costs

Next, we present a set of program-level optimizations for quantum programs. Using them, a developer
can rewrite a program to reduce its T -complexity, predict the T -complexity of the optimized program
using the cost model, and then compile it to an efficient circuit by a straightforward strategy.

The first optimization, conditional flattening, identifies excess T gates caused by nested quantum
if-statements, and removes these gates by introducing a temporary qubit and using it to flatten
the structure of conditional statements. The second optimization, conditional narrowing, identifies
excess T gates caused by statements that do not need to be placed under a quantum if and safely
moves these statements outside the if, thereby narrowing the range of conditional statements.
We implement and evaluate these optimizations in Spire, an extension of the Tower [Yuan and

Carbin 2022] quantum compiler. For a set of 11 benchmark programs that use control flow, Spire
successfully recovers programs that are asymptotically efficient, meaning their T -complexity under
error correction is equal to their time complexity on idealized hardware.

Our results show that optimizing a program before it is compiled to a circuit can yield better results
than compiling the program to an inefficient circuit and then invoking a quantum circuit optimizer
found in prior work. For our benchmarks, a majority of existing optimizers we tested do not recover
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circuits that are asymptotically efficient in T -complexity. Moreover, Spire’s optimizations followed
by an existing quantum circuit optimizer achieve better results than either approach alone.
Forms of conditional narrowing and flattening appear in prior work [Ittah et al. 2022; Seidel

et al. 2022; Steiger et al. 2018]. Our novel contributions are to unify both optimizations as program
rewrite rules, identify that they can mitigate the asymptotic slowdown caused by control flow, and
empirically evaluate their effectiveness and speed relative to existing circuit optimizers.

1.4 Contributions

In this work, we present the following contributions:

• Costs of Control Flow (Section 3). We identify that programming abstractions for control flow in
superposition can introduce polynomial overheads in the T -complexity of a program. These
costs can diminish the advantage of a quantum algorithm under error correction.

• Cost Model (Section 5). We present a cost model that computes the T -complexity of a quantum
program that utilizes control flow. Using the cost model, the developer can accurately analyze
the runtime cost of a program under an error-corrected quantum architecture.

• Program-Level Optimizations (Section 6). We present two optimizations for quantum programs,
conditional flattening and conditional narrowing. Using them, a developer can rewrite a program
to reduce its T -complexity, predict the T -complexity of the optimized program using the cost
model, and compile that program to an efficient circuit via a straightforward strategy.

• Evaluation (Sections 7 and 8). We implement the optimizations in Spire, an extension of the
Tower quantum compiler. Using a set of 11 benchmark programs that contain control flow, we
empirically show that the cost model is accurate, and that Spire’s optimizations can mitigate the
T -complexity costs of control flow and recover an asymptotically efficient program. By contrast,
only 2 of 8 existing quantum circuit optimizers we tested recover circuits with asymptotically
efficient T -complexity. Spire uses 54×–2400× less compile time than these 2 optimizers.

Implications. This work reveals challenges that must be overcome to fully realize the asymptotic
advantage of quantum algorithms on an error-corrected quantum computer. By incorporating our
cost model and optimizations, program optimizers may more precisely account for the architectural
costs of error correction and the abstraction costs of control flow in a quantum program.

2 BACKGROUND ON QUANTUM COMPUTATION

This section overviews key concepts in quantum computation that are relevant to this work. For a
comprehensive reference, please see Nielsen and Chuang [2010].

Superposition. The fundamental unit of quantum information is the qubit, a linear combination
or superposition W0 |0⟩ + W1 |1⟩ of the classical basis states 0 and 1, in which W0, W1 ∈ C are complex
amplitudes satisfying |W0 |2 + |W1 |2 = 1 describing relative weights of basis states. Examples of qubits
are classical |0⟩ and |1⟩, and the states 1√

2
( |0⟩ + 48i |1⟩) where i ∈ [0, 2c) is known as a phase.

More generally, a quantum state |k ⟩ is a superposition over =-bit strings. For example, |k ⟩ =
1√
2
( |00⟩ + |11⟩) is a quantum state over two qubits. Formally, multiple component states form a

composite state by the tensor product ⊗, e.g. the state |01⟩ is equal to |0⟩ ⊗ |1⟩. As is customary in
quantum computation, we also use the notation |0, 1⟩ to represent |01⟩ = |0⟩ ⊗ |1⟩.

Unitary Operator. A unitary operator * is a linear operator on quantum states that preserves
inner products and whose inverse is its Hermitian adjoint* †. Formally, a unitary operator may be
constructed as a circuit of quantum gates. The quantum gates over a single qubit include:

• Bit flip (- or NOT), which maps |G⟩ ↦→ |1 − G⟩ for G ∈ {0, 1};
• Phase flip (/ ), which maps |G⟩ ↦→ (−1)G |G⟩;
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• c/4 phase rotation (T ), which maps |G⟩ ↦→ 48Gc/4 |G⟩;
• Hadamard (� ), which maps |G⟩ ↦→ 1√

2
(|0⟩ + (−1)G |1⟩).

A gate may be controlled by one or more qubits, forming a larger unitary operator. For example,
the two-qubit CNOT gate maps |0, G⟩ ↦→ |0, G⟩ and |1, G⟩ ↦→ |1,NOT G⟩ = |1, 1 − G⟩. Generalized
versions of CNOT are known as multi-controlled-- (MCX) gates. In particular, the MCX gate with
two control bits is known as the Toffoli gate, and the MCX with zero controls is the NOT gate.
The Clifford gates [Gottesman 1998] are the quantum gates that can be constructed by compo-

sitions and tensor products of � , ( = ) 2, and CNOT. Examples of Clifford gates include / = (2

and - = �/� . By contrast, no MCX gate larger than CNOT is Clifford, and constructing e.g. a
Toffoli gate requires the use of the non-Clifford T gate. The Clifford gates plus the T gate form the
Clifford+T gates, the gate set of the predominant surface code for quantum error correction.

Measurement. Performing a measurement of a quantum state probabilistically collapses its super-
position into a classical outcome. When a qubit W0 |0⟩ + W1 |1⟩ is measured in the standard basis, the
observed classical outcome is 0 with probability |W0 |2 and 1 with probability |W1 |2.

Entanglement. A state is entangled when it consists of two components but cannot be written
as a tensor product of its components. For example, the Bell state [Bell 1964] 1√

2
( |00⟩ + |11⟩) is

entangled, as it cannot be written as a product of two independent qubits.
Given an entangled state, measuring one of its components causes the superposition of the other

component to also collapse. For example, measuring the second qubit in the Bell state causes the
state of the first qubit to also collapse, to either |0⟩ or |1⟩ with probability

�
� 1√

2

�
�2
=

1
2
each.

Uncomputation. Entanglement means that in general, measuring or discarding a component of a
quantum state can destroy the superposition of the remainder of the state. The consequence is that
a quantum algorithm may not simply discard a temporary variable that it no longer needs, which
could cause a superposition collapse that negates the possibility of quantum advantage. Instead,
the algorithm must uncompute the variable [Bennett 1973; Bichsel et al. 2020], meaning it reverses
the sequence of operations on that variable and returns it to its initial value of zero.

3 T-COMPLEXITY COSTS OF CONTROL FLOW IN QUANTUM PROGRAMS

In this section, we demonstrate how programming abstractions for control flow in superposition
can cause a quantum program to have asymptotic time complexity worse than that found by its
idealized theoretical analysis. These costs arise from the performance bottleneck of quantum error
correction, and if not mitigated, can diminish the computational advantage of quantum algorithms.

3.1 Running Example

Quantum algorithms for search [Ambainis 2004; Grover 1996], game tree evaluation [Ambainis et al.
2010; Childs et al. 2007], combinatorial optimization [Bernstein et al. 2013], and geometry [Aaronson
et al. 2020] utilize abstract data structures in superposition to achieve computational advantage.
For example, they rely on a set to efficiently maintain a collection of items, check an item for
membership, and add and remove items. In turn, an abstract set can be concretely implemented as
a linked list, whose structure and contents exist in quantum superposition.

In Figure 1, we present a program in the language Tower [Yuan and Carbin 2022] to compute the
length of a linked list. This length function accepts a pointer xs to the head of the list and a value
acc that stores the number of list nodes traversed so far. Line 4 checks whether the list is empty,
meaning that xs is null, and if so returns acc. If not, line 9 dereferences xs to obtain the pointer to
the next list node, and line 11 adds 1 to the value of acc.
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1 type list = (uint, ptr<list>);

2 fun length[n](xs: ptr<list>, acc: uint) {

3 with {

4 let is_empty <- xs == null;

5 } do if is_empty {

6 let out <- acc;

7 } else with {

8 let temp <- default<list>;

9 *xs <-> temp;

10 let next <- temp.2;

11 let r <- acc + 1;

12 } do {

13 let out <- length[n-1](next, r);

14 }

15 return out;

16 }

Fig. 1. Program computing the length of a list.

Recursion. On line 13, the function makes a re-
cursive call. In Tower, all function calls are inlined
by the compiler, and the values n and n-1 statically
instruct the compiler to unroll length to depth n.
In the example, n is a concrete integer known at
compile time, and length is effectively a family of
functions whose nth instance returns the length of
the list xs if it is less than n, or 0 otherwise.

Quantum Data. All data types in Tower denote
data in quantum superposition. For example, when
xs is a superposition of lists [], [1], and [1, 2, 3], the
output of length is a superposition of the integers
0, 1, and 3. The if-statement on line 5 conditions on
the value of is_empty in superposition, meaning
it executes the if-clause on the classical states in
the machine state superposition where is_empty
is true, and the else-clause on all other states.

Uncomputation. The structure of the program in Figure 1 enables the use of uncomputation (Sec-
tion 2) to clean up temporary values in the program. In Tower, an operator known as un-assignment

let x -> e is defined as the reverse of the assignment let x <- e. Whereas assignment initializes
x to zero and sets it to e, un-assignment resets x from e back to zero and deinitializes x.

In Figure 1, un-assignment does not appear explicitly but is performed implicitly by the with-do
construct as follows. First, the with-block on lines 3 to 5 executes, initializing a variable is_empty.
The do-block on lines 5 to 14 then executes, computing the result out. Then, the with-block is
executed in reverse, with all assignments flipped to un-assignments and vice versa. That is, the
inverse of lines 3 to 5 un-assigns and deinitializes is_empty. The function then returns out.

Equivalents of the with-do construct can be found in other quantum programming languages. Ex-
amples include the within-apply blocks of Q# [Svore et al. 2018] and the automatic uncomputation
of scoped variables in Silq [Bichsel et al. 2020] and Qunity [Voichick et al. 2023].

3.2 Complexity Analysis and Diminished Advantage

Algorithms such as Aaronson et al. [2020]; Ambainis [2004]; Bernstein et al. [2013]; Grover [1996]
offer theoretical advantage over classical algorithms that is sub-exponential, meaning it could be
diminished if their implementation as a program introduces additional polynomial overhead.

Idealized Analysis. A standard analysis of length reveals that its time complexity is $ (=) where
= is the recursion depth n from above. In this work, we assume that the bit width of integer and
pointer registers is a small constant, with only the depth = of recursion considered a variable.2 At
each of = levels of recursion, length performs $ (1) work in primitive operations, and makes one
recursive call. The recurrence � (=) = $ (1) +� (= − 1) for time complexity yields � (=) = $ (=).

In Figure 2, we plot the empirical time complexity of length on an idealized quantum computer,
as determined by compiling Figure 1 to a quantum circuit of multiply-controlled NOT (MCX) gates,
and counting its MCX-complexity, i.e. number of MCX gates, which is $ (=) as above.

2For detailed discussion of the effect of a variable bit width on the T -complexity of a program, please see Appendix A.
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Fig. 2. Number of gates in the circuit of Figure 1.

Asymptotic Slowdown. Figure 2 also plots the em-
pirical time complexity of length on a quantum
computer with error correction, as found by com-
piling it to a circuit in the Clifford+T gate set, and
counting its T-complexity, i.e. number of T gates.

The number of T gates is an appropriate metric
because T gates act as the bottleneck of the surface
code [Fowler et al. 2012], the prevailing quantum
error correction code. On the surface code, realizing
the T gate incurs an area-latency cost of about 102

times that of Clifford gates such as CNOT [Gidney
and Fowler 2019] and 1010 times that of a NAND
gate in classical transistors [Babbush et al. 2021].

As seen in Figure 2, the T -complexity of the pro-
gram is not$ (=) but rather$ (=2), meaning that a quantum algorithm that invokes length obtains
diminished advantage under error correction. Such a slowdown does not fully erase the theoretical
advantage of Ambainis [2004], which is$ (# 1/3) where# is the size of the input. In Ambainis [2004],
the depth of the data structure and hence of recursion is only poly-logarithmic in # , i.e. $ (log2 # )
for some constant 2 . However, such a slowdown jeopardizes instances of quantum search [Grover
1996] in which the advantage is $ (# 1/2) and the depth = of each query is $ (# 1/2) or greater.

3.3 T-Complexity Costs of Control Flow

The cause of the disparity is that on an error-corrected quantum computer, logic gates that are
controlled by more bits are more costly to realize in terms of T -complexity. In turn, these control
bits accrue in the compiled form of a control flow abstraction such as the quantum if-statement.

Compilation of Control Flow. To execute on a quantum computer, a program such as Figure 1 is
compiled to a quantum circuit, a fixed sequence of logic gates controlled by individual bits. Each
statement compiles to gates controlled by all of the qubits that lead to that control flow path.

To demonstrate this translation on a smaller scale, in Figure 3 we depict a simple program that
uses quantum if-statements. Given Booleans x, y, and z, the program sets the value of output
variables a and b to the negation of z and true respectively, when x, y, and z are all true. Though a
toy example, this program exemplifies the same overheads of control flow as in Figure 1.
In Figure 4, we depict the circuit to which Figure 3 compiles, which has wires labeled with the

name of each program variable. Gates labeled X denote NOT gates, while gates with black dots
denote bit-controlled gates that execute only if all control bits, denoted by the dots, are true.

The nested quantum if-statements on lines 1 and 2 compile to a sequence of gates controlled by
both x and y. Line 4 compiles to the first gate, a controlled-NOT (CNOT) gate that flips t based on
the value of z. In turn, this CNOT is controlled by x and y. Next, the quantum if on line 6 compiles
to gates controlled by x, y, and z. Line 7 compiles to three gates — a CNOT over t and a, surrounded
by NOT gates on t. Line 8 compiles to the next gate, a NOT over b. Finally, the semantics of the
with-block states that line 4 is reversed after the do-block, corresponding to the last gate.

Error Correction. If we were targeting an ideal quantum computer not constrained by hardware,
then the circuit in Figure 4 consisting of MCX gates could serve as the final representation of the
program. Indeed, the idealized analysis of length finds its MCX-complexity, which is linear.

By contrast, a computer that uses the surface code [Fowler et al. 2012] for error correction supports
the restricted Clifford+T gate set, to which MCX gates larger than CNOT must be decomposed. In
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1 if x {

2 if y {

3 with {

4 let t <- z;

5 } do {

6 if z {

7 let a <- not t;

8 let b <- true;

9 } } } }

let t <- z; let t -> z;let a <- not t; let b <- true;

x

y

z

t - - - -

a -

b -

Fig. 3. Tower program that uses
nested quantum if-statements.

Fig. 4. Translation of Figure 3 to a circuit. On each multiply-controlled-
NOT (MCX) gate, each orange control bit incurs T -complexity.

-

=

|0⟩ - - |0⟩

-

-

=

)

) † - ) † - (

� - ) † - ) - ) † - ) �

Fig. 5. DecomposingMCX to Toffoli. Fig. 6. Decomposing Toffoli into Clifford+T gates.

1 with {

2 let t <- z;

3 let s <- x && y && z;

4 } do {

5 if s {

6 let a <- not t;

7 let b <- true;

8 } }

let t <- z; let t -> z;let a <- not t; let b <- true;

s - -

x

y

z

t - - - -

a -

b -

Fig. 7. Optimized version of Figure 3. Fig. 8. �antum circuit that corresponds to Figure 7.

Figure 5, we depict how an MCX gate decomposes into Toffoli gates by the process of Barenco et al.
[1995]. Then, in Figure 6, we depict how Toffoli decomposes into Clifford+T gates.
The decomposition of an MCX to a Clifford+T circuit introduces T -complexity. For example,

Figure 6 uses 7 T gates to decompose one Toffoli gate,3 meaning that Figure 5 uses 3 × 7 = 21 T

gates to decompose an MCX gate with 3 control bits. In general, Beverland et al. [2020, Proposition
4.1] prove that an MCX gate with = ≥ 2 controls requires at least = + 1 T gates to realize. This lower
bound is not reached in practice by Figures 5 and 6, which instead require 7× (2(= − 2) + 1) T gates.

Costs of Control Flow. In other words, on error-corrected quantum hardware, instructions become
more costly to execute as the program’s control flow becomes more deeply nested. To accurately
predict performance under error correction, one must account for the T -complexity of each control
bit beyond the first on each MCX gate — only the first is free in principle because CNOT is a Clifford
gate. In Figure 4, we highlight these additional control bits in orange. In addition to the 6 MCX
gates, the 13 orange controls cost at least 7 × 2 × 13 = 182 T gates using Figures 5 and 6.

3As a technical note, the gate) †
= )(/ has a T -complexity of 1, as it can be realized using Clifford gates plus one T gate.
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1 fun length[n](xs: ptr<list>, acc: uint) {

2 with {

3 let is_empty <- xs == null;

4 } do {

5 if is_empty { let out <- acc; }

6 else with {

7 /* elided: compute next, r */

8 let is_empty2 <- next == null;

9 } do {

10 if is_empty2 { let out <- r; }

11 else with {

12 /* elided: compute next2, r2 */

13 let is_empty3 <- next2 == null;

14 } do {

15 if is_empty3 { let out <- r2; }

16 else with {

17 let temp <- default<list>;

18 *next2 <-> temp;

19 let next3 <- temp.2;

20 let r3 <- r2 + 1;

21 } do {

22 let out <- length[n-3](next3, r3);

23 }}}}

24 return out;

25 }

1 fun length[n](xs: ptr<list>, acc: uint) {

2 with {

3 let is_empty <- xs == null;

4 let not_empty <- not is_empty;

5 /* elided: compute next, r */

6 let is_empty2 <- not_empty && next == null;

7 let not_empty2 <- not_empty && next != null;

8 /* elided: compute next2, r2 */

9 let is_empty3 <- not_empty2 && next2 == null;

10 let not_empty3 <- not_empty2 && next2 != null;

11 let temp <- default<list>;

12 *next2 <-> temp;

13 let next3 <- temp.2;

14 let r3 <- r2 + 1;

15 } do {

16 if is_empty { let out <- acc; }

17 if is_empty2 { let out <- r; }

18 if is_empty3 { let out <- r2; }

19 if not_empty3 {

20 let out <- length[n-3](next3, r3);

21 }}

22 return out;

23 }

Fig. 9. Version of Figure 1 inlined to 3 levels of re-
cursion, depicting the nesting of conditionals.

Fig. 10. Optimized version of Figure 9.

3.4 Cost Model for Accurately Predicting T-Complexity Costs

The increased cost of control flow under quantum error correction explains the discrepancy between
the idealized analysis of length in Section 3.2 and the empirical gate counts in Figure 2. We now
demonstrate how using our T -complexity cost model, a developer can conduct an analysis that
pinpoints the overhead of control flow in a quantum program.

Running Example. In Figure 9, we illustrate a version of length in which the recursive call on
line 13 of Figure 1 has been unfolded and inlined twice to reveal the nesting of if-statements. This
program features three levels of nested if, highlighted in orange. When the program is compiled
to MCX gates, each if becomes a sequence of control bits placed over its branches. For example,
the gates corresponding to the assignment on line 5 are conditioned by is_empty.

The source of the asymptotic cost is that nested conditional statements compile to nested control
bits. For example, the assignment on line 13 lies under two levels of if-statements, and compiles
to a sequence of gates that are controlled by is_empty and is_empty2. Likewise, the assignment
on line 15 is controlled by three bits, as are all of lines 17 to 20.

Analysis with Cost Model. Returning to the recursive form of length in Figure 1, we now use
our cost model to repair the analysis of Section 3.2 to account for the T -complexity of control flow.
Let �MCX (=) denote the MCX-complexity and �T (=) the T -complexity of the program.
To compute �T (=), we start as before with the $ (1) primitive operations per level and the

�T (= − 1) term for the recursive call. Next, we account for the T -complexity of control flow. In
Figure 1, the if-else on lines 5 to 14 incurs one control bit for each statement on lines 6 to 11,
adding an $ (1) term. On line 13, the if incurs $ (1) cost for each of the �MCX (= − 1) = $ (=)
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primitive operations in the recursive call. The final recurrence is:

�T (=) = $ (1)
︸︷︷︸

operations in level

+ �T (= − 1)
︸     ︷︷     ︸

recursive call

+ $ (1)
︸︷︷︸

control flow over
operations in level

+ �MCX (= − 1)
︸         ︷︷         ︸

control flow over
recursive call

= �T (= − 1) +$ (=)

which yields �T (=) = $ (=2), agreeing with the empirical results in Figure 2.

3.5 Program-Level Optimizations for Mitigating T-Complexity Costs

We showed that control flow can incur asymptotic overhead in T -complexity when compiled using
a straightforward strategy. We next present two program-level optimizations that rewrite the syntax
of the program and produce a new program that then compiles using the same straightforward
strategy to a circuit with reduced T -complexity. The first one, conditional flattening, can provide an
asymptotic speedup while the second, conditional narrowing, yields additional constant speedups.

Conditional Flattening. In Figure 7, we present an optimized form of Figure 3 that has been
subject to both optimizations. First, the conditional flattening optimization eliminates control bits
that are introduced by nested if-statements, by flattening them via the use of temporary variables.
Whereas the original program in Figure 3 uses three if-statements on lines 1, 2, and 6, the optimized
program in Figure 7 introduces a variable s on line 3 and uses it in a single if on line 5.
The benefit can be seen in Figure 8, the circuit to which Figure 7 compiles. The gates to which

lines 6 and 7 compile are now controlled by only s rather than x, y, and z as in the original circuit
in Figure 4, saving 8 control bits or 7 × 2 × 8 = 112 T gates. Though the computation of s adds 4
control bits, this cost is asymptotically constant with respect to the length of the body of the if.

Conditional Narrowing. Second, the conditional narrowing optimization eliminates control bits
introduced by a with-do block under an if-statement, by moving the if into the do-block. In
Figure 7, line 2 is no longer under an if as in the original Figure 3. As a result, in Figure 8, the first
and last gates are not controlled by x, y, and z, saving 4 more control bits over Figure 4.

1 fun length[n](xs, acc: uint, b: bool) {

2 with {

3 let is_empty <- b && xs == null;

4 let n_e <- b && xs != null;

5 let temp <- default<list>;

6 *xs <-> temp;

7 let next <- temp.2;

8 let r <- acc + 1;

9 } do {

10 if is_empty { let out <- acc; }

11 let rest <- length[n-1](next, r, n_e);

12 if n_e { out <-> rest; }

13 let rest -> 0;

14 }

15 return out;

16 }

Fig. 11. Program that reflects the optimizations
in Figure 10 back to the original form in Figure 1.

Running Example. In Figure 10, we depict the result
of optimizations on the unfolded length program
from Figure 9. Conditional flattening turns 3 levels
of nested if to 1, such that assuming 8-bit registers,
lines 17 and 18 save 7 × 2 × (2 − 1 + 3 − 1) × 8 = 336

T gates. Accounting for uncomputation, the use of
temporary variables adds 7 × 2 × 2 × 2 = 56 T gates,
for a net savings of 336 − 56 = 280 T gates.

Next, conditional narrowing saves a further 7× 2×
4×8 = 448 T gates bymoving lines 11 to 14 outside if-
statements. Notably, the program remains safe even
though pointer dereferences have been moved out-
side null checks. All writes to the observable output
out remain guarded by appropriate checks, meaning
uninitialized data never propagates to the output.

Efficient T-Complexity. When applied to the orig-
inal length program from Figure 1, these optimiza-
tions produce the program depicted in Figure 11. In this program, recursion no longer takes place
under nested if. As a result, in the T -complexity analysis, control flow incurs only $ (1) overhead,
and the recurrence yields an asymptotically efficient $ (=) for the optimized program.
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Fig. 12. T -complexity of length a�er quantum circuit optimizers and program-level optimizations in Spire.

3.6 Comparison to �antum Circuit Optimizers

In principle, an alternative to the approach of program-level optimizations – rewrite the program
so that it straightforwardly compiles to a more efficient circuit – is to emit the asymptotically
inefficient circuit of the original program and then attempt to recover an asymptotically efficient
circuit using a general-purpose quantum circuit optimizer [Hietala et al. 2021; Kissinger and van de
Wetering 2020; QuiZX Developers 2022; Sivarajah et al. 2020; Xu et al. 2023, 2022] that researchers
have developed to remove and replace inefficient sequences of gates in circuits.
To compare these approaches, we implemented both program-level optimizations in Spire, an

extension to the Tower compiler. In Figure 12a, we plot the T -complexity of length after Spire’s
optimizations only, and no circuit optimizer. In Figure 12b, we plot the T -complexity without Spire’s
optimizations, and only the Qiskit [Qiskit Developers 2021] and Feynman [Amy 2024; Amy et al.
2014] circuit optimizers. We also plot in Figure 12a the results of a combined approach — running
Spire on the original program, compiling the optimized program to a circuit, and then running
Feynman on that circuit. Lastly, we plot the idealized MCX-complexity from Figure 2 for reference.4

First, Qiskit and one configuration of Feynman do not produce a circuit with linear T -complexity,
while Spire and a second configuration of Feynman do. A possible explanation for the difference is
that conditional flattening is not captured by the rewrites of Clifford+T gates that Qiskit implements.
By contrast, as we discuss in Section 8.5, the optimization can be captured by cancelling adjacent
Clifford+Toffoli gates, enabling a configuration of Feynman using that strategy to succeed.

Next, Spire and Feynman together achieve better speedups than either alone — Feynman leaves
behind some fraction of T gates that Spire can eliminate. As we discuss in Section 8.5, one challenge
that a circuit optimizer must overcome to fully capture the effect of conditional narrowing is that
the circuit optimizer must perform rewrites over an unbounded number of gates.
Finally, Spire takes only 0.05 s to emit an efficient circuit, whereas Feynman takes 2 minutes to

do so in this case. The reason is that whereas the circuit optimizer must process a large circuit to
shrink it down, Spire optimizes the program so that the large circuit is not created in the first place.

4As a technical note, the MCX-complexity is the performance on an idealized architecture and not the minimal T -complexity
to implement the function. The MCX and T -complexities should be compared only in terms of asymptotics, not constants.
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Type g F () | uint | bool | (g1, g2) | ptr(g)
Value E F G | () | (G1, G2) | = | true | false | nullg | ptrg [?] (= ∈ UInt, ? ∈ Addr)

Expression 4 F E | c1 (G) | c2 (G) | D>? G | G1 1>? G2

Operator D>? F not | test 1>? F && | || | + | - | *
Statement B F if G { B } | B1; B2 | skip | G ← 4 | G → 4 | � (G) | G1 ⇔ G2 | ∗G1 ⇔ G2

Fig. 13. Core syntax of the Tower quantum programming language.

4 TOWER LANGUAGE OVERVIEW

In this section, we briefly review the syntax and semantics of Tower [Yuan and Carbin 2022], a
quantum programming language featuring abstractions for control flow in superposition.

Language Syntax. The Tower language features the data types of integers, tuples, and pointers,
along with operations on these data types. In Figure 13, we depict the core syntax of the language.
In Tower, all recursive function definitions and calls are inlined by the compiler, producing a

program that uses only the core syntax above [Yuan and Carbin 2022, Section 6]. In the example
from Figure 1, the annotation n instructs the compiler to inline length into itself n times.

Apart from standard imperative programming features, Tower supports a number of constructs
necessary for quantum programming. The un-assignment construct G → 4 uncomputes (Section 2)
the value of G using the value of 4 . The construct G1 ⇔ G2 swaps the values of variables G1 and G2,
and ∗G1 ⇔ G2 swaps a value stored in memory at pointer G1 with the value of G2.
We study a version of Tower extended with a statement � (G) that executes a Hadamard gate

(Section 2) on the Boolean variable G . Because the Hadamard and Toffoli gates are universal for
quantum computation [Shi 2003], the availability of the Hadamard and NOT gates and the if G { B }
construct means that any quantum computation can be expressed as a Tower program.

Language Semantics. The type system of Tower assigns a type to each value or expression and
determines whether a statement is well-formed. In Appendix B, we define typing for values and
expressions, and the judgment Γ ⊢ B ⊣ Γ

′, which states that the statement B is well-formed under a
context Γ of variables and produces a context Γ′ of the updated declarations after executing B .

The circuit semantics of Tower assigns to each program B a corresponding quantum circuit CJBK
that can execute on a quantum computer. In Appendix B, we define this semantics and specifically
how CJBK maps an input machine state |',"⟩ to an output machine state |'′, " ′⟩. Here, ' denotes
a register file mapping variables to values and" denotes a memory mapping addresses to values.

In Tower, the dereferencing of a null pointer is a no-op, not a runtime error. When a variable is
re-defined, the value of its corresponding register becomes the XOR of its old and new values.

Derived Forms. Each statement B in Tower is reversible, meaning that there exists a statement I[B]
whose semantics are the reverse of B . Specifically, I[B1; B2] is I[B2]; I[B1]. Similarly, I[G ← 4] is
G → 4 and vice versa, I[if G { B }] is if G { I[B] }, and the reverse of any other B is B itself.

Based on this concept, we define the derived form with { B1 } do { B2 } as B1; B2; I[B1], and use it
to automate the insertion of uncomputation statements for variables within block scope. Memory
allocation and deallocation desugar to core constructs, following the process described in Yuan and
Carbin [2022, Section 5]. Other derived forms, such as the if-else construct, are described in Yuan
and Carbin [2022, Appendix B] and similarly desugar to core constructs.

5 COST MODEL

In this section, we present a cost model that computes the T -complexity of a quantum program
that utilizes programming abstractions for control flow in superposition. Using the cost model, a
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developer can perform a syntactic analysis that determines the runtime cost of a program on an
error-corrected quantum architecture and pinpoint the sources of asymptotic slowdown.

Given a program B , the cost model quantifies the number of gates in the circuit CJBK to which it
compiles, following the semantics of Section 4. More generally, the cost model also matches the
compilation of other languages with quantum if, such as QML [Altenkirch and Grattage 2005],
ScaffCC [JavadiAbhari et al. 2014], Silq [Hans and Groppe 2022], and Qunity [Voichick et al. 2023].

MCX-Complexity. We denote by�MCX (B) theMCX-complexity of the program B , which is formally
defined as the number of gates in its compiled circuit CJBK when expressed in an idealized gate set
consisting of arbitrarily controllable Clifford gates, which includes arbitrary MCX gates:

�MCX (skip) = 0 �MCX (B1; B2) = �MCX (B1) +�MCX (B2)
�MCX (if G { B }) = �MCX (B) �MCX (B) = 2MCX

B for any other B

where 0 ≤ 2MCX
B = $ (1) represents the number of arbitrarily controllable Clifford gates, including

MCX gates, used by the primitive operation B . This constant is determined by the implementation
of B , and all primitive B satisfy 2MCX

B > 0 except for only skip or G ← E or G → E where E has an
all-zero bit representation for which no gates are emitted. The reason for why the if-statement
does not increase the MCX-complexity is that the number of arbitrarily controllable Clifford gates,
including MCX gates, does not change when more control bits are added to gates.

Theorem 5.1 (MCX-Complexity Soundness). If B is well-formed, i.e. Γ ⊢ B ⊣ Γ
′, then the number

of arbitrarily controllable Clifford gates in CJBK is equal to �MCX (B), up to choices for 2MCX
B .

Proof. By induction on the definition of CJBK. The significant case is if, as explained above. □

T-Complexity. We denote by �T (B) the T -complexity of the program B , which is formally defined
as the number of T gates in its compiled circuit CJBK when expressed in the Clifford+T gate set:

�T (skip) = 0 �T (B1; B2) = �T (B1) +�T (B2)
�T (if G { B1; B2 }) = �T (if G { B1 }) +�T (if G { B2 }) �T (if G { � (~) }) = 2T

CH

�T (if G { ~ ← E }) = �T (if G { ~ → E }) = 0 for value E

�T (if G { B }) = 2Tctrl ∗�
MCX (B) +�T (B) for other B �T (B) = 2TB for other B

where 0 ≤ 2TB = $ (1) represents the number of T gates used by the primitive operation B , which is
determined by the implementation of B . Simple B such as G ← E and � (G) have 2TB = 0, whereas
others such as G ← ~ * I for which an arithmetic circuit must be instantiated have 2TB > 0. The
constant 0 < 2T

CH
= $ (1) represents the number of T gates required to implement a controlled-

Hadamard gate. Using the construction of Lee et al. [2021, Figure 17], we have 2T
CH

= 8. The constant
0 < 2Tctrl = $ (1) represents the number of T gates required to add an additional control bit to a

multi-controlled gate. Using the decompositions in Figures 5 and 6, we have 2Tctrl = 2 × 7 = 14.

Theorem 5.2 (T -Complexity Soundness). If B is well-formed, i.e. Γ ⊢ B ⊣ Γ
′, then the number of

T gates in CJBK is equal to �T (B), up to choices for the constants 2MCX
B , 2TB , 2

T
CH

, and 2T
ctrl

.

Proof. By induction on CJBK. There are three significant cases. The first is if G { ~ ← E } and
if G { ~ → E }, which add a control bit to a circuit CJ~ ← EK or CJ~ → EK respectively that does
not contain any controlled or Hadamard gates, meaning that the resulting T -complexity is zero.
The second is if G { � (~) }, a controlled-Hadamard gate with cost 2T

CH
by definition.

The third is if G { B } where B is ~ ← 4 or ~ → 4 or if ~ { B′ } or ~ ⇔ I or ∗~ ⇔ I. In these cases,
the number of gates in CJBK that are not Clifford when one more control bit is added is proportional
to �MCX (B), and adding a control for G incurs a T -complexity of 2Tctrl at each such gate. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 167. Publication date: June 2024.



167:14 Charles Yuan and Michael Carbin

|G⟩ |G⟩

|~⟩ |~⟩

CJBK

=

|G ′⟩ - - |G ′⟩

|G⟩ |G⟩

|~⟩ |~⟩

CJBK

(a) Conditional fla�ening optimization.

=

|G⟩ |G⟩

CJB1K CJB2K CJB1K
†

|G⟩ |G⟩

CJB1K CJB2K CJB1K
†

(b) Conditional narrowing optimization.

Fig. 14. Circuit equivalence rules that hold by direct reasoning on quantum circuits and visually demonstrate
the soundness of the program-level optimizations. The notation denotes a collection of many registers.

6 PROGRAM-LEVEL OPTIMIZATIONS

In this section, we present program-level optimizations for quantum programs that utilize control
flow in superposition. Using these optimizations, a developer can rewrite a program to reduce
its T -complexity, predict the T -complexity of the optimized program using the cost model, and
then compile the program to an efficient circuit using a straightforward strategy. Forms of these
optimizations appear in prior work [Ittah et al. 2022; Seidel et al. 2022; Steiger et al. 2018], and we
present in this section a novel unification of these optimizations as program rewrite rules.

6.1 Conditional Fla�ening Optimization

The conditional flattening optimization identifies instances in which control bits are introduced by
nested if-statements and can be optimized by flattening the structure of if-statements. Specifically,
the optimization performs these following program rewrite rules whenever possible:

if G { if ~ { B } } ⇝ with { G ′ ← G && ~ } do { if G ′ { B } }
if G { B1; B2 } ⇝ if G { B1 }; if G { B2 }

Whereas the original program incurs many control bits over B , the optimized program computes a
temporary value and uses it to control B using only one bit, yielding an asymptotic improvement:

Theorem 6.1. When CJBK contains : MCX gates with at least one control and B falls under = levels

of nested if, conditional flattening reduces the T-complexity of the program from $ (:=) to $ (: + =).

Proof. By induction on the structure of B . For each of the =−1 layers of if that is removed, the T -
complexity of the program reduces by : , while the inserted with-block has$ (1) T -complexity. □

We next show that this program-level optimization preserves the circuit semantics of a program
with respect to its free variables, as formalized by the following definition:

Definition 6.2 (Circuit Equivalence). Given a set - of variables, we say that register files '1 and
'2 are equivalent, denoted '1 ≡- '2, when they map the variables in - to equal values respectively
and all other variables to zero. Given two sets -,- ′ of variables, we say that circuits C1 and C2 are
equivalent, denoted - ⊢ C1 ≡ C2 ⊣ - ′, when given any memory" and two register files '1 and '2
such that '1 ≡- '2, we have C1 |'1, "⟩ = |'′

1, "
′⟩ and C2 |'2, "⟩ = |'′

2, "
′⟩ where '′

1 ≡- ′ '′
2.

Theorem 6.3 (Conditional Flattening Soundness). Assume Γ ⊢ if G { if ~ { B } } ⊣ Γ
′. Then,

we have dom Γ ⊢ CJif G { if ~ { B } }K ≡ CJwith { G ′ ← G && ~ } do { if G ′ { B } }K ⊣ dom Γ
′.

Proof. The claim follows from a circuit equivalence that we visually depict in Figure 14a. □
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6.2 Conditional Narrowing Optimization

The conditional narrowing optimization identifies instances in which control bits are introduced by
a with-do block under an if-statement, which can be optimized by moving the if-statement under
the do-block. Specifically, the optimization performs the following rewrite whenever possible:

if G { with { B1 } do { B2 } } ⇝ with { B1 } do { if G { B2 } }

The optimized program unconditionally executes B1 and its reverse, for a constant improvement:

Theorem 6.4. When CJB1K contains: MCX gates with at least one control, the conditional narrowing

optimization reduces the T-complexity of the program by an $ (:) additive term.

Proof. By induction on the structure of B1, where: controls are removed on B1 and its reverse. □

Theorem 6.5 (Conditional Narrowing Soundness). Let Γ ⊢ if G { with { B1 } do { B2 } } ⊣ Γ
′.

Then, dom Γ ⊢ CJif G { with { B1 } do { B2 } }K ≡ CJwith { B1 } do { if G { B2 } }K ⊣ dom Γ
′.

Proof. The claim follows from a circuit equivalence that we visually depict in Figure 14b. □

7 IMPLEMENTATION: SPIRE QUANTUM COMPILER

As the artifact of this work, we implemented Spire, an extension of the Tower compiler that performs
the optimizations of Section 6. In this section, we briefly describe the architecture of the Tower
compiler, the transformations added by Spire, and the challenges that arose in implementation.

Compiler Overview. The Tower compiler has four main stages. First, given a Tower program, the
lexer and parser construct its abstract syntax tree. Next, the compiler lowers the surface AST to the
core intermediate representation, whose syntax is presented in Section 4. This lowering involves
inlining all function calls and translating memory allocation and derived forms to core syntax.

Then, the compiler lowers the core IR to an abstract circuit that is analogous to classical assembly,
with the abstractions of word-sized registers; arithmetic, logical, memory, and data movement
instructions; and instructions controlled by registers. The compiler invokes a register allocator to
map IR variables to registers and compiles if-statements to multiply-controlled instructions.
Finally, the compiler lowers the abstract circuit to a concrete circuit by instantiating each arith-

metic, logical, memory, and data movement instruction as an explicit sequence of MCX gates. The
compiler then emits the concrete circuit in the quantum circuit format of Mosca [2016].

Spire Transformations. We implemented Spire as a compiler pass that transforms the core IR. First,
we modified the core IR to add with-do blocks, facilitating the conditional narrowing optimization.
Next, we implemented a compiler pass that rewrites the core IR using the conditional flattening
and conditional narrowing optimizations. As they are simple syntax rewrites, this pass constitutes
only 12 lines of OCaml code, which we present in Appendix C. Then, we added a simple compiler
pass that flattens the structure of with-do blocks before continuing to the next stage.

Downstream Challenges. Though the new passes are simple, they required detailed analysis and
altered assumptions in the register allocation approach taken by the compiler. In Appendix D, we
detail the challenge that arises and our solution, as a case study for quantum compiler developers.

8 EVALUATION

In this section, we evaluate our cost model and optimizations as measured by the T -complexity of
a benchmark suite of quantum programs. We answer the following research questions:

RQ1. How accurately does the cost model predict the asymptotic T -complexity of programs?
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RQ2. By how much do the program-level optimizations of conditional flattening and conditional
narrowing improve the T -complexity of a quantum program?

RQ3. By how much do quantum circuit optimizers from existing work improve the T -complexity
of a quantum program after it has been fully compiled to a circuit of logic gates?

RQ4. What is the effect on compilation time of performing the program-level optimizations, and
how does it compare to the effect on compilation time of quantum circuit optimizers?

In Table 1, we list the benchmarks that we use throughout this evaluation and include in the
paper artifact. They are data structure operations used by quantum algorithms for search [Ambainis
2004], optimization [Bernstein et al. 2013], and geometry [Aaronson et al. 2020], and include the
length example from Section 3 and others such as insertion into a radix tree-based set.
In Sections 8.2 and 8.3, we also introduce length-simple, a simplified version of length that

has the same asymptotic T -complexity but omits the primitive operations on lines 9 and 11. These
lines perform a memory dereference and an addition operation respectively. Semantically, dropping
them causes the length function to return an incorrect output. For compilation, dropping them
results in a circuit whose size has the same asymptotic behavior but is scaled down by a fraction.

The reason we perform this simplification is to enable a comparison to existing quantum circuit
optimizers.Without this simplification, the circuit would be two orders of magnitude larger, meaning
that all but one of the existing optimizers we tested would take more than 1 hour to run.

8.1 RQ1: Accuracy of Cost Model

RQ1. How accurately does the cost model predict the asymptotic T -complexity of programs?

Methodology. To obtain the predicted asymptotic T -complexity, we performed the same analysis
as in Section 3.4. We performed an asymptotic analysis because the values of constants in the cost
function, in particular the costs of primitive operations such as arithmetic and memory, are difficult
to determine theoretically and significantly affect the precision of non-asymptotic estimates.
As an example, the function insert in Table 1 inserts an element into a set data structure that

is concretely implemented as a radix tree. This function invokes a string compare operation and
a recursive call at each level, all under an if. Because the other operations in the program have
equal or less T -complexity compared to compare, the overall T -complexity of insert is:

�T
insert(3) = �T

compare (3)
︸       ︷︷       ︸

operations in level

+ �MCX
compare(3)

︸       ︷︷       ︸

control flow in level

+ �T
insert(3 − 1)

︸           ︷︷           ︸

recursive call

+ �MCX
insert (3 − 1)

︸           ︷︷           ︸

control flow over recursive call

= $ (32) +$ (3) +�T
insert(3 − 1) +$ (32)

which solves to �T
insert

(3) = $ (33), an asymptotic increase over the MCX-complexity of $ (32).
To compute the empirical T -complexity, we used Spire (Section 7) with optimizations off to

compile each program to MCX gates. We then counted T gates as follows: each MCX with 2 ≥ 2

controls corresponds to 2(2 − 2) + 1 Toffoli gates as in Figure 5, and each Toffoli corresponds to 7 T
gates as in Figure 6. To determine the scaling in the recursion depth = or 3 , we repeated the process
for depths from 2 to 10 and found the lowest-degree polynomial that exactly fits the T -complexities.
To obtain the predicted and empirical MCX-complexity, we performed the same procedure as

above, except that we used the MCX-complexity recurrence and counted the number of MCX gates.

Results. For each benchmark in Table 1, the cost model accurately predicts the asymptotic T -
complexity, as confirmed by the matching empirical T -complexity. In particular, for each benchmark
whose MCX-complexity is not constant, meaning the recurrence is nontrivial, it accurately predicts
that the T -complexity of the unoptimized program is one degree higher than the MCX-complexity.
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Table 1. List of benchmark programs and their MCX and T -complexities, in terms of the size = or depth
3 = $ (log=) of the data structure. We report T -complexity both before and a�er program-level optimizations.
“Predicted” reports the asymptotic MCX or T -complexity predicted by the cost model, and “Empirical” reports
the MCX or T -complexity of the compiled circuit. Large empirical figures are reported in Appendix E.

MCX-Complexity T -Complexity Before Optimizations T -Complexity After Optimizations

Program Predicted Empirical Predicted Empirical Predicted Empirical

List
− length $ (=) 2246= + 32 $ (=2) 15722=2 + 19292= + 3934 $ (=) 12740= − 42

− sum $ (=) 2642= + 32 $ (=2) 18494=2 + 19628= + 4298 $ (=) 13272= − 42

− find_pos $ (=) 2294= + 32 $ (=2) 16058=2 − 8820= + 6426 $ (=) 12740= − 42

− remove $ (=) 4990= + 32 $ (=2) 34930=2 + 26376= + 10304 $ (=) 58912= − 12124

Queue
− push_back $ (=) 2864= + 32 $ (=2) 20048=2 + 11508= + 4634 $ (=) 46256= − 13006

− pop_front $ (1) 1452 $ (1) 8456 $ (1) 8456

String
− is_prefix $ (=) 4585= + 32 $ (=2) 64190=2 − 11529= + 6545 $ (=) 16758= − 42

− num_matching $ (=) 6052= + 5516 $ (=2) 84728=2 + 129360= + 59710 $ (=) 21826= + 18676

− compare $ (=) 4633= + 32 $ (=2) 97293=2 + 10598= + 4781 $ (=) 17773= − 42

Set (radix tree)
− insert $ (32) $ (32) (App. E) $ (33) $ (33) (Appendix E) $ (32) 25691432 + 14132443 − 840

− contains $ (32) $ (32) (App. E) $ (33) $ (33) (Appendix E) $ (32) 13406432 + 6870083 − 42

8.2 RQ2: Effect of Program-Level Optimizations on T-Complexity

RQ2. By how much do the program-level optimizations of conditional flattening and conditional
narrowing improve the T -complexity of a quantum program?

Methodology. For this question, we used Spire to execute each optimization on each benchmark
program and found the empirical T -complexity by counting T gates in the same way as in RQ1.

Results. In Table 1, we present the T -complexity of each program after applying both optimiza-
tions. For each benchmark, the optimizations recover a program whose T -complexity is equal to
the MCX-complexity, as determined both by the cost model and by circuit compilation.
For length and length-simplified, the T -complexity improves from quadratic to linear. In

Figure 15a, we plot the T -complexity of length-simplified after applying each of the optimiza-
tions in Spire. When used alone, conditional narrowing achieves 19.9% improvement over the
original program at depth = = 10, and conditional flattening alone achieves 88.2% improvement.
When Spire applies conditional narrowing on top of conditional flattening, conditional narrowing
achieves a further 63.0% improvement, which stacks to 95.6% improvement end-to-end.
In Appendix F, we analyze the T -complexity that conditional flattening incurs due to its added

uncomputation. Across all of the benchmarks in Table 1 at recursion depth = = 10, 0 to 4.81%
(average 0.49%) of the T gates in the final compiled circuit correspond to the uncomputation that is
introduced by conditional flattening. At depth = = 2, this figure is 0 to 2.85% (average 0.30%).

8.3 RQ3: Effect of Existing Circuit Optimizers on T-Complexity

RQ3. By how much do quantum circuit optimizers from existing work improve the T -complexity
of a quantum program after it has been fully compiled to a circuit of logic gates?

Methodology. We evaluated the following optimizers: Qiskit [Qiskit Developers 2021], VOQC [Hi-
etala et al. 2021], Pytket [Sivarajah et al. 2020], Feynman [Amy 2024; Amy et al. 2014], Quartz [Xu
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Fig. 15. T -complexity of length-simplified a�er program-level optimizations and quantum circuit opti-
mizers. CF, CN, and F. abbreviate conditional fla�ening, conditional narrowing, and Feynman respectively.

et al. 2022], and QUESO [Xu et al. 2023]. We also evaluated QuiZX [QuiZX Developers 2022], a fast
Rust port of PyZX [Kissinger and van de Wetering 2020] that produces outputs identical to PyZX.5

First, we used Spire to compile the length-simplified program to a MCX circuit. Notably,
among the optimizers above, only Feynman directly accepts inputs containing MCX gates of
arbitrary size, by means of a dedicated pass it provides to convert large MCX gates into Toffoli gates.
By contrast, the other optimizers above do not accept MCX gates larger than Toffoli. For these
optimizers, we used Feynman to preprocess the circuit into the Clifford+Toffoli or Clifford+CCZ
gate sets accepted by each optimizer, without changing its T -complexity. Then, we executed each
optimizer to generate a Clifford+T circuit, and then counted the T gates in the resulting circuit.

To the extent possible, we specified configurations that are indicated by prior literature:

• For Qiskit, we invoked qiskit.compiler.transpile with optimization_level=3.
• For VOQC, we invoked Voqc.Main.optimize_nam.
• For Pytket, we invoked two independent modes: pytket.passes.FullPeepholeOptimise
and pytket.passes.ZXGraphlikeOptimisation, and report them separately below.

• For Feynman, we invoked two different configurations: feynopt -mctExpand -O2 and
feynopt -toCliffordT -O2, and report them separately below.

• For QuiZX, we invoked quizx::simplify::full_simp.

Results. In Figure 15b, we plot the T -complexity of the length-simplified program at various
recursion depths, before and after applying each circuit optimizer. Of the tested optimizers, 6 of 8 do
not asymptotically improve the T -complexity of the circuit from quadratic to linear. They achieve
0% to 71.4% improvement over the original circuit at depth = = 10.6 Only Feynman -mctExpand

and QuiZX obtain linear T -complexity, achieving 88.0% and 93.4% improvement respectively.
We do not plot Quartz and QUESO because the versions of these two optimizers available at

the start of our experimentation require several hours to terminate for most of our benchmarks,

5As part of our evaluation, we ran PyZX for comparison with QuiZX, and observed that they produce circuits with identical
T -complexity, though PyZX takes more time to produce the output. We thus do not report PyZX results separately.
6We note three results in Figure 15b that are close but distinct: at depth = = 10, VOQC obtains 17530 T gates, Pytket ZX
obtains 17176 gates, and Feynman -toCliffordT obtains 17166 gates, which is about 2% fewer than VOQC.
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even when the user specifies a 1-hour timeout. The partial results we obtained indicate that the
T -complexity of their output circuits is quadratic rather than linear. At depth = = 5, Quartz achieves
37% improvement in T -complexity, and at = = 2, QUESO achieves 13% improvement. For more
details on the methodology and results for these optimizers, please see Appendix G.

Notably, only select configurations of Feynman obtain asymptotic improvement in T -complexity.
In Figure 15b, we plot the T -complexity Feynman obtains using two different flags: -toCliffordT,
which is quadratic, and -mctExpand, which is linear. The difference is that the first configuration
translates the circuit to the Clifford+T gate set before applying gate simplifications, whereas the
second simplifies the original circuit in terms of Toffoli gates before translating to Clifford+T .
Spire’s program-level optimizations also synergize with existing quantum circuit optimizers to

achieve better results than either alone. In Figure 15a, we also plot the T -complexity of applying
Spire’s optimizations followed by Feynman -mctExpand, which for length-simplified achieves
96.9% improvement over the original program compared to 88.0% for Feynman alone. In Table 2, we
summarize the T -complexity improvement of running either Feynman -mctExpand or QuiZX after
Spire’s optimizations. The latter achieves 98.1% improvement compared to 93.4% for QuiZX alone.

In Appendix H, we present more results showing that when the conditional narrowing optimiza-
tion is used before Feynman or QuiZX, the output circuits are better than Feynman or QuiZX alone.
These results indicate that even when a circuit optimizer achieves asymptotically efficient circuits,
it can still benefit from the constant improvements provided by conditional narrowing.

8.4 RQ4: Effect of Optimizations on Compilation Time

RQ4. What is the effect on compilation time of performing the program-level optimizations, and
how does it compare to the effect on compilation time of quantum circuit optimizers?

Methodology. To answer this question, we measured the time taken by Spire to emit a circuit for
both the length and length-simplified programs, with program-level optimizations enabled
or disabled. Then, we measured the time taken by Feynman -mctExpand and QuiZX to optimize
the circuit emitted by Spire with optimizations enabled or disabled. All timings are reported as the
mean and standard error of 5 runs on one core of an AMD Threadripper 1920X and 32 GB of RAM.

Results. Given the original length program at depth = = 10, Spire takes 0.08 s to emit a circuit
without performing program-level optimizations, and 0.05 swith the optimizations. The reason that
compilation time decreases is that while the optimizations take tens of microseconds to perform,
they enable the compiler to save significant time generating controls in the output circuit.

In Table 2, we summarize the performance of Feynman -mctExpand and QuiZX on each circuit.
When executed on the original length circuit, Feynman takes 121.96 ± 0.08 s; QuiZX exceeds avail-
able memory and does not terminate after 72 hours. By comparison, Spire alone yields comparable
circuits in 0.05 s, which is 2400× faster than Feynman. When Spire’s optimizations are run before
Feynman, the smaller input circuit that is produced enables Feynman to take only 17.05 ± 0.01 s, a
7× improvement. These circuits remain large enough for QuiZX to be memory constrained.

8.5 Discussion

First, our results indicate that VOQC, Quartz, Pytket ZX, and Feynman -toCliffordT obtain an
intermediate result in T -complexity that is higher than Feynman -mctExpand and QuiZX and lower
than Qiskit and Pytket peephole. An explanation consistent with these results is that the first four
optimizers implement the optimization of rotation merging [Nam et al. 2018] that merges phase
rotations across an arbitrary number of gates, whereas the last two do not.
Next, one explanation for why Feynman -mctExpand and QuiZX reduce the asymptotic T -

complexity of the program in our results is that they successfully identify and exploit the structure
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Table 2. Summary of comparison and synergy between Spire and existing circuit optimizers, in terms of
T -complexity reduction and compilation time. Figures are given for both length and length-simplified

programs at depth = = 10. We show only optimizers that achieve linear T -complexity.

length-simplified length

T Reduction Compile Time T Reduction Compile Time

Feynman -mctExpand 88.0% 0.54 s 92.2% 121.96 ± 0.08 s

QuiZX 93.4% 3510.80 ± 1.97 s (consumes >32 GB RAM)
Spire (Ours) 95.6% 0.01 s 92.8% 0.05 s

Spire + Feynman -mctExpand 96.9% 0.08 s 94.7% 17.05 ± 0.01 s

Spire + QuiZX 98.1% 1.18 s (consumes >32 GB RAM)

of Toffoli gates. Specifically, Feynman -mctExpand first cancels Toffoli gates in the circuit before
translating them to Clifford+T gates. Meanwhile, QuiZX uses an internal representation known as
ZX-calculus [Kissinger and van de Wetering 2020] that discovers long-range circuit structure at the
expense of compile time, which in Table 2 is 14×–6500× longer than Feynman.7

By contrast, Qiskit, Pytket, VOQC, Quartz, and QUESO do not perform rewrites at the level of
Toffoli gates. They instead either require the input to consist only of Clifford+T gates, or decompose
all Toffoli gates in the input to them. As we show next, the value of the structure of Toffoli gates is
that cancelling Toffoli gates can capture the effect of conditional flattening. By contrast, cancelling
adjacent gates no longer captures this effect after Toffoli gates are lowered to Clifford+T gates.

Conditional Flattening. In Figure 16, we present a sub-program of Figure 3 with only the assign-
ment to a that is controlled by x, y, and z, and its corresponding sub-circuit from Figure 4. We also
depict the result of decomposing its MCX gates to Toffoli gates via the rule in Figure 5. Compared
to Figure 8, the final circuit in Figure 16 incurs additional T -complexity from Toffoli gates.

Now suppose that the final circuit in Figure 16 is given to a quantum circuit optimizer. In general,
to recover an asymptotically efficient circuit, the optimizer must eliminate all but a small number
of Toffoli gates. In Figure 16, it must eliminate the redundant self-inverse gates in gray.
The problem is that adjacent Toffoli gates become difficult to identify when Toffoli gates have

been decomposed into Clifford+T gates. In Figure 17, we depict the decomposition of a pair of
Toffoli gates into a sequence of 32 Clifford+T gates by the standard rule in Figure 6. Because the
decomposition of each Toffoli is asymmetric, the circuit optimizer cannot reduce this sequence
to an empty circuit by merely cancelling adjacent Clifford+T gates.8 To sidestep this problem,
Feynman and Maslov et al. [2005]; Nam et al. [2018] perform rewrites on Toffoli gates before they
are decomposed to Clifford+T gates. For other alternative approaches, see Appendix I.

Conditional Narrowing. Even worse, conditional narrowing cannot be captured by a quantum
circuit optimizer that acts on gate windows of any finite size. The rule in Figure 14b removes control
bits on CJB1K and CJB1K

† when these sequences have been identified as inverses. The problem is that
CJB2K lies between them and can be of arbitrary length, meaning that without program structure,
discovering the relationship between CJB1K and CJB1K

† requires a window of unbounded size.
This fact contributes to an explanation for why in Section 8.3, some of the tested circuit optimizers

leave behind some fraction of T gates that are otherwise captured by the conditional narrowing

7We note that Pytket ZX does not reduce the asymptotic T -complexity in our results even though it also uses the ZX-calculus.
This discrepancy may be due to different optimization choices taken by Pytket and QuiZX.
8In particular, a GitHub issue open since 2021 (https://github.com/Qiskit/qiskit/issues/6740) describes the inability of Qiskit
to optimize away the Clifford+T sequence corresponding to adjacent Toffoli gates as depicted in Figure 17.
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1 if x {

2 if y {

3 if z {

4 let a <- not t;

5 } } }

let a <- not t;

x

y

z

t - -

a -

=

|0⟩ - - - - - - |0⟩

- -

-

Fig. 16. Direct compilation of nested conditionals to a Clifford+Toffoli circuit using the MCX decomposition
in Figure 5. The redundant Toffoli gates (gray) must be eliminated to obtain an efficient circuit.
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Fig. 17. Two adjacent Toffoli gates a�er the standard Clifford+T decomposition in Figure 6. Though equal to
the empty identity circuit, this gate sequence cannot be reduced to such by adjacent gate cancellations alone.

optimization. In principle, a circuit optimizer can capture conditional narrowing using rewrites over
an unbounded number of gates, such as by an appropriate implementation of rotation merging.

9 FUTURE DIRECTIONS

Benchmarking Optimizers. One explanation for why certain existing circuit optimizers do not
asymptotically reduce the T -complexity of programs with control flow is that such programs are
not a focus of the benchmarks on which optimizers have been primarily evaluated. The typical
benchmarks, as in Xu et al. [2023, Appendix F], are circuits with up to 103 T gates that are built
directly from logic gates, not compiled from quantum programs with control flow. This work does
not evaluate on these benchmarks as they do not exhibit the asymptotic behavior of interest.

Instead, this work studies the asymptotic behavior of families of circuits that are compiled from
programming abstractions and large enough to be relevant to the regime of practical quantum
advantage. For example, Gidney and Ekerå [2021] project that 4 · 108 Toffoli gates are necessary to
break 1024-bit RSA, and 3 · 1010 Toffoli gates to break elliptic curve cryptography. At such scales,
optimization techniques that are profitable and tractable for small circuits, such as small peepholes
and ZX-calculus, become less effective and would benefit from higher-level program structure.

Consequently, it is important future work to develop more explicit implementations of quantum
algorithms to serve as large-scale benchmarks for quantum compilation that may reveal other
quantum programming abstractions whose costs must be considered and mitigated.

Architectural Bottlenecks. Aside from T -complexity, error-corrected architectures are also con-
strained by the number of qubits used by a computation. Conditional narrowing does not affect
qubit usage, as it only removes control bits from statements. In Appendix F, we show that given a
compiler that uses the MCX decomposition in Figures 5 and 6, conditional flattening introduces no
more than $ (1) extra qubits in the circuit for the optimized program as compared to the unopti-
mized program. The reason is that the new temporary variable G ′ from the rule in Section 6.1 reuses
a qubit that would exist in the compiled circuit for the program even without conditional flattening.
This extra qubit – marked with |0⟩ in Figure 5 – is introduced when the compiler decomposes all
MCX to Clifford+T gates as needed for a program regardless of conditional flattening.

For sake of thoroughness, we note that alternatives to Figure 5 exist that use no extra qubits but
use more T gates [Barenco et al. 1995, Section 7]. An important future direction is to explore the
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trade-offs of different MCX decompositions, and simultaneously optimize T -complexity alongside
qubit complexity and other metrics such as T-depth and quantum volume [Cross et al. 2019].
Though this work focuses on the widely recognized bottleneck of T -complexity on the surface

code architecture, the asymptotic costs it presents arise on any error-corrected quantum computer.
Fundamentally, the Eastin-Knill theorem [Eastin and Knill 2009] states that no quantum error-
correcting code can transversely, i.e. natively and efficiently, implement a gate set that is universal
for quantum computation. Some gate – in the surface code, the T gate – is always a bottleneck.
For example, while Reed-Muller codes support an efficient T gate, they give up the Hadamard

gate in exchange and are thus not universal for quantum computation [Zeng et al. 2011]. In general,
strong evidence [Jochym-O’Connor et al. 2018; Newman and Shi 2018] indicates that a Toffoli or
MCX gate will act as a performance bottleneck under any quantum error-correcting code.

Other Quantum Architectures. Apart from the surface code, the abstraction cost of control flow
also occurs broadly on hardware architectures in which MCX gates must be decomposed to native
gates. For example, on an architecture with only single and two-qubit gates such as CNOT, an MCX
gate with many control bits compiles to a proportional number of CNOT gates, making it important
to study further how to reduce the performance impact of two-qubit gates [Maslov 2016b].

10 RELATED WORK

T-Complexity Optimization. Optimizations for T -complexity have long been investigated in the
literature of quantum algorithms. For example, instances of conditional narrowing and conditional
flattening are used by physical simulation algorithms [Babbush et al. 2018, Figures 1, 6, and 7] to
save control bits during state preparation and Hamiltonian selection respectively.

Researchers have proposed quantum compilers featuring variants of conditional narrowing [Ittah
et al. 2022; Steiger et al. 2018] and separately of conditional flattening [Seidel et al. 2022]. Novel to
this work is our unification of both optimizations as syntax rewrite rules, which produce high-level
programs that can be analyzed by the cost model. Other novel contributions in this work are that
we identify that these optimizations can mitigate the asymptotic slowdown caused by control flow,
and empirically evaluate their effectiveness and speed relative to existing circuit optimizers.

Quantum Resource Analysis. Researchers have proposed frameworks [Avanzini et al. 2022; Liu
et al. 2022; Olmedo and Díaz-Caro 2019] to analyze the expected runtime of a quantum program.
Unlike our cost model, prior frameworks do not support reasoning for abstractions for control flow
in superposition such as the quantum if-statement. In order to analyze a program featuring control
flow, they require the developer to first lower all abstractions to explicit quantum logic gates.

However, as identified in this work, it is precisely this compilation process itself that introduces
asymptotic overhead in T -complexity. Our cost model and optimizations enable the developer to
identify and mitigate the costs without compiling the program to an asymptotically large circuit.

11 CONCLUSION

The practical realization of quantum algorithms requires designers of programming languages and
compilers to reconcile the expressive power of programming abstractions with the performance
bottlenecks of error correction. As this work shows, control flow incurs T -complexity costs that
are significant yet can be mitigated by simple optimizations. Our work holds out the promise of
enabling both expressive and efficient control flow abstractions in quantum programming.

Our work additionally demonstrates the value of a deep study of the interface between quantum
programs and error-corrected hardware. This study and our results illuminate a path to a future
that combines powerful techniques from classical compilers with search-based optimization of
circuits to increase the efficiency of both current and future quantum software.
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