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Computations in physical simulation, computer graphics, and probabilistic inference often require the dif-

ferentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular

di�erentiable programming languages, such as PyTorch and JAX, ignore discontinuities during di�erentiation.

This is incorrect for parametric discontinuities—conditionals containing at least one real-valued parameter

and at least one variable of integration. We introduce Potto, the �rst di�erentiable �rst-order programming

language to soundly di�erentiate parametric discontinuities. We present a denotational semantics for pro-

grams and program derivatives and show the two accord. We describe the implementation of Potto, which

enables separate compilation of programs. Our prototype implementation overcomes previous compile-time

bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime,

respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a

prototype di�erentiable renderer with separately compiled shaders.
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Fig. 1. Di�erentiate Before You Discretize. (a) the integral (shaded)
∫ 1

0
[G ≤ \ ] 3G = \ = 0.5. (b) shows a

discretization of integral as in an implementation in a language without integration. (c) shows the derivative

of the integral as computed by Po�o, which integrates a Dirac delta spike at \ and returns 1. (d) depicts that

standard AD di�erentiates the discretized program and incorrectly returns 0.

1 INTRODUCTION

Automatic di�erentiation (AD) is the automated computation of the derivative of a function
given just the de�nition of the function itself. AD has been applied in many domains such as
computer graphics and vision [Li et al. 2018], robotics [Bangaru et al. 2021; Hu et al. 2020], and
probabilistic inference [Lee et al. 2018] for optimization and uncertainty quanti�cation. Many of
these computations are conceived as automatically di�erentiating continuous functions, however,
discontinuous functions also arise naturally.

Discontinuities arise in computer graphics due to object boundaries, occlusion, and sharp changes
of color. In robotics and physical simulation, computations can model contact, which causes a
discontinuous change in the velocity of an object. In probabilistic inference, the model can have
discontinuities. For example, a time-series modeling problem can have a discontinuous change in
behavior at a point in time.
Figure 1a illustrates an example of a discontinuity. A discontinuity in a function is a point at

which the left and right limits approach di�erent values. In many applications, the occurrence of
an integral can introduce a parametric discontinuity. A parametric discontinuity is a discontinuity
speci�ed by a condition whose value depends on at least one parameter and at least one real-valued

variable of integration. The shaded region depicts 5 (\ ) =
∫ 1

0
[G ≤ \ ] 3G , where the Iverson bracket

[%] is 1 if the proposition % holds and is 0 otherwise. Since there is a variable of integration G and
parameter \ , the discontinuity [G ≤ \ ] is a parametric discontinuity.

State of the Art. Popular AD tools ignore discontinuities during di�erentiation [Abadi et al.
2015; Bradbury et al. 2018; Paszke et al. 2019]. Ignoring discontinuities that are not parametric
discontinuities is correct almost everywhere [Lee et al. 2020]. However, ignoring parametric
discontinuities produces incorrect results. In optimization, this leads to slower convergence or even
divergence [Bangaru et al. 2021; Lee et al. 2018; Li et al. 2018].

In standard AD systems, when applications include integrals, the typical strategy is to discretize
the integral by evaluating the integrand at samples and summing the result. Standard AD then
di�erentiates this discretized program. Figure 1b shows the discretization of the integral in Figure 1a
and Figure 1c that it returns 0 because the derivative of each sample is 0 [Abadi et al. 2015; Bradbury
et al. 2018; Paszke et al. 2019]. This is incorrect.

Potto. Figure 1d depicts that the correct derivative of the integrand is instead the Dirac delta

distribution X (\ − G) that integrates to 1 if \ lies in the domain of integration: �\

∫ 1

0
[G ≤ \ ] 3G =

[0 < \ < 1]. We present a di�erentiable programming language, Potto, that uses distributions
to di�erentiate integrals with parametric discontinuities (Teodorescu et al. [2013] Section 1.3.7).
Distributions are a generalization of functions that can represent the derivatives of a discontinuous
function. In particular, derivatives of Potto programs denote distributions.
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We extend the sampling approach in standard AD to additionally sample at parametric discon-
tinuities, where derivatives are non-zero resulting in a correct estimate of the derivative. As a
result, Potto supports compositional evaluation and therefore, separate compilation, which was not
possible in prior work, Teg [Bangaru et al. 2021].

We provide an example of using Potto for probabilistic inference (risk minimization) and imple-
ment both a 2D and a 3D di�erentiable renderer. Potto signi�cantly improves compile time and is
slower in runtime for smaller programs and faster on larger programs (with more discontinuities
and more complex discontinuities, i.e., a larger expression in the condition) when compared to
Teg [Bangaru et al. 2021]. We �nd an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x
speed up in runtime respectively on two increasingly large image stylization benchmarks.

In this paper, we present the following contributions:

• We introduce Potto1, a language for distribution programming, that is the �rst to di�erenti-
ate parametric discontinuities, while supporting compositional evaluation (Section 2). We
provide a mathematical introduction to distribution theory (Section 3).

• We de�ne the syntax of a core language, Langur (Section 4). A Langur term is an integrand
and a Langur program is the integral of a term.

• Weprovide a type system de�ningwell-formed terms (Section 5).We present the denotational
semantics of Langur terms (Section 6) and their derivativess (Section 7). We provide a type
system and denotational semantics for programs and their derivatives (Section 8). We
prove that the derivative of the denotation of a program is equivalent to the (distributional)
derivative denotation of that program.

• We prove that the operational semantics of Langur supports compositional evaluation and
therefore, separate compilation (Section 9).

• We implement a 3D renderer in the surface language, Potto2, and use separate compilation
to e�ciently swap among shaders. We compare Potto with Teg [Bangaru et al. 2021] on
di�erentiable rendering tasks and �nd that it signi�cantly improves compilation times, a
bottleneck in Teg, and that it is slower in runtime on small programs, but it is faster on
larger programs (Section 10).

With Potto, we expand the scope of di�erentiable programming languages to account for para-
metric discontinuities. Potto is a �rst-order language that supports separate compilation, leading to
better performance in work�ows involving many small changes to a larger program. We envision
that our theoretical development and programming language design will lead to more expressive
di�erentiable programming languages that better serve application domains such as computer
graphics, robotics, and probabilistic inference.

2 EXAMPLE: RISK MINIMIZATION

Risk minimization is a fundamental problem in machine learning (Chapter 1.2 of Vapnik [1998]).
We present a pedagogical example where the goal is to �nd parameters \ that minimize the risk:

'(ℎ\ ) =
∫ D

;

ℓ (ℎ\ (G), 6(G)) dG, (1)

where the squared error loss ℓ (ℎ\ (G), 6(G)) = (ℎ\ (G) − 6(G))2, the bounds are ; = −10, D = 10,
the parameters \ = [0, 1, `], and ℎ\ (G) = N(G ; `, 5) [0 ≤ G ≤ 1] is the (unnormalized) truncated
normal density, and 6(G) = N(G ; 2, 5) is the normal density.

1We provide the prototype implementation at https://github.com/divicomp/potto.
2We provide the code used to produce the applications at https://github.com/divicomp/potto_applications.
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(a) Initialization.
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(b) Standard AD at init. with derivs.
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(d) Po�o at init. with derivs.
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(c) Standard AD a�er 100 steps.
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(e) Po�o a�er 100 steps.

Fig. 2. At initialization (a), the truncated normal density is far from the normal density. The descent direction

in standard AD (b) is defined as −�( and is correct for `, but is 0 and therefore incorrect for the truncation

points 0 and 1. The black dots in (b) and (d) are shared samples that standard AD and Po�o use to estimate

the risk '. Standard AD (c) optimizes ` but fails to optimize 0 and 1. Po�o (d) samples at 0 and 1 (orange

stars) to account for the parametric discontinuities and has the same descent direction for ` as standard AD.

Po�o converges (e) to the desired curve by moving the mean right and widening the truncation points.

Recall that a parametric discontinuity is a conditional containing one or more real-valued variables
(of integration) and parameters in the condition. The two parametric discontinuities in '(ℎ\ ) arise
due to 0 ≤ G and G ≤ 1 because the parameters 0 and 1 are compared to the variable G .
The task is to automatically identify the optimal truncation points 0, 1 and mean `. At the

minimal \ , the risk '(ℎ\ ) will have parameters 0 ↦→ −10, 1 ↦→ 10, and ` ↦→ 2.

Optimization using AD. A standard approach to solving argmin\ '(ℎ\ ) is to use gradient descent,
which requires taking the gradient of ' with respect to \ and then updating \ in the direction of
descent according to the gradient. Modern AD systems enable one to write ' as a program and rely
on the system to automatically generate the gradient of '.

2.1 Di�erentiating Parametric Discontinuities

We present the problem of di�erentiating parametric discontinuities in the context of risk mini-
mization and compare standard AD techniques with Potto.

Standard AD. Figure 2a depicts the (unnormalized) truncated normal and normal densities.
Figure 2b shows the descent direction (black arrow) at initialization −�( for standard AD. We use
the notation �( to denote the derivative computed by standard AD. The descent direction −�(

`' is

correct, which is 0 and therefore incorrect for truncation points 0 and 1. Figure 2c illustrates that
gradient descent can optimize the mean, but cannot optimize the truncation points.

Figure 2d depicts the descent direction computed by Potto. Potto correctly computes the derivative
for the truncation points by sampling at 0 and 1 (orange stars) to account for the parametric
discontinuities. At initialization, Potto computes the same descent direction for ` as standard AD.
Figure 2e shows that the optimization is successful, moving the desired curve by moving the mean
right and widening the truncation points.
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A standard AD algorithm as implemented in common AD frameworks [Abadi et al. 2015; Paszke
et al. 2019] computes the gradient of risk by applying the assumption that the derivative of the
integral equals the integral of the derivative. However,

�\

∫ 10

−10
(ℎ\ (G) − 6(G))2 dG ≠

∫ 10

−10
�\ (ℎ\ (G) − 6(G))2 dG,

recalling that \ = [0, 1, `], ℎ\ (G) = N(G ; `, 5) [0 ≤ G ≤ 1], and 6(G) = N(G ; 2, 5). However, the
derivative and integral typically do not commute in the presence of discontinuities and therefore,
theoretically, the meaning of the resulting expression is not well-de�ned. Figure 2c illustrates that
when used within a gradient-based optimization algorithm, the resulting derivative does not result
in the algorithm materially optimizing the parameters.
To show what goes wrong, we continue the derivation. In the next step of di�erentiating the

risk, we follow the power rule and chain rule to produce:

�\ ((ℎ\ (G) − 6(G))2) = 2(ℎ\ (G) − 6(G))�\ (ℎ\ (G) − 6(G)).
By linearity of the derivative and since 6 does not depend on \ , we have that �\ (ℎ\ (G) − 6(G)) =
�\ℎ\ (G). Standard AD ignores the parametric discontinuities in ℎ\ and makes the following step:

�\ℎ\ (G) ≠ �`N(G ; `, 5) · [0 ≤ G ≤ 1] .
On its own, the derivative above is correct at every point except G = 0 and G = 1, where the
(standard AD) derivative of the program is zero, but is unde�ned in math. However, because the
conditional is integrated over, the derivative is incorrect everywhere, not just at two points.

Automatic Di�erentiation in Potto. Figure 2e shows the result of applying Potto to calculate the
gradient of risk to be used in gradient descent. During the optimization, the truncation points a

and b widen and the mean of the truncated normal density shifts toward the normal density.
Using distribution theory [Teodorescu et al. 2013], we show that the derivative of the integral is

the integral of the parametric distributional derivative of the integrand lifted to a distribution as
long as it satis�es a mild integrability condition and a transversality condition. Informally, these
conditions ensure the integral is well-de�ned and that the discontinuities do not coincide with
each other, because in general, the product of distributions is not well-de�ned [Schwartz 1954].
For example, we can not have a product of two indicator functions [G < 2] [G < 3] where the
discontinuities are equal (2 = 3).

Returning to our running example, the following equality holds by de�nition (De�nition 3.8):

�\

∫ 10

−10
; (ℎ\ (G), 6(G)) dG =

∫ 10

−10
m\); (ℎ\ (G), 6(G)) dG,

where the operator) lifts ; to a distribution and therefore has a parametric distributional derivative.
In the case of risk minimization, the squaring [0 ≤ G ≤ 1]2 results in the parametric discon-

tinuities coinciding and therefore not satisfying the transversality condition. However, we can
rewrite the integrand so that there are no products of coincident discontinuities. Speci�cally, we
expand the square and use the identity that the functions [0 ≤ G ≤ 1]2 = [0 ≤ G ≤ 1] are equal:
; (ℎ\ (G), 6(G)) = N 2 (G ; `, 5) [0 ≤ G ≤ 1] − 2ℎ\ (G)6(G) + 62 (G). Now that the integrand is written
to satisfy the transversality condition, we can apply the product rule (Lemma 7.1).

We simplify the integrand to:

; (ℎ\ (G), 6(G)) = ℎ\ (G) (N (G ; `, 5) − 26(G)) + 62 (G) (2)

and then lift it to a distribution. Since the transversality condition is satis�ed, the rules for the
parametric distributional derivatives match the rules of calculus, except for the derivative of
discontinuous functions. We show this new derivative rule in detail.
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Fig. 3. The first two images show that standard AD (blue) has zero gradient for the truncation points, so they

remain at their initialization 0 = −1 and 1 = 4. Po�o (orange) accounts for the parametric discontinuities

optimizing the truncation points to their optimal values 0 = −10 and 1 = 10. The third image shows that the

mean converges to the optimum ` = 2 about 10x faster for Po�o than standard AD. The fourth image shows

that the loss for Po�o is orders of magnitude lower than Standard AD.

The parametric distributional derivative of )ℎ\ (G) is:

m\)ℎ\ (G) = (m`)N) (G ; `, 5))6 (G ;0, 1)
︸                          ︷︷                          ︸

1

+(X (G − 0) · �0 (G − 0)
︸                    ︷︷                    ︸

2

+X (1 − G) · �1 (1 − G)
︸                    ︷︷                    ︸

3

) · N (G ; `, 5)
︸      ︷︷      ︸

4

,

where 6(G ;0, 1) = [0 ≤ G ≤ 1]. The �rst term (1) is the same as in standard AD: the piecewise sum
of the function’s pieces. Introducing the three terms that follow makes the integral of the derivative
correct. The product of terms (2) and (4) accounts for the parametric discontinuity at 0 and the
product of terms (3) and (4) accounts for parametric discontinuity at 1. The parametric distributional
derivative introduces a Dirac delta distribution, X (·), for each di�erentiated parametric discontinuity.
Informally, the Dirac delta distribution is an in�nite spike when the conditional is true and zero
everywhere else and satis�es the property that: m\ ( [5 (G, \ ) ≥ 0]) = X (5 (G, \ ))�\ (5 (G, \ )).
The arrows in Figure 2a depict the directions of the derivative of the risk with respect to the

parameters 0 (terms 2 and 4), 1 (terms 3 and 4), and ` (term 1) that Potto computes. We have that
m0 ( [G ≥ 0]) = m0 ( [G − 0 ≥ 0]) = X (G − 0)�0 (G − 0). The derivative �0 (G − 0) = −1. As a result,
m0ℎ\ (G) = −X (G − 0)N (G ; `, 5). Putting these results together, we have that:

∫ 10

−10
m0)ℎ\ (G) dG =

∫ 10

−10
−X (G − 0)N (G ; `, 5) dG = −N(0; `, 5) · [−10 ≤ 0 ≤ 10], (3)

where the last equality follows from the sifting property (Teodorescu et al. [2013] Equation 1.47):
∫ GD

−G;
X (G − 2) 5 (G) dG = 5 (2) [G; ≤ 2 ≤ GD] . (4)

We conclude that an in�nitesimal perturbation to the parameter 0 shifts it to the right, decreasing
the area under the truncated normal by N(0; `, 5).

Standard AD versus Potto Results. Standard AD and Potto use Monte Carlo integration to estimate
the integral in the derivative of the risk. Both systems average the evaluation of the integrand at 50
uniformly random samples from [−10, 10]. Potto implements the sifting property by sampling and
evaluating at the points at the parametric discontinuities.

Figure 3 depicts the changes in each parameter using standard AD. The derivative at the truncation
points is zero for standard AD (blue), so the loss remains nearly constant because only mu is optimized.
Potto (orange) more rapidly approaches the minimum and achieves a loss that is over three orders
of magnitude lower than the loss from standard AD.
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 def normal(x, params):
   ...

 def discont(x, params):
   ...

 def risk(distro, discount, params):
   ...

drisk dnormal ddiscont ...

 dnormal

 drisk

dsmooth

drisk dnormal dsmooth ...

 AD compile  Compose

 

 

 
 def smooth(x, params):
   return 1

ddiscont

 

 

 

Fig. 4. Po�o supports separate compilation, which enables the reuse of the derivative of risk.

2.2 Separate Compilation

The Potto prototype implementation supports di�erentiation of parametric discontinuities and
separate compilation. Previous work, Teg [Bangaru et al. 2021] supported the di�erentiation of
parametric discontinuities, but not separate compilation.

Problem as a Program. In Potto, we can implement risk minimization as follows:

1 # functions.po

2 def normal(x: Var, mu: Param):

3 return exp(-0.5 * ((x - mu) / 5)^2)

4 def discont(x: Var, a: Param, b: Param):

5 return 1 if a <= x <= b else 0

The type declaration x: Var in Lines 2 and 4 specify that x is a variable of integration and similarly,
parameters `, a, and b are declared with type Param. Lines 2-3 declare a function representing the
normal density, which is a bell-shaped curve, where the peak is at ` and the width is controlled by

f , modeled by the equation 4−
1
2 (

G−`
f )2 . In Line 3, the parameter ` is mu and f is 5. Lines 4-5 declare

a function modeled by [0 ≤ G ≤ 1] with parametric discontinuities at 0 and 1.

1 # risk.po

2 from functions import normal

3 def risk(distro , discont , a: Param, b: Param, mu: Param):

4 return integral ([-10, 10]) (let pdf = distro x mu in let target = normal x 2

5 in pdf*( discont x a b)*(pdf -2* target)+target ^2) dx

The function de�ned in risk.po implements the risk function speci�ed by Equation 1 with the
integrand implemented as in Equation 2. Lines 4-5 de�ne an integral representing the area under
the curve de�ned by the integrand from x=-10 to 10. The �rst argument to the integral speci�es the
domain of integration, the second argument is the integrand, and the third argument dx declares
the variable x. The let bindings de�ne a probability density function, pdf, depending on a parameter
mu and the target density target as the normal density centered at 2.

1 # main.po

2 from functions import_deriv normal , discont as dnormal , ddiscont

3 params: list[Param] = [-1, 4, 1]

4 step_size = 400

5 for i in range(params):

6 (a, b, mu), (da, db, dmu) = params , one_hot(i, 3)

7 params[i] -= step_size *(drisk dnormal ddiscont (a, da) (b, db) (mu, dmu))[1]

The main.po �le does a single step of gradient descent for the parameters of the truncated normal
density. Line 2 imports the derivative of the normal and truncated normal densities from densities.po.
The import_deriv speci�es the functions to di�erentiate and as gives a name to the derivative.
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Line 6 unpacks the parameters in params and declares new parameters. The one_hot(i, n) command
returns a list of length = that is one at index 8 and zero otherwise. The decrement on Line 7
implements gradient descent with a step size of 400. For example, to di�erentiate with respect to the
parameter a, we set the in�nitesimals da, db, dmu to one_hot(0, 3), which is (1, 0, 0). Since drisk

returns a pair of the evaluation of risk and its derivative, we extract the derivative by indexing.

Teg. Teg [Bangaru et al. 2021] is implemented as a series of rewrites that are applied exhaustively
to a given program. For consistency, we use a similar syntax to represent Teg programs as we did
for Potto programs.

For example, a Teg program that arises in the computation of risk minimization is:

integral ([-10, 10]) -delta(x - a)*normal(x, mu) dx,

which matches up with the left-hand side of Equation 3 and denotes that expression. The delta

syntax denotes the Dirac delta distribution. To evaluate this expression, Teg applies a rewrite rule
that eliminates Dirac deltas by applying the sifting property (Equation 4), producing the program:3

-normal(a, mu) if -10 < a < 10 else normal(a, mu) ,

which matches the right-hand side Equation 3. Teg evaluates the integral-free and delta-free
program to a number, in the same way any other compiler would.

Potto. Potto collects samples from the integral and the derivative of the discontinuities in the
integrand (i.e. the Dirac deltas) and then evaluates the program at a given sample for each �le
(densities.po and risk.po).

In the example above, Potto samples the point x=a. Potto makes no changes to the code and
evaluates the integrand directly at x=a as follows. First, Potto accepts the sample if it is inside the
range [−10, 10] and rejects the sample otherwise. If accepted, Potto then evaluates the delta at a
and returns one because a - a equals zero (otherwise it returns zero). Potto multiplies one by the
normal density evaluated at a, producing the same result as Teg.

Separate Compilation. In risk minimization, di�erent approximating densities change the quality
of results. Figure 4 shows how a user can replace the truncated normal density with a normal
density and compose both it (and its derivative) with the risk function (and its derivative). Ideally,
the user should be able to interchange the approximating densities by replacing the density (and
its derivative) rather than di�erentiating the risk function again.

Support for separate compilation achieves this by enabling the division of a program into distinct
source �les, di�erentiating each individually, and composing the derivatives together to form
an executable. This process enables e�cient code reuse. The challenge is to support separate
compilation of derivatives for programs with parametric discontinuities.
Potto supports separate compilation by directly sampling discontinuities and evaluating the

program at a given sample for each �le. Because Teg relies on a rewrite rule to apply the sifting
property, it requires that code for the integral and integrand are within the same �le, preventing
separate compilation.

Results. We present timing results in our prototype implementation of Potto. Di�erentiating the
risk separately from the normal density and truncated normal density takes 50% less time than
di�erentiating the composition of the risk function with the normal density and with the truncated
normal density (as averaged over three runs on an Intel i9-9980HK).

3This is a simpli�cation of the actual Teg rewrite rules. Teg applies a change of variables y=x-a and then applies the

sifting property to the resulting program. However, Teg could easily be extended to support this implementation.
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Techniques from Teg [Bangaru et al. 2021] can be used in addition to Potto as a static analysis
that eliminates Dirac deltas when the code for an integral and integrand are within the same
�le. However, Potto signi�cantly improves compile time and tends to be slower in runtime on
smaller programs and faster on larger programs (with more discontinuities and more complex
discontinuities, i.e., a larger expression in the condition).

For risk minimization, we �nd that Potto (with separate compilation) compiles about 377x faster
than Teg, and that the runtime of Potto is about 27x slower than Teg. On workloads in computer
graphics (Section 10), we �nd that compilation time is a barrier to common work�ows and that
Potto has better runtime performance than Teg on larger programs (see Figure 15).

3 DISTRIBUTIONS

We now provide a brief mathematical introduction to distributions (Teodorescu et al. [2013] De�ni-
tion 1.21) and distributional derivatives (Teodorescu et al. [2013] Equation 1.184).

The derivative of a discontinuous function does not exist in calculus. Distributions are a general-
ization of functions that give meaning to derivatives of discontinuous functions.

We present an example of di�erentiating the Heaviside step function � (G) = [G ≥ 0], which has
a jump discontinuity at G = 0. One way to approach this problem is to note that if a sequence of
smooth functions 5= (G) converges to a smooth function 5 (G) as = goes to in�nity, then the sequence
of derivatives of �G 5= (G) converges to the derivative �G 5 (G) as = goes to in�nity.4 We know that
this reasoning will fail for � (G) because it is discontinuous, but we will see what happens anyway.
The sequence of smooth functions de�ned by �= (G) = 1

1+4−=G converges to � (G):

The derivative of �= (G) is �G�= (G) = X= (G) = =4−=G
(1+4−=G )2 and let us see what it converges to:

The arrow in the rightmost �gure indicates an in�nite spike at G = 0. This sequence diverges, since
there is no real-valued function that represents the limit of an in�nite spike at x=0

This is similar to how a convergent sequence of rational numbers may not converge to a rational

number (e.g., Leibniz formula for c is a sequence (= =
∑=

:=0
(−1):
2:+1 that approaches c

4
). However,

every convergent sequence approaches a real number. Similar to how real numbers generalize
rational numbers, distributions generalize functions. In the case above, the sequenceX= (G) converges
to the Dirac delta distribution X (G).

The Dirac Delta Distribution. Informally, X (G) is in�nite at G = 0 and 0 everywhere else. Addi-
tionally, the integral over the real line of each X= (G) and X (G) is one. We can formalize the Dirac
delta as a distribution using the sifting property: for every test function q ,

∫

R

X (G)q (G) dG := q (0). (5)

Formalism. A distribution D ∈ D′ (R=) maps test functions q ∈ D(R=) to real numbers, where
we write D [q] =:

∫
R= D (G)q (G) dG . To de�ne test functions, we need the following de�nition.

4Weak convergence is de�ned as lim:→∞
∫
R=

5: (G )q (G ) dG =

∫
R=

5 (G )q (G ) dG for every smooth function with

compact support q (Teodorescu et al. [2013], De�nition 1.22).
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De�nition 3.1. A function 5 : R= → R has compact support if it is 0 outside a closed and bounded set.
△

For example, 5 (G) = [−1 < G < 1] has compact support (it is 0 everywhere outside [−1, 1]), but
5 (G) = 1 does not have compact support.

De�nition 3.2. A function q : R= → R is a test function q ∈ D(R=) if it is smooth (in�nitely
di�erentiable) and has compact support. △

For example, the constant function q (G) = 0 and the bump function q (G) = [−1 < G < 1]4−
1

1−G2

are test functions. On the other hand, 5 (G) = [−1 < G < 1] is not smooth and 5 (G) = 1 does not
have compact support, so both are not test functions.

Distributions are designed to be a generalization of functions where the regular rules of calculus—
such as integration by parts, changes of variables, and derivatives—still hold.

De�nition 3.3. A distribution D ∈ D′ (R=) is a continuous linear functional on the space of test
functions D(R=). Concretely, a distribution D ∈ D′ (R=) if it5:
(1) is continuous: if a sequence (q8 )8≥1 ∈ D(R=) approaches q ∈ D(R=) in D(R=) as 8 → ∞

then the sequence of integrals
(∫

R= D (G)q8 (G) dG
)
8≥1

approaches
∫
R= D (G)q (G)3G as 8 → ∞.

(2) is linear: for every 0, 1 ∈ R and q1, q2 ∈ D(R=) we have
∫
R= D (G) (0q1 (G) + 1q2 (G)) dG =

0
∫
R= D (G)q1 (G) dG + 1

∫
R= D (G)q2 (G) dG .

(3) is a functional: for every q ∈ D(R=) we have
∫
R= D (G)q (G) dG ∈ R. △

Ψ̂

Ψ̂
−1

Fig. 5. The depicted di�eomorphism Ψ̂ tran-

forms a 2D grid using the sigmoid func-

tion and has inverse Ψ̂−1 (adapted from del

Toro Streb and Alexandrov [2009]).

We de�ne changes of variables in terms of di�eomor-
phisms. Figure 5 depicts an example of a di�eomorphism

Ψ̂ that transforms a 2D grid using the sigmoid function.

De�nition 3.4. A �: -di�eomorphism Ψ̂ : R= → R
= is a

:-times di�erentiable, invertible function. △

Every �: -di�eomorphism Ψ̂ (with : ≥ 1) satis�es the
change of variable formula:

∫

R=

D (Ψ̂(G))q (G) dG =

∫

R=

D (~) q (Ψ̂
−1 (~))

det |�Ψ̂(~) |
d~ (6)

for everyD ∈ D′ (R=) andq ∈ D(R=). Examples of�∞-di�eomorphisms are Ψ̂(G) = G+1, which has
inverse Ψ̂−1 (~) = ~−1 and Ψ̂(G,~) = (G +~, G−~), which has inverse Ψ̂−1 (F, I) = ( F+I

2
, F−I

2
). Some

functions that are not di�eomorphisms are 5 (G,~) = G+~ because it is not invertible (it has signature
R
2 → R rather than R

2 → R
2) and 5 (G) = G2 because it is not one-to-one. A di�eomorphism can

depend on a parameter. For example, Ψ̂0 (G) = 0 − G has an inverse Ψ̂−1
0 (~) = 0 − ~ for every 0 ∈ R.

De�nition 3.5. The distributional derivative mG of D ∈ D′ (R=) satis�es:
∫

R=

mGD (G)q (G) dG := −
∫

R=

D (G)�Gq (G) dG (∀q ∈ D(R=)). (7)

△

5We follow Teodorescu et al. [2013] De�nition 1.21, which uses a de�nition of continuity that is generally termed

sequential continuity, but is su�cient for our purposes.
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This de�nition is inspired by integration by parts, where the boundary term is 0 because q has
compact support.

We want to be able to lift a function to a distribution so that it can then be di�erentiated. Locally
integrable functions can be lifted to distributions.

De�nition 3.6. A function is locally integrable if it is integrable on every compact set of its domain.
△

Every integrable function (5 such that
∫
R= |5 (G) | dG < ∞) is locally integrable, but not every

locally integrable function is integrable. For example, for every compact set  the integral
∫
 
1 dG

is �nite, but
∫
R= 1 dG is in�nite. So the 5 (G) = 1 is locally integrable, but not integrable. Every

probability density function (PDF) de�ned over the reals (e.g., the uniform PDF and the normal
PDF) is integrable because it integrate to 1 and therefore locally integrable.6

De�nition 3.7. A regular distribution)5 is a distribution that is equal to the (Lebesgue) integral over
a locally integrable function 5 (G):

∫

R=

)5 (G)q (G) dG :=

∫

R=

5 (G)q (G) dG (∀q ∈ D(R=)). (8)

△
The Dirac delta is not locally integrable because it is not a real-valued function and it is not a

regular distribution because no locally integrable function satis�es the sifting property (Teodorescu
et al. [2013] page 19).

Derivative of Heaviside is Delta. We now revisit the example of the Heaviside step function
� (G) = [G ≥ 0]. It is not di�erentiable at G = 0, but it is locally integrable and can be lifted to a
regular distribution )� with the distributional derivative:

∫

R

mG)� (G)q (G) dG
(7)
= −

∫

R

)� (G)�Gq (G) dG
(8)
= −

∫

R

� (G)�Gq (G) dG

Continuing, we apply the de�nition of the Heaviside step function, and then simplify the integral
using the fact that q has compact support:

−
∫

R

� (G)�Gq (G) dG = −
∫

[0,∞]
�Gq (G) dG = −(q (∞) − q (0)) = q (0) (5)

=

∫

R

X (G)q (G) dG .

We can thus conclude that: mG)� (G) = X (G).
Our Desiderata. We need a notion of derivative that applies to discontinuous integrands. Fur-

thermore, classical theory severely limits products of distributions [Schwartz 1954], preventing
)� (G)X (G) from being a valid distribution.

For example, the distributional derivative of a program with nested conditionals and coincident
conditions such as (1 if x > a else 0) if x > a else 0 may not satisfy the product rule.7 Our theory
provides a su�cient condition for the product rule to hold (See Appendix B.1). For example, the de-
rivative of (1 if x > a else 0) if x > a + 1 else 0 satis�es the product rule because the conditions
(x > a + 1 and x > a) are distinct as the case for numerically stable programs (see Section 7.3.2).

6This result is important because it means probabilistic programs interpreted as integrators [Shan and Ramsey 2017]

also de�ne distributions. Note that while all Radon measures as integrators de�ne distributions, not all distributions denote

Radon measures (e.g. mGX).
7We expect that)� (G − 0) ·)� (G − 0) = )� (G − 0) . The derivative of both sides is 2X (G − 0)� (G − 0) = X (G − 0) ,

which means� (0) = 1/2. However, repeating this for)� (G − 0)3 = )� (G − 0) gives� (0) = 1/3, which is a contradiction.
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Our Solution. We resolve these problems by formalizing parametric distributions and parametric

distributional derivatives. A parametric distribution D\ : R< → D′ (R=) is a family of distributions
over free parameters \ ∈ R

< .

De�nition 3.8. The parametric distributional derivative m\ of a parametric distribution D\ is:
∫

R=

m\D\ (G)q (G) dG := �\

∫

R=

D\ (G)q (G) dG (∀q ∈ D(R=)).

as long as the derivative of the integral on the right-hand side exists. △

4 SYNTAX

In this section, we introduce syntax for the core language, Langur, for implementing Potto programs.
Langur is a �rst-order language. All terms are of base type real and Langur has �rst-order let-
bindings. We describe how the surface language maps to the core language at the end of Section 9.
The grammar for Langur terms is:

C, B, A ::= 2 | G | I | C + B | C · B | ifge0 C then B else A

| ifge0 ⌊Ψ⌋ then B else A | let I = C in B

? ::= int C d(G1, . . . , G=) G1, . . . , G= ∈ Vars I ∈ Params Vars ∩ Params = ∅.
We use the metavariables C, B, and A for terms and the metavariable ? for programs.

4.1 Terms

We now brie�y describe the syntax of Langur terms.

Arithmetic Primitives. Langur has standard arithmetic primitives: constants 2 , variablesG1, . . . , G= ∈
Vars, parameters I ∈ Params where I is a metavariable and arithmetic operators +, ·.

Conditionals. Conditionals ifge0 C then B else A are such that C must be variable-free (it can
contain parameters I) and have C ≥ 0 implicitly (in OCaml, if C ≥ 0 then B else A ). For example, in
the case study, there is one variable, G , and there are three free parameters 0, 1, and `. The condition
C must be free of variables, preventing parametric discontinuities.

Di�eomorphic Conditionals. Di�eomorphic conditionals, ifge0 ⌊Ψ⌋ then B else A , have di�eren-
tiable, invertible conditions, ⌊Ψ⌋, de�ned outside the core language. For example, the truncation
points 0 ≤ G ≤ 1 in Line 6 of distributions.po are speci�ed by nesting the di�eomorphic condi-

tionals: Ψ̂1 (G, 0) = G − 0 and Ψ̂2 (G, 1) = 1 − G because if G − 0 ≥ 0 then 0 ≤ G and if 1 − G ≥ 0

then G ≤ 1. The arguments to Ψ are all = variables and< free parameters (we make this choice to
simplify the presentation and could easily modify the language so that the number of variables
could range from 1 to = and the number of parameters could range from 1 to<).

4.2 Programs

The term int C d(G1, . . . , G=) represents integration of a term C over R= with respect to variables
G1, . . . , G= . Programs can be di�erentiated with respect to parameters I ∈ Params.

5 TYPE SYSTEM

Figure 6 presents a type system that characterizes when well-formed terms denote real functions.

5.1 Types and Type Contexts

Langur has real as its only type. Langur lacks arrow types because it is a �rst-order language.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.



Distributions for Compositionally Di�erentiating Parametric Discontinuities 126:13

Δ; Γ ⊢ 2 : real
G : real ∈ Δ

Δ; Γ ⊢ G : real

I : real ∈ Γ

Δ; Γ ⊢ I : real

Δ; Γ ⊢ C : real Δ; Γ ⊢ B : real
Δ; Γ ⊢ C + B : real

Δ; Γ ⊢ C : real Δ; Γ ⊢ B : real
Δ; Γ ⊢ C · B : real

·; Γ ⊢ C : real Δ; Γ ⊢ B : real Δ; Γ ⊢ A : real
Δ; Γ ⊢ (ifge0 C then B else A ) : real

Ψ : JΔK × JΓK
di�eo→ JΔK Δ; Γ ⊢ B : real Δ; Γ ⊢ A : real

Δ; Γ ⊢ (ifge0 ⌊Ψ⌋ then B else A ) : real
·; Γ ⊢ C : real Δ; Γ, I : real ⊢ B : real

Δ; Γ ⊢ let I = C in B : real

Fig. 6. The type system specifying well-formed terms.

The typing judgments are expressed in terms of two type contexts: one for variables Δ and one
for parameters Γ. We distinguish contexts for variables so that we can easily state when a statement
does or does not contain variables. A type context is a mapping from variable names to types:

Δ ::= · | G : real,Δ Γ ::= · | I : real, Γ

The contexts Δ and Γ are disjoint so that variables and parameters do not overlap. We use syntactic
sugar G : real := G : real, · for simplicity.

5.2 Terms

The typing judgment Δ; Γ ⊢ C : real indicates that the term C is of type real given that each of the
variables in Δ and parameters in Γ are of type real.

Arithmetic Primitives. The typing rules for arithmetic primitives operate over reals and are
standard. For both sums and products if the arguments are real then the result is real.

Conditionals. The typing rule for conditionals ifge0 C then B else A states that a conditional is
of type real if the condition term C is real and variable-free and if the terms B and A are real.

Di�eomorphic Conditionals. To have variables arise in the conditionals, we have to use di�eomor-
phic conditionals ifge0 ⌊Ψ⌋ then B else A . Using the isomorphism between variable names and

ordered inputs ®G ↦→ Ψ̂( ®G, ®I) is a �1-di�eomorphism as in De�nition 3.4.
The programmer de�nes a di�eomorphism in the surface language, Potto, as a pair of tuples,

where the �rst tuple speci�es Potto code to compute the di�eomorphism and the second tuple
speci�es its inverse. Future work could automate (piecewise) inversion, which is a long-standing
and challenging problem studied in both the programming languages and graphics communi-
ties [Anderson et al. 2017; Lutz 1986; Matsuda and Wang 2020].

Let Bindings. The let I = C in B primitive introduces a fresh variable I into the typing context Γ.
The term C must be free of variables. For example, the type system accepts let I = I1 + I2 in I + I if
I1 : real, I2 : real ∈ Γ and rejects let I = G in I.

6 DENOTATIONAL SEMANTICS OF TERMS

The denotational semantics, JCK(d,W), maps a well-typed term Δ; Γ ⊢ C : real to a simply decompos-

able function. Informally, the class of simply decomposable functions are piecewise-di�erentiable
functions with �nitely many piecewise-invertible discontinuities. Using the isomorphism between
mappings from variable or parameter names to real numbers JΔK � R

= and JΓK � R
< , where the

sizes of the contexts |Δ| = = and |Γ | =<, we can write ĴCK : R= ×R
< → R. The following semantics

are standard and serve as sca�olding for the following section.
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JCK : JΔK × JΓK → R J2K(d,W) = 2 JGK(d,W) = d (G) JIK(d,W) = W (I)

JC + BK(d,W) = JCK(d,W) + JBK(d,W) JC · BK(d,W) = JCK(d,W) · JBK(d,W)

Jifge0 C then B else AK(d,W) =
{
JBK(d,W) if JCK(·, W) ≥ 0

JAK(d,W) otherwise

Jifge0 ⌊Ψ⌋ then B else AK(d,W) =
{
JBK(d,W) if c0Ψ(d,W) ≥ 0

JAK(d,W) otherwise

Jlet I = C in BK(d,W) = JBK(d,W [I ↦→ JCK(·, W)]) R
=
� Vars → R R

<
� Params → R

Fig. 7. The denotational semantics JCK(d,W) for terms.

6.1 Types, Type Contexts, and Value Contexts

The only type in Langur is real, and it denotes real numbers: JrealK = R. Type contexts Γ and Δ

denote mappings to real numbers and are de�ned by:

J·K = {{}} JG : real,ΔK = (G ↦→ JrealK) ⊔ JΔK JI : real, ΓK = (I ↦→ JrealK) ⊔ JΓK

The empty context denotes the empty function and the denotation of a non-empty context denotes
a disjoint union of functions.

The value context d : Vars → R maps from variable names to real numbers. The value context
W : Params → R maps from parameters to real numbers. We say that d ∈ JΔK if for every G in the
domain of Δ, we have d (G) ∈ JΔ(G)K. In words, for every variable in the typing context, its value is
an element of its type. We de�ne W ∈ JΓK analagously.

6.2 Terms

Now that we have de�ned the denotation of each type, we give a denotation to each term in Figure 7.
The denotation of a term Δ; Γ ⊢ C : real is a function from the denotation of the free variables
JΔK × JΓK to the denotation of the type JrealK. As a result, we provide inputs d,W to the denotation
of a term, where d ∈ JΔK and W ∈ JΓK.

We discuss only notable cases.

Arithmetic Primitives. For convenience, we de�ne syntactic sugar for subtraction of terms using
multiplication and addition: JC1 − C2K(d,W) := JC1K(d,W) + (−1) · JC2K(d,W).

Conditionals. For conditionals ifge0 C then B else A , variables are not allowed in the condition C
to prevent parametric discontinuities.

Di�eomorphic Conditionals. For the conditional ifge0 ⌊Ψ⌋ then B else A , the �rst dimension
c0Ψ : JΔK × JΓK → R corresponds to the condition, the other dimensions serve to make Ψ a
di�eomorphism (De�nition 3.4). We require that the condition is a di�eomorphism in order to give
meaning to the derivative.

Let Bindings. The denotation of a let binding let I = C in B is the denotation of B with the variable
I bound to the denotation of C .

6.3 Results

In this section, we prove results that serve primarily as a sca�olding for results in the following
sections. We show that the denotation of a term is a simply decomposable function.
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De�nition 6.1. A function 5 : R= × R
< → R is a �: simple discontinuity if 5 ( ®G, ®I) = [Φ( ®G, ®I) ≥ 0],

where either (1) Φ( ®G, ®I) is constant in ®G or (2) Φ( ®G, ®I) = c0Ψ̂( ®G, ®I), where ®G ↦→ Ψ̂( ®G, ®I) is a �:

di�eomorphism for all ®I. △

De�nition 6.2. A function 6 : R= × R
< → R is �: simply decomposable if 6( ®G, ®I) is a �nite sum of a

�nite product of �: simple discontinuities times a :-times di�erentiable function in ®I. Concretely,

6( ®G, ®I) =
∑

8∈�

(∏

9∈ �8
[Φ8 9 ( ®G, ®I) ≥ 0]

)
68 ( ®G, ®I)

where � and all �8 are sets of �nitely many indices, each 68 is di�erentiable in ®I, and each [Φ8 9 ( ®G, ®I) ≥
0] is a �: simple discontinuity. △

For simplicity, we call�1 simply decomposable functions just simply decomposable. For example,
[sin(G) ≥ 0] is not simply decomposable because sin(G) is not invertible and cannot be decomposed
into �nitely many invertible pieces.

Theorem 6.1. Every well-typed term Δ; Γ ⊢ C : real denotes a simply decomposable function JCK. «

Proof. We provide a full proof in Appendix H. □

7 DENOTATIONAL SEMANTICS OF DERIVATIVES OF TERMS

A simply decomposable function can be lifted to a regular distribution as de�ned in Equation 8.
While simply decomposable functions JCK do not necessarily have a well-de�ned derivative, they
do have a well-de�ned distributional derivative LCM.

7.1 Types, Type Contexts, and Value Contexts

Types now denote distributions LrealM = D′ (R). The denotation of the typing context for variables
remains the same: LΔM = JΔK. The typing context for parameters, Γ, has new bindings for the
in�nitesimal perturbation:

L·M = {{}} LI : real, ΓM = {I ↦→ JrealK} ⊔ {I′ ↦→ LrealM} ⊔ LΓ′M,

where the parameter I is a real number and the in�nitesimal perturbation I′ is a distribution.
The meaning of the derivative of the empty context is still the empty context. In a nonempty

context, there are twice as many parameters because each parameter has an associated in�nitesimal.
For instance, the total derivative of 5 (G,~) = G~ is �5 (G,~, G ′, ~′) = G ′~ + G~′ with in�nitesimals
G ′, ~′. We can then, for example, recover the partial derivative �G by setting G ′ = 1 and ~′ = 0.

The value contexts d and W remain as before, but W ′ is a mapping from parameters to distributions
representing the values of the in�nitesimal perturbations to the parameters.

7.2 Terms

Figure 8 presents the denotational semantics for derivatives of terms as distributions LCM(d,W,W ′) ∈
D′ (R=), where d ∈ LΔM, the real values for parameters, W , and the distributions for in�nitesimal
perturbations, W ′, are such that (W,W ′) ∈ LΓM, and the number of variables = = |Δ|. We write the
parametric distributional derivative with respect to W as mW .

Arithmetic Primitives. The derivative denotation of a sum is the sum of the derivative denotations.
The denotation of the derivative of a product is the denotation of the derivative of the �rst term
times the denotation of the second term lifted to a distribution plus the derivative of the second
term times the denotation of the �rst term lifted to a distribution.
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LCM : LΔM × LΓM → D′ (R=) L2M(d,W,W ′) = 0 LGM(d,W,W ′) = 0

LIM(d,W,W ′) = W ′ (I) LC + BM(d,W,W ′) = LCM(d,W,W ′) + LBM(d,W,W ′)

LC · BM(d,W,W ′) = LCM(d,W,W ′) ·)JBK (d,W) + LBM(d,W,W ′) ·)JCK (d,W)

Lifge0 C then B else AM(d,W,W ′) =
{
LBM(d,W,W ′) if JCK(·, W) ≥ 0

LAM(d,W,W ′) otherwise

Lifge0 ⌊Ψ⌋ then B else AM(d,W,W ′) = 5 (d,W,W ′) + X (c0Ψ(d,W)) · (�Wc0Ψ) (d,W,W ′) ·)JBK−JAK (d,W)

where 5 (d,W,W ′) =
{
LBM(d,W,W ′) if c0Ψ(d,W) ≥ 0

LAM(d,W,W ′) otherwise

Llet I = C in BM(d,W,W ′) = LBM(d,W [I ↦→ JCK(·, W)], W ′ [I′ ↦→ LCM(·, W, W ′)])

Fig. 8. The denotational semantics for derivatives of terms LCM(d,W,W ′).

Conditionals. A conditional ifge0 C then B else A may not be di�erentiable at the boundary of
the condition JCK(d,W) = 0, so we only guarantee di�erentiability almost everywhere.

Di�eomorphic Conditionals. The derivative of a di�eomorphic conditional ifge0 ⌊Ψ⌋ then B else A

is expressed in terms of the Dirac delta distribution X (Ψ̂( ®G, ®I)), which intuitively is zero everywhere

except along Ψ̂( ®G, ®I) = 0, where it approaches in�nity. We can only formally de�ne X (Ψ̂( ®G, ®I))
because ®G ↦→ Ψ̂( ®G, ®I) is a di�eomorphism for every ®I ∈ R

< (see Equation 6).
To see that the derivative rule is correct, we �rst encode the denotation in terms of the Heaviside

step function � (G) := [G ≥ 0]:

Jifge0 ⌊Ψ⌋ then B else AK(d,W) =
{
JBK(d,W) if c0Ψ(d,W) ≥ 0

JAK(d,W) otherwise

= � (c0Ψ(d,W)) · JBK(d,W) + (1 − � (c0Ψ(d,W))) · JAK(d,W).

Recall from Section 3 that the Dirac delta satis�es: X (G) = �G� (G). By the product and chain rules,
we have that the derivative of the �rst summand is:

(mW)�Ψ ·JBK) (d,W,W ′) = X (c0Ψ(d,W)) · (�Wc0Ψ) (d,W,W ′) ·)JBK(d,W) +)�Ψ
(d,W) · LBM(d,W,W ′),

where �Ψ (d,W) = � (c0Ψ(d,W)) and the derivative of the second summand is:

(mW)(1−�Ψ ) ·JAK) (d,W,W ′) = −X (c0Ψ(d,W)) · (�Wc0Ψ) (d,W,W ′) ·)JAK(d,W) +)1−�Ψ
(d,W) · LAM(d,W,W ′).

Adding the two together and combining terms we have that:

Lifge0 ⌊Ψ⌋ then B else AM = X (c0Ψ(d,W)) · (�Wc0Ψ) (d,W,W ′) · ()JBK(d,W ) −)JAK(d,W ) )
+)�Ψ

(d,W) · LBM(d,W,W ′) +)1−�Ψ
(d,W) · LAM(d,W,W ′).

We can convert the sum of Heavisides back to a piecewise function and a di�erence of regular
distributions into a regular distribution of the di�erence, producing the desired result.

Let Bindings. Let expressions follow the chain rule. In particular, the derivative of a let expression
let I = C in B is the derivative denotation of B evaluated at the in�nitesimal perturbation de�ned by
the derivative denotation of C .
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7.3 Results

We now prove that the denotational semantics is sound: for every term, the derivative denotation
of a term equals the derivative of the denotational term. To do so, we extend the theory.

De�nition 7.1. A parametric distribution D\ ∈ R
< → D′ (R=) is a �: simple distribution if it has a

density 6\ ( ®G), where ®G ∈ R
= , that is �: simply decomposable for all \ ∈ R

< . △

Proposition 7.1. For every well-typed term Δ; Γ ⊢ C : real, if the JCK is locally integrable, then it can

be lifted to a distribution )JCK, that is a �
1 simple distribution. «

Proof. Since C is a locally integrable function, it can be lifted to a distribution)JCK. By Theorem 6.1,
the density JCK is simply decomposable, so, )JCK is a simple distribution. □

7.3.1 The Transversality Condition. In 1D, the derivative is not de�ned when there are disconti-
nuities that correspond to the same sets at equality. For instance, the (parametric) distributional
derivative of [G ≤ \ ] [G ≤ \ ] violates the product rule7 due to a fundamental restriction of distribu-
tion theory [Schwartz 1954]. In higher dimensions, degeneracies only occur when the zero sets of

Ψ̂ are not transverse. So, two submanifolds of R= are transverse when they are not tangent to each
other at any point of their intersection. Such a point of tangency creates a degeneracy similar to
the 1D case of colocated discontinuities.

De�nition 7.2. A family of submanifolds M in R
= are mutually transverse when, for any subfamily

M� ⊆ M and any point G in the intersection of those submanifolds M� , the normal spaces of M�

at G are linearly independent. △

We specialize this de�nition to R= , and therefore use normal space rather than the tangent space
for simplicity. For example, two planes in R

3 that only intersect along a line are transverse. If they
do not intersect at all, then they are (vacuously) transverse. However, when the two planes coincide,
i.e. they are the same plane, their intersection is not transverse as the normals for the planes are
equivalent. The following examples are not mutually transverse: two osculating circles and three
lines in R

2 that intersect at the same point.
The di�eomorphic conditional ifge0 ⌊Ψ⌋ then B else A has a condition represented by the dif-

feomorphism ®G ↦→ Ψ̂( ®G, ®I). The points along the zero-level sets of the di�eomorphisms are exactly

those values for which c0Ψ̂( ®G, ®I) = 0. For example, if Ψ̂(G, 0) = 0 − G , the zero-level set is G = 0.
The derivative of a di�eomorphic conditional introduces a Dirac delta located along the zero-level

set of the di�eomorphism. Figure 9 presents such an example. The initial function (9a) has a zero-
level set of the di�eomorphism that introduces a ridge representing the Dirac delta in the derivative
(9b), which is not present when the delta is not included (9c). For a product of di�eomorphic
conditionals, if the corresponding zero-level sets are not transverse, then the denotation of the
conditionals is degenerate. For example, if [G ≥ 0] [G ≥ 0] are equivalent [G ≥ 0] (which is the
case for functions) then the derivative double-counts the jump 2[G ≤ 0]X (0 − G) versus X (0 − G).

7.3.2 Justification for the Transversality Condition. Terms can often be written in a way that
satis�es the transversality condition. For example, in math, some rewrites are: replacing [G ≥ 0]2
with [G ≥ 0] or replacing sin( [G ≥ 0]) with [G ≥ 0] sin(1) prior to di�erentiation. Practical
cases that cannot be written this way typically pose problems beyond di�erentiability, such as
numerical instability. For instance, the construction of a quadrilateral from two triangles violates
the transversality condition because the two triangles have a coincident edge. Operations on the
quadrilateral, such as rotation and translation, lead to numerical errors because edges that are
supposed to be coincident are instead distinct.
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(a) Initial (b) Langur derivative (c) Standard AD derivative

Fig. 9. (a) depicts the integrand [~ < G + \ ] (1 + \ + G + ~), where \ = 0. (b) shows its derivative [~ <

G] + X (G − ~) (1 + G + ~) at \ = 0, where the ridge along ~ = G represents the Dirac delta that we integrate

over. (c) is the derivative computed with Standard AD [~ < G], which is missing the Dirac delta.

Such numerical instabilities in geometry cause problems such as light leaks, where light from
behind a mesh shines through an object due to a crack and missed collisions, where an object fails
to collide with another object and passes through instead [Woop et al. 2013].
So the violation of transversality poses practical challenges beyond that of di�erentiability. As

a result, graphics engines generally encode geometry as a partition of space (each edge is only
represented once). Hence, although practical computations can be represented as programs that
violate transversality, it is often desirable to implement the computation in an alternative way that
restores transversality [Dalstein et al. 2014].
If the transversality condition fails, the program may not have a well-de�ned distributional

derivative (e.g., ifge0 ⌊Ψ⌋ then (ifge0 ⌊Ψ⌋ then 1 else 0) else 0). In this case, the interpreter will
return results that we do not assign a meaning to. Similarly, Pytorch [Paszke et al. 2019] and
Tensor�ow [Abadi et al. 2015] produce results at discontinuous points, although the derivative is
ill-de�ned at these points.

7.3.3 Terms as Parametric Distributions. With the formalisms of parametric distributions and the
transversality condition in place, we present two key results: (1) the derivative of the denotation

Differentiable interior
Invertible, 
differentiable 
boundary

Fig. 10. A well-typed term denotes a �0 sim-

ply decomposable function (le�). Its derivative

�\ (right) is a sum of a simple distribution

(constant interior color) and Dirac deltas mul-

tiplied by�0 simply decomposable functions

(the boundary lines).

of a term is the derivative denotation of the integrand
(soundness) and (2) the derivative of a term is a paramet-
ric distribution that is the sum of a�0 simply decompos-
able function and Dirac deltas multiplied by �0 simply
decomposable functions in Figure 10.

Proposition 7.2. For every (W,W ′) ∈ LΓM, if Δ; Γ ⊢ C :

real then LCM(d,W,W ′) ∈ D′ (R=) whenever the zero level-
set of all di�eomorphisms in the derivative are mutually

transverse. «

Proof. The interesting case is products. We have that LC · BM(d,W,W ′) = LCM(d,W,W ′))JBK +
LBM(d,W,W ′))JCK is a distribution. Here we use the transversality side condition (Theorem B.2). □

De�nition 7.3. Let 5 , 6 : R
= → R be given. We say that 5 ( ®G) = 6( ®G) for almost every ®G if

{G ∈ R
= | 5 ( ®G) ≠ 6( ®G)} has Lebesgue measure zero. △

Lemma 7.1 (Derivative correctness for terms). Let (W,W ′) ∈ LΓM be given. Assume that the zero

level-set of all di�eomorphisms in the derivative are mutually transverse. For every Δ; Γ ⊢ C : real, the
derivative denotation and derivative commute:

LCM(d,W,W ′) = (mW)JCK) (d,W,W ′)
for almost every W . «
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G1 : real, . . . , G= : real; Γ ⊢ C : real
·; Γ ⊢ int C d(G1, . . . , G=) : real

Fig. 11. The type system specifying well-typed programs.

Jint C d(G1, . . . , G=)K : JΔK × JΓK → R Jint C d(G1, . . . , G=)K(·, W) =
∫

R=
JCK(d,W) dd

Lint C d(G1, . . . , G=)M : LΔM × LΓM → R Lint C d(G1, . . . , G=)M(·, W, W ′) =
∫

R=
LCM(d,W,W ′) dd

Fig. 12. The denotational semantics of programs.

Proof. We provide the full proof in Appendix I. □

We now characterize the semantic domain of the derivatives of well-typed terms.

Theorem 7.1. For every well-typed term Δ; Γ ⊢ C : real, if the JCK is locally integrable and the

zero level-set of all di�eomorphisms in the derivative are mutually transverse then LCM(d,W,W ′) is
a sum of a �0 simple distribution and a �nite sum of delta distributions multiplied by �0 simply

decomposable functions. Concretely, using the isomorphism between variable names and ordered

variables, LCM(d,W,W ′) can be written as the distribution:

D ( ®G, ®I, ®I′) = 5 ( ®G, ®I, ®I′) ·)1 ( ®G) +
∑

8

∑

:

ℎ8: ( ®G, ®I, ®I′) · X (Φ8: ( ®G, ®I)), (9)

where 5 and ℎ8: for all 8 and : are �0 simply decomposable and )1 is the lifting of the one function

1( ®G) into a distribution (De�nition 3.7). «

Proof. It is su�cient to prove the theorem for mW)JCK (Lemma 7.1 and Lemma 7.1 cover the other

cases). Theorem 6.1 gives us that JCK is�1 simply decomposable. We can then take the derivative �®I
of each of the summands 68 ( ®G, ®I)

∏
9

[
Φ8 9 ( ®G, ®I) ≥ 0

]
from the de�nition of simply decomposable.

Using Lemma 7.1 to apply the product rule, we �nd that the derivative is:

D ( ®G, ®I, ®I′) =
∑

8

(
58 ( ®G, ®I, ®I′) ·)1 ( ®G) +

∑

:

ℎ8: ( ®G, ®I, ®I′) · X (Φ8: ( ®G, ®I))
)
,

where 8 and : are in �nite sets and the functions 58 ( ®G, ®I, ®I′) = (�®I68 ) ( ®G, ®I, ®I′)
∏

9

[
Φ8 9 ( ®G, ®I) ≥ 0

]

and ℎ8: ( ®G, ®I, ®I′) = (�®IΦ8: ) ( ®G, ®I, ®I′)68 ( ®G, ®I)
∏

9≠:

[
Φ8 9 ( ®G, ®I) ≥ 0

]
are �0 simply decomposable. We

can use linearity and set 5 ( ®G, ®I, ®I′) = ∑
8 58 ( ®G, ®I, ®I′), which is simply decomposable. □

8 DENOTATIONAL SEMANTICS OF PROGRAMS AND THEIR DERIVATIVES

Langur programs are the integrals and the derivative of integrals of Langur terms. We discuss
integrability and prove a soundness theorem that shows that the derivative denotation of a program
equals the derivative of the denotation of that program.

8.1 Type System

Figure 11 depicts the typing rules for Langur programs. The syntax int C d(G1, . . . , G=) introduces
variables G1, . . . , G= into the typing context for C . A well-typed program integrates over a well-typed
term with no free variables, preventing nested integration.

8.2 Denotational Semantics

Figure 12 depicts the denotational semantics for Langur programs and their derivatives. The
integral primitive denotes =-dimensional Lebesgue integration. We use the notation dd to introduce
variables G1, . . . , G= in the integrand. The denotation of the derivative of an integral is the integral
of the distributional derivative of the integrand.
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8.3 Results

We now brie�y discuss integrability and the correctness of the derivative.
Recall from Section 2 that a program in the surface language has a compact domain of integration

speci�ed by the constant bounds of integration. Its encoding in the core language results in an
integrand with compact support.

For example, a program in the surface language integral ([-10, 10]) x dx has a compact domain
of integration [−10, 10]. In the core language, this program can be encoded as:

int (ifge0 G + 10 then 1 else 0) · (ifge0 10 − G then 1 else 0) · G dG,

where the integrand has compact support [−10, 10].
As a result of this property, we can show that programs implemented in the surface language

have a well-de�ned denotation in the core language.

Proposition 8.1. A well-typed program Δ; Γ ⊢ int C d(G1, . . . , G=) : real has a well-de�ned denota-
tion Jint C d(G1, . . . , G=)K(·, W) if the integrand JCK(d,W) has compact support. «

Proof. By Theorem 6.1, the integrand denotes a simply decomposable function. Splitting the
domain of integration into these �nitely many pieces, we see that each of the integrals is bounded
because it is the integral of a continuous function over compact support. □

Proposition 8.2. The derivative denotation Lint C d(G1, . . . , G=)M(·, W, W ′) of a well-typed program
Δ; Γ ⊢ int C d(G1, . . . , G=) : real is well-de�ned if the integrand JCK(d,W) has compact support. «

Proof. Theorem 7.1 shows that the integrand is a �0 simple distribution plus a �nite sum of
Dirac deltas and scaled by �0 simply decomposable functions each of which has compact support.
The sum of Dirac deltas is bounded because the integrand is bounded. Since the integral of a
continuous function with compact support is bounded, and there are �nitely many continuous
pieces, the result is bounded. □

Derivative Correctness. The derivative of the denotation equals the derivative denotation:

Theorem 8.1 (Derivative correctness). Let (W,W ′) ∈ LΓM be given. For every well-typed program
Δ; Γ ⊢ int C d(G1, . . . , G=) : real, the denotation and derivative commute:

Lint C d(G1, . . . , G=)M(·, W, W ′) = (�W Jint C d(G1, . . . , G=)K) (W,W ′)
where the equivalence above is almost everywhere equivalence, and we assume that the program

J?K and its derivative Lint C d(G1, . . . , G=)M(·, W, W ′) are well-de�ned and that the zero level-set of all
di�eomorphisms in the derivative are mutually transverse. «

Proof. We provide the full proof in Appendix J. □

9 SEPARATE COMPILATION

In this section, we discuss an interpreter for the core language Langur, formalize separate compila-
tion, and relate the surface language Potto to Langur.

The operational semantics for programs follows from the denotational semantics (Appendix D).
We now formalize the relationship between the two.

Operationally, we can commute the derivative and the integral (Figure 12):

Lint C d(G1, . . . , G=)M(·, W, W ′) =
∫

R=

LCM(d,W,W ′) dd =

∫

R=

D ( ®G, ®I, ®I′) d®G,

whereD is a parametric distribution and the last equality applies the isomorphism betweenmappings
from variable or parameter names to ordered real numbers.
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Then if LCM satis�es the conditions of the Theorem 7.1:
∫

R=

D ( ®G, ®I, ®I′) d®G =

∫

R=

5 ( ®G, ®I, ®I′) ·)1 ( ®G) +
∑

8

∑

:

ℎ8: ( ®G, ®I, ®I′) · X (Φ8: ( ®G, ®I)) d®G by Thm 7.1

=

∫

R=

5 ( ®G, ®I, ®I′) d®G +
∑

8

∑

:

∫

R=

ℎ8: ( ®G, ®I, ®I′) dX (Φ8: ( ®G, ®I)) ( ®G) by linearity

where 5 and ℎ8: for all 8 and : are �0 simply decomposable functions, and )1 is the one function
lifted to a distribution, and X (Φ8: ( ®G, ®I)) is the Dirac delta distribution on the �rst line and the Dirac
measure on the second line (it is one if {®G ∈ R

= | Φ8: ( ®G, ®I) = 0} and zero otherwise).
We can then implement the operational semantics for derivatives of Langur programs with

Monte Carlo integration over each of the measures as is standard in probabilistic programming
languages. The operational semantics for derivatives provides an implementation for sampling and
point evaluation at a sample (Appendix E). This is analagous to sample and score in probabilistic
programming [Staton 2017]. We summarize some interesting cases.

Di�eomorphic Conditionals. The derivative of a di�eomorphic conditional introduces a Dirac delta
distribution. To implement sample, Langur must draw unbiased samples satisfying the equality

c0Ψ(G1, ..., G=) = 0. For example, if ifge0 ⌊Ψ⌋ then 1 else 0 has a di�eomorphism Ψ̂(G) = 0 − G

with inverse Ψ̂−1 (~) = 0−~ in the condition. The distribution derivative of ifge0 ⌊Ψ⌋ then 1 else 0

is X (0 − G). In math, we would calculate the derivative by applying a change of variables D = 0 − G

(De�nition 6) and applying the sifting property
∫
(0 −D)X (D)3D = 0 (Equation 5). This is equivalent

to sampling the point G = 0 and evaluating the rest of the integrand at G = 0. Langur implements
sample by returning G ↦→ 0 and implements score, by evaluating the rest of the integrand at G = 0.

Let Bindings. For let bindings let I = C in B , by the type system for di�eomorphisms, the parame-
ter I cannot be an input to a di�eomorphism and as a result, samples generated from the derivative
of B do not depend on C . As such, Langur can separately sample from the measures denoted by C and
B and combine the results. This is key to enabling separate compilation. To evaluate let I = C in B ,
we need only evaluate C at given sample points and then bind each value to I in B and evaluate B .

Compositional Evaluation and Separate Compilation. We consider relations taking in an environ-
ment � and a term of a grammar� and returning either nothing (it is partial) or a value. If it returns
a value, we write it as (�, C)'E . We consider values that are either (real) numbers or collections of
numbers (such as disjoint unions of pairs of numbers). This is critical because passing an expression
to a function violates compositional evaluation

A hypothesis� is a predicate de�ned by a functionℎ(E1, . . . , E; ). A function such asℎ(�, E1, . . . , E; )
depends only on E1, . . . , E; , �, and mathematical functions (e.g., 5 ,Ψ, ≤, =).
We consider an operational semantics as a set of relations R over a grammar � . Let R be a

metavariable representing one of a �xed set of relations.

De�nition 9.1. An operational semantics supports compositional evaluation if, for every inference
rule, the conclusion depends only on the values generated by the hypotheses. Formally, each

inference rule can be written in the following form:
(�,C1 )'E1 ... (�,C; )'E; �1 ... �@

(�,C )'6 (�,E1,...,E; ) . △

Theorem 9.1. The operational semantics supports compositional evaluation. «

The proof follows by inspection of the operational semantics (R = {⇓# , ⇓3# , ⇑3# }), where the case
of let binding is the key case. Langur achieves compositional evaluation by evaluating subterms
before combining results in every rule.
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(a) Scene (b) Shaders change how light a�enuates (c) The derivative w.r.t. light position

Fig. 13. We use a di�erentiable renderer implemented in Po�o turn scenes containing a single line of light

pointing diagonally downward with di�erent light a�enuations into images. Swapping between di�erent

shaders is a critical part of the design process. In Po�o, programs and their derivatives can be separately

compiled and composed to e�iciently swap among shaders.

The mechanism of building separate compilation from compositional operational semantics is
well studied [Cardelli 1997]. Separate compilation is important in programming and speci�cally in
computer graphics where many small changes are made to program parts in the design process.
Langur separately compiles program parts and simply evaluates them at di�erent points to produce
results rather than requiring global program manipulations as in Teg [Bangaru et al. 2021].

Example. We now discuss the Potto program from Section 2 (code blocks 1, 2, 3). We brie�y
discuss this conversion from the Potto to the Langur. Recall from the type system that variables
and parameters are passed in the environment.
The risk(distro, a, b, mu) becomes the integral on the last line because we have applied the

function trunc_normal. We take the liberty of using the names normal, `, and trunc_normal for
parameters rather than I1, I2, and I3 for clarity.
We need a little more machinery to introduce risk and therefore gain the bene�ts of separate

compilation. We introduce a �nite looping construct that is syntactic sugar and is unrolled. Using
the same argument as for let binding, we can separately compile the body of the loop and iteration.

10 EVALUATION

In this section, we evaluate the prototype programming language, Potto, and implement a di�eren-
tiable renderer with swappable shaders, meaning that each shader can be separately compiled and
therefore e�ciently interchanged. We describe implementation details and optimizations on top
of those presented in the operational semantics in Appendix G. We compare Potto and Teg on a
renderer from Teg and two synthetic examples as well [Bangaru et al. 2020].

10.1 A Di�erentiable Renderer with Swappable Shaders

We implement a di�erentiable renderer [de La Gorce et al. 2011; Li et al. 2018, 2020; Loper and
Black 2014; Zhao et al. 2020]. Domains ranging from autonomous driving to robotics to computer-
generated imagery, use di�erentiable renderers to recognize the 3D shapes of cars, signs, and
pedestrians, to reconstruct a 3D scene for a robot, and to capture the 3D properties of actors’ faces.
A renderer is a program that takes in the geometry and color of each object in the scene and

outputs an image. Renderers are built out of programs called shaders. A di�erentiable renderer
computes the change in the color of a pixel with respect to changes in parameters, such as the
location or color of an object. These derivatives are useful for optimization.

Figure 13a depicts the scene: a line of light shining diagonally downward. The color of a single
pixel is the average of light within the pixel area:

5 (2, B) =
∫ 1

0

∫ 1

0

B (G,~, 2) [G + ~ + 2 ≥ 0] dGd~. (10)
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We use the convention that the origin is in the top left corner and the ~-axis points down. The
half-plane [G + ~ + 2 ≥ 0] is the shader determining whether a point is illuminated. The function
B : R3 → R is the shader that determines the brightness as a function of G , ~, and 2 .

The goal is to optimize the parameter 2 so that the renderer generates a pixel with color 0.
We use gradient descent to minimize the loss function !(2, B) = (5 (2, B) − 0)2 with derivative
�2!(2, B) = 2(5 (2, B) − 0)�2 5 (2, B). A di�erentiable renderer computes the derivative �2 5 (2, B).

Di�erentiating Parametric Discontinuities. The leftmost image in Figure 13b depicts the constant
shader B (G,~, 2) = 1, which a half-plane. The leftmost image in Figure 13c depicts its derivative,
which is a line along the boundary of the half-plane because it is the change resulting from
perturbing 2 in 5 (2, B). The half-plane shifts diagonally downward, making the boundary the only

region with nonzero derivative. The linear shader B (G,~, 2) = (
√
2(G + ~ + 2) + 2)−1 and quadratic

shader B (G,~, 2) = (
√
2(G +~ + 2) + 2)−2 have the same boundary contribution to the derivative, but

also have a nonzero interior derivative.
The derivative of the renderer decomposes into the interior and boundary contributions:

�2 5 (2, B) =
∫

(

m2B (G,~, 2) [G + ~ + 2 ≥ 0]
︸                           ︷︷                           ︸

interior

+ B (G,~, 2)X (G + ~ + 2)
︸                    ︷︷                    ︸

boundary

d(G,~). (11)

The contribution of the Dirac delta distribution X shows up as the diagonal yellow line in the
derivative of all three shaders. We provide a derivation in Appendix A.

Automatic Di�erentiation of Parametric Discontinuities. A naïve implementation would discretize
the integral to a sum and use automatic di�erentiation to compute the derivative of the discretization.
The resulting program would approximate the interior term in Equation 11, but ignore the boundary
term, producing an incorrect result. We implement the renderer speci�ed in Equation 10:

1 # renderer.po

2 from half_plane import cond

3 def renderer(c: Param, s):

4 return integral ([0 ,1] ,[0 ,1]) s(x,y,c)*(1 if cond(x,y,c) else 0) d(x,y)

Line 2 imports the di�eomorphism from the half_plane.diffeo �le. It takes in variables G,~ and
parameter 2 , and returns an a�ne combination of the three, representing a 2D rotation parameterized
by 2 . This �le can be implemented as a collection of Potto programs that specify the forward and
inverse transformations.

1 # color_shaders.po

2 def const_shader(x: Var,y: Param,c: Param): return 1

3 def lin_shader(x: Var,y: Param,c: Param): return 1/( sqrt (2)*(x+y+c)+2)

4 def quad_shader(x: Var,y: Param,c: Param): return 1/( sqrt (2)*(x+y+c)+2)^2

The three shaders are �rst-order functions that model how quickly light attenuates. The const_shader

corresponds to no attenuation—intensity is invariant to the distance from the light. While in
lin_shader and quad_shader, the attenuation is linear and quadratic, respectively.

1 # main.po

2 from color_shaders import_deriv const_shader , lin_shader , quad_shader

as dconst_shader , dlin_shader , dquad_shader

3 from renderer import_deriv renderer as drenderer

4 for dshader in [dconst_shader , dlin_shader , dquad_shader ]:

5 print (( drenderer (-2, 1) dshader)[1])

In main.po, we compose the derivative of the renderer with the derivative of each of the shaders to
compute the pixel color. We evaluate the resulting expression at a base point c=-2 with in�nitesimal
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(a) Depth shader (b) Depth shader deriv. (c) Thresh. Lambert (d) Thresh. Lam. deriv.

Fig. 14. Discontinuous shaders at a 40 × 40 resolution. We display the sparsity pa�ern of the derivative

shaders. For example, the derivative shader is red, if the derivative is nonzero in the red channel.

dc=1, producing a number representing the derivative. The program then does a step of gradient
descent to �nd the value of 2 resulting in a pixel most similar to the pixel in a given image.

Separate Compilation. Potto separately compiles the derivative of the renderer and shaders,
making it possible to compile di�erent program parts to di�erent hardware (e.g., the CPU and
GPU). As a result, Potto compiles the derivative of the renderer and each shader once rather than
needing to compile the derivative of the renderer and shaders three times. Since calculating the
derivative of the renderer is so time-consuming, it results in a 2.78x speedup.

10.2 A Ray tracing Di�erentiable Renderer with Swappable Shaders

A ray tracer is a renderer that computes the color of each pixel in the image by shooting rays from
a camera to identify which objects are visible and what color they have. The ray tracer shoots rays
into the scene and computes the color at the intersection of the ray with the geometry [Shirley 2020].
The subset of parameters that control the color, re�ectiveness, and other properties of surfaces
reside in the shader programs. Changing shader parameters changes the stylization of the scene.
Di�erentiable rendering [Li et al. 2018; Loper and Black 2014] is useful for solving inverse

problems. For example, an artist might draw a 2D image and want a 3D scene that, when viewed
from a particular angle, looks as similar to their drawing as possible. Gradient-based optimization
can automatically set these shader parameters.

A production renderer has many shaders that artists can select to achieve a desired e�ect [Perlin
1985]. Rendering often involves large geometries within the scene, making it important to be able
to quickly swap out shaders without recompiling the whole rendering engine.

As a result, engines typically allow for separate compilation of the renderer from the component
shaders. However, boundary sampling techniques are either limited to a�ne discontinuities [Li et al.
2018] or do not support separate compilation [Bangaru et al. 2021]. To solve inverse problems with
multiple shaders without incurring this overhead, it is imperative to be able to swap out shaders
and their derivatives in the derivative of a renderer.
Each pixel in the rendered image is a rectangular cell in an imaginary screen in front of the

camera. Its color is the average (integral) of the light rays that pass through the cell.

Swappable Shaders. We would like to swap between di�erent discontinuous shaders, often called
toon shaders based on their cartoon stylized look. Often these come from standard physical shaders
that are thresholded. Our example shaders are 1) a z-depth shader, which gives di�erent colors to
objects based on how far away from the camera they are, and 2) a thresholded Lambert shader, which
models the re�ectance of a matte surface under a point light, which sits in front of the triangle and
has linear intensity fallo� [Lake et al. 2000].

Figure 14 depicts images produced by a Potto implementation of a di�erentiable ray tracer. The
derivative of Figure 14a is Figure 14b and the derivative of Figure 14c is Figure 14d.
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Fig. 15. A bar chart, where smaller is be�er, comparing Po�o to Teg on an image stylization. Po�o is so much

faster in compile time that the bars on not visible. Compile time was the bo�leneck in Teg.

The scene consists of a single triangle, where the upper left corner is closer to the camera than
the others. We di�erentiate with respect to the vertex positions of the triangle as it expands in
space, as well as a threshold parameter in the shaders. The upper left corner comes towards the
camera, while the other corners spread outward.

The z-depth shader has a discontinuity at a �xed depth in space. The triangle is colored red if it
is close enough to the camera, and green otherwise. As the triangle expands, more black pixels
along its border become colored and more of the triangle becomes red.

The thresholded Lambert shader has a discontinuity on the triangle surface based on the amount
of light from the point light source that is received. When the light value is less than a certain
threshold, the triangle is colored red. As the triangle expands, the transition curve moves around
on the triangle.

10.3 Comparison to Teg

We compare to Teg [Bangaru et al. 2021] on an image stylization task and two microbenchmarks.

Methodology. Teg provides three backends: a vectorized Python implementation using NumPy, a
C backend, and a CUDA backend. We use the vectorized NumPy backend because it most closely
matches our implementation. We also observed overhead from starting the C compiler that made
evaluation in the generated C code slower than in NumPy on these benchmarks. We run all
evaluations using a desktop with an Intel i9-10900k 10-core CPU and 64GB of memory.
10.3.1 Renderer for Image stylization. Bangaru et al. [2021] presents a renderer for image stylization
in Figures 5 and 6. Figure 15 shows the (derivative) compilation time, evaluation time, total time,
and AST size for linear and quadratic shader stylization.

Teg creates duplicate expressions during compilation, leading to increased compile time, evalu-
ation time, total time, and code size. Teg does not perform common sub-expression elimination
(same for Potto), so the evaluation time increases. Separate compilation in Potto results in smaller
ASTs and faster compilation and evaluation.

10.3.2 Microbenchmarks. We design a set of small benchmarks to compare Potto and Teg in terms
of compile time (to calculate the derivative), evaluation time, total time (both compilation and
evaluation), and code size. We report the geometric mean across = runs and set = = 10 for the �rst
benchmark and = = 3 for the second due to time constraints.

Increasing the Number of Parametric Discontinuities. We study how the performance of Potto
and Teg scale as we increase the number of parametric discontinuities to be di�erentiated. The
program takes a function f and a number n representing the number of Heavisides and produces
an expression evaluating the sum of Heavisides multiplied by the function. We bind f to programs
�rst-order functions a+x and a-x. The number n controls the number of Heavisides and therefore
the number of Dirac deltas in the derivative.
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Fig. 16. A comparison of how Po�o and Teg scale with the number of discontinuities.
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Fig. 17. A comparison of how Po�o and Teg scale with the number of swaps between shaders.

Figure 16 depicts the trends as the number of Dirac deltas increases. Potto compiles code faster
than Teg, which is a result of the global program transformations needed in Teg. Potto has slower
runtime performance than Teg, which is due to Potto doing dynamic tracing and the fact that it
is written in pure Python. Potto takes less total time to compute the result. Potto and Teg have
similar AST sizes that grow linearly in the number of deltas.

Separate Compilation. We study the impact of separate compilation by building an expression
with 90 parametric discontinuities representing the geometry of a scene and scaling the number
of times we swap between shaders n. Figure 17 depicts the trends as the number of shader swaps
increases. Teg must repeatedly compile the whole expression every time we swap the shader,
leading to a slow compile time that reaches our timeout of 20 minutes at 15 swaps. On the other
hand, since Potto can separately compile the two modules, the compilation cost increases slowly.
Potto needs about a minute at 50 swaps.

11 RELATED WORK

We extend distribution theory to di�erentiate under integrals. Our implementation draws on
concepts from di�erentiable and probabilistic programming. For applications, we build on a body
of research in di�erentiable rendering and probabilistic inference.

11.1 Distribution Theory

Distribution theory was formalized by Schwartz [1950]. We adapt the theory to address the product
of distributions problem [Schwartz 1954]. Recent programming languages work uses distribution
theory to (equationally) reason about derivatives of discontinuous programs in a higher-order
language [Azevedo de Amorim and Lam 2022]. However, they do not extend directly the theory,
which poses a challenge for reasoning about nested conditionals, preventing applications as simple
as rendering a triangle. Their lack of di�eomorphic conditional means that the implementation is
similarly restricted.
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11.2 Sampling Along Discontinuities

Early work hand-coded samplers for discontinuities [Li et al. 2018]. Concurrent work automatically
handled a�ne discontinuities with applications to stochastic variational inference Lee et al. [2018].
Recent work also di�erentiated parametric discontinuities using an integration primitive [Ban-
garu et al. 2021]. The paper claims to support higher-order derivatives, but this is not the case
(di�eomorphisms are often not preserved under di�erentiation). We provide a formal foundation
that encompasses their work and support additional language features useful in graphics (e.g.,
�rst-order functions and separate compilation).

11.3 Smoothing Out Discontinuities

Rather than directly sampling discontinuities, one can smooth them out [Chaudhuri and Solar-
Lezama 2010; Laine et al. 2020; Liu et al. 2019]. This typically leads to approximate results and
requires additional parameters [Inala et al. 2018; Yang et al. 2022]. We focus on consistent, unbiased
estimation of derivatives, but are interested in the practical trade-o�s between these approaches.
Recent work showed that unbiased estimation is possible for smoothed out discontinuities, but the
work is yet to be systematized [Bangaru et al. 2020].

Automatic Di�erentiation. Automatic di�erentiation has been a known technique for quite some
time [Wengert 1964]. Interest in developing e�cient AD systems has grown signi�cantly [Abadi
et al. 2015; Bradbury et al. 2018; Paszke et al. 2019; Pearlmutter and Siskind 2008; Yu et al. 2014].
Researchers have also developed theoretical techniques for proving correctness [Abadi and Plotkin
2019; Elliott 2018; Lee et al. 2020; Mazza and Pagani 2021; Sherman et al. 2021]. Sherman et al. [2021]
study a language with derivatives and integrals but returns vacuous results when di�erentiating
parametric discontinuities.

Probabilistic Programming. Saheb-Djahromi [1978] and Kozen [1981] performed early work on
the semantics of probabilistic programs. Recent work develops e�cient probabilistic programming
languages [Bingham et al. 2019; Cusumano-Towner et al. 2019; Stan Development Team 2015].
Compositionality is also of interest in these languages. For example, Cusumano-Towner et al.
[2019] introduces a generative function interface that is compositional and should similarly support
separate compilation. We believe distributional semantics are also relevant to other inference
tasks [Gehr et al. 2020; Lew et al. 2019; Shan and Ramsey 2017; Zhou et al. 2019].
Recent work, ADEV provides a framework for reasoning about the composition of gradient

estimators and providing proofs of correctness [Lew et al. 2023]. It lacks support for di�erentiating
parametric discontinuities as discussed in their related work section in the subsection “AD of
Languages with Integration." Our paper provides such a sound gradient estimator that could
potentially compose with other estimators using an appropriate extension of their framework.
This would require changing their type system to admit programs with parametric discontinuities
beyond discrete distributions that can either be enumerated or estimated via REINFORCE.

12 CONCLUSIONS

Parametric discontinuities arise in applications spanning computer graphics [Li et al. 2018], robot-
ics [Hu et al. 2020], and probabilistic programming [Lee et al. 2018]. We design a theory providing
a semantic model for di�erentiating parametric discontinuities that arise in these applications.
Using the insight from our theory, we implement a system that can separately compile programs,
allowing us to build a di�erentiable renderer with swappable shaders. In the future, we hope that
di�erentiable programming languages will support di�erentiation of parametric discontinuities to
better serve application domains.
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