Check for
Updates

Distributions for Compositionally Differentiating Parametric
Discontinuities

JESSE MICHEL, Massachusetts Institute of Technology, USA

KEVIN MU, University of Washington, USA

XUANDA YANG, University of California, San Diego, USA

SAI PRAVEEN BANGARU, Massachusetts Institute of Technology, USA
ELIAS ROJAS COLLINS, Massachusetts Institute of Technology, USA
GILBERT BERNSTEIN, University of Washington, USA

JONATHAN RAGAN-KELLEY, Massachusetts Institute of Technology, USA
MICHAEL CARBIN, Massachusetts Institute of Technology, USA
TZU-MAQO LI, University of California, San Diego, USA

Computations in physical simulation, computer graphics, and probabilistic inference often require the dif-
ferentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular
differentiable programming languages, such as PyTorch and JAX, ignore discontinuities during differentiation.
This is incorrect for parametric discontinuities—conditionals containing at least one real-valued parameter
and at least one variable of integration. We introduce Potto, the first differentiable first-order programming
language to soundly differentiate parametric discontinuities. We present a denotational semantics for pro-
grams and program derivatives and show the two accord. We describe the implementation of Potto, which
enables separate compilation of programs. Our prototype implementation overcomes previous compile-time
bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime,
respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a
prototype differentiable renderer with separately compiled shaders.

CCS Concepts: « Theory of computation — Denotational semantics; Operational semantics; « Computing
methodologies — Rendering; - Mathematics of computing — Functional analysis.

Additional Key Words and Phrases: Differentiable Programming, Denotational Semantics, Differentiable
Rendering, Distribution Theory, Probabilistic Programming

ACM Reference Format:

Jesse Michel, Kevin Mu, Xuanda Yang, Sai Praveen Bangaru, Elias Rojas Collins, Gilbert Bernstein, Jonathan
Ragan-Kelley, Michael Carbin, and Tzu-Mao Li. 2024. Distributions for Compositionally Differentiating
Parametric Discontinuities. Proc. ACM Program. Lang. 8, OOPSLA1, Article 126 (April 2024), 30 pages. https:
//doi.org/10.1145/3649843

Authors’ addresses: Jesse Michel, Massachusetts Institute of Technology, Cambridge, USA, jmmichel@csail. mit.edu; Kevin
Mu, University of Washington, Seattle, USA, kmu0@cs.washington.edu; Xuanda Yang, University of California, San Diego,
San Diego, USA, xuanday@ucsd.edu; Sai Praveen Bangaru, Massachusetts Institute of Technology, Cambridge, USA,
sbangaru@mit.edu; Elias Rojas Collins, Massachusetts Institute of Technology, Cambridge, USA, erojasc@mit.edu; Gilbert
Bernstein, University of Washington, Cambrdige, USA, gilbo@cs.washington.edu; Jonathan Ragan-Kelley, Massachusetts
Institute of Technology, Cambridge, USA, jrk@csail.mit.edu; Michael Carbin, Massachusetts Institute of Technology,
Cambridge, USA, mcarbin@csail.mit.edu; Tzu-Mao Li, University of California, San Diego, San Diego, USA, tzli@ucsd.edu.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART126

https://doi.org/10.1145/3649843

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

https://creativecommons.org/licenses/by-sa/4.0/
HTTPS://ORCID.ORG/0009-0007-8735-001X
HTTPS://ORCID.ORG/0009-0008-5057-2222
HTTPS://ORCID.ORG/0009-0008-8524-9505
HTTPS://ORCID.ORG/0000-0001-6302-9327
HTTPS://ORCID.ORG/0009-0003-3929-1386
HTTPS://ORCID.ORG/0000-0002-3016-1169
HTTPS://ORCID.ORG/0000-0001-6243-9543
HTTPS://ORCID.ORG/0000-0002-6928-0456
HTTPS://ORCID.ORG/0000-0001-5443-470X
https://doi.org/10.1145/3649843
https://doi.org/10.1145/3649843
https://orcid.org/0009-0007-8735-001X
https://orcid.org/0009-0008-5057-2222
https://orcid.org/0009-0008-5057-2222
https://orcid.org/0009-0008-8524-9505
https://orcid.org/0000-0001-6302-9327
https://orcid.org/0009-0003-3929-1386
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0001-6243-9543
https://orcid.org/0000-0002-6928-0456
https://orcid.org/0000-0001-5443-470X
https://doi.org/10.1145/3649843
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649843&domain=pdf&date_stamp=2024-04-29

126:2 Michel et. al.

0 0=05 1 =0 T 0 6=05 1

(a) Integral of step. (b) Discretized integral. (c) Standard AD deriv. (d) Potto deriv.
Fig. 1. Differentiate Before You Discretize. (a) the integral (shaded) /01 [x < 0]dx = 0 = 0.5. (b) shows a
discretization of integral as in an implementation in a language without integration. (c) shows the derivative

of the integral as computed by Potto, which integrates a Dirac delta spike at 8 and returns 1. (d) depicts that
standard AD differentiates the discretized program and incorrectly returns 0.

1 INTRODUCTION

Automatic differentiation (AD) is the automated computation of the derivative of a function
given just the definition of the function itself. AD has been applied in many domains such as
computer graphics and vision [Li et al. 2018], robotics [Bangaru et al. 2021; Hu et al. 2020], and
probabilistic inference [Lee et al. 2018] for optimization and uncertainty quantification. Many of
these computations are conceived as automatically differentiating continuous functions, however,
discontinuous functions also arise naturally.

Discontinuities arise in computer graphics due to object boundaries, occlusion, and sharp changes
of color. In robotics and physical simulation, computations can model contact, which causes a
discontinuous change in the velocity of an object. In probabilistic inference, the model can have
discontinuities. For example, a time-series modeling problem can have a discontinuous change in
behavior at a point in time.

Figure 1a illustrates an example of a discontinuity. A discontinuity in a function is a point at
which the left and right limits approach different values. In many applications, the occurrence of
an integral can introduce a parametric discontinuity. A parametric discontinuity is a discontinuity
specified by a condition whose value depends on at least one parameter and at least one real-valued
variable of integration. The shaded region depicts f(0) = /01 [x < 0] dx, where the Iverson bracket
[P] is 1 if the proposition P holds and is 0 otherwise. Since there is a variable of integration x and
parameter 6, the discontinuity [x < 0] is a parametric discontinuity.

State of the Art. Popular AD tools ignore discontinuities during differentiation [Abadi et al.
2015; Bradbury et al. 2018; Paszke et al. 2019]. Ignoring discontinuities that are not parametric
discontinuities is correct almost everywhere [Lee et al. 2020]. However, ignoring parametric
discontinuities produces incorrect results. In optimization, this leads to slower convergence or even
divergence [Bangaru et al. 2021; Lee et al. 2018; Li et al. 2018].

In standard AD systems, when applications include integrals, the typical strategy is to discretize
the integral by evaluating the integrand at samples and summing the result. Standard AD then
differentiates this discretized program. Figure 1b shows the discretization of the integral in Figure 1a
and Figure 1c that it returns 0 because the derivative of each sample is 0 [Abadi et al. 2015; Bradbury
et al. 2018; Paszke et al. 2019]. This is incorrect.

Potto. Figure 1d depicts that the correct derivative of the integrand is instead the Dirac delta
distribution §(0 — x) that integrates to 1 if lies in the domain of integration: Dy /01 [x <0]dx =
[0 < 0 < 1]. We present a differentiable programming language, Potto, that uses distributions
to differentiate integrals with parametric discontinuities (Teodorescu et al. [2013] Section 1.3.7).
Distributions are a generalization of functions that can represent the derivatives of a discontinuous
function. In particular, derivatives of Potto programs denote distributions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:3

We extend the sampling approach in standard AD to additionally sample at parametric discon-
tinuities, where derivatives are non-zero resulting in a correct estimate of the derivative. As a
result, Potto supports compositional evaluation and therefore, separate compilation, which was not
possible in prior work, Teg [Bangaru et al. 2021].

We provide an example of using Potto for probabilistic inference (risk minimization) and imple-
ment both a 2D and a 3D differentiable renderer. Potto significantly improves compile time and is
slower in runtime for smaller programs and faster on larger programs (with more discontinuities
and more complex discontinuities, i.e., a larger expression in the condition) when compared to
Teg [Bangaru et al. 2021]. We find an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x
speed up in runtime respectively on two increasingly large image stylization benchmarks.

In this paper, we present the following contributions:

e We introduce Potto!, a language for distribution programming, that is the first to differenti-
ate parametric discontinuities, while supporting compositional evaluation (Section 2). We
provide a mathematical introduction to distribution theory (Section 3).

o We define the syntax of a core language, Langur (Section 4). A Langur term is an integrand
and a Langur program is the integral of a term.

o We provide a type system defining well-formed terms (Section 5). We present the denotational
semantics of Langur terms (Section 6) and their derivativess (Section 7). We provide a type
system and denotational semantics for programs and their derivatives (Section 8). We
prove that the derivative of the denotation of a program is equivalent to the (distributional)
derivative denotation of that program.

e We prove that the operational semantics of Langur supports compositional evaluation and
therefore, separate compilation (Section 9).

e We implement a 3D renderer in the surface language, Potto?, and use separate compilation
to efficiently swap among shaders. We compare Potto with Teg [Bangaru et al. 2021] on
differentiable rendering tasks and find that it significantly improves compilation times, a
bottleneck in Teg, and that it is slower in runtime on small programs, but it is faster on
larger programs (Section 10).

With Potto, we expand the scope of differentiable programming languages to account for para-
metric discontinuities. Potto is a first-order language that supports separate compilation, leading to
better performance in workflows involving many small changes to a larger program. We envision
that our theoretical development and programming language design will lead to more expressive
differentiable programming languages that better serve application domains such as computer
graphics, robotics, and probabilistic inference.

2 EXAMPLE: RISK MINIMIZATION

Risk minimization is a fundamental problem in machine learning (Chapter 1.2 of Vapnik [1998]).
We present a pedagogical example where the goal is to find parameters 6 that minimize the risk:

u
Ribo) = [eha(), 9(x) i, ®
where the squared error loss £(hg(x), g(x)) = (hg(x) — g(x))?, the bounds are [= —10, u = 10,
the parameters 0 = [a, b, p], and hg(x) = N(x;p,5)[a < x < b] is the (unnormalized) truncated

normal density, and g(x) = N(x;2,5) is the normal density.

'We provide the prototype implementation at https://github.com/divicomp/potto.
2We provide the code used to produce the applications at https://github.com/divicomp/potto_applications.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

https://github.com/divicomp/potto
https://github.com/divicomp/potto_applications

126:4 Michel et. al.

Density

o — -a- S,
a w b

PSR —————

Density

1
1
1
1
1
1
1
1
a
> 1o

Density

(a) Initialization.

1] —.e0=—0—

(d) Potto at init. with derivs. (e) Potto after 100 steps.

Fig. 2. At initialization (a), the truncated normal density is far from the normal density. The descent direction
in standard AD (b) is defined as —D° and is correct for 1, but is 0 and therefore incorrect for the truncation
points a and b. The black dots in (b) and (d) are shared samples that standard AD and Potto use to estimate
the risk R. Standard AD (c) optimizes u but fails to optimize a and b. Potto (d) samples at a and b (orange
stars) to account for the parametric discontinuities and has the same descent direction for p as standard AD.
Potto converges (e) to the desired curve by moving the mean right and widening the truncation points.

Recall that a parametric discontinuity is a conditional containing one or more real-valued variables
(of integration) and parameters in the condition. The two parametric discontinuities in R(hgp) arise
due to a < x and x < b because the parameters g and b are compared to the variable x.

The task is to automatically identify the optimal truncation points a, b and mean p. At the
minimal 0, the risk R(hy) will have parameters a — —10, b + 10, and u > 2.

Optimization using AD. A standard approach to solving arg ming R(hp) is to use gradient descent,
which requires taking the gradient of R with respect to 8 and then updating 6 in the direction of
descent according to the gradient. Modern AD systems enable one to write R as a program and rely
on the system to automatically generate the gradient of R.

2.1 Differentiating Parametric Discontinuities

We present the problem of differentiating parametric discontinuities in the context of risk mini-
mization and compare standard AD techniques with Potto.

Standard AD. Figure 2a depicts the (unnormalized) truncated normal and normal densities.
Figure 2b shows the descent direction (black arrow) at initialization —D*® for standard AD. We use
the notation D° to denote the derivative computed by standard AD. The descent direction —DﬁR is
correct, which is 0 and therefore incorrect for truncation points a and b. Figure 2c illustrates that
gradient descent can optimize the mean, but cannot optimize the truncation points.

Figure 2d depicts the descent direction computed by Potto. Potto correctly computes the derivative
for the truncation points by sampling at a and b (orange stars) to account for the parametric
discontinuities. At initialization, Potto computes the same descent direction for y as standard AD.
Figure 2e shows that the optimization is successful, moving the desired curve by moving the mean
right and widening the truncation points.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:5

A standard AD algorithm as implemented in common AD frameworks [Abadi et al. 2015; Paszke
et al. 2019] computes the gradient of risk by applying the assumption that the derivative of the
integral equals the integral of the derivative. However,

10 10
Dy /_10 (ho(x) — g(x))* dx # [10 Do(hg(x) — g(x))? dx,

recalling that 8 = [a, b,], ho(x) = N(x;,5)[a < x < b], and g(x) = N(x;2,5). However, the
derivative and integral typically do not commute in the presence of discontinuities and therefore,
theoretically, the meaning of the resulting expression is not well-defined. Figure 2c illustrates that
when used within a gradient-based optimization algorithm, the resulting derivative does not result
in the algorithm materially optimizing the parameters.

To show what goes wrong, we continue the derivation. In the next step of differentiating the
risk, we follow the power rule and chain rule to produce:

Dg((ho(x) = g(x))?) = 2(ho(x) = g(x))Do(ho(x) = g(x)).
By linearity of the derivative and since g does not depend on 0, we have that Dg(hg(x) — g(x)) =
Dghg(x). Standard AD ignores the parametric discontinuities in hy and makes the following step:

Dohg(x) # DN (x;1,5) - [a < x < b].

On its own, the derivative above is correct at every point except x = a and x = b, where the
(standard AD) derivative of the program is zero, but is undefined in math. However, because the
conditional is integrated over, the derivative is incorrect everywhere, not just at two points.

Automatic Differentiation in Potto. Figure 2e shows the result of applying Potto to calculate the
gradient of risk to be used in gradient descent. During the optimization, the truncation points a
and b widen and the mean of the truncated normal density shifts toward the normal density.

Using distribution theory [Teodorescu et al. 2013], we show that the derivative of the integral is
the integral of the parametric distributional derivative of the integrand lifted to a distribution as
long as it satisfies a mild integrability condition and a transversality condition. Informally, these
conditions ensure the integral is well-defined and that the discontinuities do not coincide with
each other, because in general, the product of distributions is not well-defined [Schwartz 1954].
For example, we can not have a product of two indicator functions [x < ¢][x < d] where the
discontinuities are equal (¢ = d).

Returning to our running example, the following equality holds by definition (Definition 3.8):

10 10
Dy / (ko). g()) dx = / 0T ha(x),9() i,

1 1
where the operator T lifts [to a distribution and therefore has a parametric distributional derivative.

In the case of risk minimization, the squaring [a < x < b]? results in the parametric discon-
tinuities coinciding and therefore not satisfying the transversality condition. However, we can
rewrite the integrand so that there are no products of coincident discontinuities. Specifically, we
expand the square and use the identity that the functions [a < x < b]?> = [a < x < b] are equal:
I(ho(x),g(x)) = N*(x; 1,5)[a < x < b] — 2hg(x)g(x) + g?(x). Now that the integrand is written
to satisfy the transversality condition, we can apply the product rule (Lemma 7.1).

We simplify the integrand to:

I(hg(x),g(x)) = hg(x) (N (x; 1, 5) = 29(x)) + ¢*(x) (2)
and then lift it to a distribution. Since the transversality condition is satisfied, the rules for the
parametric distributional derivatives match the rules of calculus, except for the derivative of
discontinuous functions. We show this new derivative rule in detail.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:6 Michel et. al.

Mean g

Lower Truncation Point a
|
Upper Truncation Point b

0 2 40 6 S0 100 02 40 60 S 100 0 20 40 60 80 100 0 2 40 6 S0 100
Iteration Iteration Iteration Iteration

=== Potto Truncated Normal s Standard AD Truncated Normal

Fig. 3. The first two images show that standard AD (blue) has zero gradient for the truncation points, so they
remain at their initialization a = —1 and b = 4. Potto (orange) accounts for the parametric discontinuities
optimizing the truncation points to their optimal values a = =10 and b = 10. The third image shows that the
mean converges to the optimum p = 2 about 10x faster for Potto than standard AD. The fourth image shows
that the loss for Potto is orders of magnitude lower than Standard AD.

The parametric distributional derivative of Ty, (x) is:

09Thy (x) = (8, Tn) (x5 1, 5)Ty(x;a,b) +(8(x — a) - Dg(x —a)+ (b — x) - Dyp(b - x)) - N(x; 1, 5),
——
1 2 3 4

where g(x;a,b) = [a < x < b]. The first term (1) is the same as in standard AD: the piecewise sum
of the function’s pieces. Introducing the three terms that follow makes the integral of the derivative
correct. The product of terms (2) and (4) accounts for the parametric discontinuity at a and the
product of terms (3) and (4) accounts for parametric discontinuity at b. The parametric distributional
derivative introduces a Dirac delta distribution, §(+), for each differentiated parametric discontinuity.
Informally, the Dirac delta distribution is an infinite spike when the conditional is true and zero
everywhere else and satisfies the property that: dp([f(x, 8) > 0]) = §(f(x, 0))Dg(f (x, 0)).

The arrows in Figure 2a depict the directions of the derivative of the risk with respect to the
parameters a (terms 2 and 4), b (terms 3 and 4), and p (term 1) that Potto computes. We have that
9.([x = a]) = 9,([x —a = 0]) = 6(x — a)D,(x — a). The derivative D,(x — a) = —1. As a result,
dahg(x) = =8(x — a) N (x; , 5). Putting these results together, we have that:

10 10
/ 0uTh (%) dx = / SO N () dx = N(@ps) - [F0<as 0l ()
- -1

10

where the last equality follows from the sifting property (Teodorescu et al. [2013] Equation 1.47):

/_ " 5(x— O)f () dx = F(0)x1 < ¢ < x]. ()

We conclude that an infinitesimal perturbation to the parameter a shifts it to the right, decreasing
the area under the truncated normal by N (a; g, 5).

Standard AD versus Potto Results. Standard AD and Potto use Monte Carlo integration to estimate
the integral in the derivative of the risk. Both systems average the evaluation of the integrand at 50
uniformly random samples from [—-10, 10]. Potto implements the sifting property by sampling and
evaluating at the points at the parametric discontinuities.

Figure 3 depicts the changes in each parameter using standard AD. The derivative at the truncation
points is zero for standard AD (blue), so the loss remains nearly constant because only mu is optimized.
Potto (orange) more rapidly approaches the minimum and achieves a loss that is over three orders
of magnitude lower than the loss from standard AD.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:7

AD compile Compose
def normal(x, params): B dnormal
. . . o drisk dnormal ddiscont ...
def risk(distro, discount, params): Gy it
ris|
def discont(x, params): P
. 4 ddiscont
o drisk dnormal dsmooth ...
def smooth(x, params): E)
return 1 v dsmooth

Fig. 4. Potto supports separate compilation, which enables the reuse of the derivative of risk.

2.2 Separate Compilation

The Potto prototype implementation supports differentiation of parametric discontinuities and
separate compilation. Previous work, Teg [Bangaru et al. 2021] supported the differentiation of
parametric discontinuities, but not separate compilation.

Problem as a Program. In Potto, we can implement risk minimization as follows:

1 # functions.po

2 def normal(x: Var, mu: Param):

3 return exp(-0.5 * ((x - mu) / 5)*2)
4 def discont(x: Var, a: Param, b: Param):
5 return 1 if a <= x <= b else 0

The type declaration x: var in Lines 2 and 4 specify that x is a variable of integration and similarly,
parameters g, a, and b are declared with type Param. Lines 2-3 declare a function representing the
normal density, which is a bell-shaped curve, where the peak is at y and the width is controlled by
o, modeled by the equation ¢"2(%")" In Line 3, the parameter p is mu and o is 5. Lines 4-5 declare
a function modeled by [a < x < b] with parametric discontinuities at a and b.

1 # risk.po

2 from functions import normal

3 def risk(distro, discont, a: Param, b: Param, mu: Param):

4

5

return integral ([-10, 10]) (let pdf = distro x mu in let target = normal x 2
in pdfx(discont x a b)*(pdf-2*xtarget)+target”2) dx

The function defined in risk.po implements the risk function specified by Equation 1 with the
integrand implemented as in Equation 2. Lines 4-5 define an integral representing the area under
the curve defined by the integrand from x=-10 to 10. The first argument to the integral specifies the
domain of integration, the second argument is the integrand, and the third argument dx declares
the variable x. The let bindings define a probability density function, pdf, depending on a parameter
mu and the target density target as the normal density centered at 2.

1 # main.po

2 from functions import_deriv normal, discont as dnormal, ddiscont

3 params: list[Param] = [-1, 4, 1]

4 step_size = 400

5 for i in range(params):

6 (a, b, mu), (da, db, dmu) = params, one_hot(i, 3)

7 params[i] -= step_sizex(drisk dnormal ddiscont (a, da) (b, db) (mu, dmu))[1]

The main.po file does a single step of gradient descent for the parameters of the truncated normal
density. Line 2 imports the derivative of the normal and truncated normal densities from densities.po.
The import_deriv specifies the functions to differentiate and as gives a name to the derivative.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 126. Publication date: April 2024.

126:8 Michel et. al.

Line 6 unpacks the parameters in params and declares new parameters. The one_hot (i, n) command
returns a list of length n that is one at index i and zero otherwise. The decrement on Line 7
implements gradient descent with a step size of 400. For example, to differentiate with respect to the
parameter a, we set the infinitesimals da, db, dmu to one_hot(@, 3), which is (1, @,). Since drisk
returns a pair of the evaluation of risk and its derivative, we extract the derivative by indexing.

Teg. Teg [Bangaru et al. 2021] is implemented as a series of rewrites that are applied exhaustively
to a given program. For consistency, we use a similar syntax to represent Teg programs as we did
for Potto programs.

For example, a Teg program that arises in the computation of risk minimization is:

integral ([-10, 10]) -delta(x - a)xnormal(x, mu) dx,

which matches up with the left-hand side of Equation 3 and denotes that expression. The delta
syntax denotes the Dirac delta distribution. To evaluate this expression, Teg applies a rewrite rule
that eliminates Dirac deltas by applying the sifting property (Equation 4), producing the program:*

-normal(a, mu) if -10 < a < 10 else normal(a, mu),

which matches the right-hand side Equation 3. Teg evaluates the integral-free and delta-free
program to a number, in the same way any other compiler would.

Potto. Potto collects samples from the integral and the derivative of the discontinuities in the
integrand (i.e. the Dirac deltas) and then evaluates the program at a given sample for each file
(densities.po and risk.po).

In the example above, Potto samples the point x=a. Potto makes no changes to the code and
evaluates the integrand directly at x=a as follows. First, Potto accepts the sample if it is inside the
range [—10, 10] and rejects the sample otherwise. If accepted, Potto then evaluates the delta at a
and returns one because a - a equals zero (otherwise it returns zero). Potto multiplies one by the
normal density evaluated at a, producing the same result as Teg.

Separate Compilation. In risk minimization, different approximating densities change the quality
of results. Figure 4 shows how a user can replace the truncated normal density with a normal
density and compose both it (and its derivative) with the risk function (and its derivative). Ideally,
the user should be able to interchange the approximating densities by replacing the density (and
its derivative) rather than differentiating the risk function again.

Support for separate compilation achieves this by enabling the division of a program into distinct
source files, differentiating each individually, and composing the derivatives together to form
an executable. This process enables efficient code reuse. The challenge is to support separate
compilation of derivatives for programs with parametric discontinuities.

Potto supports separate compilation by directly sampling discontinuities and evaluating the
program at a given sample for each file. Because Teg relies on a rewrite rule to apply the sifting
property, it requires that code for the integral and integrand are within the same file, preventing
separate compilation.

Results. We present timing results in our prototype implementation of Potto. Differentiating the
risk separately from the normal density and truncated normal density takes 50% less time than
differentiating the composition of the risk function with the normal density and with the truncated
normal density (as averaged over three runs on an Intel i9-9980HK).

3This is a simplification of the actual Teg rewrite rules. Teg applies a change of variables y=x-a and then applies the
sifting property to the resulting program. However, Teg could easily be extended to support this implementation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:9

Techniques from Teg [Bangaru et al. 2021] can be used in addition to Potto as a static analysis
that eliminates Dirac deltas when the code for an integral and integrand are within the same
file. However, Potto significantly improves compile time and tends to be slower in runtime on
smaller programs and faster on larger programs (with more discontinuities and more complex
discontinuities, i.e., a larger expression in the condition).

For risk minimization, we find that Potto (with separate compilation) compiles about 377x faster
than Teg, and that the runtime of Potto is about 27x slower than Teg. On workloads in computer
graphics (Section 10), we find that compilation time is a barrier to common workflows and that
Potto has better runtime performance than Teg on larger programs (see Figure 15).

3 DISTRIBUTIONS

We now provide a brief mathematical introduction to distributions (Teodorescu et al. [2013] Defini-
tion 1.21) and distributional derivatives (Teodorescu et al. [2013] Equation 1.184).

The derivative of a discontinuous function does not exist in calculus. Distributions are a general-
ization of functions that give meaning to derivatives of discontinuous functions.

We present an example of differentiating the Heaviside step function H(x) = [x > 0], which has
a jump discontinuity at x = 0. One way to approach this problem is to note that if a sequence of
smooth functions f; (x) converges to a smooth function f(x) as n goes to infinity, then the sequence
of derivatives of Dy f,(x) converges to the derivative D, f(x) as n goes to infinity.* We know that
this reasoning will fail for H(x) because it is discontinuous, but we will see what happens anyway.

The sequence of smooth functions defined by Hy,(x) = 1+e+"" converges to H(x):

vy s s

The derivative of H,(x) is DyHy,(x) = 6,(x) = % and let us see what it converges to:

The arrow in the rightmost figure indicates an infinite spike at x = 0. This sequence diverges, since
there is no real-valued function that represents the limit of an infinite spike at x=0

This is similar to how a convergent sequence of rational numbers may not converge to a rational
number (e.g., Leibniz formula for 7 is a sequence S, = }}'_, % that approaches 7). However,
every convergent sequence approaches a real number. Similar to how real numbers generalize
rational numbers, distributions generalize functions. In the case above, the sequence 3, (x) converges

to the Dirac delta distribution §(x).

The Dirac Delta Distribution. Informally, §(x) is infinite at x = 0 and 0 everywhere else. Addi-
tionally, the integral over the real line of each §,(x) and §(x) is one. We can formalize the Dirac
delta as a distribution using the sifting property: for every test function ¢,

/R 5(x)(x) dx 1= $(0). %)

Formalism. A distribution u € D’ (R™) maps test functions ¢ € D(R™) to real numbers, where
we write u[¢] =: fR" u(x)¢(x) dx. To define test functions, we need the following definition.

“Weak convergence is defined as limy_, o, ﬁ[{n fe(x)p(x)dx = A&" f(x)¢(x) dx for every smooth function with
compact support ¢ (Teodorescu et al. [2013], Definition 1.22).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:10 Michel et. al.

Definition 3.1. A function f : R” — R has compact support if it is 0 outside a closed and bounded set.
A

For example, f(x) = [-1 < x < 1] has compact support (it is 0 everywhere outside [—1,1]), but
f(x) = 1 does not have compact support.

Definition 3.2. A function ¢ : R" — R is a test function § € D(R") if it is smooth (infinitely
differentiable) and has compact support. A

For example, the constant function ¢(x) = 0 and the bump function ¢(x) = [-1 < x < 1]e_ﬁ
are test functions. On the other hand, f(x) = [-1 < x < 1] is not smooth and f(x) = 1 does not
have compact support, so both are not test functions.

Distributions are designed to be a generalization of functions where the regular rules of calculus—
such as integration by parts, changes of variables, and derivatives—still hold.

Definition 3.3. A distribution u € D’(R") is a continuous linear functional on the space of test
functions D(R"). Concretely, a distribution u € D’(R") if it>:
(1) is continuous: if a sequence (¢;)i>1 € D(R") approaches ¢ € D(R") in D(R") as i — oo
then the sequence of integrals (/R" u(x)pi(x) dx) approaches fR" u(x)p(x)dx as i — oo.
i>1

(2) is linear: for every a,b € R and ¢y, ¢, € D(R") we have fR" u(x)(ady(x) + by (x)) dx =

a/R,, u(x)p1(x)dx+b fR" u(x) Pz (x) dx.
(3) is a functional: for every ¢ € D(R") we have fR,, u(x)p(x) dx e R.

We define changes of variables in terms of diffeomor-

phisms. Figure 5 depicts an example of a diffeomorphism /‘2’\
. ,
¥ that transforms a 2D grid using the sigmoid function. 7
0
Definition 3.4. A C*-diffeomorphism ¥ : R" — R" is a g1 '::’5',5”"’"’

k-times differentiable, invertible function. A

Every C*-diffeomorphism ¥ (with k > 1) satisfies the Fig-5- The depi.‘:ted ‘#iﬁeomor?hism ¥tran-
change of variable formula: forms a 2D grid using the sigmoid func-
tion and has inverse ¥~! (adapted from del

Toro Streb and Alexandrov [2009]).

: i @)
[uenseodc= [uw tE Ty o

foreveryu € O’ (R") and ¢ € D(R"). Examples of C®-diffeomorphisms are ¥(x) = x+1, which has

inverse ¥ ! (y) = y—1and ¥(x,y) = (x+y,x—y), which has inverse ¥ ™' (w, z) = (%, ¥£). Some

functions that are not diffeomorphisms are f(x, y) = x+y because it is not invertible (it has signature
R? — R rather than R? — R?) and f(x) = x? because it is not one-to-one. A diffeomorphism can

depend on a parameter. For example, ¥,(x) = a — x has an inverse ‘i—’a_ l(y) = a—yforevery a € R.

Definition 3.5. The distributional derivative o, of u € D’ (R") satisfies:
/ oxu(x)p(x) dx := —/ u(x)Dxgp(x)dx (V¢ € D(R")). 7
R7 R
A

SWe follow Teodorescu et al. [2013] Definition 1.21, which uses a definition of continuity that is generally termed
sequential continuity, but is sufficient for our purposes.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:11

This definition is inspired by integration by parts, where the boundary term is 0 because ¢ has
compact support.

We want to be able to lift a function to a distribution so that it can then be differentiated. Locally
integrable functions can be lifted to distributions.

Definition 3.6. A function is locally integrable if it is integrable on every compact set of its domain.
A

Every integrable function (f such that ./R" |f(x)] dx < o0) is locally integrable, but not every
locally integrable function is integrable. For example, for every compact set K the integral /K 1dx
is finite, but /R" 1dx is infinite. So the f(x) = 1 is locally integrable, but not integrable. Every
probability density function (PDF) defined over the reals (e.g., the uniform PDF and the normal
PDF) is integrable because it integrate to 1 and therefore locally integrable.®

Definition 3.7. A regular distribution Ty is a distribution that is equal to the (Lebesgue) integral over
a locally integrable function f(x):

/ Tr(x)¢(x) dx = / f(x)P(x)dx (V¢ € D(R™)). (8)
R” R”
A

The Dirac delta is not locally integrable because it is not a real-valued function and it is not a
regular distribution because no locally integrable function satisfies the sifting property (Teodorescu
et al. [2013] page 19).

Derivative of Heaviside is Delta. We now revisit the example of the Heaviside step function
H(x) = [x > 0]. It is not differentiable at x = 0, but it is locally integrable and can be lifted to a
regular distribution Ty with the distributional derivative:

/@mwmww@—/mwmmww@—/Hmmwwm
R R R

Continuing, we apply the definition of the Heaviside step function, and then simplify the integral
using the fact that ¢ has compact support:

- [HEDg@ == [Do dx =) - 40) =40 L [009 ax
R [0,00] R

We can thus conclude that: 9, Ty (x) = §(x).

Our Desiderata. We need a notion of derivative that applies to discontinuous integrands. Fur-
thermore, classical theory severely limits products of distributions [Schwartz 1954], preventing
Ty (x)d(x) from being a valid distribution.

For example, the distributional derivative of a program with nested conditionals and coincident
conditions such as (1 if x > a else 8) if x > a else @ may not satisfy the product rule.” Our theory
provides a sufficient condition for the product rule to hold (See Appendix B.1). For example, the de-
rivative of (1 if x > a else @) if x > a + 1 else 0 satisfies the product rule because the conditions
(x > a + 1and x > a) are distinct as the case for numerically stable programs (see Section 7.3.2).

®This result is important because it means probabilistic programs interpreted as integrators [Shan and Ramsey 2017]
also define distributions. Note that while all Radon measures as integrators define distributions, not all distributions denote
Radon measures (e.g. dx0).

"We expect that Tgr (x — a) - T (x — @) = Tz (x — a). The derivative of both sides is 26(x — a)H(x — a) = §(x — a),
which means H(0) = 1/2. However, repeating this for T (x — a@)® = Ty (x — a) gives H(0) = 1/3, which is a contradiction.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:12 Michel et. al.

Our Solution. We resolve these problems by formalizing parametric distributions and parametric
distributional derivatives. A parametric distribution ug : R™ — D’ (R") is a family of distributions
over free parameters § € R™.

Definition 3.8. The parametric distributional derivative dy of a parametric distribution uyg is:

[amoisrax =D [womgtdx (v DRI
as long as the derivative of the integral on the right-hand side exists. A

4 SYNTAX
In this section, we introduce syntax for the core language, Langur, for implementing Potto programs.
Langur is a first-order language. All terms are of base type real and Langur has first-order let-
bindings. We describe how the surface language maps to the core language at the end of Section 9.
The grammar for Langur terms is:
t,s,ru=c|x|z|t+s|t-s]|ifge0t thenselser
| ifge0 |¥]| thenselser |letz=tins
pu=intt d(xy,...,x,) X1,...,Xp € VARS z € PARAMS VARS N PARAMS = 0.

We use the metavariables t, s, and r for terms and the metavariable p for programs.

4.1 Terms
We now briefly describe the syntax of Langur terms.

Arithmetic Primitives. Langur has standard arithmetic primitives: constants c, variables x1, . . ., x,, €
VARSs, parameters z € PARAMS where z is a metavariable and arithmetic operators +, -.

Conditionals. Conditionals ifge0 ¢ then s else r are such that t must be variable-free (it can
contain parameters z) and have ¢t > 0 implicitly (in OCaml, if t > 0 then s else r). For example, in
the case study, there is one variable, x, and there are three free parameters a, b, and p. The condition
t must be free of variables, preventing parametric discontinuities.

Diffeomorphic Conditionals. Diffeomorphic conditionals, ifge0 | ¥| then s else r, have differen-
tiable, invertible conditions, | ¥ |, defined outside the core language. For example, the truncation
points a < x < b in Line 6 of distributions.po are specified by nesting the diffeomorphic condi-
tionals: ¥ (x,a) = x — a and ¥,(x,b) = b — x because if x —a > O thena < x and if b — x > 0
then x < b. The arguments to ¥ are all n variables and m free parameters (we make this choice to
simplify the presentation and could easily modify the language so that the number of variables
could range from 1 to n and the number of parameters could range from 1 to m).

4.2 Programs

The term int ¢ d(xy, ..., x,) represents integration of a term ¢t over R"” with respect to variables
X1, . . ., Xp. Programs can be differentiated with respect to parameters z € PARAMS.

5 TYPESYSTEM

Figure 6 presents a type system that characterizes when well-formed terms denote real functions.

5.1 Types and Type Contexts

Langur has real as its only type. Langur lacks arrow types because it is a first-order language.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:13

x:real e A z:real el A;T+t:real A;T+s:real
A;T Fc:real A;T F x : real A;T F z : real A;T Ft+s:real
A;T+it:real A;T+s:real wTrt:real A;T+s:real A;TFr:real
A;THt-s:real A;T + (ifge0 t then s else r) : real
diffeo
Y:[A]x[T] — [A] ATrs:real A;Trr:real T rt:real A;T,z:realts:real
A;T + (ifge0 | ¥] then s else r) : real A;T+letz=tins : real

Fig. 6. The type system specifying well-formed terms.

The typing judgments are expressed in terms of two type contexts: one for variables A and one
for parameters I'. We distinguish contexts for variables so that we can easily state when a statement
does or does not contain variables. A type context is a mapping from variable names to types:

A:z=-|x:real, A IF:=-|z:real,T

The contexts A and I are disjoint so that variables and parameters do not overlap. We use syntactic
sugar x : real := x : real, - for simplicity.

5.2 Terms

The typing judgment A; T + ¢t : real indicates that the term ¢ is of type real given that each of the
variables in A and parameters in I are of type real.

Arithmetic Primitives. The typing rules for arithmetic primitives operate over reals and are
standard. For both sums and products if the arguments are real then the result is real.

Conditionals. The typing rule for conditionals ifge0 ¢ then s else r states that a conditional is
of type real if the condition term t is real and variable-free and if the terms s and r are real.

Diffeomorphic Conditionals. To have variables arise in the conditionals, we have to use diffeomor-
phic conditionals ifge0 | ¥] then s else r. Using the isomorphism between variable names and
ordered inputs ¥ - ¥(X, Z) is a C'-diffeomorphism as in Definition 3.4.

The programmer defines a diffeomorphism in the surface language, Potto, as a pair of tuples,
where the first tuple specifies Potto code to compute the diffeomorphism and the second tuple
specifies its inverse. Future work could automate (piecewise) inversion, which is a long-standing
and challenging problem studied in both the programming languages and graphics communi-
ties [Anderson et al. 2017; Lutz 1986; Matsuda and Wang 2020].

Let Bindings. The let z = t in s primitive introduces a fresh variable z into the typing context I'.
The term ¢ must be free of variables. For example, the type system accepts let z = z; + z; in z + z if
z1 : real, z; : real € I and rejects let z = x in z.

6 DENOTATIONAL SEMANTICS OF TERMS

The denotational semantics, [¢](p, y), maps a well-typed term A;T F ¢t : real to a simply decompos-
able function. Informally, the class of simply decomposable functions are piecewise-differentiable
functions with finitely many piecewise-invertible discontinuities. Using the isomorphism between
mappings from variable or parameter names to real numbers [A] = R" and [I'] = R™, where the

sizes of the contexts |A| = n and |T'| = m, we can write [t] : R” XR™ — R. The following semantics
are standard and serve as scaffolding for the following section.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:14 Michel et. al.

[l : [A]x[T] =R [e)(py)=c [x[(py) =p(x) [z](p,y) =y(2)
[t +sl(p.y) = [tl(p,) + [s](p.y) [t-s[(p.y) = [tl(py) - [s](p.y)

[sl(o.y) if[t](y) =0

ifge0 ¢ th 1 ¥ =
[ifge enselse r](p,y) {M (p,y) otherwise

[sl(p.y) ifmo¥(p,y) =0

[ifge0 | ¥] then s else r](p,y) = {[[r]] (p.y) otherwise

[let z = tin s](p,y) = [s](p, vz — [t](=1)]) R" = Vars >R R™ = Params — R
Fig. 7. The denotational semantics [t](p,y) for terms.

6.1 Types, Type Contexts, and Value Contexts

The only type in Langur is real, and it denotes real numbers: [real] = R. Type contexts ' and A
denote mappings to real numbers and are defined by:

[[1=4{{} [x : real, A] = (x — [real]) U [A] [z : real,T] = (z — [real]) L [T]

The empty context denotes the empty function and the denotation of a non-empty context denotes
a disjoint union of functions.

The value context p : VARs — R maps from variable names to real numbers. The value context
Yy : PARAMS — R maps from parameters to real numbers. We say that p € [A] if for every x in the
domain of A, we have p(x) € [A(x)]. In words, for every variable in the typing context, its value is
an element of its type. We define y € [I'] analagously.

6.2 Terms

Now that we have defined the denotation of each type, we give a denotation to each term in Figure 7.
The denotation of a term A;T F t : real is a function from the denotation of the free variables
[A] % [T to the denotation of the type [real]. As a result, we provide inputs p, y to the denotation
of a term, where p € [A] and y € [I].

We discuss only notable cases.

Arithmetic Primitives. For convenience, we define syntactic sugar for subtraction of terms using
multiplication and addition: [#; — ;] (p,y) = [t1] (o, y) + (=1) - [&](p, y)-
Conditionals. For conditionals ifge0 ¢ then s else r, variables are not allowed in the condition ¢

to prevent parametric discontinuities.

Diffeomorphic Conditionals. For the conditional ifge0 | ¥] then s else r, the first dimension
m¥ : [A] X [T] — R corresponds to the condition, the other dimensions serve to make ¥ a
diffeomorphism (Definition 3.4). We require that the condition is a diffeomorphism in order to give
meaning to the derivative.

Let Bindings. The denotation of a let binding let z = t in s is the denotation of s with the variable
z bound to the denotation of t.

6.3 Results

In this section, we prove results that serve primarily as a scaffolding for results in the following
sections. We show that the denotation of a term is a simply decomposable function.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:15

Definition 6.1. A function f : R” x R™ — R is a CF simple discontinuity if f(¥,Z) = [®(%,Z) > 0],
where either (1) ®(%,7) is constant in ¥ or (2) ®(X,Z) = m,¥(%,7), where ¥ — ¥(X,Z) is a C*
diffeomorphism for all Z. A

Definition 6.2. A function g : R" x R™ — R is C simply decomposable if g(X, Z) is a finite sum of a
finite product of C¥ simple discontinuities times a k-times differentiable function in Z. Concretely,

TCEHEDY (]‘[[%(f, 7) > 0]

iel \jeJ;

9i(%,7)

where I and all J; are sets of finitely many indices, each g; is differentiable in Z, and each [®;; (X, Z) >
0] is a C* simple discontinuity. A

For simplicity, we call C! simply decomposable functions just simply decomposable. For example,
[sin(x) > 0] is not simply decomposable because sin(x) is not invertible and cannot be decomposed
into finitely many invertible pieces.

THEOREM 6.1. Every well-typed term A;T + t : real denotes a simply decomposable function [t]. «

Proor. We provide a full proof in Appendix H. O

7 DENOTATIONAL SEMANTICS OF DERIVATIVES OF TERMS

A simply decomposable function can be lifted to a regular distribution as defined in Equation 8.
While simply decomposable functions [¢] do not necessarily have a well-defined derivative, they
do have a well-defined distributional derivative ().

7.1 Types, Type Contexts, and Value Contexts

Types now denote distributions (real) = D’(R). The denotation of the typing context for variables
remains the same: (A) = [A]. The typing context for parameters, T, has new bindings for the
infinitesimal perturbation:

() =1{{}} (z : real,T) = {z > [real]} U {z’ > (real)} U (T’),

where the parameter z is a real number and the infinitesimal perturbation z’ is a distribution.
The meaning of the derivative of the empty context is still the empty context. In a nonempty
context, there are twice as many parameters because each parameter has an associated infinitesimal.
For instance, the total derivative of f(x,y) = xy is Df(x,y,x",y’) = x’y + xy’ with infinitesimals
x’,y’. We can then, for example, recover the partial derivative D, by setting x’ = 1and y’ = 0.
The value contexts p and y remain as before, but y’ is a mapping from parameters to distributions
representing the values of the infinitesimal perturbations to the parameters.

7.2 Terms

Figure 8 presents the denotational semantics for derivatives of terms as distributions (t) (p,y,y’) €
D’ (R"), where p € (A]), the real values for parameters, y, and the distributions for infinitesimal
perturbations, y’, are such that (y,y’) € (T), and the number of variables n = |A|. We write the
parametric distributional derivative with respect to y as 9.

Arithmetic Primitives. The derivative denotation of a sum is the sum of the derivative denotations.
The denotation of the derivative of a product is the denotation of the derivative of the first term
times the denotation of the second term lifted to a distribution plus the derivative of the second
term times the denotation of the first term lifted to a distribution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:16 Michel et. al.

() : (A) x (T) = D' R™) ()(p.ys¥) =0 (xD(p.y,¥) =0
(v Y) =7y (t+shpv.y) = (t)(p.v.v") + (sD(p. v ¥")
(t-shp.vsv") = W) vv") - Tisp (o) + (D (o v V') - Tpeg (oo v)

UshCo,y.y") i [e]Cy) =0

ifge0 ¢ th 1 Y =
(ifge enselser)(p,y,y") {(]rD(P,Y,Y/) otherwise

(ifge0 | ¥] then s else r)(p,v.¥") = f(p.v.Y") + 8(m¥ (p.¥) - (Dyo¥) (p. v, ¥") - Tjs) -1 (P ¥)

(ISD(P, Y)’,) if mp¥(p,y) =20

h 1Y) =
where f(p,y,y") {(]VD(:D’ v,y’) otherwise

(letz=tins)(p,y.y") = (sD(py[z = [t] .Y [2 = () CyvayDD

Fig. 8. The denotational semantics for derivatives of terms (t) (p,y,y’).

Conditionals. A conditional ifge0 t then s else r may not be differentiable at the boundary of
the condition [t](p,y) = 0, so we only guarantee differentiability almost everywhere.

Diffeomorphic Conditionals. The derivative of a diffeomorphic conditional ifge0 | ¥| then s else r
is expressed in terms of the Dirac delta distribution §(¥ (¥, 7)), which intuitively is zero everywhere
except along ¥(%,Z) = 0, where it approaches infinity. We can only formally define §(¥(%, %))
because ¥ — ¥(X, Z) is a diffeomorphism for every Z € R™ (see Equation 6).

To see that the derivative rule is correct, we first encode the denotation in terms of the Heaviside
step function H(x) := [x > 0]:

[sl(p.y) if m¥(p,y) =0

[ifge0 | ¥] then s else r](p,y) = {[[rﬂ (p.y) otherwise

=H(m¥(p.y)) - [s](p.y) + (1 = H(z¥(p,y))) - [r](p.y)-

Recall from Section 3 that the Dirac delta satisfies: §(x) = D,H(x). By the product and chain rules,
we have that the derivative of the first summand is:

(0 Ty -[s1) (Ps v, ¥') = (¥ (p,) - (Dymo¥) (0, v, 7") - Tisp (s ¥) + Trty (s ¥) - (8D (05 v ¥')s
where Hy (p, y) = H(mo¥ (p, y)) and the derivative of the second summand is:
Oy Ti1-ry)-[r]) (Ps V2 Y) = =6(m0¥ (p.¥)) - (Dymo¥) (P, 1> v') - Tirp (ps ¥) + Ti—ry (0. y) - (P (P v2 V).
Adding the two together and combining terms we have that:
(ifge0 | Y] then s else r) = 5(m0¥(p,y)) - (Dym¥) (0, v:¥") - (Tisy (o) = Tirl (o))
+ Ty (P,) - () (po v ¥') + Tioby (o y) - (P (oo v ¥).

We can convert the sum of Heavisides back to a piecewise function and a difference of regular
distributions into a regular distribution of the difference, producing the desired result.

Let Bindings. Let expressions follow the chain rule. In particular, the derivative of a let expression
let z = t in s is the derivative denotation of s evaluated at the infinitesimal perturbation defined by
the derivative denotation of .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:17

7.3 Results

We now prove that the denotational semantics is sound: for every term, the derivative denotation
of a term equals the derivative of the denotational term. To do so, we extend the theory.

Definition 7.1. A parametric distribution ug € R™ — D’ (R") is a C* simple distribution if it has a
density gg(X), where ¥ € R", that is CF simply decomposable for all § € R™. A

Proposition 7.1. For every well-typed term A;T + t : real, if the [t] is locally integrable, then it can
be lifted to a distribution Ty, that is a C! simple distribution. «

Proor. Since t is alocally integrable function, it can be lifted to a distribution Tj)- By Theorem 6.1,
the density [t] is simply decomposable, so, Tj] is a simple distribution. O

7.3.1 The Transversality Condition. In 1D, the derivative is not defined when there are disconti-
nuities that correspond to the same sets at equality. For instance, the (parametric) distributional
derivative of [x < 0][x < 0] violates the product rule’ due to a fundamental restriction of distribu-
tion theory [Schwartz 1954]. In higher dimensions, degeneracies only occur when the zero sets of
¥ are not transverse. So, two submanifolds of R” are transverse when they are not tangent to each
other at any point of their intersection. Such a point of tangency creates a degeneracy similar to
the 1D case of colocated discontinuities.

Definition 7.2. A family of submanifolds M in R" are mutually transverse when, for any subfamily
M € M and any point x in the intersection of those submanifolds M;, the normal spaces of M;
at x are linearly independent. A

We specialize this definition to R", and therefore use normal space rather than the tangent space
for simplicity. For example, two planes in R® that only intersect along a line are transverse. If they
do not intersect at all, then they are (vacuously) transverse. However, when the two planes coincide,
i.e. they are the same plane, their intersection is not transverse as the normals for the planes are
equivalent. The following examples are not mutually transverse: two osculating circles and three
lines in R? that intersect at the same point.

The diffeomorphic conditional ifge0 | ¥ | then s else r has a condition represented by the dif-
feomorphism X - ¥(%, Z). The points along the zero-level sets of the diffeomorphisms are exactly
those values for which noli’(f, Z) = 0. For example, if ‘i‘(x, a) = a — x, the zero-level set is x = a.

The derivative of a diffeomorphic conditional introduces a Dirac delta located along the zero-level
set of the diffeomorphism. Figure 9 presents such an example. The initial function (9a) has a zero-
level set of the diffeomorphism that introduces a ridge representing the Dirac delta in the derivative
(9b), which is not present when the delta is not included (9c¢). For a product of diffeomorphic
conditionals, if the corresponding zero-level sets are not transverse, then the denotation of the
conditionals is degenerate. For example, if [x > a][x > a] are equivalent [x > a] (which is the
case for functions) then the derivative double-counts the jump 2[x < a]d(a — x) versus §(a — x).

7.3.2 Justification for the Transversality Condition. Terms can often be written in a way that
satisfies the transversality condition. For example, in math, some rewrites are: replacing [x > a]?
with [x > a] or replacing sin([x > a]) with [x > a] sin(1) prior to differentiation. Practical
cases that cannot be written this way typically pose problems beyond differentiability, such as
numerical instability. For instance, the construction of a quadrilateral from two triangles violates
the transversality condition because the two triangles have a coincident edge. Operations on the
quadrilateral, such as rotation and translation, lead to numerical errors because edges that are
supposed to be coincident are instead distinct.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:18 Michel et. al.

;

3
2

z z
0

-1 1 -1 1 -1 1

1 o 1 0 1 0
0 X o X o X
Y -1 -1 Y -1 -1 Y -1 -1

(a) Initial (b) Langur derivative (c) Standard AD derivative

Fig. 9. (a) depicts the integrand [y < x + 0](1 + 6 + x + y), where 6 = 0. (b) shows its derivative [y <
x]+8(x —y)(1+x+y) at 8 = 0, where the ridge along y = x represents the Dirac delta that we integrate
over. () is the derivative computed with Standard AD [y < x], which is missing the Dirac delta.

Such numerical instabilities in geometry cause problems such as light leaks, where light from
behind a mesh shines through an object due to a crack and missed collisions, where an object fails
to collide with another object and passes through instead [Woop et al. 2013].

So the violation of transversality poses practical challenges beyond that of differentiability. As
a result, graphics engines generally encode geometry as a partition of space (each edge is only
represented once). Hence, although practical computations can be represented as programs that
violate transversality, it is often desirable to implement the computation in an alternative way that
restores transversality [Dalstein et al. 2014].

If the transversality condition fails, the program may not have a well-defined distributional
derivative (e.g., ifge0 | V] then (ifge0 | ¥] then 1 else 0) else 0). In this case, the interpreter will
return results that we do not assign a meaning to. Similarly, Pytorch [Paszke et al. 2019] and
Tensorflow [Abadi et al. 2015] produce results at discontinuous points, although the derivative is
ill-defined at these points.

7.3.3 Terms as Parametric Distributions. With the formalisms of parametric distributions and the
transversality condition in place, we present two key results: (1) the derivative of the denotation
of a term is the derivative denotation of the integrand Differentiable interior
(soundness) and (2) the derivative of a term is a paramet- ™"l /

R . . 0 - differentiable ‘
ric distribution that is the sum of a C” simply decompos- ,,ypgary —4+ m
able function and Dirac deltas multiplied by C° simply

decomposable functions in Figure 10. Fig. 10. A well-typed term denotes a C° sim-

ply decomposable function (left). Its derivative
Dy (right) is a sum of a simple distribution
(constant interior color) and Dirac deltas mul-
tiplied by C° simply decomposable functions
(the boundary lines).

Proposition 7.2. For every (y,y’) € ([), if A;T + ¢ :
real then (t)(p,y,y’) € D’ (R™) whenever the zero level-
set of all diffeomorphisms in the derivative are mutually
transverse. «

Proor. The interesting case is products. We have that (¢t - s)(p,y,y") = (t)(p,v.y)T}y +
(s)(p, v, ¥’)Ty is a distribution. Here we use the transversality side condition (Theorem B.2). O

Definition 7.3. Let f,g : R"™ — R be given. We say that f(¥) = g(X) for almost every X if
{x e R" | f(X) # g(¥)} has Lebesgue measure zero. A

Lemma 7.1 (Derivative correctness for terms). Let (y,y’) € ([) be given. Assume that the zero
level-set of all diffeomorphisms in the derivative are mutually transverse. For every A;T + t : real, the
derivative denotation and derivative commute:

() (p.v.v") = (BT (P v>¥")

for almost every y. «

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:19

x1:real,...,x, :real;T + ¢ : real

T rintt d(xq,...,xp) : real

Fig. 11. The type system specifying well-typed programs.
fint £ (s, s] [T =B int e dxl o = [G0 dp

(intt d(xt,....xn)) s (A) X ([) > R (intt d(x1,...,x2)) (1, ¥) = /R () (p,y.y") dp
Fig. 12. The denotational semantics of programs.

Proor. We provide the full proof in Appendix I. O
We now characterize the semantic domain of the derivatives of well-typed terms.

THEOREM 7.1. For every well-typed term A;T v t : real, if the [t] is locally integrable and the
zero level-set of all diffeomorphisms in the derivative are mutually transverse then (t)(p,y,y’) is
a sum of a C° simple distribution and a finite sum of delta distributions multiplied by C° simply
decomposable functions. Concretely, using the isomorphism between variable names and ordered
variables, (t)(p,y,y’) can be written as the distribution:

U(J_C), Z Z/) = f()_C), 2’ E:/) : Tl (f) + Z Z hik()_g’ Z E:/) : 5(q)ik (J_C)! 2))’ (9)
i Kk

where f and h. for all i and k are C° simply decomposable and T, is the lifting of the one function
1(X) into a distribution (Definition 3.7). «

Proor. It is sufficient to prove the theorem for 9, Tj;j (Lemma 7.1 and Lemma 7.1 cover the other
cases). Theorem 6.1 gives us that [t] is C! simply decomposable. We can then take the derivative Dz
of each of the summands g;(%, z) [1; [(IDi i(%,2) > 0] from the definition of simply decomposable.
Using Lemma 7.1 to apply the product rule, we find that the derivative is:

wWEEZ) =) (AELE) TE + Y (R EE) 5@ (E),
i k

where i and k are in finite sets and the functions f;(x,2,z") = (D39:)(X,2,2') [1; [CIDij (%,2) > 0]
and hy(X,2,7Z') = (Dz®ix) (%, 2,2)9:(%. 2) [1 4« [®:;(X,Z) > 0] are C° simply decomposable. We
can use linearity and set f(X,z,Z") = Y; fi(X,Z,Z’), which is simply decomposable. |

8 DENOTATIONAL SEMANTICS OF PROGRAMS AND THEIR DERIVATIVES

Langur programs are the integrals and the derivative of integrals of Langur terms. We discuss
integrability and prove a soundness theorem that shows that the derivative denotation of a program
equals the derivative of the denotation of that program.

8.1 Type System

Figure 11 depicts the typing rules for Langur programs. The syntax int t d(xy, ..., x,) introduces
variables xy, . . ., x,, into the typing context for t. A well-typed program integrates over a well-typed
term with no free variables, preventing nested integration.

8.2 Denotational Semantics

Figure 12 depicts the denotational semantics for Langur programs and their derivatives. The
integral primitive denotes n-dimensional Lebesgue integration. We use the notation dp to introduce
variables x1, . . ., x, in the integrand. The denotation of the derivative of an integral is the integral
of the distributional derivative of the integrand.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:20 Michel et. al.

8.3 Results

We now briefly discuss integrability and the correctness of the derivative.

Recall from Section 2 that a program in the surface language has a compact domain of integration
specified by the constant bounds of integration. Its encoding in the core language results in an
integrand with compact support.

For example, a program in the surface language integral ([-10, 101) x dx has a compact domain
of integration [—10, 10]. In the core language, this program can be encoded as:

int (ifge0 x + 10 then 1 else 0) - (ifge0 10 — x then 1 else 0) - x dx,

where the integrand has compact support [-10, 10].
As a result of this property, we can show that programs implemented in the surface language
have a well-defined denotation in the core language.

Proposition 8.1. A well-typed program A;T + intt d(xy,...,x,) : real has a well-defined denota-
tion [[int ¢t d(xy,...,x,)] (-, y) if the integrand [t](p, y) has compact support. «

Proor. By Theorem 6.1, the integrand denotes a simply decomposable function. Splitting the
domain of integration into these finitely many pieces, we see that each of the integrals is bounded
because it is the integral of a continuous function over compact support. O

Proposition 8.2. The derivative denotation (intt d(x1,...,x,)) (v, y’) of a well-typed program
AT Fintt d(xy,...,xp) : real is well-defined if the integrand [t](p, y) has compact support. «

Proor. Theorem 7.1 shows that the integrand is a C° simple distribution plus a finite sum of
Dirac deltas and scaled by C° simply decomposable functions each of which has compact support.
The sum of Dirac deltas is bounded because the integrand is bounded. Since the integral of a
continuous function with compact support is bounded, and there are finitely many continuous
pieces, the result is bounded. O

Derivative Correctness. The derivative of the denotation equals the derivative denotation:

THEOREM 8.1 (DERIVATIVE CORRECTNESS). Let (y,y’) € (T) be given. For every well-typed program
A;T vintt d(xy,...,x,) : real, the denotation and derivative commute:

(intt d(xi,....x2)) (v, y") = (Dy[int t d(xy, ..., x2)]) (v, ¥)

where the equivalence above is almost everywhere equivalence, and we assume that the program
[p] and its derivative (int t d(x,...,x,)) (- y,y’) are well-defined and that the zero level-set of all
diffeomorphisms in the derivative are mutually transverse. «

Proor. We provide the full proof in Appendix J. O
9 SEPARATE COMPILATION

In this section, we discuss an interpreter for the core language Langur, formalize separate compila-
tion, and relate the surface language Potto to Langur.

The operational semantics for programs follows from the denotational semantics (Appendix D).
We now formalize the relationship between the two.

Operationally, we can commute the derivative and the integral (Figure 12):

Qinttd(xl,...,xn)D(-,y,y')=‘[R Gt‘[)(p,y,y')dp=/R u(x,z,z') dx,

where u is a parametric distribution and the last equality applies the isomorphism between mappings
from variable or parameter names to ordered real numbers.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:21
Then if (t) satisfies the conditions of the Theorem 7.1:

/u(?c,ZZ’)dSc’:/ f(f,z,.;:’).T1(£)+ZZhik(z,z,Z’).5(<1>,-k(f,2))d£ by Thm 7.1
Rn Rn 7 %

= / f(;‘c’,é’,%”)df+zz / hie(%.2,7) d8(®(% 7)) (¥) by linearity
R" T JRe

where f and hy for all i and k are C° simply decomposable functions, and T; is the one function
lifted to a distribution, and §(®; (X, Z)) is the Dirac delta distribution on the first line and the Dirac
measure on the second line (it is one if {¥ € R" | ®;1(X,Z) = 0} and zero otherwise).

We can then implement the operational semantics for derivatives of Langur programs with
Monte Carlo integration over each of the measures as is standard in probabilistic programming
languages. The operational semantics for derivatives provides an implementation for sampling and
point evaluation at a sample (Appendix E). This is analagous to sample and score in probabilistic
programming [Staton 2017]. We summarize some interesting cases.

Diffeomorphic Conditionals. The derivative of a diffeomorphic conditional introduces a Dirac delta
distribution. To implement sample, Langur must draw unbiased samples satisfying the equality
m¥Y(x1, ..., xp) = 0. For example, if ifge0 | ¥| then 1 else 0 has a diffeomorphism Y(x) =a—x
with inverse ¥~1(y) = a—y in the condition. The distribution derivative of ifge0 | ¥| then 1 else 0
is 8(a — x). In math, we would calculate the derivative by applying a change of variablesu = a — x
(Definition 6) and applying the sifting property f (a—u)d(u)du = a (Equation 5). This is equivalent
to sampling the point x = a and evaluating the rest of the integrand at x = a. Langur implements
sample by returning x +— a and implements score, by evaluating the rest of the integrand at x = a.

Let Bindings. For let bindings let z = t in s, by the type system for diffeomorphisms, the parame-
ter z cannot be an input to a diffeomorphism and as a result, samples generated from the derivative
of s do not depend on t. As such, Langur can separately sample from the measures denoted by t and
s and combine the results. This is key to enabling separate compilation. To evaluate let z = t in s,
we need only evaluate ¢ at given sample points and then bind each value to z in s and evaluate s.

Compositional Evaluation and Separate Compilation. We consider relations taking in an environ-
ment E and a term of a grammar G and returning either nothing (it is partial) or a value. If it returns
a value, we write it as (E, t)Rv. We consider values that are either (real) numbers or collections of
numbers (such as disjoint unions of pairs of numbers). This is critical because passing an expression
to a function violates compositional evaluation

A hypothesis H is a predicate defined by a function h(v1, . . .,v;). A function such as h(E, v4, . . ., vy)
depends only on vy, . .., v;, E, and mathematical functions (e.g., f,¥, <, =).

We consider an operational semantics as a set of relations R over a grammar G. Let R be a
metavariable representing one of a fixed set of relations.

Definition 9.1. An operational semantics supports compositional evaluation if, for every inference
rule, the conclusion depends only on the values generated by the hypotheses. Formally, each
(Et)Ro; .. (Et)Ry H, .. Hy A

(E,t)Rg(E,vy,...,01) :

inference rule can be written in the following form:
THEOREM 9.1. The operational semantics supports compositional evaluation. «

The proof follows by inspection of the operational semantics (R = {{n, UdN, ﬂ}i\;}), where the case
of let binding is the key case. Langur achieves compositional evaluation by evaluating subterms
before combining results in every rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:22 Michel et. al.

Const Shader Linear Shader Quadratic Shader Const Shader Linear Shader Quadratic Shader

d’” nd aad

(a) Scene (b) Shaders change how light attenuates (c) The derivative w.r.t. light position

Fig. 13. We use a differentiable renderer implemented in Potto turn scenes containing a single line of light
pointing diagonally downward with different light attenuations into images. Swapping between different
shaders is a critical part of the design process. In Potto, programs and their derivatives can be separately
compiled and composed to efficiently swap among shaders.

The mechanism of building separate compilation from compositional operational semantics is
well studied [Cardelli 1997]. Separate compilation is important in programming and specifically in
computer graphics where many small changes are made to program parts in the design process.
Langur separately compiles program parts and simply evaluates them at different points to produce
results rather than requiring global program manipulations as in Teg [Bangaru et al. 2021].

Example. We now discuss the Potto program from Section 2 (code blocks 1, 2, 3). We briefly
discuss this conversion from the Potto to the Langur. Recall from the type system that variables
and parameters are passed in the environment.

The risk(distro, a, b, mu) becomes the integral on the last line because we have applied the
function trunc_normal. We take the liberty of using the names normal, y, and trunc_normal for
parameters rather than z, z2, and z3 for clarity.

We need a little more machinery to introduce risk and therefore gain the benefits of separate
compilation. We introduce a finite looping construct that is syntactic sugar and is unrolled. Using
the same argument as for let binding, we can separately compile the body of the loop and iteration.

10 EVALUATION

In this section, we evaluate the prototype programming language, Potto, and implement a differen-
tiable renderer with swappable shaders, meaning that each shader can be separately compiled and
therefore efficiently interchanged. We describe implementation details and optimizations on top
of those presented in the operational semantics in Appendix G. We compare Potto and Teg on a
renderer from Teg and two synthetic examples as well [Bangaru et al. 2020].

10.1 A Differentiable Renderer with Swappable Shaders

We implement a differentiable renderer [de La Gorce et al. 2011; Li et al. 2018, 2020; Loper and
Black 2014; Zhao et al. 2020]. Domains ranging from autonomous driving to robotics to computer-
generated imagery, use differentiable renderers to recognize the 3D shapes of cars, signs, and
pedestrians, to reconstruct a 3D scene for a robot, and to capture the 3D properties of actors’ faces.

A renderer is a program that takes in the geometry and color of each object in the scene and
outputs an image. Renderers are built out of programs called shaders. A differentiable renderer
computes the change in the color of a pixel with respect to changes in parameters, such as the
location or color of an object. These derivatives are useful for optimization.

Figure 13a depicts the scene: a line of light shining diagonally downward. The color of a single
pixel is the average of light within the pixel area:

f(c,s)=/1/13(x,y,c)[x+y+620] dxdy. (10)
o Jo

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:23

We use the convention that the origin is in the top left corner and the y-axis points down. The
half-plane [x + y + ¢ > 0] is the shader determining whether a point is illuminated. The function
s : R3 — R is the shader that determines the brightness as a function of x, y, and c.

The goal is to optimize the parameter ¢ so that the renderer generates a pixel with color a.
We use gradient descent to minimize the loss function L(c,s) = (f(c,s) — a)* with derivative
D.L(c,s) = 2(f(c,s) —a)D.f(c,s). A differentiable renderer computes the derivative D, f(c, s).

Differentiating Parametric Discontinuities. The leftmost image in Figure 13b depicts the constant
shader s(x,y,c) = 1, which a half-plane. The leftmost image in Figure 13c depicts its derivative,
which is a line along the boundary of the half-plane because it is the change resulting from
perturbing c in f(c, s). The half-plane shifts diagonally downward, making the boundary the only
region with nonzero derivative. The linear shader s(x,y,c) = (V2(x + y + ¢) + 2) ! and quadratic
shader s(x, y,¢) = (V2(x +y +¢) + 2) "2 have the same boundary contribution to the derivative, but
also have a nonzero interior derivative.

The derivative of the renderer decomposes into the interior and boundary contributions:

D.f(c,s) = ‘/S8Cs(x, yo)[x+y+c=0]+s(xy,c)d(x+y+c) d(x,y). (11)

interior boundary

The contribution of the Dirac delta distribution § shows up as the diagonal yellow line in the
derivative of all three shaders. We provide a derivation in Appendix A.

Automatic Differentiation of Parametric Discontinuities. A naive implementation would discretize
the integral to a sum and use automatic differentiation to compute the derivative of the discretization.
The resulting program would approximate the interior term in Equation 11, but ignore the boundary
term, producing an incorrect result. We implement the renderer specified in Equation 10:

1 # renderer.po

2 from half_plane import cond

3 def renderer(c: Param, s):

4 return integral ([0,1],[0,1]) s(x,y,c)*(1 if cond(x,y,c) else @) d(x,y)

Line 2 imports the diffeomorphism from the half_plane.diffeo file. It takes in variables x, y and
parameter ¢, and returns an affine combination of the three, representing a 2D rotation parameterized
by c. This file can be implemented as a collection of Potto programs that specify the forward and
inverse transformations.

1 # color_shaders.po

2 def const_shader(x: Var,y: Param,c: Param): return 1

3 def lin_shader(x: Var,y: Param,c: Param): return 1/(sqrt(2)*(x+y+c)+2)

4 def quad_shader(x: Var,y: Param,c: Param): return 1/(sqrt(2)*(x+y+c)+2)*2

The three shaders are first-order functions that model how quickly light attenuates. The const_shader
corresponds to no attenuation—intensity is invariant to the distance from the light. While in
lin_shader and quad_shader, the attenuation is linear and quadratic, respectively.
1 # main.po
2 from color_shaders import_deriv const_shader, lin_shader, quad_shader
as dconst_shader, dlin_shader, dquad_shader
3 from renderer import_deriv renderer as drenderer
for dshader in [dconst_shader, dlin_shader, dquad_shader]:
5 print ((drenderer (-2, 1) dshader)[1])

In main.po, we compose the derivative of the renderer with the derivative of each of the shaders to
compute the pixel color. We evaluate the resulting expression at a base point c=-2 with infinitesimal

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:24 Michel et. al.

(a) Depth shader (b) Depth shader deriv. (c) Thresh. Lambert (d) Thresh. Lam. deriv.

Fig. 14. Discontinuous shaders at a 40 X 40 resolution. We display the sparsity pattern of the derivative
shaders. For example, the derivative shader is red, if the derivative is nonzero in the red channel.

de=1, producing a number representing the derivative. The program then does a step of gradient
descent to find the value of ¢ resulting in a pixel most similar to the pixel in a given image.

Separate Compilation. Potto separately compiles the derivative of the renderer and shaders,
making it possible to compile different program parts to different hardware (e.g., the CPU and
GPU). As a result, Potto compiles the derivative of the renderer and each shader once rather than
needing to compile the derivative of the renderer and shaders three times. Since calculating the
derivative of the renderer is so time-consuming, it results in a 2.78x speedup.

10.2 A Ray tracing Differentiable Renderer with Swappable Shaders

A ray tracer is a renderer that computes the color of each pixel in the image by shooting rays from
a camera to identify which objects are visible and what color they have. The ray tracer shoots rays
into the scene and computes the color at the intersection of the ray with the geometry [Shirley 2020].
The subset of parameters that control the color, reflectiveness, and other properties of surfaces
reside in the shader programs. Changing shader parameters changes the stylization of the scene.

Differentiable rendering [Li et al. 2018; Loper and Black 2014] is useful for solving inverse
problems. For example, an artist might draw a 2D image and want a 3D scene that, when viewed
from a particular angle, looks as similar to their drawing as possible. Gradient-based optimization
can automatically set these shader parameters.

A production renderer has many shaders that artists can select to achieve a desired effect [Perlin
1985]. Rendering often involves large geometries within the scene, making it important to be able
to quickly swap out shaders without recompiling the whole rendering engine.

As a result, engines typically allow for separate compilation of the renderer from the component
shaders. However, boundary sampling techniques are either limited to affine discontinuities [Li et al.
2018] or do not support separate compilation [Bangaru et al. 2021]. To solve inverse problems with
multiple shaders without incurring this overhead, it is imperative to be able to swap out shaders
and their derivatives in the derivative of a renderer.

Each pixel in the rendered image is a rectangular cell in an imaginary screen in front of the
camera. Its color is the average (integral) of the light rays that pass through the cell.

Swappable Shaders. We would like to swap between different discontinuous shaders, often called
toon shaders based on their cartoon stylized look. Often these come from standard physical shaders
that are thresholded. Our example shaders are 1) a z-depth shader, which gives different colors to
objects based on how far away from the camera they are, and 2) a thresholded Lambert shader, which
models the reflectance of a matte surface under a point light, which sits in front of the triangle and
has linear intensity falloff [Lake et al. 2000].

Figure 14 depicts images produced by a Potto implementation of a differentiable ray tracer. The
derivative of Figure 14a is Figure 14b and the derivative of Figure 14c is Figure 14d.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:25

Compile Time Evaluation Time Total Time Number of AST Nodes
12 12 12 22.8x 60000 16.1x
10 10 10 & so000
G e 4412x @ s O 540000
g 2 2 £ om0
= (= 7.9x Foa < 20000
5.4x 3.5x
2 88.1x 2 2.5x 2 10000
o . N o . " o N . o . N
Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic
Shader Shader Shader Shader Shader Shader Shader Shader

B Potto mEm Teg

Fig. 15. A bar chart, where smaller is better, comparing Potto to Teg on an image stylization. Potto is so much
faster in compile time that the bars on not visible. Compile time was the bottleneck in Teg.

The scene consists of a single triangle, where the upper left corner is closer to the camera than
the others. We differentiate with respect to the vertex positions of the triangle as it expands in
space, as well as a threshold parameter in the shaders. The upper left corner comes towards the
camera, while the other corners spread outward.

The z-depth shader has a discontinuity at a fixed depth in space. The triangle is colored red if it
is close enough to the camera, and green otherwise. As the triangle expands, more black pixels
along its border become colored and more of the triangle becomes red.

The thresholded Lambert shader has a discontinuity on the triangle surface based on the amount
of light from the point light source that is received. When the light value is less than a certain
threshold, the triangle is colored red. As the triangle expands, the transition curve moves around
on the triangle.

10.3 Comparison to Teg

We compare to Teg [Bangaru et al. 2021] on an image stylization task and two microbenchmarks.

Methodology. Teg provides three backends: a vectorized Python implementation using NumPy, a
C backend, and a CUDA backend. We use the vectorized NumPy backend because it most closely
matches our implementation. We also observed overhead from starting the C compiler that made
evaluation in the generated C code slower than in NumPy on these benchmarks. We run all
evaluations using a desktop with an Intel i9-10900k 10-core CPU and 64GB of memory.

10.3.1 Renderer for Image stylization. Bangaru et al. [2021] presents a renderer for image stylization
in Figures 5 and 6. Figure 15 shows the (derivative) compilation time, evaluation time, total time,
and AST size for linear and quadratic shader stylization.

Teg creates duplicate expressions during compilation, leading to increased compile time, evalu-
ation time, total time, and code size. Teg does not perform common sub-expression elimination
(same for Potto), so the evaluation time increases. Separate compilation in Potto results in smaller
ASTs and faster compilation and evaluation.

10.3.2 Microbenchmarks. We design a set of small benchmarks to compare Potto and Teg in terms
of compile time (to calculate the derivative), evaluation time, total time (both compilation and
evaluation), and code size. We report the geometric mean across n runs and set n = 10 for the first
benchmark and n = 3 for the second due to time constraints.

Increasing the Number of Parametric Discontinuities. We study how the performance of Potto
and Teg scale as we increase the number of parametric discontinuities to be differentiated. The
program takes a function f and a number n representing the number of Heavisides and produces
an expression evaluating the sum of Heavisides multiplied by the function. We bind f to programs
first-order functions a+x and a-x. The number n controls the number of Heavisides and therefore
the number of Dirac deltas in the derivative.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:26 Michel et. al.

Compile Time Evaluation Time Total Time Number of AST Nodes

o 5000 4

— 4000 -
o107t
< * 3000
= 102

2000

10-34 10-34 1000 4

04
0 20 40 20 10 20 10 0 20 40

Deltas # Deltas # Deltas # Deltas

1044

Time(s)
Tin
AST Nodes

m—Potto = Teg

Fig. 16. A comparison of how Potto and Teg scale with the number of discontinuities.

Compile Time Evaluation Time Total Time Number of AST Nodes
102 10° o 250000 4
'2 200000 4
—_ — 104 —_ S
o) =z Z 104 Zs
g 3] q: 150000 4
=1 = 1004 = %
— o — 100000 4
& 1071 & = 10! 4 =~
107" = 50000 4
10—
T T T T T T T T T 0 T T T
0 20 10 0 20 40 0 20 40 0 20 10
Shader Swaps # Shader Swaps # Shader Swaps # Shader Swaps

m—Potto e Teg

Fig. 17. A comparison of how Potto and Teg scale with the number of swaps between shaders.

Figure 16 depicts the trends as the number of Dirac deltas increases. Potto compiles code faster
than Teg, which is a result of the global program transformations needed in Teg. Potto has slower
runtime performance than Teg, which is due to Potto doing dynamic tracing and the fact that it
is written in pure Python. Potto takes less total time to compute the result. Potto and Teg have
similar AST sizes that grow linearly in the number of deltas.

Separate Compilation. We study the impact of separate compilation by building an expression
with 90 parametric discontinuities representing the geometry of a scene and scaling the number
of times we swap between shaders n. Figure 17 depicts the trends as the number of shader swaps
increases. Teg must repeatedly compile the whole expression every time we swap the shader,
leading to a slow compile time that reaches our timeout of 20 minutes at 15 swaps. On the other
hand, since Potto can separately compile the two modules, the compilation cost increases slowly.
Potto needs about a minute at 50 swaps.

11 RELATED WORK

We extend distribution theory to differentiate under integrals. Our implementation draws on
concepts from differentiable and probabilistic programming. For applications, we build on a body
of research in differentiable rendering and probabilistic inference.

11.1 Distribution Theory

Distribution theory was formalized by Schwartz [1950]. We adapt the theory to address the product
of distributions problem [Schwartz 1954]. Recent programming languages work uses distribution
theory to (equationally) reason about derivatives of discontinuous programs in a higher-order
language [Azevedo de Amorim and Lam 2022]. However, they do not extend directly the theory,
which poses a challenge for reasoning about nested conditionals, preventing applications as simple
as rendering a triangle. Their lack of diffeomorphic conditional means that the implementation is
similarly restricted.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

Distributions for Compositionally Differentiating Parametric Discontinuities 126:27

11.2 Sampling Along Discontinuities

Early work hand-coded samplers for discontinuities [Li et al. 2018]. Concurrent work automatically
handled affine discontinuities with applications to stochastic variational inference Lee et al. [2018].
Recent work also differentiated parametric discontinuities using an integration primitive [Ban-
garu et al. 2021]. The paper claims to support higher-order derivatives, but this is not the case
(diffeomorphisms are often not preserved under differentiation). We provide a formal foundation
that encompasses their work and support additional language features useful in graphics (e.g.,
first-order functions and separate compilation).

11.3 Smoothing Out Discontinuities

Rather than directly sampling discontinuities, one can smooth them out [Chaudhuri and Solar-
Lezama 2010; Laine et al. 2020; Liu et al. 2019]. This typically leads to approximate results and
requires additional parameters [Inala et al. 2018; Yang et al. 2022]. We focus on consistent, unbiased
estimation of derivatives, but are interested in the practical trade-offs between these approaches.
Recent work showed that unbiased estimation is possible for smoothed out discontinuities, but the
work is yet to be systematized [Bangaru et al. 2020].

Automatic Differentiation. Automatic differentiation has been a known technique for quite some
time [Wengert 1964]. Interest in developing efficient AD systems has grown significantly [Abadi
et al. 2015; Bradbury et al. 2018; Paszke et al. 2019; Pearlmutter and Siskind 2008; Yu et al. 2014].
Researchers have also developed theoretical techniques for proving correctness [Abadi and Plotkin
2019; Elliott 2018; Lee et al. 2020; Mazza and Pagani 2021; Sherman et al. 2021]. Sherman et al. [2021]
study a language with derivatives and integrals but returns vacuous results when differentiating
parametric discontinuities.

Probabilistic Programming. Saheb-Djahromi [1978] and Kozen [1981] performed early work on
the semantics of probabilistic programs. Recent work develops efficient probabilistic programming
languages [Bingham et al. 2019; Cusumano-Towner et al. 2019; Stan Development Team 2015].
Compositionality is also of interest in these languages. For example, Cusumano-Towner et al.
[2019] introduces a generative function interface that is compositional and should similarly support
separate compilation. We believe distributional semantics are also relevant to other inference
tasks [Gehr et al. 2020; Lew et al. 2019; Shan and Ramsey 2017; Zhou et al. 2019].

Recent work, ADEV provides a framework for reasoning about the composition of gradient
estimators and providing proofs of correctness [Lew et al. 2023]. It lacks support for differentiating
parametric discontinuities as discussed in their related work section in the subsection “AD of
Languages with Integration" Our paper provides such a sound gradient estimator that could
potentially compose with other estimators using an appropriate extension of their framework.
This would require changing their type system to admit programs with parametric discontinuities
beyond discrete distributions that can either be enumerated or estimated via REINFORCE.

12 CONCLUSIONS

Parametric discontinuities arise in applications spanning computer graphics [Li et al. 2018], robot-
ics [Hu et al. 2020], and probabilistic programming [Lee et al. 2018]. We design a theory providing
a semantic model for differentiating parametric discontinuities that arise in these applications.
Using the insight from our theory, we implement a system that can separately compile programs,
allowing us to build a differentiable renderer with swappable shaders. In the future, we hope that
differentiable programming languages will support differentiation of parametric discontinuities to
better serve application domains.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

126:28 Michel et. al.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers whose feedback guided us to simplify and clarify
the key ideas of the paper. Thank you to our shepherd Michael Arntzenius who gave multiple rounds
of extensive and technical feedback as well as helped shape the organization and presentation of
the paper. We would also like to thank the PC chairs Alex Potanin and Bor-Yuh Evan Chang for
their support and involvement throughout the process.

Thank you to Ellie Cheng, Eric Atkinson, Tian Jin, Logan Weber, Cambridge Yang, Alex Renda,
Charles Yuan, Mattieu Huot, Alex Lew, Feras Saad, and Teodoro Collin for their feedback.

This work was supported in-part by the National Science Foundation (CCF-1751011, 2238839),
the Sloan Foundation, and SRC JUMP 2.0 (CoCoSys).

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

Martin Abadi and Gordon D. Plotkin. 2019. A Simple Differentiable Programming Language. Principles of Programming
Languages (2019).

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An Embedded Domain Specific Sampling
Language for Monte Carlo Rendering. (2017).

Pedro H. Azevedo de Amorim and Christopher Lam. 2022. Distribution Theoretic Semantics for Non-Smooth Differentiable
Programming. arXiv e-prints (2022).

Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley. 2021. Systematically
Differentiating Parametric Discontinuities. (2021).

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area sampling for differentiable rendering.
Special Interest Group on Computer Graphics and Interactive Techniques in Asia (2020).

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,
Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research (2019).

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, and Skye Wanderman-
Milne. 2018. JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax

Luca Cardelli. 1997. Program Fragments, Linking, and Modularization (Principles of Programming Languages).

Swarat Chaudhuri and Armando Solar-Lezama. 2010. Smooth Interpretation. In Programming Language Design and
Implementation.

Brian Conrad. 2006. Math 396. Stokes’ theorem with corners. https://math.stanford.edu/~conrad/diffgeomPage/handouts/
stokescorners.pdf. Accessed: 2022-11-10.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A General-Purpose
Probabilistic Programming System with Programmable Inference. In Programming Language Design and Implementation.

Boris Dalstein, Rémi Ronfard, and Michiel van de Panne. 2014. Vector Graphics Complexes. ACM Trans. Graph. (2014).

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand pose estimation from monocular video.
IEEE Trans. Pattern Anal. Mach. Intell. (2011).

Erik del Toro Streb and Oleg Alexandrov. 2009. Diffeomorphism of a square — Wikipedia, The Free Encyclopedia. https:
//commons.wikimedia.org/wiki/File:Diffeomorphism_of_a_square.svg [Online; accessed 3-March-2024].

J.J. Duistermaat and J.A.C. Kolk. 2004. Multidimensional Real Analysis I. Cambridge University Press.

Conal Elliott. 2018. The Simple Essence of Automatic Differentiation. International Conference on Functional Programming
(2018).

Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. APSI: exact inference for higher-order probabilistic programs. In
Programming Language Design and Implementation.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand. 2020. Diff Taichi:
Differentiable Programming for Physical Simulation. International Conference on Learning Representations (2020).

Jeevana Priya Inala, Sicun Gao, Soonho Kong, and Armando Solar-Lezama. 2018. REAS: combining numerical optimization
with SAT solving. arXiv (2018).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

http://github.com/google/jax
https://math.stanford.edu/~conrad/diffgeomPage/handouts/stokescorners.pdf
https://math.stanford.edu/~conrad/diffgeomPage/handouts/stokescorners.pdf
https://commons.wikimedia.org/wiki/File:Diffeomorphism_of_a_square.svg
https://commons.wikimedia.org/wiki/File:Diffeomorphism_of_a_square.svg

Distributions for Compositionally Differentiating Parametric Discontinuities 126:29

Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. System Sci. (1981).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for
high-performance differentiable rendering. Special Interest Group on Computer Graphics and Interactive Techniques in
Asia (2020).

Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein. 2000. Stylized Rendering Techniques for Scalable Real-Time
3D Animation. In International Symposium on Non-Photorealistic Animation and Rendering. 8 pages.

John M. Lee. 2012. Introduction to Smooth Manifolds, 2nd Ed. Springer-Verlag.

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. On Correctness of Automatic Differentiation for
Non-Differentiable Functions. In Neural Information Processing Systems.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. 2018. Reparameterization Gradient for Non-Differentiable Models. In
Neural Information Processing Systems.

Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K Mansinghka. 2019. Trace
types and denotational semantics for sound programmable inference in probabilistic languages. (2019).

Alexander K. Lew, Mathieu Huot, Sam Staton, and Vikash K. Mansinghka. 2023. ADEV: Sound Automatic Differentiation of
Expected Values of Probabilistic Programs. (2023).

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge
Sampling. Special Interest Group on Computer Graphics and Interactive Techniques in Asia (2018).

Tzu-Mao Li, Michal Luka¢, Gharbi Michaél, and Jonathan Ragan-Kelley. 2020. Differentiable Vector Graphics Rasterization
for Editing and Learning. Special Interest Group on Computer Graphics and Interactive Techniques in Asia (2020).

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable Renderer for Image-based 3D
Reasoning. International Conference on Computer Vision (2019).

Matthew M. Loper and Michael]. Black. 2014. OpenDR: An Approximate Differentiable Renderer. In European Conference
on Computer Vision.

Christopher Lutz. 1986. Janus: a time-reversible language.

Kazutaka Matsuda and Meng Wang. 2020. Sparcl: A Language for Partially-Invertible Computation. (2020).

Damiano Mazza and Michele Pagani. 2021. Automatic differentiation in PCF. Principles of Programming Languages (2021).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Neural Information Processing Systems.

Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a Functional Framework: Lambda the Ultimate
Backpropagator. Transactions on Programming Languages and Systems (2008).

Ken Perlin. 1985. An image synthesizer. Comput. Graph. (Proc. SSGGRAPH) (1985).

Walter Rudin. 1953. Principles of mathematical analysis.

N. Saheb-Djahromi. 1978. Probabilistic LCF. In Mathematical Foundations of Computer Science 1978.

Laurent Schwartz. 1950. Théorie des distributions.

Laurent Schwartz. 1954. Sur I'impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris (1954).

Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian Inference by Symbolic Disintegration. In Priniciples of
Programming Languages.

Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. Ag: Computable Semantics for Differentiable Programming
with Higher-Order Functions and Datatypes. (2021).

Peter Shirley. 2020. Ray Tracing in One Weekend. https://raytracing.github.io/books/RayTracingInOneWeekend.html

Stan Development Team. 2015. Stan Modeling Language Users Guide and Reference Manual, Version 2.9.0. http://mc-stan.org/

Sam Staton. 2017. Commutative semantics for probabilistic programming. In European Symposium on Programming.

Petre Teodorescu, Wilhelm Kecs, and Antonela Toma. 2013. Distribution Theory: With Applications in Engineering and
Physics. https://doi.org/10.1002/9783527653614

Vladimir N. Vapnik. 1998. Statistical Learning Theory. Wiley-Interscience.

R. E. Wengert. 1964. A Simple Automatic Derivative Evaluation Program. Commun. ACM (1964).

Sven Woop, Carsten Benthin, and Ingo Wald. 2013. Watertight Ray/Triangle Intersection. journal of Computer Graphics
Techniques (JCGT) (2013).

Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. 2022. Ad: Autodiff for Discontinuous Programs -
Applied to Shaders.

Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Zhiheng Huang, Brian
Guenter, Huaming Wang, Jasha Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm
Slaney, Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey Kamenev, Vladimir Ivanov, Scott Cypher,
Hari Parthasarathi, Bhaskar Mitra, Baolin Peng, and Xuedong Huang. 2014. An Introduction to Computational Networks
and the Computational Network Toolkit. Technical Report. Microsoft Research.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

https://raytracing.github.io/books/RayTracingInOneWeekend.html
http://mc-stan.org/
https://doi.org/10.1002/9783527653614

126:30 Michel et. al.
Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. 2020. Physics-Based Differentiable Rendering: From Theory to Implementation
In SIGGRAPH Courses.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank Wood. 2019. LF-PPL: A

Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. In International Conference
on Artificial Intelligence and Statistics.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 126. Publication date: April 2024.

