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Abstract—In this article, we present a novel low-cost,
dual-function radar-communication system that addresses
dynamic environments such as those arising in automo-
tive applications. The low cost is achieved by using a
sparse phased arrays equipped with quantized double-
phase shifters. The operation in dynamic environments is
achieved via a deep reinforcement learning (DRL) approach
that adaptively selects a small subset of transmit antennas
and adjusts the phase shifters such that the transmitted
energy is concentrated on the communication user and the
target of interest, while the interference to other radars is
reduced. The action space in the DRL approach increases
fast with the number of antennas and the number of bits
used in quantization, and as a result the complexity of the
design problem grows exponentially. To tackle the result-
ing curse of dimensionality in the action space, we adopt
the Wolpertinger strategy, which incorporates the nearest
neighborhood component to project the vast action space
into a smaller, more manageable space while maintaining
the desired performance. Numerical results demonstrate
the feasibility of our proposed method.
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I. INTRODUCTION

A
S SELF-DRIVING technology advances, the integration

of vehicle-to-everything (V2X) communication into au-

tomotive radar can help enhance road safety, alleviate traffic

congestion, and improve the driving experience. By enabling

vehicles to communicate with other vehicles, infrastructure,

pedestrians, and networks, V2X can facilitate the creation of a

more connected and intelligent transportation system [3], [4].

However, as radar becomes an integral part of automobiles

and the demand for communication functions increases, limited

spectrum resources may become a challenge. Thus, finding ways

for radar and communication functions to coexist in the same

band has been drawing a lot of attention [5], [6], [7], [8], [9],

[10]. Dual-function radar-communication (DFRC) systems are a

new type of technology that offers the radar and communication

functionalities out of a single platform and via the same wave-

form, thereby offering efficient spectrum use, reduced hardware

complexity, improved safety, higher accuracy, and new appli-

cation possibilities [11], [12], [13], [14], [15], [16], [17], [18],

[19], [20], [21], [22], [23]. DFRC systems are ideally suited for

autonomous driving vehicles. Unlike communication systems at

cellular base stations, automotive radars use a relatively small

number of antennas, and thus greatly benefit from sharing anten-

nas and waveform for both radar and communication functions.

Several key factors must be considered in the design of

automotive DFRC systems. First, for the possibility of mass

production, it is essential that these systems are cost-effective

while providing high angular resolutions. This requirement

makes sparse arrays with large apertures particularly attractive

because they offer a balanced tradeoff between performance and

cost [24]. To achieve low-cost hardware solutions, phase shifters

are designed to select discrete values from a predefined set,

limiting the design flexibility of transmit signals due to the con-

straints imposed by the phase shifters’ degrees of freedom. For

instance, the Texas Instruments AWR2243 radar chipset utilizes

6-bit phase shifters [25]. Second, current automotive multi-input

multi-output (MIMO) radars use orthogonal waveforms, thus

spreading the transmit energy over the entire field of view (FOV)

[27], [28]. This may create problems, such as mutual interference

[26], [27] and ghost targets due to multipath wave propagation.

Third, automotive DFRC systems operate in highly dynamic

environments and must be capable of detecting targets with low
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radar cross-sections (RCSs), such as pedestrians and cyclists,

amidst stronger reflective objects, such as vehicles and light

poles. Current state-of-the-art systems heavily rely on MIMO

radar technology with static transmit parameters, including fixed

array geometries and nonadaptive orthogonal waveforms [27],

[28], which may not always provide optimal sensing perfor-

mance in dynamic automotive conditions.

To address the above-mentioned automotive DFRC system

challenges, in this article, we propose a low-cost, reconfigurable

adaptive beamforming scheme in automotive DFRC system to

enhance both sensing and communication performance while

suppressing mutual interference. Low-cost and low power im-

plementation is afforded via the use of sparse phased arrays

equipped with quantized double-phased shifters (DPSs). Inter-

ference suppression and detection of weak targets is achieved

through beamforming. Unlike the high cost of digital hardware

associated with MIMO radar, our approach uses a phased array

equipped with DPSs. The DPSs enable the design of flexible

beams that can suppress automotive radar mutual interference,

minimize the occurrence of ghost targets due to multipath, and

enhance the signal-to-noise ratio (SNR) of targets with low RCS

in the tracking phase. The introduction of DPSs opens up the

possibility of forming richer beams toward both communica-

tion user and target of interest [29], [30]. The use of sparse

phased arrays reduces hardware cost and power consumption.

By optimally designing the transmit array along with the beam-

forming weights, one can closely approximate the beampattern

performance of a full array. However, the high complexity of the

design problem remains a challenging bottleneck. Commonly

used optimization methods for beamformer optimization, such

as linear programming and alternative optimization [31], [32],

[33], [34], [35], [36] lead to daunting computational costs due to

the NP-hard nature of the problem given the selection of antennas

and quantized phase shifters. We propose a deep reinforcement

learning (DRL) approach as a feasible solution to adaptively

select the antennas and adjust the phase shifters to achieve beam-

forming performance in the automotive DFRC system. DRL al-

lows an agent to learn its optimal action through interaction with

its environment via trial-and-error [37]. However, the dimen-

sionality of the action space of the proposed automotive DFRC

system is huge, which may require a significant large training

process for DRL. To address this issue, we adopt the Wolper-

tinger’s strategy that encompasses the nearest neighborhood

component to project the daunting action space to a small size

space, thus significantly reducing the complexity of the training

process while maintaining the desired good performance.

We begin with a brief literature review of automotive DFRC,

sparse arrays, adaptive beamforming, and DRL.

A. Related Work on Automotive DFRC

Generally, DFRC systems can be categorized as radar-

centric, communication-centric, or based on a joint design ap-

proach. In radar-centric systems, communication information

is embedded in radar waveforms. For example, when using

amplitude-modulated signaling, the communication information

can be associated with the sidelobe amplitude of the transmitted

waveform [38]. In MIMO radar, communication symbols are

encoded into each of the orthogonal waveforms. Phase mod-

ulation can also be used to embed communication symbols

into the phase of transmitted chirps [39]. Radar-centric systems

achieve good sensing performance but their communication

rate is low. However, with frequency hopping [40], antenna

index modulation [41], [42], and sparse array configuration

techniques [32], their communication data rate can be further

increased. Communication-centric systems are optimized for

the communication function and use typical communication

signals, such as orthogonal frequency-division multiplexing, for

sensing [43], [44], [45]. Adaptive systems, capable of dynam-

ically adjusting their parameters to achieve a desired tradeoff

between the radar and communication subsystems, and tailored

to the specific requirements of the application have also been

proposed [41], [46], [47], [48].

DFRC systems have significant advantages in autonomous

vehicle applications [17]. Deep neural networks have been intro-

duced in Zhang et al.’s work [49] for communication multiuser

demodulation and target tracking. In Ma et al.’s work [18],

frequency-modulated continuous-wave (FMCW) signals from

a selected subset of antennas are transmitted in a randomized

fashion. Index modulation is utilized to embed message through

the selection of carrier frequencies and antennas.

Sparse arrays have been widely adopted in automotive radar

systems to achieve a larger antenna array aperture by deploying

antenna elements placed in a nonuniform spacing pattern [24].

Beamforming has been proposed to achieve dual functions for

vehicle networks [50] with the fast beam tracking capability of a

road-side unit, and thus it is not applicable for systems on moving

vehicles. Recently, an integrated MIMO system is proposed

in Zhang et al.’s work [51] that performs target tracking and

downlink communications, while also receiving uplink signals

from other communication nodes to facilitate bidirectional com-

munications. Integration of sparse array configuration and wave-

form permutation was introduced in Wang et al.’s work [32] to

embed communication symbols effectively. Beamforming with

sparse arrays was considered in Wang et al.’s work [52] through

selective antenna positioning, ensuring that both radar and com-

munication functionalities are maintained. In Huang et al.’s work

[53], sparse array-based beamformers for DFRC systems were

designed by utilizing both amplitude and phase modulations to

encode information into the transmit beam patterns. In Huang

et al.’s work [34], an alternating direction method of multipliers

solver was developed to design sparse array beamforming that

accommodates multiple downlink users. More recently, a new

scheme is proposed in Zhang et al.’s work [54] to jointly develop

multiple beamformers that deliver communication information

via a common sparse array for integrated radar and communi-

cation systems. This approach enhances the applicability and

simplifies the hardware implementation by eliminating the need

for continual antenna switching. Nevertheless, the antenna selec-

tion problem is NP-hard, and the computational cost of relaxed

optimization algorithms is still extremely high.

B. Deep Reinforcement Learning

Machine learning techniques, including deep learning (DL)

and reinforcement learning (RL), have become powerful tools
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for solving beamforming matrix and antenna selection prob-

lems [55]. Among them, DL networks can be trained to select

antennas and determine phase shifters with a low computational

complexity, provided that a large amount of training data is avail-

able. However, the applicability of DL algorithms in real-life

scenarios, such as for tracking noise and channel changes during

rapid vehicle movements, may still be limited due to inherent

biases in the dataset. RL algorithms, on the other hand, can

be trained by interacting with the environment and receiving

feedback in the form of rewards or penalties. This makes them

well suited for decision-making tasks in complex and dynamic

environments, such as target tracking using a massive MIMO

radar. However, RL faces a scaling dilemma when the goal is

to obtain an optimal beamforming matrix. To address this issue,

we adopt DRL to learn complex policies and representations

directly from raw data, such as online beamforming learning. Al-

though it is more computationally expensive than traditional RL,

DRL offers significant advantages in scalability, performance,

and data requirements [56], [57].

C. Motivation and Contributions

In this article, our system operates in tracking and searching

modes. In the searching mode, the system performs a quick

target perception. During the tracking mode, based on the per-

ception results, the sparse transmit array is optimized to carry

out adaptive transmit beamforming to enhance both radar sens-

ing and communication functionalities. This approach reduces

system costs and optimizes the target tracking performance,

while simultaneously suppressing interference toward victim

radars. Furthermore, by applying DRL, the system dynamically

adjusts the transmit parameters to achieve an optimal solution

through interactions with the environment. Our contributions are

as follows.

1) We propose a low-cost reconfigurable transmit beam-

forming scheme, incorporating joint antenna selection

and quantized double-phase shifters, to implement DFRC

systems for automotive applications. We optimize the

array configuration and the beamforming weights in order

to simultaneously form two beams, one toward the com-

munication receiver and the other one toward the target

searching direction, while creating nulling toward other

radars, allowing multiple radars to coexist and operate

simultaneously within the same frequency band.

2) We propose a DRL approach to adaptively select a sparse

subset of transmit antennas and adjust quantized double-

phase shifters to achieve optimal sparse transmit beam-

forming in the highly dynamic automotive scenarios.

3) We propose a DRL framework based on Wolpertinger’s

strategy to tackle the dimensionality curse within the

action space, a challenge linked to dynamic antenna

selection and adaptive beamforming when employing

quantized double-phase shifters. The proposed approach

integrates the strengths of both deep Q-network (DQN)

and deep deterministic policy gradient (DDPG) within

the actor–critic networks.

The basic concept of DRL applied to automotive radar trans-

mit beamforming is described in Xu et al.’s work [1]. An

enhanced DRL algorithm along with preliminary simulation

results are presented in Xu et al.’s work [2]. The substantive

novel contributions of this article beyond [1], [2] include the de-

velopment of a comprehensive analysis of communication signal

loading, the development of improved transmit beamforming

algorithms based on optimization, a thorough numerical inves-

tigation including the comparison with a baseline optimization

approach, and an analysis of radar sensing outcomes.

D. Article’s Organization

The rest of this article is organized as follows. In Section II,

we describe the signal model of automotive radar for sensing and

communication and formulate the transmit beamforming design

exploiting sparse arrays and quantized double-phase shifters. In

Section III, we present a DRL-based optimization method for of

transmit beamforming. We validate our models and methods

with extensive numerical simulations in Section IV. Finally,

Section V concludes this article.

Throughout this article, upper case and lower case bold char-

acters denote matrices and vectors, respectively. Matrix vector-

ization operation is denoted by vec(·). The conjugate transpose

and transpose are denoted by (·)H and (·)T , respectively. The

complex values set is C. The notations � and ⊗ denote the

Hadamard product and Kronecker product, respectively.

II. SYSTEM MODEL

We consider a colocated phase-controlled FMCW automotive

DFRC system consisting of a reconfigurable unit uniform linear

transmit array, which means that the transmit array can be

adaptive corresponding to the scenario by enabling or disabling

antennas. The transmit array is used for both radar sensing

and communication functions (see Fig. 1). The communication

information is embedded in the transmitted waveform through

slow-time encoding or a hybrid of fast-time and slow-time

encoding.

A. Automotive Radar

Consider an FMCW automotive radar operating at a central

frequency fc with a bandwidth of B and a pulse duration time

of T . This radar transmits a linear frequency ramp with a pulse

repetition interval Tp. At the mth chirp, the corresponding

uncoded transmitted signal is given by [27]

x(m, t) = rect

(
t−mTp

T

)
ej2π(fct+

1
2
·B
T
t2), (1)

where t is the fast-time with 0 ≤ t ≤ T .

In MIMO radar, the transmitting antennas transmit mutually

orthogonal waveforms; this enables the receiving antenna to

extract the contribution of each transmitting antenna. Consider a

MIMO radar withNT andNR that transmits orthogonal FMCW

waveforms. There are many ways to realize waveform orthog-

onality in an FMCW radar, such as time division, frequency

division, and code division [27].
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Fig. 1. Proposed automotive radar DFRC system diagram in the tracking mode.

By exploiting orthogonality, each receive antenna can extract

the received signal corresponding to each transmitting antenna.

After applying fast Fourier transform (FFT) to the fast-time

samples of each signal, a decoded data matrix is obtained, which

is then subjected to a slow-time FFT. This process results in a

range-Doppler spectrum for a specific transmit–receiver antenna

pair. To extract the angle information corresponding to the pair,

thresholding techniques, such as the constant false alarm rate

algorithm can be used. By following this process, the virtual

array steering vector a ∈ C
NTNR can be given by

a =

K∑

k=1

αk [at(θk)⊗ ar(θk)] , (2)

where at(θk) = [1, ej(2π/λ)d̃21sin(θk), . . . , ej(2π/λ)d̃NT 1
sin(θk)]T

and ar(θk) = [1, ej(2π/λ)d21sin(θk), . . . , ej(2π/λ)dNR1
sin(θk)]T de-

note the transmit and receive steering vectors, respectively. To

establish a common reference point, we define the first element

of each vector as the reference. Several classical techniques exist

for obtaining the angle spectrum from the steering vectors, in-

cluding digital beamforming and compressive sensing (CS) [27].

B. Automotive Radar Sensing and Communication
Design

A moving target-oriented DFRC system with a radar-centered

reconfigurable phased transmitting array isolates moving targets

from static targets such as buildings and trees through the

range-Doppler spectrum of the echo and ego vehicle speed. The

change of the estimated target parameters can guide the system

to automatically adjust the activation and deactivation of the

reconfigurable array and the corresponding beamforming vector.

1) Radar Transmit Beamforming: The radar transmit beam-

pattern is given by [59]

B(θ) = aHt (θ)Wat(θ), (3)

where W ∈ C
NT×NT is the beamforming weight matrix com-

posed with quantized phase terms, expressed as

W = E
[
x(m, t)xH(m, t)

]
= fRFf

H
RF, (4)

where E[·] denotes the statistical expectation, x(m, t) is the

transmit waveform vector for the NT transmit antennas at the

mth chirp and is given by

x(m, t) = x(m, t)ejφmfRF. (5)

Here, φm is the slow-time code at the mth chirp. To perform the

radar sensing function, the analog precoder fRF is designed to

steer the mainlobe to the region of interest (ROI) of the radar.

fRF is controlled by the phase shifters, which can be replaced

by the radar sensing beamformer wr, defined as

wr =
1√
NT

[
ejω1 , ejω2 , . . . , ejωNT

]T
, (6)

where ωi ∈ D for all i ∈ {1, . . . , NT }.
2) Communication Model: Assume that the communication

receiver has an array consisting of Nc elements, and the number

of independent propagation paths (L) is less than NT because

millimeter wave channels have limited scattering [60]. In such

scenarios, the downlink channel matrix is denoted by Hd ∈
C

Nc×NT and can be expressed as follows:

Hd =

√
NTNc

L

L∑

l=1

βlbc(θcl)a
H
t (θtl), (7)

where βl represents the complex path gain for the lth path. In

addition, bc(θcl) and at(θtl) denote the receive and transmit

array steering vectors of the lth path, respectively, for the com-

munication system. The angles of arrival and departure for the lth
path are denoted by θcl and θtl, respectively. The received signal

at the communication receiver can be expressed as follows:

yc(m, t) =
√
ρx(m, t− τc)e

jφmHdfRF + n(n, t), (8)

where ρ denotes the average received power and τc is the delay

between the radar transmitter and the communication receiver.

In the communication mode, fRF is replaced with a beam-

former wc, defined as

wc =
1√
NT

[
ejΩ1 , ejΩ2 , . . . , ejΩNT

]T
, (9)

where Ωi ∈ D for all i ∈ {1, . . . , NT }.

On the receive end of the communication channel, the re-

ceived signal can also be represented as

yc(m, t) =
√
ρx(m, t− τc)e

jφmhlump + n(n, t). (10)
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In this equation, the lump channel information vectorhlump =
HdfRF is present. To estimate the channel information hlump

for the full phase array, beam sounding techniques can be

employed, as described in the prior work [61], [62]. Accurate

synchronization of the signal delay between the sender and

the receiver is necessary to extract communication code from the

received. To achieve time synchronization, global positioning

system (GPS) technology or atomic clock technology can be

used [63], [64], [65]. For example, the pulse-per-second signals

from two GPS modules can achieve a synchronization accuracy

of 60 ns [66]. If the estimated channel hlump matches to hlump,

after passing through the mixer and the low-pass filter, the

received communication signal becomes

yc = ejφm1+ n. (11)

The received reconstructed signal yc can be used to evaluate the

communication performance.

3) Communication Information Embedding: In the phased-

array beamforming mode, each chirp carries a communication

symbol from the binary phase-shift keying constellation, also

known as the slow-time coding method in this article. At the

receive end, the transmitted signal can be extracted using (11).

However, in automotive radar, the number of chirps is typically

limited to several hundreds in order to enable coherent process-

ing of the target object echo, which sets an upper bound on the

communication rate. To increase the communication capacity, a

hybrid-coded method can be adopted, which combines fast-time

and slow-time coding. In this coding scheme, the duration of

each chirp is divided into L short time periods, which are then

encoded as follows. The code sequence forNT transmit antennas

at the mth chirp is given by

xC(m, t)

=

L∑

l=1

ejφl rect

(
t−m(l − 1/2)Tl

Tl

)
ej2π(fct+ 1

2
·B
T
t2+φNT m),

(12)

where Tl = T/L represents the duration of a fast-time chirp.

C. Transmit Beamforming Exploiting Sparse Arrays and
Quantized Double-Phase Shifters

We present the transmit beamforming using sparse arrays with

quantized phase shifters. The combined application of transmit

beamforming and sparse arrays allows for a cost-efficient and ef-

fective system design. As shown in Fig. 1, the transmit antennas

are sparsely selected to form two distinct beams: one directed

toward the radar target and the other toward the communica-

tion user. Concurrently, a null is created in the directions of

the victim radars, functioning to significantly minimize mutual

interference.

1) Antenna Selection: In order to adapt different sparse

transmitting arrays in different scenarios, we designed a recon-

figurable sparse array based on the current radar scenario by

activating a subset of available transmit antennas, and keeping

the rest of the antennas inactive to reduce the power consumption

of the radar system and mutual coupling between the antennas.

A selection matrix denoted asS = [u1,u2, . . . ,uNT
] is defined,

where each column vectorui represents the status of ith antenna.

The ith entry of ui is set to “1” if the antenna is activated, and

“0” otherwise. The length of the transmit array determines the

transmit beam’s width, meaning that a larger aperture size results

in a narrower beamwidth [67]. Therefore, we fix the first and the

last antennas of the array to maintain a consistent array aperture

and select M other antennas in-between, resulting in a total of

M + 2 antennas being activated. As a result, the trace of S,

denoted as tr(S), is M + 2. The first element of u1 and the last

element of uNT
are set to “1,” while all other entries in u1 and

uNT
are set to “0.”

2) Beam Synthesis via Double-Phase Shifters: In a full-

phase array DFRC system, radar sensing and communication

will share the same transmitter array. Therefore, in order to

achieve both functions, the radar sensing beamformerwr and the

communication beamformer wc need to be merged as a single

beamformer w, and this is accomplished using double-phase

shifters. Its working principle relies on each antenna being

connected to a unique RF chain via two phase shifters. The

beamformer can synthesize two main beams, focusing the en-

ergy of the array on the respective directions of interest for the

two functions.

By connecting a pair of phase shifters to each antenna, we in-

troduce more degrees of freedom to shape the beampattern [29].

The hybrid transmit beamformer w is given as

w = c1wr + c2wc

=
1√
Nt

[
c1e

jω1 + c2e
jΩ1 , c1e

jω2 + c2e
jΩ2 , . . .

c1e
jωNT + c2e

jΩNT

]T
, (13)

where c1 ∈ [0, 1] and c2 ∈ [0, 1] with c2
1 + c2

2 = 1 are weight-

ing factors that balance radar sensing and communication

capabilities.

3) Beamforming Optimization Problem Formulation: In

practical applications, however, phase shifters usually apply

a limited number of phase shift angles due to complex

implementation and overhead challenges. At the same time,

in order to reduce the interference of transmitting antennas

to uninteresting targets, additional constraints need to be

introduced to improve the above-mentioned optimization

problem.

In this section, we delve into the intricate process of crafting a

highly optimized transmit beamformer, denoted byw, as well as

an antenna selection matrix, represented by S. To achieve both

radar sensing and communication functions simultaneously,

a common sparse array can be designed using two separate

beamformers, wr for radar and wc for communication [52].

The objective of this design is to ensure that a certain level

of power is maintained toward both the radar targets and the

communication destination. Furthermore, the beamformer must

generate minimal interference toward other directions while

maintaining low peak sidelobe levels. In essence, the problem
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at hand can be formulated as

min
{w,S,α1,α2,α3}

γ1α1 + γ2α2 + γ3α3

s.t.
∣∣wHSa(θr)

∣∣ = p1

∣∣wHSa(θc)
∣∣ = p2

∣∣wHSa(θl)
∣∣ ≤ ρ1 + α1, θl ∈ Θ

∣∣wHSa(θi)
∣∣ ≤ ρ2 + α2

w = c1wr + c2wc

wr,wc ∈ D
∣∣∣θr − θ̂r

∣∣∣ ≤ α3

tr(S) = M + 2. (14)

The coefficient of balance γi denotes the proportion of each part

in the cost function. The sensing direction, departure angle to the

communication user, discretized angle in the sidelobe region,

and direction of an uninterested target are represented by the

variables θr, θc, θl, and θi, respectively. Here, p1 and p2 quantify

the power assigned to the radar target and the communication

user, respectively. WithΘ denoting the sidelobe region,ρ1 andρ2

quantify the peak sidelobe level of beampattern and interference

attenuation, respectively. To make the constraints feasible, we

introduce auxiliary variablesα1 andα2 to relax the constraints on

the specific level of peak sidelobe and interference attenuation,

and their minimum values are 0. Constraintswr andwc force the

value of phase shifters within the range of quantitative values.

The parameter α3 is used to measure the deviation between the

ground truth θr and the actual main beam direction θ̂. The last

constraint ensures that a total of M + 2 antennas are selected.

The joint optimization problem of transmit antenna selection

and beamforming with quantized phase shifters is NP hard.

4) Optimization-Based Solution: A simplified optimization

problem is developed to determine the optimal beamforming

weights by assuming that the selection matrix S of transmit

antennas is already obtained via DRL. Let fd denote the desired

reference beampattern including the mainlobe, sidelobe, and

null-space region constraints specified in problem (14). The new

beampattern synthesis problem is formulated as

min
w

|ASw − fd|

s.t. w = c1wr + c2wc

wr,wc ∈ D. (15)

In this problem, A = [at(θ1),at(θ2), . . . ,at(θK)] ∈ C
NT×K is

a dictionary matrix consisting of discretizing the entire ROI into

K discretized angles with a certain step. The weight vector w

comes from the quantized set D. The fixed sparsity antenna

distribution group sparse optimization (GSO) method is used to

solve the optimum beam vector w. The values of the obtained

phase shifters through GSO can achieve arbitrary high precision.

These values are then quantized to the closest values in the quan-

tized phase shifter set D. The quantization may result in a small

performance loss that will be seen in the numerical part. Further,

when compared to the RL method, the GSO optimization method

lacks the ability to dynamically adjust the beamforming weights

when changes the target’s position changes due to the absence

of a feedback link.

5) Angle Finding Under Sparse Antenna Selection: In the

tracking mode, the transmit beamforming using sparse arrays

through antenna selection enhances the output SNR of both

sensing targets and communication users, while suppressing in-

terference to other automotive radars. For angle finding of radar

targets in the tracking mode, a separate receive antenna array

is required, which is decoupled from the transmit beamforming

design. However, in the sensing mode, the virtual array is synthe-

sized with MIMO radar technology and, therefore, the dynamic

sparse transmit antenna selection would impact the virtual array

beampattern. The challenge of sparse arrays is the high sidelobes

or potential grating lobes. High-resolution algorithms, such as

CS [68] and iterative adaptive approach (IAA) [69], [70], are of

great interest for angle finding, as they help to suppress the high

sidelobes. In addition, CS and IAA work with single snapshot.

To deal with potential grating lobes, usually angle unfolding

technique can be applied with overlapped subarrays [71].

III. TRANSMIT BEAMFORMING DESIGN USING DRL

The transmit beamforming optimization problem is is com-

binatorial, and thus NP hard, requiring an exchaustive search

through a vast number of possible solutions. This means that

the time required to find a solution grows exponentially with

the size of the problem. To alleviate the optimization difficulties

caused by the size explosion, and considering the limited phase

tunability characteristics of practical phase shifters, we adopt a

framework based on DRL to dynamically activate or deactivate

antennas and tune the phase of each activated antennas. The

incorporation of DRL paves the way for intelligent, dynamic

decision-making that is responsive to changes in the system’s

environment.

A. Deep Reinforcement Learning

The problem of sparse array beamforming is to find the

optimal subarray set and the corresponding beamforming matrix

policy. RL utilizes the trail and reward loop to guide the agency

to an optimum solution, making it a powerful tool to solve our

beamforming problem in an intelligent way. RL is a type of

machine learning where an agent learns to make a sequence

of decisions in an environment in order to maximize a reward.

The goal of the agent is to learn a policy, which is a mapping

from states to actions that maximizes the expected cumulative

reward. The mathematical framework of RL can be defined by a

Markov decision process using a tuple (S,A, P,R, γ), where S
is the set of possible states, A is the set of possible actions, P is

the state transition function, which specifies the probability of

transitioning from the current state st to the next state st+1 when

taking action a, andR is the reward function, which specifies the

immediate reward obtained during the transition from state st
to state st+1 when taking action a. In addition, γ is the discount

factor, which determines the importance of future rewards. The

goal of the agent is to learn a policy π(a|s) that maximizes the
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expected cumulative reward [72], [73]

Gt =

∞∑

k=1

γkRt+k+1, (16)

where Gt is the discounted cumulative reward at time step t.
The policy is learned by updating the estimate of the value

functionVπ(s), which is the expected cumulative reward starting

from state s and following policy π. This can be done using the

Bellman equation [73]

Vπ(st)

=
∑

a∈A
π(a|st)

∑

st+1∈S
P (st+1|st, a)[R(st, a, st+1)+γVπ(st+1)].

(17)

DRL is a type of RL that uses deep neural networks to

approximate the optimal policy or value function. This allows

the agent to learn more complex and abstract representations of

the state space, and enables it to generalize to unseen situations.

In DRL, the agent’s policy or value function is represented by a

deep neural network with weights θ. The network takes the state

s as input and outputs the action probabilities or value estimates.

The weights are updated using stochastic gradient descent to

minimize the loss function, which is usually the mean squared er-

ror between the predicted and the actual target values. Popularly

used algorithms used in DRL include Q-learning, state–action–

reward–state–action (SARSA), and actor–critic methods, which

are all based on the idea of using deep neural networks to

approximate the Q-function or policy.

The Q-function is the expected cumulative reward for taking

a certain action a in a certain state s, and following the optimal

policy thereafter [72], [73]. It is expressed mathematically as

Q∗(st, at) = E[Rt+1 + γmaxat+1
Q∗(st+1, at+1)|st, at],

(18)

where at+1 is the next action, andmaxat+1
Q∗(st+1, at+1) is the

maximum expected cumulative reward under the optimal policy

in the next state.

The Q-learning algorithm updates the Q-function iteratively

using the following equation:

Q(st, at) ← Q(st, at)

+ α
[
Rt + γmaxat+1

Q(st+1, at+1)−Q(st, at)
]
, (19)

where α is the learning rate, and the update is performed after

every action is taken by the agent.

SARSA is a similar algorithm that updates the Q-function

using the following equation:

Q(st, at)←Q(st, at)+α [Rt + γQ(st+1, at+1)−Q(st, at)] .
(20)

The update is performed after every action–state pair.

Actor–critic methods combine both the policy-based and

value-based approaches by training two neural networks: one to

approximate the policy and the other to approximate the value

function. The policy network is trained using the policy gradient

method, while the value network is trained using temporal

difference learning or a variant thereof.

The DQN algorithm is a DRL algorithm that combines Q-

learning with a deep neural network to learn the Q-function

in high-dimensional state spaces. The key idea behind DQN is

to use a neural network to approximate the Q-function, which

allows the agent to learn a more accurate representation of the

optimal policy than traditional tabular methods. However, when

the action dimension is high, it becomes difficult to use DQN RL

to find the desired mapping policy. To overcome this challenge,

we use the Wolpertinger policy-based RL framework, which en-

ables us to implement training that is manageable on a timewise

basis. The Wolpertinger policy comprises three basic elements:

an action network, a K-nearest neighbor (KNN) map, and a critic

network. Together, these elements make up the Wolpertinger

policy. The DDPG is used to train the networks [74].

The actor network in DDPG selects an action by mapping

the current state of the environment to a continuous action

space. The output of the actor network is a vector of continuous

action values that can be scaled to fall within a specified range.

Mathematically, the actor network is represented as

â = Actor(s|θµ), (21)

where θµ contains the parameters of the actor network, and

Actor(·) is the function that maps the state to the action. The

action network in DDPG outputs a continuous action value,

which needs to be discretized before it can be used by the

critic network to estimate the Q value. To achieve this, the KNN

algorithm is used to select the K actions (a) in the quantization

interval D that are closest to the continuous action output of the

actor network.

In DDPG, the KNN network is used to select the best action

from the set of actions generated by the actor network. The

KNNs and their associated actions are stored in the KNN map

for use during training and testing. The distance metric d(â, a)
can be defined as the Euclidean distance

d(â, a) = ||â− a||2. (22)

The K actions can be selected as [75]

a =
K

argmin
a∈D

d (â, a) . (23)

These K actions, along with the current state, are then used as

state-action pairs by the critic network to calculate the Q value.

The goal of critic network is to choose the corresponding action

to the maximum Q value, which can be given by

a = argmax
a∈D

Q(s, a|θQ), (24)

where θQ is the parameter set of the critic network.

During training, the actor network learns to maximize the

expected reward obtained by the agent. This is achieved by

adjusting the parameters of the actor network using the policy

gradient method. The policy gradient is computed using the

estimated value of the state–action pair, which is provided by the

critic network. The gradient of the expected reward with respect

to the parameters of the actor network, denoted by ∇θµJ , can
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be written as [74]

∇θµJ ≈ 1

N

N∑

i=1

∇aQ(si, a|θQ)∇θµActor(s |θµ), (25)

where N is the batch size, si is the ith state in the batch, a

is the action selected by the actor network, and Q(si, a|θQ)
is the estimated value of the state-action pair provided by the

critic network. The policy gradient is computed by taking the

gradient of the expected reward with respect to the parameters

of the actor network, θµ, and is used to update the actor network

during training.

In the DDPG algorithm, the target actor and target critic

networks are copies of the original actor and critic networks,

respectively, but with separate sets of parameters [74]. These

target networks are used to generate the target actions and target

Q-values that are needed for updating the original networks. The

update rule for the target actor network parameters is given by

θµ′ = (1 − η)θµ′ + ηθµ, (26)

where θµ′ is the set of parameters for the target actor network

and η is the update rate parameter that controls the rate at which

the target network parameters are updated. Typically, η is set to

a small value such as 0.001. Similarly, the update rule for the

target critic network parameters is given by

θQ
′
= (1 − η)θQ

′
+ ηθQ, (27)

where θQ
′

is the set of parameters for the target critic net-

work. During training, the original actor and critic networks

are updated using the gradient descent algorithm based on the

loss function. However, the target networks are not updated

directly. Rather, their parameters are updated slowly to match the

parameters of the original networks. This introduces a lagging

between the generation of the target actions and Q-values and

the update of the original networks, which can help to improve

the stability and convergence of the learning process.

The critic network is trained using a temporal difference

method [74]. The objective is to minimize the difference between

the estimated value and the actual value of the state–action pair

L(θQ)=E

[
(ri+1 + 1 + γQ(si+1, ai+1|θQ)−Q(si, ai|θQ))2

]
,

(28)

where st+1 is the state at time t+ 1 and at+1 is the action taken

at time t+ 1.

B. Beamforming Design With DRL

In this section, we describe in detail how to use Wolpertinger

policy-based RL framework to optimize transmission beam-

forming for both radar sensing and communication functions

and to avoid interference to specific targets, as shown in (14),

and specific functions of function blocks in Fig. 1.

1) Action Space: We consider a scenario where we must

select M + 2 antennas from a pool of Nt antennas, and both

ends have fixed antennas. The number of potential solutions

for this scenario is Q = CM
Nt−2. Phased array antenna systems

utilize quantized phase shifters, which enable multiple antennas

to direct the transmission or reception of a signal by adjusting

each antenna’s output phase. This technique allows the signal

to be steered in a desired direction without requiring physical

movement of the antenna. Each antenna in a subphase array

is connected to two q-bit quantized phase shifters, which have

a value range of (−π, π). To obtain the optimal value of w,

we must optimize the phase of the phase shifters and the sparse

transmit array geometry. The dimension of the phase adjustment

is RQ·2q×(M−2)
.

2) State: Once an action is taken from the action space, the

state vector s changes and includes the current status of the

transmit array phase shifters. At the ith iteration, the state is

represented as sTi = [w1, w2, . . . , wM+2]i, where each element

corresponds to the status of a specific phase shifter. The acti-

vation or deactivation of a phase shifter represents a change of

one element and is considered as an action taken from the action

space.

3) Hold and Go: After the transmit antenna array emits

power, the receive array processes the received echo signal.

Subsequently, the moving targets within the ROI are analyzed,

and relevant parameters, such as distance, Doppler, and angle,

are extracted. These parameter values are then transmitted to

the module, where they are dynamically adjusted based on the

parameter estimation results obtained from the receive array. In

the hold stage, only one set of phase shifters is explored instead of

two, and a prebeamforming check is performed before inputting

two phase shifters with the desired phase. The columns of

the beamformer recorder matrix Wrc = [wr(θr),wc(θc)] form

the respective beams in the target and communication receiver

directions. The fused beamformerw = 0.5wr(θr) + 0.5wc(θc)
is obtained, assuming c1 = c2 =

√
2/2. To determine whether

the phase of double-phase shifters should be changed, a set of

flags fd is used. It consists of two flag bits. The one-time trigger

flag bit fd1 detects the dimension of matrix Wrc, and once the

dimension satisfies the two columns, the holding phase ends and

external environment interaction begins. Another flag bit fd2

indicates whether Wrc changes and, if so, updates the reward.

4) Environment Interaction: The feedback component of RL

is critical, making it superior to other machine learning methods

for control applications. In the design of beamforming, radar

sensing beam feedback consists of two components. First, the

self-detection of beam directivity using the fusion beamforming

vector w allows the agent’s behavior to be adjusted by observ-

ing deviations between the obtained target and the set target

through beampattern transformation. Second, the range-Doppler

spectrum constructed from radar sensing echoes provides feed-

back to compare deviations with expectations and adjust the

agent’s actions. Similarly, interactive feedback for communi-

cation beamforming has two components. The first component

is feedback for deviations in fusion weighting in the direction

of the target, and the second component adjusts the agent’s

actions based on feedback from the communication channel.

For the interaction of targets that need to avoid interference, the

corresponding position of null in the transmit beampattern is fed

back simultaneously and immediately.

5) Reward: We design a comprehensive reward system that

dynamically evaluates the actions chosen by the agent. This
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system guides the agent toward selecting the most appropriate

action to maximize its rewards. The rewards are based on three

evaluations: radar sensing, communication, and interference

reduction. Together, these evaluations enable the agent to make

informed decisions. Assume that the ROI for radar sensing

covers an angle of−θROI/2 to θROI/2, and the 3 dB beamwidth

is determined by the formula∆θ = 2arcsin(1.4λ/(πD)), where

D is the physical aperture size of the transmit antenna array.

The area beyond the first nulls of the mainlobe is referred to as

the sidelobe region. At each update, the difference between the

maximum level of the mainlobe peak max(PROI,i) and the peak

sidelobe level max(PSLi) is denoted by ξi = max(PROI,i)−
max(PSLi). The main beam deviation is calculated using the

values of ξ and dr to ensure that the main beam is directed toward

directions while minimizing the peak sidelobe level. The reward

is given by

rri =

⎧
⎪⎨
⎪⎩

1, if ξi > ξi−1 and dri ≤ dri−1

−1, if ξi ≤ ξi−1 and dri > dri−1

0, other cases.

(29)

To evaluate communication performance, the received gain is

usually represented by the expression gc = |Hw|2. Assuming

that the channel parameters have been estimated, the communi-

cation reward can be expressed as follows:

rci =

⎧
⎪⎨
⎪⎩

1, if gci > gci−1

0, if gci = gci−1

−1, if gci < gci−1.

(30)

This dynamic gain will be reported to the automotive radar by

the communication user through an uplink channel.

To prevent interference with other automotive radar systems,

it is important that the synthesized beamformer produces a null

in the direction of departure θi. The level of attenuation can

be calculated using the formula p = |wHa(θi)|, where w is

the weight vector and a(θi) is the array response vector in the

direction θi. The reward for minimizing interference at the ith
update can be given by

rpi
=

⎧
⎨
⎩

1, if pi < pi−1

0, if pi = pi−1

−1, if pi > pi−1.
(31)

The final triple reward ri at the ith update is expressed as

ri = λ1rri + λ2rci + λ3rpi , (32)

where λ1, λ2, and λ3 represent the respective weights trading off

between the radar and communication functions, and interfer-

ence attenuation.

The pseudocode of DRL-based automotive DFRC using

Wolpertinger policy is given by Algorithm 1.

C. Computational Complexity Analysis

The action space in the DRL system grows exponentially with

the increasing number of antennas and quantized phase values,

which can make the computational cost of exploring and learning

the optimal policy prohibitively high. To address this challenge,

Algorithm 1: DRL-Based Automotive Radar DFRC Sys-

tem.

1: Initialize networks with corresponding parameters.

2: HOLD = TRUE, fd1 = 0; fd2 = 0.

3: Initialize ξ0 = 0, dr0 = 1, gc0 = 0, p0 = 1.

4: Initial sample a random beamforming vector wrc1 as

initial state s1 and record action a1.

5: for i = 1 to T do

6: Receive proto-action âi from actor network.

7: Action embedding g(âi) through KNN mapping.

8: while HOLD do

9: Update Wrc1.

10: fd1 = column(Wrc).

11: if fd1 == 2 then

12: HOLD = FALSE.

13: Execute action w1 passed from critic network.

14: Calculate reward and update state si+1 = ai.
15: Update ξ1, dr1, gc1 and p1.

16: end if

17: end while

18: Update Wrci.

19: if Wrci 
= Wrci−1 then

20: Execute action wi passed from critic network.

21: Calculate reward and update state si+1 = ai.
22: Update ξi, dri, gci and pi.
23: Update all networks.

24: end if

25: end for

the KNN block is introduced to ensure that the computational

cost of the entire system remains tractable at each state. The

Wolpertinger policy scales linearly with the number of selected

actions, k. According to Lemma 1 in Dulac-Arnold et al.’s work

[76], the expected value of the maximum of the k closest actions

is

E

[
max

i∈1,...,k
Q(s, â)|s, â

]
= Q(s, a) + b− pk(c− b)

− 2b

k + 1

1 − pk+1

1 − p
.

Given â, each nearby action has a probability p of being sub-

optimal or faulty, resulting in a value lower than Q(s, â)− c.
The values of the other actions are uniformly distributed within

the interval [Q(s, â)− b,Q(s, â) + b], where b ≤ c. The mi-

nus part −pk(c− b)− 2b
k+1

1−pk+1

1−p lowers the expected value

to below Q(s, a) + b, with changes governed by O(pk) and

O
(

1
k+1

)
. This significantly reduces the expected value, but

the diminishing returns become apparent as k increases. For

applications with low dimensionality, using 5% or 10% of the

maximum number of actions performs similarly to that using

the full action set A. However, even when considering 5%

of a large set A, the number of actions to evaluate at each

step remains considerable. Fortunately, when the action space

dimension is large, a single lookup is sufficient. For example, in

Dulac-Arnold et al.’s work [76], with an action space dimension
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TABLE I
RADAR PARAMETERS

of n = 20, using k = 1 ensures the convergence of the DRL.

In our system, we use a single look-up k = 1 to expedite the

action–critic process. Specifically, given an â, we only evaluate

the nearest action in A. This approach is low-cost, efficient, and

effectively addresses the curse of dimensionality in the action

space.

The computational complexity of the proposal DRL-based

beamforming approach can be analyzed in terms of the number

of neural networks parameters that need to be stored CP , addi-

tions CA and multiplications CM . The actor and critical networks

have a similar structure, which takes the input dimensionNs and

passes it through two hidden layers with the number of neurons

denoting as N1 and N2. The softplus and tanh functions are

used for the first and second hidden layers separately, and a batch

norm is implemented from layer to layer. Bias are assigned to the

hidden layers and the output layer. The computation complexity

of the proposed DRL is considered from the parameters to be

stored CP , the addition operation CA, and the multiplication

CM . The activation function cost is considered as addition, and

the cost of the batch norm is counted to multiplication. Taking

the actor-network as an example, the bundle of computation

complexity is given by

CP = NsN1 +N1N2 +N2Ns +N1 +N2 +Ns

CM = NsN1 +N1N2 +N2Ns +N1 +N2

CA = NsN1 +N1N2 +N2Ns + 2(N1 +N2 +Ns).

Considering the target and evaluation networks of actor-critic

networks, the total complexity is C = 4(CP + CM + CA).

IV. NUMERICAL RESULTS

We carry out numerical simulations to evaluate the perfor-

mance of the proposed DRL assisted automotive DFRC sys-

tem. An FMCW MIMO radar with phase-modulated slow-time

waveforms features 15 transmit and 15 receive antennas with a

half wavelength inter element spacing and its setting is given in

Table I. The normalized spatial frequency of the half FOV of the

array is set to 0.7, which corresponds to a half angle of the ROI,

denoted by θROI/2, of 44.2◦. The 3 dB beamwidth, denoted by

∆f , is 0.119, which corresponds to a half angle, denoted by ∆θ,

of 6.81◦.

To enable radar sensing and communication for specific pur-

poses, the first crucial step is to estimate the target parameters

within the radar’s FOV using the searching mode. In this mode,

following data processing, the resulting data spectrum can be

Fig. 2. Estimated target parameters in the searching mode. (a) Range-
Doppler spectrum. (b) Range-angle spectrum. The red × denotes the
actual positions of the targets.

TABLE II
HYPERPARAMETERS FOR TRAINING

visualized in Fig. 2. There are three objects in the FOV of the

radar, including a tracking target with range r1 = 25 m, v1 =
−20 m/s, θ1 = −23.6◦, a communication user with r2 = 25 m,

v2 = 10 m/s, θ2 = −5.7◦, and a potential interference radar with

r3 = 20 m, v3 = 35 m/s, and θ3 = 14.4◦. The reflection coeffi-

cients of the three objects are normalized to α1 = α3 = 1.0, and

α2 = 0.3 and are assumed to be unchanged during the processing

interval. The input SNR is set to 0 dB.

For the learning model, we use the hyperparameters, as

described in Table II. All networks are trained on a Lambda

machine with an Intel Core i9-10920X CPU and four Nvidia

Quadro RTX 6000 GPUs.

A. Performance Under Antenna Selection

We choose 12 antennas from 15 antennas to form the final

transmission array, as shown in Fig. 3. There are 455 possible

selection schemes. Each antenna is connected to a 3-bit quanti-

zation double-phase shifter.

The antenna selection process is depicted in Fig. 3(a) and (b).

In addition, Fig. 4 shows the average reward attained during

the training process. After approximately 60 epochs, the net-

work intelligently adjusts the phases to steer the main beam to
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Fig. 3. (a) Transmit array configuration in the initial phase. (b) Transmit
array configuration after optimization.

Fig. 4. Reward during training.

Fig. 5. (a) Transmit beamforming in the initial phase. (b) Transmit
beamforming after optimization with DRL and GSO, where ground truth
directions are indicated in red dash lines.

the ROI based on the current observation state. In the 100th

episode, the tracking target, the communication target, and the

direction that requires nulling change. At this time, the reward

drops sharply due to the loss of target. However, the perception

information updates the hold and go module, and, therefore,

RL is able to quickly adjust the transmit beamforming and

reconfigure antenna locations. Fig. 5(a) illustrates that at the

Fig. 6. DRL optimized transmit beamforming in sparse phased array
with quantized phase shifters under different assigned power coeffi-
cients to radar radiation.

outset of the iterative optimization, two beams are generated

in the directions of the radar target and the communication

receiver, but with a high sidelobe level in the undesired di-

rection. After optimization, the sidelobe level is substantially

reduced, effectively attenuating the interference to the specific

automotive radar. Compared with DRL-optimized and GSO-

optimized transmit beamforming in Fig. 5, it can be seen that

the energy of communication and tracking direction optimized

by DRL is more balanced and the sidelobes are reduced. Fig. 6

explores the impact of power allocation coefficients. Initially, the

radar radiation power coefficient c1 for the ROI was set to 0.1.

Subsequently, the power was increased to c1 = 0.5. Notably,

power coefficients serve as effective tools for regulating the

radiation pattern through the assignment of power to distinct

functions.

B. Sensing Performance Evaluation

In phase array mode, once the emission beampattern of the

fully phased array has been determined by the DRL, further

adjustments can be made based on the interaction of the radar

echo spectrum with the DRL agent. As depicted in the Fig. 7,

after receiving the energy radiated by the antenna array, the

radar’s receiving antenna array processes the echo from the tar-

get. Because of the directionality of the transmitted beampattern,

the echo of the target of no interest with a higher reflection

coefficient is reduced and the communication target with a

lower reflection coefficient is enhanced. Simultaneously, the

range-angle spectrum shows that the target in the null position

can no longer stand out in the spectrum, unlike in Fig. 2(b). In

addition, due to the characteristics of the phase-controlled array,

the angle resolution is also compromised relative to the MIMO

radar mode.

C. Communication Performance Evaluation

We assess the performance of the communication function by

evaluating the bit error rate (BER).

Fig. 8 illustrates the BER variation trend with respect to the

input SNR for two coding modes, where the number of chirps

is set to M = 512, the number of receive antennas at the user

end is set to 1, and the hybrid coding mode employs L = 400
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Fig. 7. Target parameters estimation in phased array sensing mode.
(a) Range-Doppler spectrum. (b) Range-angle spectrum. The red mark
× denotes the actual positions of the targets.

Fig. 8. BER versus SNR with binary phase-coded communication
symbol along slow-time (a) and hybrid (b).

time samples. Monte Carlo simulations were run for 10 000

rounds at each SNR scenario. As seen in the plot, when the input

SNR exceeds 10 dB, the BER drops to 10−6. Hybrid coding

exhibits enhanced transmission efficiency compared to slow-

time coding.

Fig. 9. Transmit beamforming of a uniform phased array with quan-
tized phase shifters.

D. Comparison With Optimization Methods

The comparison between the proposed and traditional opti-

mization methods is of a significant value, and we select the

modified beampattern synthesis method of relaxation optimiza-

tion as the baseline method [77].

In the case of optimizing the beam vector of a ULA array,

Fig. 9 shows the optimized beam vector of a ULA array, where

one can see that both the DRL and traditional optimization

methods achieve the desired beampattern. The positions of the

two mainlobes appear in the preset directions. However, due

to the quantization requirements, the mainlobe may have a

slight deviation, which falls within the control range of α3.

While the deepest position of the DRL-optimized null may

slightly differ from the expected direction, it still ensures the

lowest possible transmission power in the direction of the de-

sired target. The optimal phase values yielded by the GSO

algorithm have arbitrary high precision. These high precision

phase values are quantized to the nearest discretized phase

values. The phase quantization results in a small performance

loss as compared with the DRL solution. In the optimization of

the sparse transmission array w, as illustrated in Fig. 5, both

the DRL method and the traditional optimization method can

accurately align the transmission mainlobe’s direction with the

radar sensing target and communication receiver. However, the

DRL method has a better beampattern synthesis performance

compared to the optimization method, while both approaches

can effectively regulate the radiation power in the null direc-

tion. Overall, the results indicate that the DRL method out-

performs the relaxed optimization method in terms of sidelobe

control.

V. CONCLUSION

We presented an innovative DRL framework, inspired by

the Wolpertinger’s strategy, for the development of intelligent

automotive radar DFRC systems. This framework is designed

to optimize antenna distribution and accurately calibrate the

quantized phase of low-bit double-phase shifters. Unlike tra-

ditional single phase shifters, the use of double-phase shifters in

the proposed system allows for concurrent tracking of targets,

enhancing communication capabilities, and reducing interfer-

ence in undesired directions. This approach is particularly adept
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at navigating high-dimensional action spaces without requiring

exhaustive action searches. In terms of communication with

objects, both slow-time coding and hybrid coding methods have

shown promising results. However, hybrid coding stands out

in improving communication reliability. The proposed method

surpasses the conventional relaxed optimization technique in

effectively tuning the transmission matrix. It aligns the main-

lobes precisely with the directions of radar sensing and commu-

nication users, while concurrently pointing nulls to the victim

radars. Simulation results validated the feasibility and efficiency

of our proposed approach, marking a significant advancement

in automotive radar DFRC systems. While DRL-based recon-

figurable beamforming for automotive radar sensing and com-

munication is promising, several challenges remain. One critical

area for improvement is enhancing the robustness of DRL-based

beamforming systems against environmental variations, such as

multipath reflections caused by surrounding objects. Another

key challenge lies in achieving real-time processing and compu-

tational efficiency when implementing DRL-based beamform-

ing on automotive radar hardware with limited computational

resources.

REFERENCES

[1] L. Xu, R. Zheng, and S. Sun, “A deep reinforcement learning approach for
integrated automotive radar sensing and communication,” in Proc. IEEE

Sensor Array Multichannel Signal Process. Workshop (SAM), Trondheim,
Norway, 2022, pp. 316–320.

[2] L. Xu, S. Sun, Y. D. Zhang, and A. P. Petropulu, “Joint antenna selection
and beamforming in integrated automotive radar sensing-communications
with quantized double phase shifters,” in Proc. IEEE 48th Int. Conf.

Acoust., Speech, Signal Process. (ICASSP), Rhodes Island, Greece, 2023,
pp. 1–5.

[3] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing vehicle-to-
everything (V2X) communication platforms,” IEEE Trans. Intell. Veh.,
vol. 5, no. 4, pp. 693–713, Dec. 2020.

[4] S. Chen et al., “Vehicle-to-everything (V2X) services supported by LTE-
based systems and 5G,” IEEE Commun. Stand. Mag., vol. 1, no. 2,
pp. 70–76, Jul. 2017.

[5] S. D. Blunt, P. Yatham, and J. Stiles, “Intrapulse radar-embedded
communications,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 3,
pp. 1185–1200, Jul. 2010.

[6] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds
on performance of radar and communications co-existence,” IEEE Trans.

Signal Process., vol. 64, no. 2, pp. 464–474, Jan. 2016.
[7] B. Li, A. P. Petropulu, and W. Trappe, “Optimum co-design for spectrum

sharing between matrix completion based MIMO radars and a MIMO
communication system,” IEEE Trans. Signal Process., vol. 64, no. 17,
pp. 4562–4575, Sep. 2016.

[8] B. Li and A. P. Petropulu, “Joint transmit designs for coexistence of MIMO
wireless communications and sparse sensing radars in clutter,” IEEE Trans.

Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2846–2864, Dec. 2017.
[9] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications con-

vergence: Coexistence, cooperation, and co-design,” IEEE Trans. Cogn.

Commun. Netw., vol. 3, no. 1, pp. 1–12, Mar. 2017.
[10] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-

ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279,
Aug. 2018.

[11] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Signaling
strategies for dual-function radar communications: An overview,” IEEE

Aerosp. Electron. Syst. Mag., vol. 31, no. 10, pp. 36–45, Oct. 2016.
[12] P. M. McCormick, S. D. Blunt, and J. G. Metcalf, “Simultaneous radar

and communications emissions from a common aperture, part I: Theory,”
in Proc. IEEE Radar Conf. (RadarConf), 2017, pp. 1685–1690.

[13] P. Kumari, J. Choi, N. Gonzalez-Prelcic, and R. W. Heath, “IEEE 802.11ad-
based radar: An approach to joint vehicular communication-radar system,”
IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027, Apr. 2018.

[14] L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication
coexistence: An overview: A review of recent methods,” IEEE Signal

Process. Mag., vol. 36, no. 5, pp. 85–99, Sep. 2019.
[15] K. V. Mishra, M. R. B. Shankar, V. Koivunen, B. Ottersten, and S.

A. Vorobyov, “Toward millimeter-wave joint radar communications: A
signal processing perspective,” IEEE Signal Process. Mag., vol. 36, no. 5,
pp. 100–114, Sep. 2019.

[16] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint
radar and communication design: Applications, state-of-the-art, and the
road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862,
Jun. 2020.

[17] D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “Joint radar-
communication strategies for autonomous vehicles: Combining two key
automotive technologies,” IEEE Signal Process. Mag., vol. 37, no. 4,
pp. 85–97, Jul. 2020.

[18] D. Ma, T. Huang, N. Shlezinger, Y. Liu, X. Wang, and Y. C. Eldar,
“A DFRC system based on multi-carrier agile FMCW MIMO radar for
vehicular applications,” in 2020 IEEE Int. Conf. Commun. Workshops (ICC

Workshops), Dublin, Ireland, 2020, pp. 1–7.
[19] J. A. Zhang et al., “An overview of signal processing techniques for joint

communication and radar sensing,” IEEE J. Sel. Topics Signal Process.,
vol. 15, no. 6, pp. 1295–1315, Nov. 2021.

[20] M. F. Keskin, H. Wymeersch, and V. Koivunen, “MIMO-OFDM joint
radar-communications: Is ICI friend or foe?,” IEEE J. Sel. Topics Signal

Process., vol. 15, no. 6, pp. 1393–1408, Nov. 2021.
[21] J. Pritzker, J. Ward, and Y. C. Eldar, “Transmit precoder design

approaches for dual-function radar-communication systems,” 2022,
arXiv:2203.09571.

[22] J. A. Zhang, K. Wu, X. Huang, Y. J. Guo, D. Zhang, and R. W.
Heath, “Integration of radar sensing into communications with asyn-
chronous transceivers,” IEEE Commun. Mag., vol. 60, no. 11, pp. 106–112,
Nov. 2022.

[23] X. Wang, W. Zhai, X. Zhang, X. Wang, and M. G. Amin, “Enhanced
automotive sensing assisted by joint communication and cognitive sparse
MIMO radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 5,
pp. 4782–4799, Oct. 2023.

[24] S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous ve-
hicles: A sparsity-oriented approach,” IEEE J. Sel. Topics Signal Process.,
vol. 15, no. 4, pp. 879–891, Jun. 2021.

[25] Texas Instruments Inc., “Design guide: TIDEP-01012 imaging radar us-
ing cascaded mmWave sensor reference design (REV. A),” Mar. 2020.
[Online]. Available: https://www.ti.com/lit/ug/tiduen5a/tiduen5a.pdf

[26] S. Alland, W. Stark, M. Ali, and A. Hedge, “Interference in automotive
radar systems: Characteristics, mitigation techniques, and future research,”
IEEE Signal Process. Mag., vol. 36, no. 5, pp. 45–59, Sep. 2019.

[27] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced driver-
assistance systems and autonomous driving: Advantages and challenges,”
IEEE Signal Process. Mag., vol. 37, no. 4, pp. 98–117, Jul. 2020.

[28] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal

Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.
[29] Z. Xu and A. P. Petropulu, “Phased array with improved beamforming

capability via use of double phase shifters,” in Proc. IEEE Sensor Ar-

ray Multichannel Signal Process. Workshop (SAM), Trondheim, Norway,
2022, pp. 66–70.

[30] Z. Cheng, L. Wu, B. Wang, M. B. Shankar, and B. Ottersten, “Double-
phase-shifter based hybrid beamforming for mmWave DFRC in the pres-
ence of extended target and clutters,” IEEE Trans. Wireless Commun.,
vol. 22, no. 6, pp. 3671–3686, Jun. 2023.

[31] X. Wang, E. Aboutanios, M. Trinkle, and M. G. Amin, “Reconfigurable
adaptive array beamforming by antenna selection,” IEEE Trans. Signal

Process., vol. 62, no. 9, pp. 2385–2396, May 2014.
[32] X. Wang, A. Hassanien, and M. G. Amin, “Dual-function MIMO radar

communications system design via sparse array optimization,” IEEE

Trans. Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1213–1226, Jun. 2019.
[33] A. Ahmed, S. Zhang, and Y. D. Zhang, “Antenna selection strategy for

transmit beamforming-based joint radar-communication system,” Digit.

Signal Process., vol. 105, no. 102768, pp. 1–11, 2020.
[34] H. Huang, L. Wu, B. Shankar, and A. M. Zoubir, “Sparse array design for

dual-function radar-communications system,” IEEE Commun. Lett., vol.
27, no. 5, pp. 1412–1416, May 2023.

[35] S. Evmorfos, Z. Xu, and A. Petropulu, “Gflownets for sensor selection,”
in Proc. 2023 IEEE 33rd Int. Workshop Mach. Learn. Signal Process.

(MLSP), 2023, pp. 1–6.
[36] S. Evmorfos, Z. Xu, and A. Petropulu, “Sensor selection via GFlowNets:

A deep generative modeling framework to navigate combinatorial com-
plexity,” 2024, arXiv:2407.19736.



XU et al.: RECONFIGURABLE BEAMFORMING FOR AUTOMOTIVE RADAR SENSING AND COMMUNICATION: A DRL APPROACH 137

[37] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Process Mag, vol. 34,
no. 6, pp. 26–38, Nov. 2017.

[38] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function
radar-communications: Information embedding using sidelobe control
and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2168–2181, Apr. 2016.

[39] A. Hassanien, “Phase-modulation based dual-function radar-
communications,” IET Radar, Sonar Navigation, vol. 10, no. 8,
pp. 1411–1421, 2016.

[40] W. Baxter, E. Aboutanios, and A. Hassanien, “Joint radar and communica-
tions for frequency-hopped MIMO systems,” IEEE Trans. Signal Process.,
vol. 70, pp. 729–742, 2022.

[41] Z. Xu, A. Petropulu, and S. Sun, “A joint design of MIMO-OFDM
dual-function radar communication system using generalized spatial mod-
ulation,” in Proc. IEEE Radar Conf., 2020, pp. 1–6.

[42] T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “MAJoRCom:
A dual-function radar communication system using index modulation,”
IEEE Trans. Signal Process., vol. 68, pp. 3423–3438, May 2020.

[43] C. B. Barneto et al., “Full-duplex OFDM radar with LTE and 5G NR
waveforms: Challenges, solutions, and measurements,” IEEE Trans. Mi-

crow. Theory Tech., vol. 67, no. 10, pp. 4042–4054, Oct. 2019.
[44] S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, and M. Valkama,

“Optimized waveforms for 5G–6G communication with sensing: Theory,
simulations and experiments,” IEEE Trans. Wireless Commun., vol. 20,
no. 12, pp. 8301–8315, Dec. 2021.

[45] M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward
waveform design for OFDM dual-functional radar-communications,”
IEEE Trans. Signal Process., vol. 69, pp. 2955–2970, Apr. 2021.

[46] P. Kumari, S. A. Vorobyov, and R. W. Heath, “Adaptive virtual waveform
design for millimeter-wave joint communication–radar,” IEEE Trans.

Signal Process., vol. 68, pp. 715–730, Nov. 2020.
[47] S. H. Dokhanchi, M. B. Shankar, M. Alaee-Kerahroodi, and B. Ottersten,

“Adaptive waveform design for automotive joint radar-communication
systems,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4273–4290,
May 2021.

[48] Z. Xu and A. Petropulu, “A bandwidth efficient dual-function radar com-
munication system based on a MIMO radar using OFDM waveforms,”
IEEE Trans. Signal Process., vol. 71, pp. 401–416, 2023.

[49] Z. Zhang, Q. Chang, J. Xing, and L. Chen, “Deep-learning methods
for integrated sensing and communication in vehicular networks,” Veh.

Commun., vol. 40, 2023, Art. no. 100574.
[50] W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, and N. Gonzalez-

Prelcic, “Bayesian predictive beamforming for vehicular networks: A
low-overhead joint radar-communication approach,” IEEE Trans. Wireless

Commun., vol. 20, no. 3, pp. 1442–1456, Mar. 2021.
[51] X. Zhang, X. Wang, H. So, A. M. Zoubir, J. A. Zhang, and Y. J. Guo,

“Transmit waveform design for integrated wideband mimo radar and bi-
directional communications,” IEEE Trans. Veh. Technol., early access, Apr.
12, 2024, doi: 10.1109/TVT.2024.3386755.

[52] X. Wang, A. Hassanien, and M. G. Amin, “Sparse transmit array design for
dual-function radar communications by antenna selection,” Digit. Signal

Process., vol. 83, pp. 223–234, 2018.
[53] J. Huang, X. Zhang, X. Wang, and A. M. Zoubir, “Transmit sparse array

beamformer design for dual-function radar communication systems,” in
Proc. IEEE Int. Radar Conf. (RADAR), 2023, pp. 1–6.

[54] X. Zhang, X. Wang, J. Huang, and H. C. So, “Joint design of antenna
selection and transmit linear array beamformer for integrated radar and
communications,” Digit. Signal Process., vol. 144, 2024, Art. no. 104281.

[55] A. M. Elbir, K. V. Mishra, S. Chatzinotas, and M. Bennis, “Terahertz-band
integrated sensing and communications: Challenges and opportunities,”
2022, arXiv:2208.01235.

[56] Y. Zhang, T. Osman, and A. Alkhateeb, “Online beam learning with
interference nulling for millimeter wave MIMO systems,” IEEE Trans.

Wireless Commun., vol. 23, no. 5, pp. 5109–5124, May 2024.
[57] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Reinforcement learning of

beam codebooks in millimeter wave and terahertz MIMO systems,” IEEE

Trans. Commun., vol. 70, no. 2, pp. 904–919, Feb. 2022.
[58] J. D. Wit, W. V. Rossum, and A. D. Jong, “Orthogonal waveforms for

FMCW MIMO radar,” in Proc. 2011 IEEE Radar Conf. (RadarConf),
Kansas City, MO, 2011, pp. 686–691.

[59] R. Rajamäki, S. P. Chepuri, and V. Koivunen, “Hybrid beamforming for
active sensing using sparse arrays,” IEEE Trans. Signal Process., vol. 68,
pp. 6402–6417, Oct. 2020.

[60] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband
systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.

[61] K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “Frequency-hopping MIMO
radar-based communications: An overview,” IEEE Aerosp. Electron. Syst.

Mag., vol. 37, no. 4, pp. 42–54, Apr. 2022.
[62] L. Huang, Y. Zhang, Q. Li, and J. Song, “Phased array radar-based

channel modeling and sparse channel estimation for an integrated radar
and communication system,” IEEE Access, vol. 5, pp. 15468–15477, Aug.
2017.

[63] F. Lyu et al., “Characterizing urban vehicle-to-vehicle communications
for reliable safety applications,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 6, pp. 2586–2602, Jun. 2020.

[64] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
synchronization in wireless networks,” IEEE Signal Process. Mag., vol. 25,
no. 5, pp. 81–97, Sep. 2008.

[65] S. Sedighi, K. V. Mishra, M. R. B. Shankar, and B. Ottersten, “Localization
with one-bit passive radars in narrowband internet-of-things using multi-
variate polynomial optimization,” IEEE Trans. Signal Process., vol. 69,
pp. 2525–2540, Apr. 2021.

[66] F. Lampel et al., “System level synchronization of phase-coded FMCW
automotive radars for RadCom,” in Proc. Eur. Conf. Antennas Propag.

(EuCAP), Copenhagen, Denmark, 2020, pp. 1–5.
[67] R. H. DuHamel, “Optimum patterns for endfire arrays,” Proc. IRE,

vol. JPROC-41, no. 5, pp. 652–659, May 1953.
[68] E. J. Candès and T. Tao, “The Dantzig selector: Statistical estimation when

p is much larger thann,” Ann. Statist., vol. 35, no. 6, pp. 2313–2351, 2007.
[69] W. Roberts, P. Stoica, J. Li, T. Yardibi, and F. Sadjadi, “Iterative adaptive

approaches to MIMO radar imaging,” IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 1, pp. 5–20, Feb. 2010.

[70] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. Baggeroer, “Source localiza-
tion and sensing: A nonparametric iterative adaptive approach based on
weighted least squares,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 1,
pp. 425–443, Jan. 2010.

[71] L. Xu and S. Sun, “Coprime visible regions assisted angle unfolding for
sparse esprit,” in Proc. 2023 IEEE Radar Conf. (RadarConf23), 2023,
pp. 1–6.

[72] M. A. Wiering and M. V. Otterlo, “Reinforcement learning,” Adaptat.,

Learn., Optim., vol. 12, no. 3, 2012, Art. no. 729.
[73] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[74] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-

ing,” 2015, arXiv:1509.02971.
[75] M. Alrabeiah, Y. Zhang, and A. Alkhateeb, “Neural networks based

beam codebooks: Learning mmWave massive MIMO beams that adapt
to deployment and hardware,” IEEE Trans. Commun., vol. 70, no. 6,
pp. 3818–3833, Jun. 2022.

[76] G. Dulac-Arnold et al., “Deep reinforcement learning in large discrete
action spaces,” 2015, arXiv:1512.07679.

[77] X. Wang, E. Aboutanios, and M. G. Amin, “Thinned array beampattern
synthesis by iterative soft-thresholding-based optimization algorithms,”
IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6102–6113, Dec. 2014.

Lifan Xu (Graduate Student Member, IEEE) re-
ceived the B.S. degree from Shihezi University,
Shihezi, China, in 2016, and the M.S. degree
from the Chinese Academy of Sciences, Beijing,
China, in 2019, both in electrical engineering.
He is currently working toward the Ph.D. de-
gree with the Department of Electrical and Com-
puter Engineering, The University of Alabama,
Tuscaloosa, AL, USA.

In the summers of 2021, 2023, and 2024,
he interned at NXP Semiconductors, San Jose,

CA, USA. His research interests include automotive radar, radar signal
processing, MIMO radar with sparse sensing, and machine learning.

Mr. Xu was the recipient of 2020–2021 Graduate Council Fellowship
from The University of Alabama, and Student Travel Grant to attend the
2024 IEEE Sensor Array and Multichannel Signal Processing Workshop
(SAM) in Corvallis, OR, USA.



138 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

Shunqiao Sun (Senior Member, IEEE) received
the Ph.D. degree in electrical and computer en-
gineering from Rutgers, The State University of
New Jersey, New Brunswick, NJ, USA, in 2016.

From 2016 to 2019, he was with the Radar
Core Team of Aptiv, Technical Center Malibu,
Malibu, CA, USA, where he has worked on ad-
vanced radar signal processing and machine
learning algorithms for self-driving vehicles and
lead the development of direction-of-arrival es-
timation techniques for next-generation short-

range radar sensor, which has been used in more than 120-million
automotive radar units. In 2019, he was a tenure-track Assistant Profes-
sor with the Department of Electrical and Computer Engineering, The
University of Alabama, Tuscaloosa, AL, USA. His research interests
include the interface of statistical and sparse signal processing with
mathematical optimizations, automotive radar, MIMO radar, machine
learning, and smart sensing for autonomous vehicles.

Dr. Sun was the recipient of the 2016 IEEE Aerospace and Electronics
Systems Society (AESS) Robert T. Hill Best Dissertation Award for his
thesis “MIMO radar with Sparse Sensing.” He authored a paper that
won the Best Student Paper Award at 2020 IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM). He was the recipient
of the U.S. National Science Foundation (NSF) CAREER Award (2024)
and CRII Award (2022). He is an Elected Member of IEEE Sensor Array
and Multichannel (SAM) Technical Committee (2024–2026). He is Vice
Chair of IEEE Signal Processing Society (SPS) Autonomous Systems
Initiative (ASI) Steering Committee (2023–2024). He has co-organized
the first and second Workshop on Signal Processing for Autonomous
Systems (SPAS) at International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) 2023 in Rhodes, Greece, and ICASSP
2024 in Seoul, South Korea, respectively. He has co-organized a dozen
special sessions on automotive radar signal processing, machine learn-
ing and sparse arrays at IEEE SPS and AESS flagship conferences. He
is an Associate Editor for IEEE SIGNAL PROCESSING LETTERS and IEEE
OPEN JOURNAL OF SIGNAL PROCESSING.

Yimin D. Zhang (Fellow, IEEE) received the
Ph.D. degree in applied physics from the Uni-
versity of Tsukuba, Tsukuba, Japan, in 1988.

He is currently an Associate Professor with
the Department of Electrical and Computer
Engineering, Temple University, Philadelphia,
PA, USA. His research interests include ar-
ray signal processing, compressive sensing,
machine learning, convex optimization, and
time–frequency analysis with applications to
radar, wireless communications, and satellite

navigation.
Dr. Zhang is a Senior Area Editor for IEEE TRANSACTIONS ON SIGNAL

PROCESSING and an Associate Editor for Signal Processing. He was
an Associate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING,
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, IEEE
SIGNAL PROCESSING LETTERS, and Journal of the Franklin Institute. He
was a Technical Co-Chair of the 2018 IEEE Sensor Array and Mul-
tichannel Signal Processing Workshop. He was the recipient of the
2016 IET Radar, Sonar and Navigation Premium Award, the 2017 IEEE
Aerospace and Electronic Systems Society Harry Rowe Mimno Award,
the 2019 IET Communications Premium Award, and the 2021 EURASIP
Best Paper Award for Signal Processing. He coauthored two papers
that respectively received the 2018 and 2021 IEEE Signal Processing
Society Young Author Best Paper Awards. He is a 2024 IEEE Signal
Processing Society Distinguished Lecturer. He is a Fellow of SPIE.

Athina P. Petropulu (Fellow, IEEE) received
the diploma in electrical engineering from the
National Technical University of Athens, Greece,
in 1986, and the M.Sc. and Ph.D. degrees in
electrical and computer engineering from North-
eastern University, Boston, MA, USA, in 1988
and 1990, respectively.

She is a Distinguished Professor with Elec-
trical and Computer Engineering (ECE) Depart-
ment, Rutgers, New Brunswick, NJ, USA, hav-
ing served as Chair of the department during

2010–2016. From 1992 to 2010, prior to joining Rutgers, she was a
Professor of ECE with Drexel University. She held Visiting Scholar ap-
pointments at SUPELEC, Rennes, France, Universite Paris Sud, Paris,
France, Princeton University, Princeton, NJ, USA, and the University of
Southern California, Los Angeles, CA, USA. Her research interests in-
clude the area of statistical signal processing, wireless communications,
signal processing in networking, physical layer security, and radar sig-
nal processing. Her research has been funded by various government
industry sponsors including the National Science Foundation (NSF), the
Office of Naval research, the U.S. Army, the National Institute of Health,
the Whitaker Foundation, Lockheed Martin, and Raytheon.

Dr. Petropulu is Fellow of the American Association for the Advance-
ment of Science (AAAS). She has played key roles in her professional
society, namely, she was 2022–2023 President of the IEEE Signal Pro-
cessing Society, Editor-in-Chief for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING (2009–2011) and IEEE Signal Processing Society Vice
President-Conferences (2006–2008). She was Technical Program Co-
Chair of the 2023 IEEE International Conference on Acoustics Speech
and Signal Processing (ICASSP), General Co-Chair of the 2018 IEEE
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), and the General Chair of the 2005 ICASSP.
She was Distinguished Lecturer for the Signal Processing Society and
the IEEE Aerospace and Electronics Systems Society. She was the
recipient of the 1995 Presidential Faculty Fellow Award given by the
U.S. National Science Foundation and the White House, and the 2012
IEEE Signal Processing Society Meritorious Service Award. She was
also the co-recipient of the 2005 IEEE Signal Processing Magazine
Best Paper Award, the 2020 IEEE Signal Processing Society Young
Author Best Paper Award (B. Li), the 2021 IEEE Signal Processing
Society Young Author Best Paper Award (F. Liu), the 2021 Barry Carlton
Best Paper Award by IEEE Aerospace and Electronic Systems Society,
and the 2023 Stephen O. Rice Prize Best Paper Award by the IEEE
Communications Society.


