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Gearing in a hydrostatic skeleton:
the tube feet of juvenile sea stars (Leptasterias sp.).
Theodora Po1, Andres Carrillo1, Amberle McKee1, Bruno Pernet2, and Matthew J. McHenry1

ABSTRACT

Hydrostatic skeletons, such as an elephant trunk or a squid ten-
tacle, permit the transmission of mechanical work through a soft
body. Despite the ubiquity of these structures among animals,
we generally do not understand how differences in their mor-
phology affect their ability to transmit muscular work. Therefore,
the present study used mathematical modeling, morphomet-
rics, and kinematics to understand the transmission of force
and displacement in the tube feet of the juvenile six-rayed star
(Leptasterias sp.). An inverse-dynamic analysis revealed that
the forces generated by the feet during crawling primarily serve
to overcome the submerged weight of the body. These forces
were disproportionately generated by the feet at more proximal
positions along each ray, which were used more frequently for
crawling. Due to a combination of mechanical advantage and
muscle mass, these proximal feet exhibited a greater capacity
for force generation than the distal feet. However, the higher dis-
placement advantage of the more elongated distal feet offer a
superior ability to extend the feet into the environment. There-
fore, the morphology of tube feet demonstrates a gradient in
gearing along each ray that compliments their role in behavior.

KEYWORDS: Hydrostats, Locomotion, Biomechanics

Introduction
A broad diversity of animals transmit the mechanical work gen-
erated by muscles through a soft body. The hydrostatic skeletons
that perform this transmission include the tongue of many verte-
brates (McClung and Goldberg, 2000; de Groot and van Leeuwen,
2004; Nishikawa et al., 1999), an elephant’s trunk (Dagenais et al.,
2021; Wilson et al., 1991), a squid’s tentacles (Kier, 1982), and the
body of an earthworm (Kurth and Kier, 2014; Quillin, 2000). Mod-
els of the geometry of these skeletons have provided a basis for
inferring their capacity to transmit force and displacement (Clark
and Cowey, 1958; Kier, 2012; Ellers et al., 2024). The aim of the
present study was to apply this modeling approach to understand
the functional implications of variation in morphology within a
species. In particular, we used morphometric and kinematic mea-
surements to parameterize a model of the mechanics of the tube
feet of the six-rayed star (Leptasterias sp.) and to consider the role
of the feet in locomotion.
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Tube feet are fascinating organs in part due to the broad array
of functions that they provide. They serve as soft actuators for
locomotion, but they also adhere the body to hard substrates under
wave action, facilitate burrowing, transport food to the mouth, and
help to pry open hard-shelled prey (Smith, 1947; Paine, 1926).
They additionally serve as the primary organ for gas exchange
and are capable of multi-model sensing, including mechanore-
ception and chemoreception (MacGinitie and MacGinitie, 1949;
Moore and Thorndyke, 1993; Brewer and Konar, 2005; Shick,
2020; ValentinčIč, 1983). Therefore, understanding the mechanics
of tube feet informs multiple aspects of the biology of an eco-
logically important group in marine habitats (Menge and Sanford,
2013).

Tube feet can be highly variable in their anatomy both within
and among sea stars and their relatives. The tube foot has a
hydraulic skeleton that transmits fluid between two chambers. We
will refer to the cylindrical region that protrudes from the body as
the stem and the muscular bladder within the foot as the ampulla
(Fig. 1). Contraction by the longitudinal muscles within the stem
serve to bend and shorten the structure and thereby inflate the
ampulla with fluid from its lumen. Shortening by the ampulla mus-
cles reverse this process and thereby extend the stem (Smith, 1947;
McCurley and Kier, 1995). The distal end of the stem is shaped
like a pointed knob in some species and as a muscular disk in
others and the presence of each type correlates with habitat and
phylogeny (Blake, 1990; Flammang, 1995; Vickery and McClin-
tock, 2000; Santos et al., 2005). The ampulla also differs among
species and may be either elliptical or a shape that approximates
a cylinder (Smith, 1946; McCurley and Kier, 1995). Tube foot
morphology is highly variable among the echinoderm relatives of
sea stars, including the elongated stems that extend beyond the
spines of sea urchins, and the stout stems that project from the ray
segments of brittle stars (Brusca and Brusca, 2003).

Tube feet vary in their size and shape along each ray. The
feet at a proximal position are generally wider and less elongated
when extended than those at a distal position. When watching a
sea star crawl up the walls of a glass aquarium, the proximal feet
exhibit the periodic phases of power and recovery strokes that are
characteristic of locomotion, whereas the distal feet move with a
gesticulating motion. This motion could aid in sensing the environ-
ment and acquiring food particles (Hamilton, 1922; Smith, 1945).
The proximal-most feet additionally serve to pass food into the
mouth of the sea star. We therefore propose that the ray of a sea star
presents a functional gradient along its length, with tube feet serv-
ing to generate high force at more proximal positions and greater
extension in distal regions. The present study includes tests of
these predictions.

The ability of a structure to transmit force is measured by the
mechanical advantage, MA, which is the ratio of output to input
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force. In a rigid lever system, MA is equal to the quotient of
the in-lever length (distance from the applied force to the ful-
crum) to out-lever length (distance from the fulcrum to the point
of force application, Alexander, 1983). MA has therefore served as
an easily-measured basis for comparing the functional morphology
of vertebrate skeletons (Hildebrand et al., 1995; Smith and Savage,
1956). Leverage can be increased either by a greater in-lever or a
shorter out-lever length, but a gain in leverage comes at the cost of
displacement. The displacement advantage (DA) is defined as the
ratio of output to input displacement and it is equal to the inverse of
MA in a rigid lever system (Vogel, 1988). It has long been thought
that this principle holds true for hydrostatic skeletons (Kier and
Smith, 1985), but it was only recently demonstrated mathemati-
cally (Ellers et al., 2024). This analysis showed that the inverse
relationship between MA and DA requires that the skeleton con-
serve energy. Therefore, the muscular work applied to the system
must be neither stored, nor dissipated, as the structure deforms.

Our experiments focused on the mechanics of crawling in juve-
nile sea stars in a species of the genus Leptasterias (Fig. 2).
Juveniles were selected due to their modest number of tube feet
(12 per ray), relative to the hundreds present in adult sea stars.
This morphological simplicity makes the mechanics of locomo-
tion more experimentally tractable. Our experiments consisted of
histological morphometrics of the tube feet and recording the 3D
kinematics of the body and tube feet during locomotion to resolve
the major forces generated during crawling and the role of individ-
ual feet. These measurements served as a basis of a model for the
biomechanics of the tube feet.

Materials and methods

Mathematical model of tube-foot mechanics

We used a mathematical model to determine the capacity for the
transmission of force and displacement by tube feet, based on
morphometric and kinematic measurements. This model is based
on a previously-developed theory for hydrostatic skeletons that
includes the tube feet of adult sea stars (Ellers et al., 2024). How-
ever, the present model differs in a couple of key respects. The
ampulla in the animals that we considered are ellipsoidal, which
violates the assumed cylindrical shape of some adult tube feet.
Also, we accounted for the substantial volumes of the longitudi-
nal muscles and terminal disk at the distal end of the stem, which
may be negligible in adult sea stars.

A key factor in tube-foot mechanics is the helical winding
of stiff fibers that wrap around the stem. The model assumes
that these fibers are effectively inextensible, such that the shape
changes of the stem are constrained by the geometry of a helix
(Fig. 1C–D). Therefore, the variable length of the stem (l) is
proportional to the cosine of the helix angle (θ):

l = nhf cos θ, (1)

where f is the length of a fiber through a single rotation of the
helix, and nh is the number of rotations of the helix along the
length (Clark and Cowey, 1958; Chou and Hannaford, 1996) (Fig.
1C). Unlike θ, both f and nh are fixed parameters due to the fibers’
high stiffness. It follows that the stem’s radius (r) is proportional
to the sine of the helix angle:

r =
f

2π
sin θ. (2)

Table 1. Table of symbols.

Symbol Definition

θ Helix angle
θmax Helix angle at max. extension
ρ Density of sea water
σ Stress in longitudinal muscles
Ω Stress in ampulla muscles
a Cross-sectional area of longitudinal muscles
A Cross-sectional area of ampulla muscles
C Ampulla circumference
Cd Drag coefficient
D Body diameter
DA Displacement advantage
f Fiber length through one rotation
Fpull Pulling force
Fpush Pushing force
FSW Submerged weight
g Acceleration of gravity
H Body height
l Total stem length
lmax Total stem length at max. extension
ld Length of terminal disk
L Width of ampulla
m Body mass
MA Mechanical advantage
nh Number of helix rotations
O Orientation of substrate
Q Ray position of a foot
r Stem radius
R Ampulla radius
rl Stem lumen radius
s Identity of individual sea star
S Projected area of the body
t Thickness of stem muscles
T Thickness of ampulla muscles
U Body speed
v Stem volume
vd Volume of terminal disk
vl Volume of stem lumen
vm Volume of stem muscles
vmax Stem volume at max. extension
V Ampulla volume
w Total fluid volume
w∗ Non-dimensional total fluid volume
Ykine Kinematic variable
Ymorph Morphological variable

The total volume of the stem (v = πlr2) may be rewritten as a
function of the helix angle (Eqns. 1 and 2) to yield the following
equation (Fig. 1D):

v =
nhf

3 sin2 θ cos θ

4π
. (3)

This volume is composed of the sum of volumes of the stem’s
longitudinal muscles (vm), the fluid within the lumen of the stem
(vl), and the terminal disk (vd). As previously observed (Cowey,
1952; Clark and Cowey, 1958), the maximum volume of a fiber-
wound cylinder is achieved at θmax = arctan

√
2 ≈ 54.7 deg (Fig.

1D).
Determining the gearing of a tube foot requires a model of how

changes in the geometry of the ampulla relate to those in the stem.
For the stem, it is useful to define the rate of change in length with
respect to the change in volume (using Eqns. 1 and 3), as follows

2
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Fig. 1. Tube foot anatomy. (A) A schematic illustration of two pairs of tube feet highlights the helical winding of connective tissue (blue curves) that wrap
around the stem and ampulla (positioned in the body’s interior, see Fig. 2D). The direction of muscle fibers (dashed violet lines) illustrate the direction of
force generation by the longitudinal muscles in the stem and circumferential muscle of the ampulla (based on McCurley and Kier, 1995). Measurements of
linear dimensions, measured from histology, are included (symbols defined in the text). (B) A transverse section through the stem reveals the thickness of
longitudinal muscles (in violet) relative to the fluid-filled lumen. (C) The geometry of the helical winding (Eqns. 2–3) is illustrated for a single fiber as if the
skin of the stem were cut along its length and laid flat (Clark and Cowey, 1958). (D) The relationship between the relative stem volume and pitch angle of
the helical winding (Eqn. 3), with the maximum volume highlighted (filled circle). Arrows denote the changes in stem length that generate alterations in pitch
angle.

(Ellers et al., 2024):

dl

dvl
=

dl/dθ

dvl/dθ
= − 4π

f2 (3 cos2 θ − 1)
. (4)

Note that because of the fixed volumes of the stem muscles and ter-
minal disk, change in the volume of the stem is equivalent to the
volume of the lumen (i.e., dv = dvl). We approximate the ampulla
with an ellipsoidal shape and hence assume its volume to con-
form to that geometry (i.e., V = πRL2/3, where V , R, and L
are respectively the volume, radius and length, Fig. 1A). However,
it is necessary to define the ampulla volume with respect to its
circumference in one dimension because the circumferential mus-
cles generate the tension by the ampulla. If one assumes that the
ampulla’s shape is close to that of a sphere, then its circumference
may be approximated as circular (i.e., C = 2πR, where C is the
circumference) and the volume may be expressed with respect to
the circumference:

V =
CL2

6
. (5)

From the first derivative of this relationship, it is helpful to define
how the volume changes with respect to the circumference:

dV

dC
=

L2

6
. (6)

The DA for a tube foot may be defined as the absolute value
of the rate of stem extension with respect to changes in the
ampulla’s circumference (i.e., DA = |dl/dC|). This relationship
may be resolved from the known rate of change in stem length with
respect to a change in volume (Eqn. 4), the assumed conservation
of mass for an incompressible fluid (dV = −dvl), the derivative of
the ampullar volume with respect to circumference (Eqn. 6), and
the definition of stem volume enclosed by helical fibers (Eqn. 3):

dl

dC
=

dl

dvl

dV

dC
= − dl

dV

dV

dC

dl

dC
=

(
− 4π

f2 (3 cos2 θ − 1)

)(
L2

6

)

DA =

∣∣∣∣−
4πL2

6f2 (3 cos2 θ − 1)

∣∣∣∣ . (7)

Assuming that energy is conserved within the tube foot, the
mechanical advantage is equal to the inverse of the displacement

3
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advantage, as previously demonstrated (Ellers et al., 2024):

MA =
1

DA
. (8)

We accepted this relationship in the present analysis by assuming
that the internal viscoelastic resistance to the shape changes of the
stem is much smaller than the transmission of work generated by
the ampulla.

Animal collection and handling

Adult Leptasterias sp. were collected at Baker Beach in Trinidad,
CA (41.0488, -124.1236), U.S.A. in May of 2017 and April
of 2018. Animals were expressed-shipped to Long Beach, CA,
where they were unpacked and held is filtered sea water (Instant
OceanTM) with a salinity of 34 ppt, maintained at 16◦C. This
species was chosen for the present study, in part, because they
brood their young until the juvenile stage. Brooding allowed us to
collect juveniles without having to culture them through a pelagic
larval stage. The juveniles were found on the bodies of adults or
within the tanks that held those adults (Fig. 2A).

Morphometrics

Histological sectioning of the bodies of sea stars was performed to
collect morphometric measurements of the tube feet. This entailed
anesthetizing each animal (10 mmol l˘1 MgCl2 for 30 min), trans-
ferring them to fixative solution (10% neutral buffered formalin),
rinsing in sea water, dehydrating through a series of ethanol solu-
tions (50%, 70%, 90%, and then 100%), embedding in whole body
in paraffin, and then sectioning (thickness of 5 µm). Haemotoxylin
and eosin staining was applied to the sections to visualize mus-
cle and connective tissues. Histological sectioning was completed
along both the aboral-oral axis, as well as through the body. Our
morphometrics consisted of the length (lhist) of the stem lumen, the
radius of the stem (rl,hist), the length of the terminal disk (ld, hist),
the thickness of the muscle layer of the stem (thist, measured at its
most thin point), the radius of the ampulla (Rhist), and the thickness
of the muscular wall of the ampulla (Thist). We tested the effects of
the ray position of the tube feet on the morphometrics. The ray
position (Q) was assigned by numbered addresses, starting with
the most-proximal tube foot (1) and up to the most-distal position
(6, Fig. 2B–C). This test was performed with a generalized lin-
ear mix-effects model, assuming a normal distribution, with foot
position as a fixed effect and the individual sea star (s) as a ran-
dom effect. This model is expressed by the following equation, in
Wilkinson notation (Wilkinson and Rogers, 1973):

Ymorph ∼ 1 +Q+ (1|s), (9)

where Ymorph is one of the morphometric measurements. Mea-
surements were performed at 6 positions along the rays, from
3 individuals. Tube-foot pairs were not always both visible and
intact. We therefore selected the foot at each position with the
most complete view. All statistical analyses were performed in
MATLAB.

3D kinematics

We video-recorded the crawling of sea stars to measure the 3D
kinematics of the body and tube feet. Crawling was recorded along
flat acrylic surfaces with a horizontal, vertical, and inverted (i.e.,

upside-down) orientation to consider the effects of different types
of loading upon the feet in a small aquarium (8 cm × 8 cm wide
and 6 cm in height). The cameras (Canon EOS 5D Mark IV with
65mm MP-E macro lens, Canon USA, Huntington, NY and a Sony
a7 II with 100mm macro lens, Sony Electronics, San Diego, CA)
were oriented at perpendicular perspectives (Fig. 2E) to record
locomotion from oral and lateral views. Both cameras recorded a
field width of ∼ 1 cm at 4K resolution (4096× 2160 for the Canon
and 3840× 2160 for the Sony) at 29.97 fps. The cameras were
manually-triggered separately, but we were able to synchronize
data extracted from the two perspectives in our post-processing.
To facilitate this syncing, we performed a loud clapping of hands
at the start of each recording, which was recorded by the micro-
phones of the two cameras. We then analyzed the two audio
recordings to determine the latency in timing of the sound between
the two cameras. After determining the latency, we interpolated the
coordinates extracted from one video to match the frame exposures
of the other camera.

We manually-tracked landmarks to measure the kinematics of
crawling. Using custom software developed in MATLAB (Math-
works, Natick, MA), we recorded the power strokes of all tube
feet from a recording of the oral perspective of the animal. The
software prompted the user to select the coordinate for a foot in
the frame at which it first contacted the surface, and to input the
frame number at which the terminal disk released from the sur-
face. A coordinate was additionally selected for the position of
the proximal end of the tube foot upon the body of the sea star.
These coordinates, combined with the body kinematics, allowed
for calculations of the length and angular position of each tube
foot over the duration of a power stroke. This software addition-
ally prompted the user to select coordinates for the red eye spots
for each frame of a sequence from the oral and lateral perspectives,
as well as the coordinates for the distal positions of the feet from
the lateral perspective. Assuming a rigid body, we transformed all
coordinates into a body frame-of-reference with its origin posi-
tioned at the mouth opening, an x-axis direction in the direction
of crawling, a z-axis set perpendicular to the substrate, and the y-
axis found by the cross-product of the x- and z-axes, assuming a
right-handed coordinate system.

We tested the effects of the substrate orientation, ray position,
and individual on kinematic parameters. Our test was performed
with a generalized linear mixed-effects model, with ray position
and orientation (O) as fixed effects and the individual sea star as a
random effect. This model is expressed by the following equation:

Ykine ∼ 1 +Q+O + (1|s), (10)

where Ykine is one of the kinematic variables. We performed this
test for the duration of the power stroke, assuming a normal
distribution. We defined the usage rate as the mean duration of
power-strokes by tube feet at a position, divided by the product of
the duration of a recording and the total number of feet (12) at that
position. Therefore, the usage rate indicates the proportion of time
that particular feet are used for locomotion. We tested the effect of
ray position on the usage rate using the generalized linear model
(Eqn. 10), but assumed a binomial distribution.

Inverse dynamics

We modeled the forces on the body and feet of the sea stars to
determine the loads that the feet must overcome to move forward.
These calculations were intended as a first-order approximation to
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Fig. 2. Morphometric and kinematic measurements the six-rayed star (Leptasterias sp.). (A) A single adult and multiple juveniles (one circled). (B) SEM of
the oral surface of a juvenile with 6 pairs of tube feet (circled). (C) Schematic of single ray with the position numbers (ordered from proximal to distal) for each
pair of feet. (D) A histological section through a pair of rays shows longitudinal sections of two tube feet, each with the ampulla and stem visible (see Fig.
1A). Staining highlights muscle (violet) and nuclei (dark purple). (E) Experimental setup (not drawn to scale) includes a water-filled observation chamber with
a single sea star. The locomotion was recorded by cameras that viewed the sea star from lateral and oral perspectives. (F–G) Video stills from a recording
are cropped to zoom on the body of a sea star, with features highlighted for clarity. (F) From a lateral view, we measured the position of contact between
individual tube feet and the chamber surface (e.g. white line) and the red eye spots (e.g. white circle). (G) The view of the oral surface was used to measure
the coordinates of tube feet in contact with the surface (e.g. large circle) and the eye spots (e.g. small circle).

assess the order-of-magnitude of the submerged weight, inertial
force, and drag generated by the body motion through still water.
We approximated the body as ellipsoidal in shape and found the
submerged weight (FSW) as the difference between measured wet
mass and the buoyancy force on the body. The submerged weight
was therefore estimated as follows:

FSW = g

(
m− πρHD2

4

)
, (11)

where g is acceleration of gravity, m is body mass, ρ is the density
of sea water, H is body height, and D is body diameter (measured
from kinematics). The inertial force was calculated for each instant
of a kinematic sequence as the product of the mass and body accel-
eration. Body acceleration and velocity were respectively found as
the second and first derivative of a smoothing spline (the ‘spaps’
function in MATLAB) of position measurements. Body velocity
factored into our calculation of drag, which we modeled with the
following equation (Batchelor, 1994):

Fd =
1

2
CdρSU

2, (12)

where S is the projected area of the body, assuming an elliptical
shape, Cd is the drag coefficient, and U is the forward speed of the

body. We used an empirical measure of the drag coefficient for an
ellipsoidal body, given as follows (Hoerner, 1965):

Cd =
0.014 (1 +D)

H
+

1.1H

D
. (13)

As reported in Results, we found the submerged weight to be at
least 3 orders-of-magnitude more than the inertial and drag forces.
We therefore performed a set of calculations to approximate the
forces imposed by the submerged weight on individual feet in hor-
izontal and inverted crawling. We additionally found that the feet
most frequently used for crawling are clustered close to the cen-
ter of the body. We therefore assumed that the weight was evenly
distributed among the feet and we hence calculated the vertical
component of force generated by each foot to generate this force,
given the foot’s measured orientation.

Functional analysis of tube foot morphology

We performed a series of calculations on the biomechanical prop-
erties of the tube feet that were based on our experimental mea-
surements and mathematical model. These calculations assume
that the maximum length (lmax) that we observed for each stem
(achieved during inverted crawling) is equivalent to the theoreti-
cal maximum permitted by the helical winding around the stem.
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Fig. 3. Morphometrics from histological sections, as a function of position
along rays. Ray position is color-coded, with cooler colors for more proximal
positions (see inset and horizontal axis in panel A). Mean (± 1 SD, N = 3 at
each position) values of measurements are shown for the (A) ampulla radius,
(B) ampulla muscle thickness, (C) stem lumen radius, and (D) longitudinal
muscle thickness along the stem. Error bars are smaller than the symbol
radius of some points.

In other words, the inverted locomotion was assumed to place the
helical fibers in tension to the extent that the stem reached its max-
imum possible volume (vmax) and its corresponding pitch angle
(θmax = 54.7 deg). For the purpose of estimating the fiber length,
it should not matter whether the podium length in inverted crawl-
ing exceeds what is possible from ampulla inflation. Nonetheless,
assuming maximum extension permitted a calculation for the
length of the average fiber in the stem’s helical winding. This fiber
length is a key parameter for how the winding changes shape over
stem extension. As described above, the fiber length is conven-
tionally parameterized as the product of the length a fiber through
a single rotation of the helix and the number of rotations (fnh,
Fig. 1C). We solved for this product using the relationship for the
length of a helical volume (Eqn. 1) for θmax and our kinematic mea-
surements of lmax. We assumed that each of the tube feet retained
the same fiber length between kinematic and histological measure-
ments. This permitted a calculation of the pitch angle (θhist) from
its length (lhist) from histology (using Eqn. 1) as follows:

θhist = acos
(

lhist

fnh

)
. (14)

This value for the pitch angle then allowed a calculation of f from
histological measurements of the stem radius (rhist, based on Eqn.
2):

fhist =
2πrhist

sin θhist
. (15)

We thereby arrived at values for nh and f for feet at each ray
position.

The histological measurements also provided a basis for
approximating the volume of muscles in the ampulla and stem. For
the ampulla, the muscle volume was approximated as the product
of the surface area of a sphere and the muscle thickness (Vm,hist =
4πR2

histThist). The longitudinal muscle volume was found as the
difference between total volume of the stem and the volume of
the lumen (vm,hist = πl[r2hist − r2l,hist]). Our subsequent calculations
assumed that the histological volumes approximate the values in
vivo and that they remain fixed across tube foot deformations. We
thereby calculated the cross-sectional area of muscles to find the
stress generated by muscles for a particular load (described below)
for the ampulla muscles (A = Vm,hist/[2πR]) and the longitudinal
muscles (a = vm,hist/l).

We calculated changes in stem geometry across differences in
stem length. A critical unknown parameter in these calculations
was the volume of fluid within the entire tube foot (w). Presumably
due to desiccation, our histological measurements of the lumen
volume were found to be less than what was required to maximally
extend the stem, as found by kinematics. We therefore performed
our calculations at different values for the water volume, calculated
as multiples of the stem lumen volume at maximum extension to
control for differences in size. The particular water volumes tested
were w = w∗(vmax − vm,hist) with the relative volume of w∗ = 1.5,
2.0, 2.5, or 3.0. For the range of measured stem length values (from
kinematics), we found the pitch angle (Eqn. 1), radius (Eqn. 2),
total stem volume (Eqn. 3), and lumen volume (vl = v − vm). The
ampulla volume was found as the difference between the water
volume and the stem lumen volume, which permitted a calculation
of ampulla radius, assuming an ellipsoidal shape that is spherical
at rest (i.e., L = 2R). Based on these calculations, the MA (Eqn.
8) and DA (Eqn. 7) were evaluated numerically for variable stem
length.

We examined how the tube feet at different positions varied in
their capacity to change length. We first evaluated the minimum
value for DA (Eqn. 7) with respect to changes in stem length for
the feet at each position. We next considered the change in stem
length predicted for contraction of the ampulla and longitudinal
muscles. For each ray position, we found the distance of this con-
traction as a 10% strain of the maximum lengths of the ampulla and
longitudinal muscles. Due to the variation in DA with the shape
of the tube foot, we calculated the effects of that shortening on
the range of stem extension at both the maximum and minimum
of measured stem lengths for that ray position. These calculations
were performed by interpolating numerical values for the relation-
ship between the ampulla circumference and podium length. More
simply, the shortening generated by a 10% strain of the longitu-
dinal muscles was taken as 90% of the maximum length of the
stem.

We calculated the capacity of feet at each position to generate
force. The maximum value for MA (Eqn. 8) within the range of
measured stem lengths was evaluated numerically. For both longi-
tudinal and ampulla muscles, we found the stress across the mean
cross-sectional area of the muscle generated by the stem to balance
the average ground-reaction force generated by tube feet during
crawling (0.45 µN), as determined by our inverse-dynamic analy-
sis (Fig. 5D). The stress by longitudinal muscles (σ = Fpull/a) is
relevant to the pulling forces generated during inverted crawling,
where the longitudinal muscles presumably bear most of the body
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weight. We calculated the stress generated by the ampulla mus-
cles (Ω) to generate pushing forces that balance the submerged
weight, taking MA into account (Ω = Fpush/[AMA]). Conversely,
we calculated the forces generated by the tube feet for a maxi-
mum stress of 50 kPa, as measured for the longitudinal muscles of
Asterias rubens previously (Hennebert et al., 2010). The pulling
force was determined by the product of this stress and the mean
cross-sectional area of the longitudinal muscles. The pushing force
was found as the product of the mean cross-sectional area of the
ampulla muscles, the muscle stress, and the maximum MA for the
foot.

Results

Morphometrics and kinematics

Measurements of the dimensions of the tube feet provided the basis
for our analysis of their functional properties. Based on a general-
ized linear model, we tested whether the position of the tube foot
showed significant effects on a number of morphometrics from
histological sections (Table S1). The parameters that did not vary
significantly among the feet included the foot length and thick-
ness of the ampulla muscle. Significant effects included the radius
of the ampulla, and the thickness of longitudinal muscles, which
both declined with ray position. The tube feet at Position 1 showed
exceptionally large values in these respects. In particular, the mean
ampulla radius was 2.73 times greater at Position 1 than Position 2
(Fig. 3A) and longitudinal muscles were larger by 25% (Fig. 3D).
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Fig. 5. Force generation by the tube feet during locomotion. (A) Representa-
tive recording of the inertial force on the body of a sea star, based on inverse
dynamics from kinematic measurements in three translations degrees of
freedom. The forward motion is defined along the x-axis (in blue), the y-axis
is defined along a lateral dimension (in red), and the z-axis is vertical (in
yellow). (B) The force generated by individual tube feet is shown by inverse
dynamics, with individual traces for each foot (in gray), with the sum of all
feet assumed equal to the submerged weight of the body (horizontal dashed
line). These calculations take into account the number of feet in contact with
the substrate and their angle with respect to that surface. (C) Estimates for
the maximum drag and inertial forces, and submerged weight of the body.
(D) The average magnitude of force generated by individual tube feet in hor-
izontal (pushing forces) and inverted locomotion (pulling forces, N = 3 for
each direction), as determined by inverse dynamics calculations, such as
shown in panel B.

In contrast, lumen radius of the feet at Position 1 was smaller than
Position 2 by 27% (Fig. 3C), whereas the radius otherwise declined
significantly with tube-foot position (Table S1).

We measured the kinematics of crawling over substrates of dif-
ferent orientations to assess potential differences in the behavioral
role between feet at different positions. Sea stars moved in a gener-
ally linear path, with oscillations in speed and heading that roughly
corresponded to the attachment and detachment events of the tube
feet (Fig. 4A–B). According to a generalized mixed-effects model,
the duration of the power stroke did not vary significantly with
the ray position (P = 0.47), or substrate orientation (P = 0.12,

N = 3, Fig. 4C). However, the tube feet did vary significantly
(P < 0.001, N = 3) in their usage among the different positions
(Fig. 4D). The usage rate was calculated as the total duration of
all power strokes for feet at a particular position, divided by the
product of the total number of feet along the ray and duration of a
recording. We found that the usage rate was substantially higher in
the three most-proximal feet than in the more distal feet. For exam-
ple, the feet at Position 2 were used 8.3 times more frequently
than the feet at Position 4 in horizontal crawling. The substrate
orientation showed no significant (P = 0.37, N = 3) effect on the
usage rate, though the feet at Position 2 were used more fre-
quently than Position 1 in vertical and inverted crawling (Fig. 4D).
As explained below, these prevailing morphological trends have
functional implications.

Inverse dynamics

We performed an inverse dynamic analysis to resolve the major
loads on the tube feet during crawling. From measurements of
the 3D kinematics of the body, we calculated the torques and
forces collectively generated by the feet to respectively rotate and
translate the body mass (Fig. 5A–C). Upon performing these cal-
culations for all experiments, we found that the inertial forces
were effectively negligible compared to the submerged weight
of the body (Fig. 5C). In particular, the mean submerged weight
(1.5µN, N = 3) was 5000-times greater than the maximum inertial
force (0.3 nN, N = 3). In addition, the inertial force was 43-times
greater than the maximum drag on the body (6.8 pN, N = 3).
Therefore, the forces generated by the tube feet are overwhelm-
ingly applied towards supporting the submerged weight of the
body.

We used our measurements of the 3D kinematics of individual
tube feet to estimate the forces generated to balance the body’s
submerged weight. This consists of pushing forces for horizon-
tal crawling and pulling forces against the substrate for inverted
crawling. We found that these two orientations yielded similar val-
ues (P = 0.44, Students two-tailed t-test, N = 3) for tube-foot
force (Fig. 5D), suggesting that differences in the numbers of
tube feet and orientation did not yield a substantially different
magnitude in force.

Mathematical modeling

The functional morphology of tube feet at different positions was
ultimately resolved through an application of our mathematical
model with parameter values provided by our morphological and
kinematic measurements. These calculations incorporated mor-
phometrics from histology to resolve the fiber length of the
podium’s helical winding (Eqn. 15) and the volume’s of the muscle
and lumen (described above). However, we varied the fluid vol-
ume within the tube foot in our calculations to compensate for the
artifacts due to desiccation from our histological measurements.
These volumetric differences affected only the ampulla due to the
helical winding that constrains the dimensions of the stem. The
feet were smaller in volume and had a more elongated stem at the
distal positions (Fig. 6A–B). Nonetheless, all feet exhibited a sim-
ilar maximum length (Fig. 3D), which yielded similar predictions
in helix angle, despite the differences in stem radius among the
positions (Fig. 6C–D).

The tube feet were found to exhibit variable gearing over the
extension of the stem. As the stem approached its maximum exten-
sion, the DA increased exponentially and MA declined to zero
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Fig. 6. Simulated changes in the geometry of tube feet, based on morphometrics and kinematics, organized in columns for each tube foot. (A) Schematic
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(Fig. 6E–F). Therefore, all of the feet were best at generating force
at short stem length and offered the greatest rate of extension at
greater lengths. The feet at different positions did present varia-
tions on this theme. The feet increased in their minimum DA (Fig.
7A) and decreased in maximum MA (Fig. 8A) at more distal posi-
tions. These trends in the transmission of mechanical work favored
force generation in proximal feet and stem displacement at distal
positions along the ray.

The forces generated by tube-foot muscles depends on their
cross-sectional area. Our analysis of muscle stress focused on a
single load (0.45 µN) that approximates the average force gen-
erated by tube feet during crawling (Fig. 5D). The stress upon
the longitudinal muscles (e.g., used during inverted crawling)
is inversely proportional to their cross-sectional area and hence
increased with ray position (Fig. 8E). This trend favored the more
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Fig. 7. Predictions of the mechanical properties related to the displacement
of tube feet at different positions. Values for the (A) minimum DA across
changes in stem extension (Fig. 6E). (B–D) Changes in stem length gen-
erated by 10% strain in the (B–C) ampulla muscles and (D) longitudinal
muscles. The range of stem length changes were calculated around the (B)
minimum length of the stem and (C) and the maximum length of the stem.
(B–C) The length changes in the stem generated over extension, generated
by contraction of the ampulla muscles. (D) The range of shortening calcu-
lated for the stem due to contraction of the longitudinal muscles.

proximal feet generating higher forces than the distal feet. A sim-
ilar trend is apparent for the ampulla muscles, but those stresses
are inversely proportional to both cross-sectional area and MA
(Fig. 7B, D, F). The stress upon ampulla muscles was about 3
orders-of-magnitude greater than those predicted for the longitu-
dinal muscles due both to MA and their smaller cross-sectional
area.

Discussion
We used mathematical modeling, morphometrics, and kinematics
to explore the mechanical properties of tube feet in a juvenile sea
star (Leptasterias sp.). This investigation revealed that the mor-
phology of the feet vary with their position along the length of
each ray, with the proximal feet being larger (Fig. 3) and more-
frequently used in locomotion (Fig. 4). Through the combined
effects of MA, DA, size, and muscle mass, the tube feet exhibit
a greater capacity for force generation at proximal positions. The
smaller distal feet exhibit a relatively high DA and therefore are
geared for extending into the environment. These results demon-
strate how variation in the morphology of hydrostatic skeleton can
affect the generation and transmission of mechanical work.

The mechanics of tube feet are relatively simple during inverted
crawling. The longitudinal muscles in the stem likely generate the
tensile forces that directly support the body’s submerged weight
(Figs. 5D, 9C–D). Because no force transmission is required for
this task, the stress encountered by the muscles is simply the ratio
of the load and the cross-sectional area of the muscle. That area
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Fig. 8. Summary predictions of forces generation by tube feet at different
positions. (A) The maximum MA was calculated with respect to differences in
shape (Fig. 6) for different values of the relative fluid volume (w∗, color cod-
ing). (B) Differences in the cross-sectional area of ampulla muscles depends
on their thickness and the ampulla radius (Fig. 3A–B). (C) Muscle stress
generated for the average load to support the submerged weight of the body
(0.45 µN), found by dividing that force by the cross-sectional area of that
muscle (shown in C). (D) The pushing force generated by the ampulla mus-
cles for a stress of 50 kPa, which depends on both the cross-sectional area
of the muscle and MA. (E) The stress in longitudinal muscles to support the
submerged weight in inverted crawling and (F) the pulling force generated by
those muscles at a stress of 50 kPa.

decreases monotonically with ray position, it follows that the stress
to support the submerged weight to increase in the opposite direc-
tion (Fig. 7E). It bears mentioning that these stresses are rather
small. The isometric stress of longitudinal muscles has been mea-
sured in sea star tube feet as been measured at more than an
order-of-magnitude greater (48–62 kPa, Hennebert et al., 2010),
which is higher than what was previously found in sea cucumber
longitudinal body wall muscles (20 kPa, Takemae et al., 2009). The
pulling forces predicted for these muscles greatly exceeds the sub-
merged weight of the body (Fig. 8F). Therefore, the longitudinal
muscles appear to be overbuilt for inverted crawling, but instead
may be better matched to other mechanical tasks. For example,
they aid in adhering to hard surfaces under wave action and serve
to pry open hard-shelled prey in adults (Paine, 1926; Smith, 1947).
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Submerged weight

Ground-reaction forces

A
B

C D

E
F

MA DA

G

Fpush Fpush

Fig. 9. Schematic illustration of action by tube feet during crawling favored
by the present results. (A–D) The submerged weight (red arrow) is the dom-
inant load (Fig. 5C) that is balanced by the ground-reaction forces (orange
arrows) generated in response to action by the tube feet. (A–B) For horizon-
tal crawling, the reaction forces are generated primarily by pushing forces
that are powered by (B) the ampulla muscles. In contrast, (C–D) the pulling
reactive forces for inverted crawling are generated by the longitudinal mus-
cles along the stem. (E) A schematic illustration of the tube feet from an
oral view, with (F) a detail of a single ray with the feet color-coded based
on their geometry favoring high MA (in green) or high DA (in purple, Figs.
7A, 8A). Despite the spatial pattern in MA, (G) the maximum pushing force
is predicted to decrease monotonically along the length of the ray (Fig. 8D),
with the most-proximal force generating the highest force, due to the muscle
mass of the ampulla (Fig. 3A–B).

Crawling along a horizontal surface requires that each tube foot
transmit the contractions generated by ampulla muscles to extend
its stem. Shortening by these muscles transfers fluid into the stem,
where it acts to expand its volume and transmit pushing forces
to the substrate (Fig. 9A–B). The helical winding around the stem
constrains how a volume expansion changes its radius (Eqn. 2) and
length (Eqn. 1, McCurley and Kier, 1995) and these factors are
encapsulated in the equation for DA (Eqn. 7). For ray positions 2
through 6, the radius and muscle thickness of both the ampulla and
stem decrease at more distal positions along the ray (Fig. 3, Tables
S1, S2). The trend in dimensions along the ray generate an increase

in the minimum DA with position (Fig. 7A), which helps pro-
vide more amplification of ampulla muscle shortening in the length
changes of the stem. However, the extension of the stem addition-
ally depends on the size of the tube foot and ampulla muscles.
Due to these factors, the extension of the feet is actually greater at
more proximal positions along the ray (Fig. 7B–C). Nonetheless,
DA does enhance the ability of the small distal tube feet to extend
and thereby enhance the ability to grasp food particles and to sense
the environment with contact for tactile and chemical cues. Con-
sistent with this idea, we found that the feet at positions 5 and 6
rarely contributed to locomotion (Fig. 4), but were instead splayed
outward. This behavior may be readily observed in adults of dif-
ferent species and is among the classic observations of tube feet
(Hamilton, 1922; Smith, 1945).

The tube feet additionally serve to transmit pushing forces.
Force generated by the ampulla muscles pressurize the fluid, and
that pressure is transmitted to the lumen of the stem. In addition to
constraining the dimension of the stem, tension in the helical fibers
provides a source of internal resistance to the pushing force (Ellers
et al., 2024) that supports the submerged weight during horizon-
tal crawling (Fig. 9A–B). As with rigid lever systems, the MA of
a hydrostatic skeleton is inversely related to DA (Eqn. 8), if the
system conserves energy. As a consequence, the trend in DA from
Positions 1 to 6 is mirrored by an inverse pattern in MA (Figs. 7B,
9F). This is beneficial for locomotion, given the high usage of the
proximal feet during crawling (Eqn. 4, Ellers et al., 2021). How-
ever, even the highest values for MA among the feet are less than
unity, which means that the ampulla muscles generate more force
than the pushing force generated by the stem. The combined fac-
tors of MA and the cross-sectional area of the thin ampulla muscles
(Fig. 3B) predict stresses (Fig. 8C) that meet or exceed the isomet-
ric stress previously reported (48–62 kPa, Hennebert et al., 2010).
This suggests that the ampulla operates near its maximal capacity
and that the fluid volume within the tube feet operates at the lower
range of our estimates.

The functional differences among tube feet that we have
observed in Leptasterias sp. are reminiscent of the tube feet of sea
urchins and sand dollars (Class Echinoidea). Sea urchins possess
morphologically-distinct categories of tube feet that are associated
with different functions (Nichols, 1959; Telford et al., 1985; San-
tos et al., 2005). The aboral surface of a sea urchin’s body generally
features respiratory tube feet that specialize in gas exchange, with
a ciliated lumen that is continuous with the water vascular system.
‘Suckered’ (i.e., secondary or accessory) tube feet are distributed
in large regions of the body, where they may extend beyond the
spines to grasp food particles and contribute to locomotion. These
feet are capable of passing food between neighboring feet to trans-
port it to the mouth (Telford et al., 1985) and can be further
categorized by their length, ultrastructural trait features of their
distal tip, and role played in food transport (Telford et al., 1983).
Buccal tube feet are positioned around the mouth, where they com-
plete the transport of food particles. These feet are stronger and
stiffer than the others and additionally perform locomotion and
are critical for adhesion to hard substrates (Leddy and Johnson,
2000). The present results indicate functional variations of a more
subtle variety among sea stars than found in urchins, but our mea-
surements also reflect similar mechanical specialization with ray
position.

In summary, the tube feet within the body of a juvenile Leptas-
terias sp. are anatomically variable in ways that affect their ability
to extend and generate force. In particular, the feet are smaller at
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more distal positions (Fig. 1) and differ in shape in a manner that
increases DA and decreases MA (Figs. 7A, 8A). The exception to
this pattern is the proximal-most feet, which have the highest DA
along the ray. In spite of this gearing, the force output is predicted
to be greatest by the most-proximal feet due to the muscles in the
ampulla (Fig. 8D), and these are are the most-frequently used feet
for crawling (Fig. 4D). Therefore, the gearing of the tube feet is a
factor in how mechanical work is transmitted by the tube feet, but
this aspect of morphology may be altered by the force-generation
capacity of muscle.
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