

1 **Balancing Effectiveness and Equity in Sustainable Water
2 Management Transitions: The Case of the Miami-Dade Water and
3 Sewer Department**

4 Koorosh Azizi, Ph.D.¹; Jesse L. Barnes, Ph.D.²; Aaron Deslatte, Ph.D.³; Elizabeth A. Koebele,
5 Ph.D.⁴; John M. Andries, Ph.D.⁵; Margaret Garcia, Ph.D.⁶

6

7 ¹ Postdoctoral Research Scholar, School of Sustainable Engineering and the Built Environment, Arizona
8 State University, 777 E University Dr, Tempe, AZ 85287 (corresponding author). Email:
9 kazizi1@asu.edu

10 ² Postdoctoral Research Scholar, Department of Political Science, University of Nevada Reno, 1664 N.
11 Virginia St., Reno, NV 89557-0302, Thompson Building, Mailstop: 0302. Email: jessebarnes@unr.edu

12 ³ Associate Professor, O'Neill School of Public and Environmental Affairs, Indiana University
13 Bloomington, 1315 E. Tenth Street, Bloomington, IN 47405-1701, Mailstop: SPEA 441. Email:
14 adeslatt@iu.edu

15 ⁴ Associate Professor, Department of Political Science, University of Nevada Reno, 1664 N. Virginia St.,
16 Reno, NV 89557-0302, Thompson Building, Mailstop: 0302. Email: ekoebele@unr.edu

17 ⁵ Professor, School of Human Evolution and Social Change and School of Sustainability, Arizona State
18 University, 900 Cady Mall, Tempe, AZ 85281, Mailstop: 7904. Email: m.andries@asu.edu

19 ⁶ Assistant Professor, School of Sustainable Engineering and the Built Environment, Arizona State
20 University, 777 E University Dr, Tempe, AZ 85287, Mailstop: 8704. Email: M.Garcia@asu.edu

21

22

23 **Abstract**

24 In response to diverse socio-environmental challenges, urban water utilities in the United States are
25 transitioning to more sustainable management practices, which are often designed to reduce total water
26 consumption. While these practices can effectively maximize the use of limited water supplies, they may
27 simultaneously exacerbate socioeconomic disparities if their implications for equity are not fully
28 considered. This research examines the potential tradeoffs between effectiveness and equity in urban water
29 transitions by analyzing Miami-Dade County's high-efficiency toilet (HET) voluntary rebate program
30 (VRP) as an example of a sustainable water management practice. Using data on HET-VRP participation,
31 water consumption and billing, and socioeconomic indicators, we analyze the relationship between HET-

32 VRP uptake and benefit distribution among residents. Through parametric and spatial statistical analyses,
33 we find that areas with higher income and education levels have both higher water consumption and more
34 HET-VRP participation, indicating potential program effectiveness. However, lower participation in
35 vulnerable communities raises equity concerns, underscoring the need for targeted outreach and policies
36 that consider distributional impacts. These findings suggest that urban water systems should better
37 incorporate equity considerations in the planning and implementation of water conservation policies
38 intended to promote sustainable water management.

39 **Keywords:** Urban Water Systems, Sustainable Management Practices, Policy Instruments, Water Equity

40

41 1. Introduction

42 In the face of growing environmental stressors, ranging from long-term climatic changes to acute extreme
43 events, the importance of implementing more sustainable water management practices is increasingly
44 recognized. For more than two decades, municipalities in the United States have taken policy actions to
45 shift their urban water management system toward greater sustainability (Hornberger et al., 2015; Hess et
46 al., 2017; Garcia et al., 2019), such as by upgrading infrastructure, investing in wastewater reuse, adapting
47 water rate structures, and incentivizing conservation. These practices are commonly designed to effectively
48 reduce municipal water demand (Inman and Jeffrey, 2006; Katz et al., 2016), allowing urban water utilities
49 to stretch limited or variable water supplies further. However, while these practices can effectively
50 maximize the use of limited water supplies, they may simultaneously exacerbate socioeconomic disparities
51 if their implications for equity are not explicitly considered.

52 Urban water utilities must simultaneously manage several interacting tasks related to water supply
53 sustainability, such as maintaining physical infrastructure (e.g., aging water distribution networks),
54 adapting to environmental changes (e.g., climate change driven aridification), and meeting customer
55 demands, all while working within largely risk-averse political environments characterized by slow-moving

56 institutional governance factors (e.g., resistance to rate increases and water use restrictions). Though equity
57 is commonly partially considered in each of these tasks (e.g., How are the costs of new infrastructure spread
58 among customers?), evidence suggests that local governments in the U.S. and other countries have struggled
59 to prioritize sustainability-related social equity issues alongside other economic, environmental or cost-
60 efficiency goals (Hess and Brown 2018; Opp 2017; Opp et al. 2018; Roberts 2003). For example, local
61 government managed utilities commonly increase the fixed charge component of water rate structures to
62 help stabilize a utility's revenue, thereby promoting more reliable and high-quality service (Porcher, 2014;
63 Luby et al., 2018). However, this change in rate structures can disproportionately impact households that
64 consistently use less water and have, thus, historically paid lower bills based on their actual water
65 consumption (Gerlak et al., 2021). Such an impact exemplifies the importance and understudied tradeoffs
66 related to the mix of policy instruments used in sustainable water management transitions, particularly
67 regarding their effectiveness and equity, that must be better understood to promote truly sustainable urban
68 water management systems (Clark et al., 2022; Farmer, 2022; Jacob and Ekins, 2020).

69 Overall, utilities must consider the differential impacts that sustainability practices have on diverse
70 socioeconomic groups within a community, in addition to evaluating how effective these practices are at
71 reducing water use to meet sustainability goals (Tong et al., 2021; Olmstead and Stavins, 2009).
72 Accordingly, this study adapts an evaluation framework to analyze both the effectiveness and equity of a
73 water sustainability policy. Guided by this adapted policy framework, we evaluate the effectiveness and
74 equity of a common water conservation policy instrument, voluntary rebate programs (VRPs), in a large
75 U.S. metropolitan area – the City of Miami and surrounding Miami-Dade County – as part of their transition
76 toward sustainability (Treuer et al., 2017). Water utilities commonly use VRPs to incentivize residents
77 living in qualified households to purchase and install high-efficiency technology (e.g., shower heads,
78 faucets, toilets) in exchange for a financial rebate from the utility (Miami-Dade County, 2023; City of
79 Tucson, 2023; El Paso Water, 2019). Our primary objective is to assess both the effectiveness of a VRP at
80 reducing water use and the distributional equity of a VRP in adoption by households across socio-

81 demographic groups to understand the tradeoffs and potential differential impacts of policy instruments
82 used in sustainability transitions. This analysis is therefore guided by the following research question: What
83 does household VRP participation reveal about the tradeoffs between effectiveness and equity in urban
84 water management policy instruments? We draw from extensive data on resident participation in rebate
85 programs, their water consumption and billing, and socioeconomic indicators from Miami-Dade County
86 households over recent years (2019-2023). We employ a variety of spatial and parametric statistical tests
87 to evaluate these data in terms of the effectiveness and equity of the VRP program.

88 This study provides several theoretical and practical insights. We find that while higher water rebate
89 participation occurred in neighborhoods using or expected to use the most residential water, less rebate
90 participation occurred in neighborhoods with households expected to benefit the most financially from the
91 VRP (e.g., higher poverty-level neighborhoods). This indicates that, as currently implemented, the VRP
92 may be effective but not necessarily equitable and points to potential pathways for more equitable
93 implementation of VRPs and similar practices. Theoretically, the findings advance a useful conceptual
94 framework for systematically evaluating both the effectiveness and equity of practices used by utilities to
95 transition toward sustainable urban water management. By operationalizing this framework through
96 integrating socioeconomic indicators and spatial patterns of VRP participation, we offer a robust method
97 for assessing both the effectiveness and equity of this transition strategy. This methodological innovation
98 creates a roadmap for future research, enabling a more comprehensive understanding of policy instruments
99 and their impact on diverse communities. Practically, the study provides evidence to not only show which
100 types of households participate in the VRP program, but also where they are spatially clustered. Utilizing
101 spatial statistical tools helped identify links between household VRP rebate participation and effectiveness
102 and equity factors, as well as areas that could be targeted for outreach campaigns. Overall, this study's
103 approach and findings add value to local government sustainability literature and for local government
104 water managers and policymakers aiming to balance the effectiveness of water policy instruments and
105 equity in their communities.

106 **2. Conceptual Evaluation Framework**

107 The concept of transitions is leveraged across various scientific disciplines to characterize the evolution or
108 alterations of a system at multiple governance scales, including local and state levels (Loorbach et al.,
109 2017). In the United States, urban water management systems are governed at federal, state, and local levels.
110 However, in the context of drinking water provision, it is predominantly the local governments or
111 municipalities that bear most governance costs associated with managing local water utilities (Greer, 2020).
112 Given this significant responsibility at the local level, there is a growing interest among scholars in
113 understanding the strategies employed at this governance level to transition toward more sustainable urban
114 water management practices (Bush, 2020).

115 Sustainability, by its very nature, is a dynamic, multidimensional concept contingent on an array of factors,
116 including, but not limited to, governance institutions, population dynamics, and access to resources (Garcia
117 et al., 2019). Building on prior research (e.g., Garcia et al., 2019), this study adopts the following definition
118 of sustainable urban water systems: “the ability for water providers to maintain or improve standards of
119 living without damaging or depleting natural resources for present and future generations” (Treur et al.,
120 2017, p.892). This definition implies that intergenerational equity should be an evaluative criterion but
121 defers to individual communities, users, and providers to determine what system performance might look
122 like (Anderies et al, 2013). Thus, it not only encapsulates the fluid nature of sustainability but also
123 centralizes the role of water providers in determining appropriate metrics for assessing progress. In this
124 study, we focus on transitions toward urban water management sustainability as the overarching area of
125 inquiry.

126 Water utilities often employ a variety of policy instruments to facilitate their transition toward
127 sustainability. According to Krause et al. (2019), policy instruments serve as “the means by which
128 government policies are carried out” (p. 477). Policymakers deliberately design these instruments to realize
129 their objectives and the communal goals of citizens and interest groups (Feiock, 2018; Krause et al., 2019).

130 Among these instruments, VRPs emerge as specialized instruments aimed at propelling sustainable
131 practices within utility management by offering financial incentives to consumers for purchasing efficient
132 appliances. Studies indicate VRPs effectively promote energy efficiency among the general population
133 (Howlett, 2019). However, they may disproportionately benefit higher-income households, who have both
134 awareness of these programs and the means to purchase new appliances, potentially exacerbating
135 inequalities (Reames 2016).

136 To facilitate the systematic evaluation of such local sustainability-based policy instruments, Curley et al.
137 (2020) developed a conceptual framework which posits that the outcomes of policy instrument
138 implementation are intrinsically tied to a community's demographic composition. We draw on two of their
139 framework's evaluative criteria, including "effectiveness in achieving program goals" and "reduction of
140 inequalities in outcomes and burdens" (Curley, et al., 2022, p. 538). They developed this framework within
141 the context of an energy VRP, which offered the City of Tallahassee Utility's customers \$40 to \$300 rebates
142 for purchasing new Energy Star-certified technology to reduce household energy demand. The study found
143 that household energy consumption rates were not associated with VRP adoption and that predominantly
144 white and highly educated households were associated with higher VRP participation, suggesting that the
145 VRP was neither effective nor equitable.

146 The Curley et al. (2020) framework provides a useful conceptual tool for systematically evaluating similar
147 policy instrument outcomes in different contexts, such as that of urban water. In this study, we adapt the
148 framework to assess the effectiveness and equity of the water-based VRP policy instrument implemented
149 in Miami-Dade County in 2007. Specifically, we use their definition of 'effectiveness' as the degree to
150 which the policy instrument fulfills its overarching goal (i.e., water conservation). Additionally, we follow
151 their understanding of 'equity' as the extent to which the policy instrument alleviates inequalities. In the
152 context of our study, the reduction of inequality would imply the reduction of financial water costs for
153 households with limited resource access. This is gauged through the participation rates of historically
154 vulnerable and low-income communities in a High-Efficiency Toilet (HET) VRP (HET-VRP). Access to

155 this program offers potential financial incentives that can relieve the water cost burden for these vulnerable
156 communities. This approach guides the hypotheses of our study, which are tailored to the Miami-Dade
157 HET-VRP.

158 **2.1. Hypotheses**

159 Multiple community-level spatial analyses show that socio-demographic factors and household factors exist
160 in spatial patterns and have linked these patterns to household water usage at the community level (e.g.,
161 House-Peters et al., 2010). Socio-demographics and household types commonly form spatial clusters within
162 metropolitan regions, suggesting a correlation between water usage determinants and urban spatial structure
163 (Avni et al., 2015). Consequently, it is essential to assess the connection between VRP participation and
164 household types from a spatial perspective, particularly when analyzing local communities. By examining
165 the spatial link in VRP participation, we can identify the types of people and households to target in future
166 VRP campaigns and the areas where these campaigns would be most effective, thus making this approach
167 theoretically and practically beneficial (Barnes et al., 2021).

168 Policy instruments, such as VRPs, are typically chosen for their anticipated effectiveness in achieving
169 multiple dimensions of policy objectives, which can vary based on local goals (Olmstead and Stavins 2009).
170 In the context of transitions toward sustainability, an effective policy instrument could serve various
171 purposes. In the case of water conservation, effective VRP participation would ideally involve households
172 that consume, or are expected to consume, large volumes of water. Such targeting aligns with determinants
173 of increased water demand, as identified in existing literature, including socio-demographic factors like
174 family size, household income, and education, as well as household factors like ownership status, age of
175 home, and type of residence (Chang et al., 2010; Cominola et al., 2023). Given the effectiveness
176 expectations and possible spatial water consumption clusters, we test the following hypothesis:

177

- 178 • H1: Households in neighborhoods (i.e., census tracts) with higher household water demand are
more likely to participate in the VRP.

179 Second, though the core purpose of VRPs traditionally focuses on water conservation for environmental
180 sustainability, increasing attention is being given to how such policy instruments could also help reduce
181 inequality (Curley et al., 2020). Policy instruments in sectors such as energy have evolved to target both
182 energy conservation and social empowerment (Johnson et al., 2018), and similarly, VRPs in the water sector
183 are now being scrutinized for their capacity to mitigate social disparities, specifically household water cost
184 burden. The 'water cost burden' is commonly defined as the percentage of household income allocated to
185 water services, representing a crucial metric of affordability. This financial strain disproportionately
186 impacts low-income and vulnerable households, which are characterized by limited financial resources and
187 heightened socio-economic risks (Mack and Wrase, 2017; Teodoro and Saywitz, 2020; Pierce et al., 2021;
188 Goddard et al., 2022). Consequently, the potential for VRPs to mitigate these disparities must be rigorously
189 evaluated.

190 In our study context, we define reduced inequality as vulnerable household participation in the VRP.
191 Participation in VRP can mitigate inequalities as the HET rebate provides short-term and long-term
192 financial benefits. These include an immediate financial rebate upon installing a HET and ongoing savings
193 due to reduced water costs with each flush.

194 Our emphasis on this aspect is particularly significant because VRPs are structured to be more inclusive
195 than other resource-saving initiatives. For example, energy loan and rebate programs often require upfront
196 payments or proof of financial credibility, creating barriers for minority and low-income households (Pivo,
197 2014). In contrast, VRPs may offer immediate financial relief without necessitating large initial
198 investments, lowering program access barriers. Yet, this pursuit of inclusivity raises a dilemma: traditional
199 VRPs are most 'effective' when targeting the highest water consumers for maximum conservation, a
200 demographic that might not necessarily overlap with the financially burdened households that would benefit
201 the most from the program's financial incentives. Given the recognized tension between effectiveness in
202 water conservation and social equity, our study aims to examine this dynamic. We therefore test a second
203 hypothesis that deals with the equity aspect of VRP:

204 ● H2: Households in neighborhoods (i.e., census tracts) with higher water cost burdens are less likely
205 to participate in the VRP.

206 **2.2. Case Study: Miami-Dade Water and Sewer Department (WASD)**

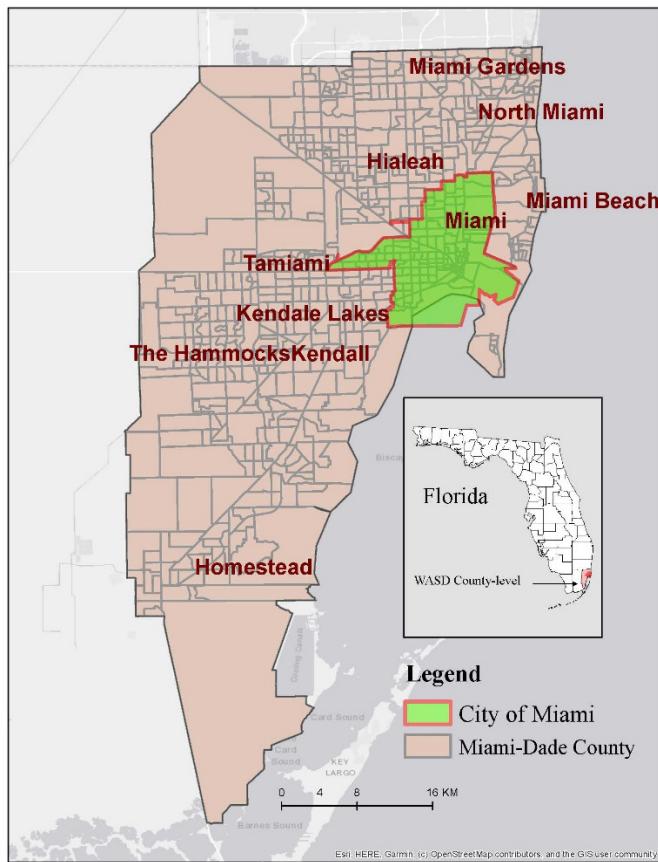
207 The Miami-Dade Water and Sewer Department (WASD) serves as an exemplary case to investigate our
208 research questions due to Miami-Dade county's diverse socioeconomic landscape, ongoing water
209 management transition, and environmental context. In recent decades, WASD has experienced significant
210 water system transitions and implemented effective conservation programs. WASD arguably embarked on
211 its journey towards sustainability in the early 1990s in response to a host of challenges, including rapid
212 population growth, environmental issues, and infrastructure constraints. In 2007, this transition was
213 formalized as WASD launched their Water Use Efficiency Plan (Treuer et al., 2017; Miami-Dade County,
214 2023). Central to this plan were rebate programs, which incentivized residents to replace less efficient
215 appliances and systems with high-efficiency models, including replacing older, less water-efficient toilets
216 with high-efficiency models in exchange for a financial rebate from WASD. Despite acute water shortages,
217 enduring drought conditions, and economic repercussions of the Great Recession (2007 to 2011), WASD
218 remained committed to its Water Use Efficiency Plan and has consistently successfully reduced the
219 county's overall water demand.

220 While our analysis concentrates on the effectiveness and equity of a specific conservation instrument, this
221 is one part of a broader transition at WASD that has generally yielded positive financial and operational
222 outcomes. There was a rise in total operating revenues and expenses, demonstrating growth in the utility's
223 earnings and operational costs. Additionally, an upturn in the operating ratio signaled improved operational
224 efficiency. Despite mixed trends in water loss, non-revenue water, and the frequency of water main breaks,
225 a generally positive direction was noted in financial obligations, depreciation of assets, the net position, and
226 investment in capital assets of the utility. Significantly, the period from 2015 to 2021 saw a considerable
227 expansion of capital assets, particularly related to ongoing construction projects, indicating proactive
228 infrastructure development. While the pace of annual water savings has slowed recently, the overall trend

229 points towards the successful implementation of conservation strategies. These initiatives resulted in a
230 substantial reduction in the city's water demand by 2020 (114 gallons per capita per day), as compared to
231 the 2006 levels (153 gallons per capita per day).

232 Our study narrows its focus on one component of WASD's transition to sustainable water management by
233 evaluating the effectiveness and equity of a key water conservation policy instrument implemented in this
234 water system's community. Specifically, we analyze the HET-VRP and assess how this policy impacts both
235 high water-using and financially vulnerable neighborhoods in the City of Miami and the greater Miami-
236 Dade county.

237


238 **3. Data and Methods**

239 **3.1. Dependent Variable Measure**

240 Miami-Dade WASD provided household HET-VRP participation records for the entire county from
241 6/01/2019 to 1/01/2023 for both single-family (SFR) and multi-family residences. This dataset includes the
242 household address and the date they received a HET rebate. Only homes built before 1996 are eligible for
243 the VRP rebate. In this study, the dependent variable was measured as the number of households receiving
244 a HET rebate between June 2019 and January 2023, normalized by the total number of eligible homes (built
245 before 1996), expressed as a percentage at the census tract level. We used a linear estimation procedure to
246 estimate the number of these homes based on data from the 2021 American Community Survey (ACS,
247 2021) five-year estimates, which provided the estimated number of houses built in each decade. We refer
248 to the dependent variable measure as *HET%*. Our unit of analysis is the census tract, chosen over block
249 groups due to superior ACS data reliability at the tract-level, especially when dealing with smaller
250 population subsets such as those in poverty or racial minority groups (Spielman, et al., 2014).

251 **3.2. Direct and Proxy Independent Measures of Effectiveness and Equity**

252 Due to limited household water use and billing data availability, a two-part analysis was conducted at the
253 city and county-levels (Fig. 1). The Miami-Dade WASD provided detailed water use and billing records
254 for approximately 64,000 residential customers in the City of Miami, covering the period from 2018 through
255 2021. These records allowed for direct measurement of *effectiveness* (i.e., household water demand) and
256 *equity* (i.e., household water cost burden) at the city level. However, due to the low number of census tracts
257 in the City of Miami (134 tracts), statistical tests on this sample may not robustly detect significant
258 associations between high-efficiency toilet (HET) adoption percentages (*HET%*) and the effectiveness and
259 equity measures.

260
261 **Fig. 1.** Miami-Dade County (area outlined in blue) and the City of Miami (area outlined in red) census tract areas
262 included in this study.

263 To augment and validate the city-level analysis and ensure broader regional applicability, we extended our
 264 boundary of study to include the entire county, which encompasses 695 census tracts. For the county-level
 265 analysis, we lacked specific household water use and billing data and thus relied on proxy measures
 266 (discussed below) to evaluate the effectiveness and equity of HET-VRP participation. These proxy
 267 measures, aimed at identifying households 'expected' to have high consumption and a higher water cost
 268 burden, are derived from socio-economic and demographic data. To facilitate a comprehensive comparison
 269 across the city-level and county-level analyses, these proxy measures were also incorporated into the city-
 270 level analysis (Table 1). The data for the proxy measures were sourced from the US Census Bureau's 2021
 271 American Community Survey (ACS) five-year estimates. This two-part analysis is expected to provide a
 272 robust and reliable assessment of the WASD HET-VRP policy instrument.

273 **Table 1.** Overview of direct and proxy measures for evaluating effectiveness and equity at city and county levels

Level of Analysis	Dependent Variable	Independent Variables		
		Measure Type	Effectiveness Measures	Equity Measures
City Level	Percent of households received High Efficiency Toilet Rebate (HET %)	Direct Measures	<ul style="list-style-type: none"> Average gallon water usage per household per day (GPHD) 	<ul style="list-style-type: none"> Water Affordability Index (average monthly water bill / median household income) Average water and wastewater bill per household per day (BPHD)
		Proxy Measures	<ul style="list-style-type: none"> Median Income College Education Percentage (College%) Average Household Size Single-Family Residences Percentage (SFR%) Percentage of homes qualified for HET rebate (Qualified%) 	<ul style="list-style-type: none"> Poverty Percentage (Poverty%) Racial Demographics (White%, AA/Black%, Hispanic%) Percentage of Rented Households (Rent%)
County Level	Percent of households received High Efficiency Toilet rebate (HET %)	Proxy Measures	<ul style="list-style-type: none"> Median Income College Education Percentage (College%) Average Household Size Single-Family Residences Percentage (SFR%) Percentage of homes qualified for HET rebate (Qualified%) 	<ul style="list-style-type: none"> Poverty Percentage (Poverty%) Racial Demographics (White%, AA/Black%, Hispanic%) Percentage of Rented Households (Rent%)

274

275

276 **3.2.1. Direct Measures at the City Level**

277 We use direct household water demand-related measures to *evaluate effectiveness* and *equity* at the city
278 level. For *effectiveness*, we calculated the average gallon of water usage per household per day within each
279 census tract, referred to as *GPHD*, using the household water use records from 2018 to 2021. This direct
280 measure helps identify neighborhoods with high household water consumption. For *equity*, the direct
281 measure involves calculating the Water Affordability Index (Teodoro and Saywitz, 2020), which is the
282 average monthly water bill divided by the neighborhood's median monthly household income (ACS
283 estimates), scaled by 100. A lower value in this index signifies higher water affordability, while a higher
284 value indicates less affordability. We also consider the average water and wastewater bill per household
285 per day using the same billing records (*BPHD*). These direct measures offer a precise assessment of water
286 use and cost burden at the city level.

287 **3.2.2. Proxy Measures for Both City and County Levels**

288 We identified suitable proxy measures for the *effectiveness evaluation* using water demand literature and
289 sourcing the necessary data from the ACS five-year estimates. Research indicates that parameters such as
290 income (Gregory and Di Leo, 2003; Russell and Fielding, 2010; Rachunok and Fletcher, 2023), education
291 (Addo et al., 2018), and household size (Wentz and Gober, 2007; Schleich and Hillenbrand, 2009)
292 positively associate with household water demand. Moreover, household type can be a determining factor
293 (Domene and Sauri', 2007); for instance, single-family households often have higher water usage rates
294 (House-Peters et al., 2010). Additionally, the year a household was built also impacts water consumption;
295 newer homes often use less water due to water-saving technologies (Guhathakurta and Gober, 2007;
296 Kenney et al., 2008; Caminola et al., 2023). Given previous water demand findings, the following proxy
297 measures are used in the effectiveness evaluation: median income (Median Income), percentage of
298 individuals with a college degree (College%), average household family size (Household Size), percentage
299 of homes that are single-family residences (SFR%), and the percentage of homes eligible to receive a HET
300 rebate (Qualified%).

301 For the *equity evaluation*, we utilize proxy equity measures focused on wealth and race following the equity
302 evaluation in Curley et al. (2020), which are associated with the water cost burden. These measures include
303 the percentage of individuals in poverty (Poverty%), racial demographics (percent of white non-Hispanic
304 residents (White%), percent African American or Black residents (AA/Black%), percent of Hispanic
305 residents (Hispanic%), and the percent of households that are rented (Rent%).

306 **3.3. Statistical Methods**

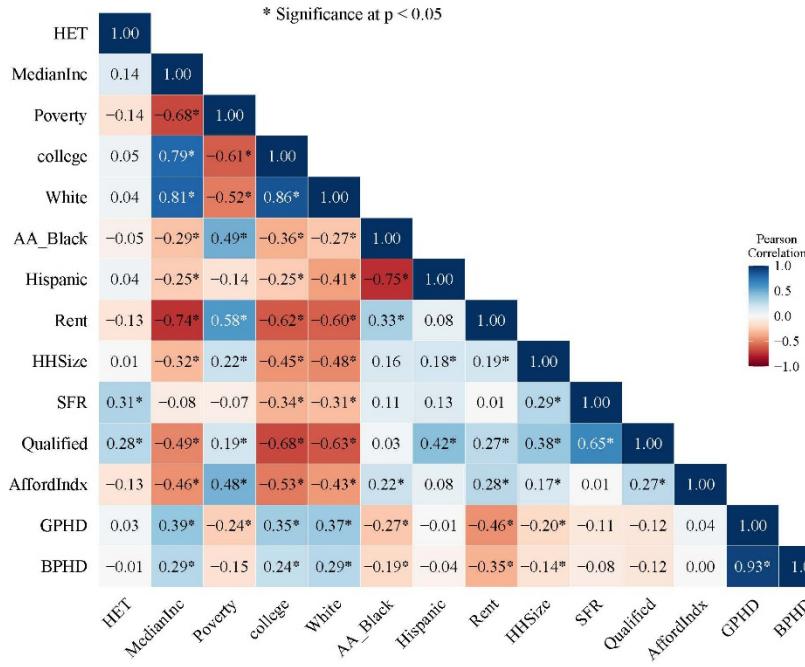
307 We constructed a cross-sectional database, aggregated at the census tract level, to conduct both parametric
308 and spatial statistics. Four sets of tests were conducted at the city-level and again at the county-level. We
309 employed (1) Pearson correlation tests (Cohen et al., 2013), (2) Global Moran's I spatial autocorrelation
310 statistics (Odlund, 1988), (3) Local Moran's I spatial autocorrelations (LISA) spatial statistics (Anselin,
311 1995), and (4) Co-location join count spatial statistics (Huang et al., 2004). Pearson correlation tests were
312 executed in STATA and all spatial statistics were generated using the open-source GIS software GeoDa
313 version 1.2 (Anselin, 2021). For all spatial statistics, the Queen contiguity spatial matrix (Grubesic, 2008)
314 was utilized to define a “neighbor” among the census tracts in this study. In this context, any census tracts
315 that share at least one node (i.e., census tract boundaries touch) are considered neighbors. Additionally, we
316 utilized the Census Bureau Tiger/Line census tract shapefile for Miami-Dade County for the spatial tests.

317 First, Pearson correlations were used to identify associations between the study variables without
318 considering their spatial proximity. Second, the Global Moran's I spatial autocorrelation was used to assess
319 if there is a systematic spatial pattern of similarity (positive autocorrelation) or dissimilarity (negative
320 autocorrelation) among neighboring census tracts. Third, the LISA statistic, an extension of the Global
321 Moran's I test, was used to identify significant clusters or hotspots (e.g., high-income neighborhoods
322 clustering together) and spatial outliers (see Appendix Table A1 for full LISA map result interpretations).
323 Fourth, co-location join count tests were used to examine the degree of co-location associations between
324 the dependent variable and the independent measures (Anselin and Li, 2019). This test can only be used for
325 binary measures. Therefore, for the purpose of the co-location join count tests, all variables were recoded

326 into a binary format. If a census tract had a variable measure value greater than the overall average, it was
327 coded as one; otherwise, it was coded as zero. For instance, a census tract with a higher-than-average HET%
328 value was coded as one, and the census tracts with average or less than average HET% were coded as zero.
329 This analytical approach is valuable as it identifies census tracts or clusters of census tracts that have both
330 a high HET% distribution and a high level of an independent measure (e.g., high water demand, high
331 income, high percentage of college graduates, high percentage of individuals in poverty, etc.).

332

333 **4. Results**


334 Our study reveals that neighborhoods with high water demand are actively engaged in the HET-VRPs, but
335 economically burdened and ethnically diverse communities are notably underrepresented. This situation
336 exposes a potential tension within the program's objectives—it excels at targeting high-consumption areas
337 but might not be fulfilling other potential objectives, such as reaching communities that could most benefit
338 from its financial incentives. In the sections that follow, we go into greater detail about our results.

339 **4.1. City-level Results**

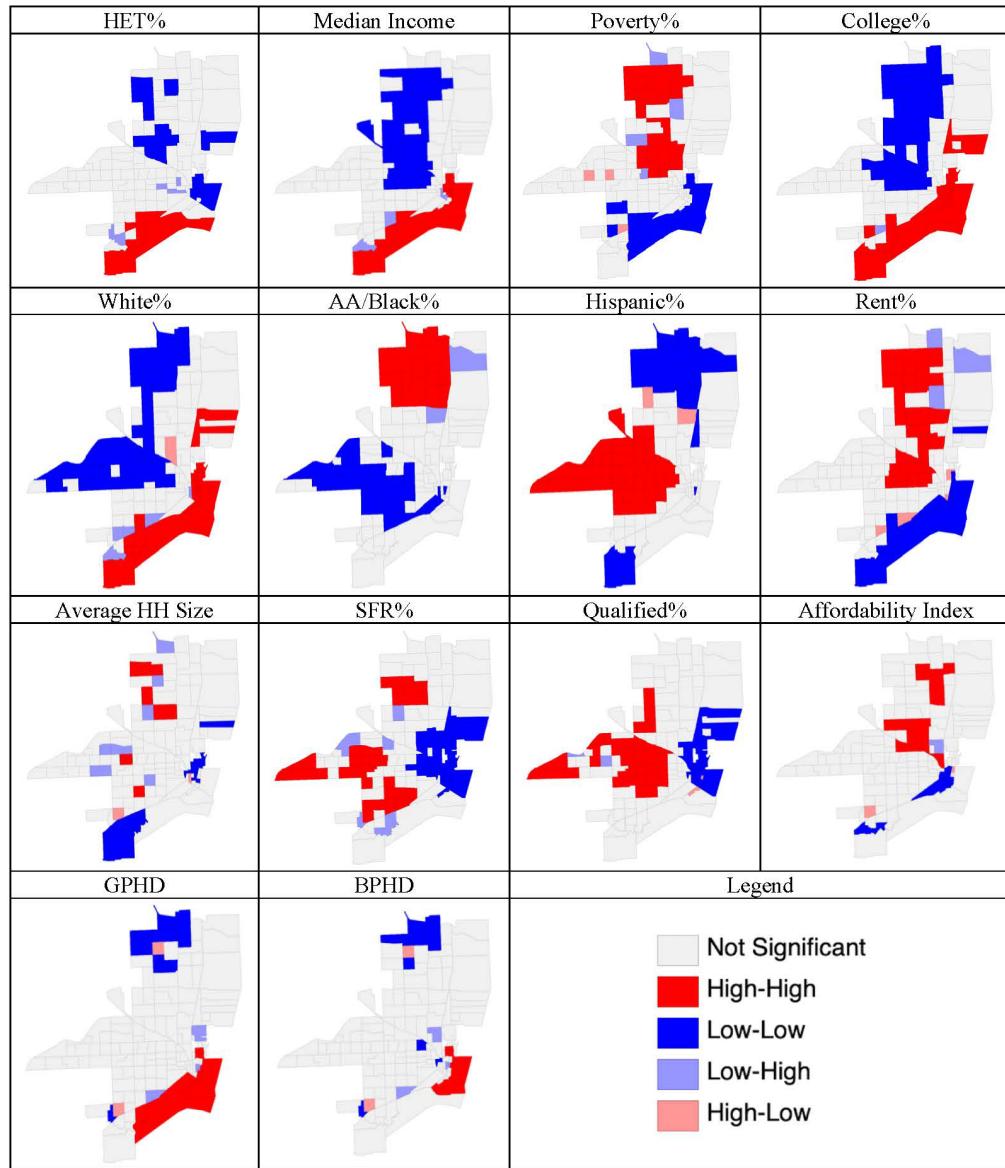
340 The city level analysis was conducted for 14 measures (both direct and proxy measures) across 134
341 observations measured at the census tract level. The descriptive statistics shows (Table A2) that HET%
342 ranges from 0 to 3.03%, showing that overall, a small percentage of qualified households participated in
343 the HET-VRP between June 2019 and January 2020.

344 Fig. 2 provides the city-level Pearson correlation heatmap results. These results show a significant positive
345 correlation between the dependent variable HET% and both SFR% and Qualified%. Not only are these
346 correlations significant, but their correlation coefficients are also at or near 0.3, indicating a strong
347 relationship. Interestingly, these parametric tests do not show a significant association between HET% and
348 the direct effectiveness and equity measures (i.e., GPHD, Affordability Index, BPHD); however, the direct
349 measures do associate with the proxy measures in expected ways (e.g., GPHD positively associates with

350 Median Income and college, Affordability Index positively associates with Poverty, AA/Black%, and
 351 Rent%).

352

353 **Fig. 2.** Pairwise correlations of city-level measures


354 Table 2 provides the Global Moran's I statistics. All variable measures are significantly positively
 355 autocorrelated. The HET% demonstrated a lower degree of spatial autocorrelation than almost all the
 356 independent measures, except for Household Size and GPHD. The most significant takeaway from Table
 357 2 is that nearly all variable measures occur in spatially significant clusters in the city, validating the use of
 358 and focus on spatial statistics in the city-level analysis.

359

360 **Table 2.** Global spatial autocorrelation results (Moran's I statistics) of city-level measures

Variable Measures	Moran's I Statistic	E[I]	Mean	z-value	permutations	Pseudo p-value
HET%	0.2511	-0.0075	-0.0100	5.454	999	0.001
Median Income	0.5085	-0.0075	-0.0098	10.6922	999	0.001
Poverty%	0.4449	-0.0075	-0.0083	9.0418	999	0.001
College%	0.7565	-0.0075	-0.0086	14.9136	999	0.001
White%	0.6097	-0.0075	-0.0112	12.6775	999	0.001
AA/Black%	0.7643	-0.0075	-0.0076	15.0549	999	0.001
Hispanic%	0.7863	-0.0075	-0.0079	15.6294	999	0.001
Rent%	0.3138	-0.0075	-0.0087	6.4103	999	0.001
Household Size	0.2003	-0.0075	-0.0075	4.0323	999	0.001
SFR%	0.5905	-0.0075	-0.0078	11.6358	999	0.001
Qualified%	0.6603	-0.0075	-0.0079	13.0991	999	0.001
Affordability Index	0.2376	-0.0075	-0.0082	4.9493	999	0.001
GPHD	0.2299	-0.0075	-0.0071	4.9107	999	0.001
BPHD	0.0908	-0.0075	-0.0059	2.0122	999	0.024

361
362 Fig. 3 provides the visual LISA univariate results (see Table A3 for the number of LISA significant and
363 insignificant census tracts at the city-level). The High-High results for HET% suggest the emergence of
364 seven hotspots in the city concentrated in the city's south-eastern region. The 26 HET% coldspots, in
365 contrast, are more dispersed across the city, predominantly appearing in northeastern and western regions.
366 Focusing on the overlap with HET% hotspots, it is observed that Median Income, College%, White%, and
367 GPHD demonstrate the most substantial visual overlap, especially in the city's south-eastern region.
368 Similarly, Poverty% and Rent% coldspots visually indicate there is overlap with multiple HET% hotspots
369 within the same south-eastern area. The most notable takeaway from this LISA analysis is that there are
370 visible overlaps in HET% hotspots and the independent measures, validating the use of co-location join
371 count tests to probe the bivariate spatial links between the dependent and independent measures in the next
372 step of this analysis.



373

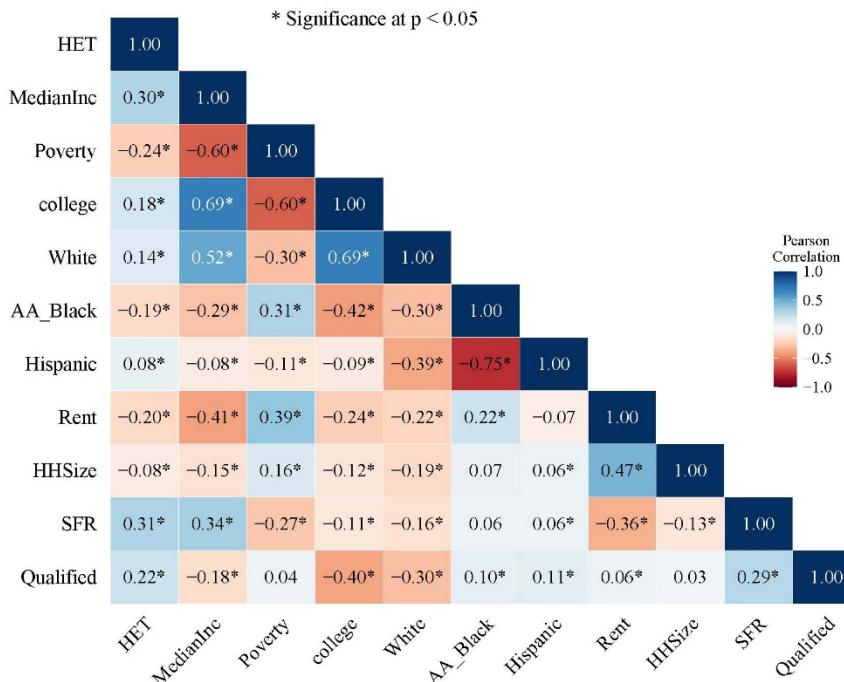
374 **Fig. 3.** Local Moran's I cluster results for city-level measures.

375 Fig. 4 provides the visual city-level binary co-location join count results, which underscore several relevant
 376 trends (see Table A4 for the number of significant and insignificant co-location join count tracts at the city-
 377 level). The county-level binary co-location join count results are depicted in green if they are significant at
 378 the 0.05 significance level or lower. This analysis reveals two key trends in HET-VRP participation in
 379 Miami. First, neighborhoods with higher-income households and higher percentages of white residents are
 380 more likely to participate in the HET-VRP. These demographic factors appear to be the most significant

381 drivers of program participation. Second, areas with higher water consumption rates—directly measured as
 382 Gallons Per Household per Day (GPHD) or indirectly indicated through factors like income, education, and
 383 the age of the household structure (Qualified%)—also show higher participation levels. However, these
 384 findings come with caveats. The key takeaway from Fig. 4 is that our city-level analysis reveals a striking
 385 positive link between effectiveness measures and HET-VRP participation and a negative link between
 386 equity factors and HET-VRP participation. However, the low number of significant clusters and the limited
 387 number of census tracts available for the city-level analysis suggest that the results from the city analysis
 388 should be interpreted cautiously and in conjunction with county results in the next section.

389

390 **Fig. 4.** Local Moran's I cluster results for city-level measures.


391

392 **4.2. County-level Results**

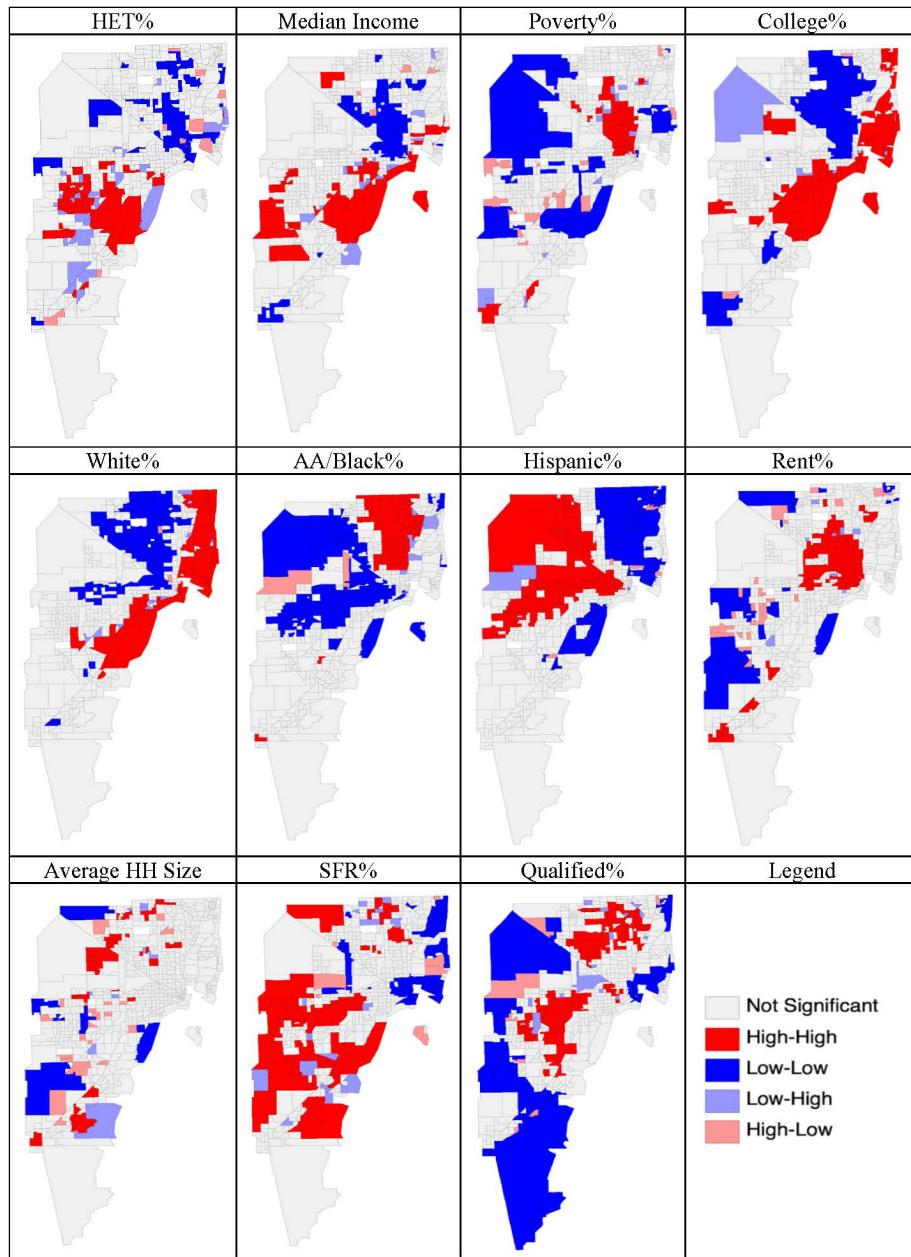
393 WASD only made water use and billing data available for the City of Miami. As mentioned, due to the low
394 number of census tracts in the city analysis, the city-level statistical tests and subsequent results may not be
395 generalizable (i.e., small sample size bias), necessitating a county-level analysis, using only proxy measures
396 to validate results identified in the city analysis.

397 The county level analysis was conducted for 11 measures (proxy measures only) across 695 observations
398 measured at the census tract level. Twelve tracts were removed that could introduce bias—those with a low
399 population and zero residential household estimates. The descriptive statistics shows (Table A5) that HET%
400 ranges from 0 to 6.68%, indicating that overall, a small percentage of qualified households participated in
401 the HET-VRP during the period between June 2019 and January 2020, but participation was relatively
402 higher in neighborhoods outside of the City of Miami (city-level HET% ranged from 0-3.03%).

403 Fig. 5 provides the county-level Pearson correlation heatmap results. Notably, these results show a
404 significant positive correlation between the dependent variable HET% and Median Income, College%,
405 White%, Hispanic% (despite a small coefficient), SFR%, and Qualified%. On the other hand, HET%
406 negatively correlates with Poverty%, AA/Black%, Rent%, and Household Size. The key takeaway from
407 Fig. 5 is that nearly all proxy effectiveness measures (i.e., higher demand neighborhoods) and proxy equity
408 measures (i.e., neighborhoods with higher water cost burden) are associated with HET% in the directions
409 hypothesized (i.e., positive or negative). We note that Hispanic% minorly positively associates with HET%
410 (i.e., opposite of theoretical expectations), but given the particularly large Hispanic community in Miami-
411 Dade, it is possible that the Hispanic% metric is a less reliable equity factor in this community. This finding
412 highlights that communities are different; thus, evaluation must be tailored to the community in question.

413

414 **Fig. 5.** Pairwise correlations of county-level measures

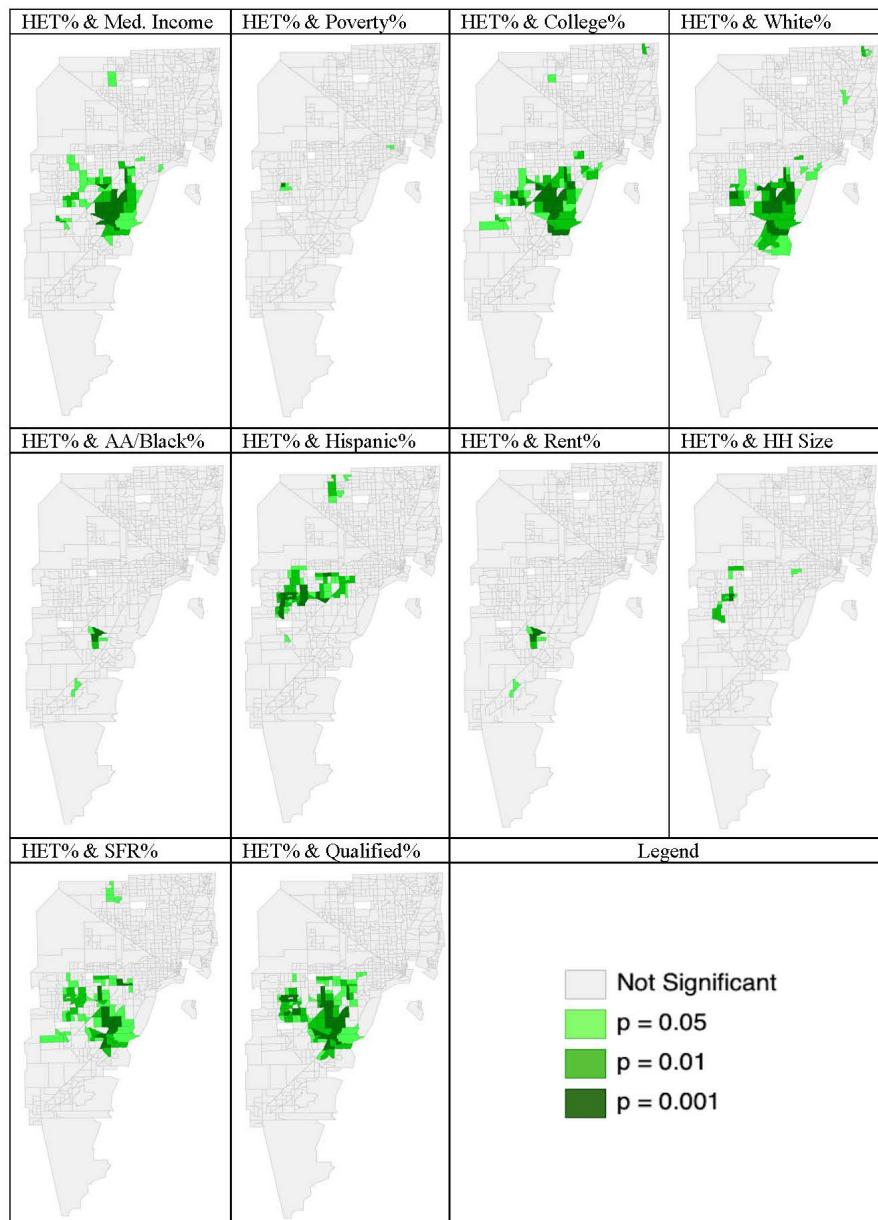

415 The results from the univariate Global Moran's I statistics (Table 3) show that all variable measures at the
 416 county-level exhibit significant positive autocorrelations. This indicates that each measure exhibits
 417 significant spatial clustering (i.e., spatial autocorrelation). The key takeaway from Table 3 is that all variable
 418 measures are significantly spatially clustered across the county, validating the use of and focus on spatial
 419 statistics in the county-level analysis.

420 **Table 3.** Global spatial autocorrelation results (Moran's I statistics) of county-level measures

Variable Measures	Moran's I Statistic	E[I]	Mean	z-value	permutations	Pseudo p-value
HET%	0.2528	-0.0014	-0.0014	11.4556	999	0.001
Median Income	0.4761	-0.0014	-0.0018	22.8260	999	0.001
Poverty%	0.3280	-0.0014	-0.0016	15.2001	999	0.001
College%	0.6873	-0.0014	-0.0019	31.5523	999	0.001
White%	0.6728	-0.0014	-0.0024	29.7278	999	0.001
AA/Black%	0.7941	-0.0014	-0.0013	36.9010	999	0.001
Hispanic%	0.7964	-0.0014	-0.0022	36.7247	999	0.001
Rent%	0.2901	-0.0014	-0.0016	13.6268	999	0.001
Household Size	0.1311	-0.0014	-0.0025	6.0955	999	0.001
SFR%	0.5282	-0.0014	-0.0005	24.3557	999	0.001
Qualified%	0.5636	-0.0014	-0.0005	25.8867	999	0.001

421

422 Fig. 6 provides the visual county-level LISA results (see Table A6 for the number of significant and
423 insignificant LISA census tracts at the county-level). The High-High results for HET% suggest the
424 emergence of 70 hotspots in the county (Table A6). Most are concentrated in the mid-eastern portion of the
425 county. This area includes multiple cities, smaller in population than Miami, and south of Miami. The 105
426 HET% coldspots are more broadly distributed across the county, with many appearing in the northwestern
427 part of the county near the City of Miami and other northwestern cities. Focusing on the overlap with HET%
428 hotspots, it can be observed that Median Income and College% also exhibit a large grouping of hotspots in
429 the mid-eastern region of the county. White%, Household Size, and Qualified% also visibly indicate there
430 is some overlap in HET% hotspot areas. In contrast, HET% coldspots, Median Income, College%, and
431 Hispanic% display substantial coldspot overlap. Similarly, Poverty% and Rent% hotspots overlap
432 significantly with many of the HET% cold spots in the northern Miami, Miami Springs, and Hialeah areas.
433 The key takeaway from this LISA analysis is that there are visible overlaps in HET-VRP participation and
434 the independent measures, validating the use of co-location join count tests to probe the bivariate spatial
435 links between the dependent and independent measures in the following step of the county analysis.



436

437 **Fig. 6.** Local Moran's I cluster results for county-level measures.

438 Fig. 7 provides the county-level binary co-location join count results (see Table A7 for the number of
 439 significant and insignificant county-level co-location join count census tracts). Overall, like the city-level
 440 results, the county results indicate a significant positive link between effectiveness measures and HET-VRP
 441 participation and a negative link between equity factors and HET-VRP participation. Notably,
 442 neighborhoods with the most qualified homes (built before 1996) also have the most HET-VRP

443 participation, indicating participation is occurring the most in areas with the most qualified as expected
 444 from the effectiveness perspective. Additionally, the Fig. 7 proxy measure results indicate the county-level
 445 analysis aligns with the city-level observations, confirming that neighborhoods with higher income and
 446 educational levels, as well as greater percentages of white and Hispanic residents, are more likely to
 447 participate in the HET-VRP program validating the city-level analysis and results.

448

449 **Fig. 7.** Co-location join counts of county-level binary measures.

450

451 **5. Discussion and conclusion**

452 Local governments face multiple understudied tradeoffs related to the mix of policy instruments used in
453 sustainable water management transitions (Clark et al., 2022; Farmer, 2022; Leigh and Lee, 2019). In this
454 study, the research question and hypotheses focused on two critical facets: the effective reduction in
455 residential water consumption and the equitable distribution of benefits derived from the program.

456 In terms of effectiveness, although Pearson correlation tests did not establish a significant statistical
457 relationship between HET-VRP participation (HET%) and household water demand (GPHD) at the city
458 level, likely due to the sensitivity to sample size, spatial analysis provides a different perspective. The co-
459 location spatial tests demonstrate a significant link between HET% and GPHD, suggesting the program
460 effectively targets areas with higher water consumption. This association is supported by findings from
461 proxy measures in both city and county levels across parametric and spatial statistical tests. The observed
462 neighborhood scale correlation between HET-VRP participation and higher water use further indicates the
463 program's strategic focus and success in engaging households with high consumption, affirming the first
464 hypothesis. These findings strongly suggest that neighborhoods with these characteristics are not only more
465 likely to participate but also more likely to benefit from water-efficient technologies. As a result, the VRP
466 successfully influences water conservation behavior among high-water consumption households (Lee et
467 al., 2011), fulfilling one of its primary goals (Miami-Dade County, 2023). However, given that participation
468 in any one neighborhood was less than 7% throughout the study period, WASD and other urban water
469 utilities would likely benefit from increasing their current outreach efforts to increase program participation
470 in the highest water use neighborhoods.

471 Regarding equity, our findings highlight a sobering counterpoint: economically burdened and ethnically
472 diverse communities are notably underrepresented. This situation exposes a potential tension within the
473 program's objectives—it appears to target high-consumption areas but might not be fulfilling other potential

474 objectives, such as reaching communities that could most benefit from its financial incentives. The under-
475 utilization in low-income, African American and Black households, rented households, larger-sized
476 households, and those with a higher poverty percentage, evidenced by a lower HET VRP participation rate,
477 affirms hypothesis two. Moreover, the fact that households with a disproportionate water cost burden
478 relative to their income were less likely to engage with the program, which could help alleviate such
479 burdens, underscores the need for equity planning in sustainability initiatives. These communities are the
480 ones that could benefit most from the program's support (Conway et al., 2023; Matsler et al., 2023). Several
481 factors might account for this participation gap: lack of program awareness, linguistic hurdles, or
482 complications arising from landlord-tenant relationships in rented properties. Specifically, renters face
483 unique challenges as they depend on landlords to make upgrades to high-efficiency infrastructure.
484 Landlords, who often do not bear the water costs, may lack the incentive to invest in or navigate the
485 complexities of VRP participation due to upfront costs and extensive paperwork.

486 Given the low percentage of HET participation in key areas of the city and county, as indicated by our
487 spatial analysis, targeted outreach and addressing upfront costs of VRP participation could be two policy
488 solutions to increase participation by these vulnerable groups. Outreach programs that target and align with
489 the unique financial, cultural, linguistic, and traditional factors of these underrepresented communities may
490 help bridge the existing participation gap. Additionally, it is likely important to consider the upfront costs
491 associated with VRPs. Though VRPs provide a rebate after a household has participated, VRP's require
492 initial expenditures, such as purchasing an appliance and covering installation charges. Initial costs could
493 be a barrier to households with limited incomes; thus, offering upfront assistance to replace wasteful water
494 appliances could enhance program participation, promote water conservation, and provide financial relief
495 for households that face economic challenges. However, this approach could lead to increased costs for the
496 utility, highlighting the inherent balancing act water managers must contend with. To balance effectiveness
497 and equity, we recommend local decision-makers engage in comprehensive evaluation and public

498 consultations to navigate these complex tradeoffs, ideally aiming for a policy that optimize both
499 effectiveness and equity within the constraints of available resources.

500 The limitations of this study warrant that readers make conclusions from our results with caution, but they
501 offer avenues for future scholarship. One of the primary challenges this study faced was data limitations.
502 The research relied significantly on data from the Census Bureau's ACS and limited water use records.
503 While these datasets offer invaluable information, they present certain constraints. For instance, using ACS
504 5-year estimates assumes that household characteristics remain unchanged throughout this period—a
505 presumption that might not always be accurate. Moreover, our linear estimation procedure to predict the
506 number of homes eligible for the HET rebate—based on the number of homes built prior to 2000—may
507 overlook recent home renovations or upgrades, thereby altering their rebate eligibility. Additionally, our
508 measure of high water consumption neighborhoods at the county-level, although innovative, relies on proxy
509 variables at the county-level that might not fully capture the nuanced dynamics of water usage. Lastly, the
510 scope of our dependent variable, HET%, is limited. It only accounts for households that utilized the rebate,
511 excluding those that might have installed a HET without seeking a rebate. This could potentially
512 underestimate the actual usage of HETs within the county and the city. Our study findings using publicly
513 available and aggregated data provide interesting results, but future studies could overcome the
514 aforementioned limitation by collecting granular household-level data. Granular data would help scholars
515 and practitioners develop nuanced outreach methods that fit each community's unique and heterogeneous
516 characteristics.

517 Despite data limitations, our study highlights the critical need for water conservation policies to balance
518 effectiveness and equity. It underscores the importance of an integrated, socially inclusive approach to
519 water management that protects resources and supports diverse communities. Our findings support the
520 Curley et al. (2020) conceptual framework and emphasize the need to evaluate water conservation policies
521 through a critical dual objective lens. Overall, this study provides both a conceptual and methodological

522 approach for other scholars or practitioners to analyze the effectiveness and equity of local water
523 conservation policy instruments.

524 **Data Availability Statement**

525 All data, models, or code that support the findings of this study are available from the corresponding author
526 upon reasonable request.

527 **Acknowledgments**

528 This research was supported by the National Science Foundation CNH2-L: Transition Dynamics in
529 Integrated Urban Water Systems Award under Grant Number 1923880.

530

531

532 **References**

533 ACS (American Community Survey). 2021. "Data Tables & Tools." Retrieved July 1, 2023, from
534 <https://www.census.gov/quickfacts/fact/table/US/HSD310221#HSD310221>.

535 Addo, I. B., M. C. Thoms, and M. Parsons. 2018. "Household water use and conservation behavior: A meta-analysis."
536 Water Resources Research, 54(10), 8381-8400.

537 Andeier, J. M., C. Folke, B. Walker, and E. Ostrom. 2013. "Aligning key concepts for global change policy:
538 robustness, resilience, and sustainability." Ecology and Society, 18(2).

539 Anselin, L. 1995. "Local Indicators of spatial association—LISA." Geogr. Anal., 27 (2), 93–115.
540 <https://doi.org/10.1111/J.1538-4632.1995.TB00338.X>.

541 Anselin, L., and X. Li. 2019. "Operational local join count statistics for cluster detection." Journal of Geographical
542 Systems, 21, 189-210.

543 Anselin, L. 2021. "GeoDa (Spatial Statistical Program)." The Encyclopedia of Research Methods in Criminology and
544 Criminal Justice, 2, 839-841.

545 Avni, N., B. Fishbain, and U. Shamir. 2015. "Water consumption patterns as a basis for water demand modeling." Water
546 Resources Research, 51(10), 8165-8181.

547 Barnes, J. L., A. S. Krishen, and H. F. Hu. 2021. "Untapped knowledge about water reuse: The roles of direct and
548 indirect educational messaging." Water Resources Management, 35(8), 2601-2615.

549 Bush, J. 2020. "The role of local government greening policies in the transition towards nature-based cities." Environmental
550 Innovation and Societal Transitions, 35, 35-44.

551 Chang, H., G. H. Parandvash, and V. Shandas. 2010. "Spatial variations of single-family residential water
552 consumption in Portland, Oregon." Urban Geography, 31(7), 953-972.

553 City of Tucson. 2022. "Water conservation program." Retrieved from
554 <https://www.tucsonaz.gov/Departments/Water/Conservation>.

555 Clark, L. P., S. Tabory, K. Tong, J. L. Servadio, K. Kappler, C. K. Xu, et al. 2022. "A data framework for assessing
556 social inequality and equity in multi-sector social, ecological, infrastructural urban systems: Focus on fine-spatial
557 scales." Journal of Industrial Ecology, 26(1), 145-163.

558 Cohen, J., P. Cohen, S. G. West, and L. S. Aiken. 2013. Applied multiple regression/correlation analysis for the
559 behavioral sciences. Routledge.

560 Cominola, A., L. Preiss, M. Thyer, H. R. Maier, P. Prevos, R. A. Stewart, and A. Castelletti. 2023. "The determinants
561 of household water consumption: A review and assessment framework for research and practice." *npj Clean
562 Water*, 6(1), 11.

563 Conway, T. M., A. Y. Yuan, L. A. Roman, M. Heckert, H. Pearsall, S. T. Dickinson, et al. 2023. "Who participates in
564 green infrastructure initiatives and why? Comparing participants and non-participants in Philadelphia's GI
565 programs." *Journal of Environmental Policy & Planning*, 25(3), 327-341.

566 Curley, C., R. Feiock, and K. Xu. 2020. "Policy analysis of instrument design: How policy design affects policy
567 constituency." *Journal of Comparative Policy Analysis: Research and Practice*, 22(6), 536-557.

568 Domene, E., and D. Saurí. 2006. "Urbanisation and water consumption: Influencing factors in the metropolitan region
569 of Barcelona." *Urban Studies*, 43(9), 1605-1623.

570 El Paso Water. 2019. "Water Conservation Plan." Retrieved from
571 https://www.epwater.org/conservation/water_conservation_plan.

572 Farmer, J. L. 2022. "State-Level Influences on Community-Level Municipal Sustainable Energy Policies." *Urban
573 Affairs Review*, 58(4), 1065-1095. <https://doi.org/10.1177/1078087421995262>.

574 Feiock, R., C. Curley, R. Shen, L. Chen, K. Xu, T. Lim, et al. 2018. "The Science, Policy and Governance of Smart
575 and Sustainable Cities: Policy Design and Voluntary Compliance in Energy Programs." *Association for Public
576 Policy Analysis and Management*.

577 Garcia, M., E. Koebele, A. Deslatte, K. Ernst, K. F. Manago, and G. Treuer. 2019. "Towards urban water
578 sustainability: Analyzing management transitions in Miami, Las Vegas, and Los Angeles." *Global Environmental
579 Change*, 58, 101967. <https://doi.org/10.1016/j.gloenvcha.2019.101967>.

580 Gerlak, A. K., A. Elder, M. Pavao-Zuckerman, A. Zuniga-Teran, and A. R. Sanderford. 2021. "Agency and
581 governance in green infrastructure policy adoption and change." *Journal of Environmental Policy & Planning*,
582 23(5), 599-615.

583 Goddard, J. J., I. Ray, and C. Balazs. 2022. "How should water affordability be measured in the United States? A
584 critical review." *Wiley Interdisciplinary Reviews: Water*, 9(1): e1573. <https://doi.org/10.1002/wat2.1573>.

585 Gregory, G. D., and M. D. Leo. 2003. "Repeated behavior and environmental psychology: The role of personal
586 involvement and habit formation in explaining water consumption." *Journal of Applied Social Psychology*, 33(6),
587 1261-1296.

588 Greer, R. A. 2020. "A review of public water infrastructure financing in the United States." *Wiley Interdisciplinary
589 Reviews: Water*, 7(5), e1472.

590 Grubesic, T.H. 2008. "Zip codes and spatial analysis: problems and prospects." *Soc. Econ. Plann. Sci.*, 42 (2), 129-
591 149. <https://doi.org/10.1016/j.seps.2006.09.001>.

592 Guhathakurta, S., and P. Gober. 2007. "The impact of the Phoenix urban heat island on residential water use." *Journal
593 of the American Planning Association*, 73(3), 317-329.

594 Hess, D. J., and K. P. Brown. 2018. "Water and the politics of sustainability transitions: from regime actor conflicts
595 to system governance organizations." *Journal of Environmental Policy & Planning*, 20(2), 128-142.

596 Hess, D. J., C. A. Wold, S. C. Worland, and G. M. Hornberger. 2017. "Measuring urban water conservation policies:
597 Toward a comprehensive index." *Journal of the American Water Resources Association*, 53(2), 442-455.
598 <https://doi.org/10.1111/1752-1688.12506>.

599 Hornberger, G. M., D. J. Hess, and J. Gilligan. 2015. "Water conservation and hydrological transitions in cities in the
600 United States." *Water Resour. Res.*, 51, 4635-4649. <https://doi.org/10.1002/2015WR01694>.

601 House-Peters, L., B. Pratt, and H. Chang. 2010. "Effects of urban spatial structure, socio-demographics, and climate
602 on residential water consumption in Hillsboro, Oregon." *JAWRA Journal of the American Water Resources
603 Association*, 46(3), 461-472.

604 Howlett, M. 2020. "Challenges in applying design thinking to public policy: Dealing with the varieties of policy
605 formulation and their vicissitudes." *Policy & Politics*, 48(1), 49-65.

606 Huang, Y., S. Shekhar, and H. Xiong. 2004. "Discovering colocation patterns from spatial data sets: a general
607 approach." *IEEE Transactions on Knowledge and Data Engineering*, 16(12), 1472-1485.

608 Inman, D., and P. Jeffrey. 2006. "A review of residential water conservation tool performance and influences on
609 implementation effectiveness." *Urban Water Journal*, 3(3), 127-143.

610 Jacob, K., and P. Ekins. 2020. "Environmental policy, innovation and transformation: affirmative or disruptive?"
611 *Journal of Environmental Policy & Planning*, 22(5), 709-723.

612 Johnson, A. P., K. J. Meier, and K. M. Carroll. 2018. "Forty acres and a mule: housing programs and policy feedback
613 for African-Americans." *Politics, Groups, and Identities*, 6(4), 612-630.

614 Katz, D., A. Grinstein, A. Kronrod, and U. Nisan. 2016.

615 Kenney, D. S., C. Goemans, R. Klein, J. Lowrey, and K. Reidy. 2008. "Residential water demand management:
616 lessons from Aurora, Colorado." *JAWRA Journal of the American Water Resources Association*, 44(1), 192-207.

617 Krause, R. M., C. V. Hawkins, A. Y. Park, and R. C. Feiock. 2019. "Drivers of policy instrument selection for
618 environmental management by local governments." *Public Administration Review*, 79(4), 477-487.

619 Lee, M., B. Tansel, and M. Balbin. 2011. "Influence of residential water use efficiency measures on household water
620 demand: A four year longitudinal study." *Resources, Conservation and Recycling*, 56(1), 1-6.
621 <https://doi.org/10.1016/j.resconrec.2011.08.006>.

622 Leigh, N. G., and H. Lee. 2019. "Sustainable and resilient urban water systems: The role of decentralization and
623 planning." *Sustainability*, 11(3), 918.

624 Loorbach, D., N. Frantzeskaki, and F. Avelino. 2017. "Sustainability transitions research: transforming science and
625 practice for societal change." *Annual Review of Environment and Resources*, 42, 599-626.

626 Luby, I. H., S. Polasky, and D. L. Swackhamer. 2018. "US urban water prices: Cheaper when drier." *Water Resources
627 Research*, 54(9), 6126-6132. <https://doi.org/10.1029/2018WR023258>.

628 Mack, E. A., and S. Wrase. 2017. "A burgeoning crisis? A nationwide assessment of the geography of water
629 affordability in the United States." *PLoS one*, 12(1), e0169488. <https://doi.org/10.1371/journal.pone.0169488>.

630 Matsler, M., M. Finewood, R. Richards, O. Pierce, and Z. Ledermann. 2023. "Institutionalizing barriers to access? An
631 equity scan of green stormwater infrastructure (GSI) incentive programs in the United States." *Journal of
632 Environmental Policy & Planning*, 1-16.

633 Miami-Dade County. 2023. "Water Conservation Program." Retrieved from
634 <https://www.miamidade.gov/global/water/water-conservation.page>.

635 Odland, J. 1988. *Spatial Autocorrelation*. California: Sage Publications; 87 pp.

636 Olmstead, S. M., and R. N. Stavins. 2009. "Comparing price and nonprice approaches to urban water conservation."
637 *Water Resources Research*, 45(4).

638 Opp, S. M. 2017. "The forgotten pillar: a definition for the measurement of social sustainability in American cities."
639 *Local Environment*, 22(3), 286-305. <https://doi.org/10.1080/13549839.2016.1195800>.

640 Opp, S. M., S. L. Mosier, and J. L. Osgood Jr. 2018. *Performance Measurement in Local Sustainability Policy*.
641 Routledge.

642 Pierce, G., A. R. El-Khattabi, K. Gmoser-Daskalakis, and N. Chow. 2021. "Solutions to the problem of drinking water
643 service affordability: A review of the evidence." *Wiley Interdisciplinary Reviews: Water*, 8(4), e1522.
644 <https://doi.org/10.1002/wat2.1522>.

645 Pivo, G. 2014. "Unequal access to energy efficiency in US multifamily rental housing: Opportunities to improve."
646 *Building Research & Information*, 42(5), 551-573.

647 Porcher, S. 2014. "Efficiency and equity in two-part tariffs: The case of residential water rates." *Applied Economics*,
648 46(5), 539-555. <https://doi.org/10.1080/00036846.2013.857001>.

649 Reames, T. G. 2016. "A community-based approach to low-income residential energy efficiency participation
650 barriers." *Local Environment*, 21(12), 1449-1466.

651 Rachunok, B., and S. Fletcher. 2023. "Socio-hydrological drought impacts on urban water affordability." *Nature
652 Water*, 1(1), 83-94.

653 Roberts, D. 2003. "Sustainability and equity: Reflections of a local government practitioner in Southern Africa." *Just
654 Sustainable Development in an Unequal World*, 187-200.

655 Russell, S., and K. Fielding. 2010. "Water demand management research: A psychological perspective." *Water
656 Resources Research*, 46(5).

657 Schleich, J., and T. Hillenbrand. 2009. "Determinants of residential water demand in Germany." *Ecological
658 Economics*, 68(6), 1756-1769.

659 Spielman, S. E., D. Folch, and N. Nagle. 2014. "Patterns and causes of uncertainty in the American Community
660 Survey." *Applied Geography*, 46, 147-157.

661 Svara, J., T. Watt, and K. Takai. 2015. "Advancing social equity as an integral dimension of sustainability in local
662 communities." *Cityscape*, 17(2), 139-166. <https://www.jstor.org/stable/26326943>.

663 Teodoro, M. P., and R. R. Saywitz. 2020. "Water and sewer affordability in the United States: a 2019 update." *AWWA
664 Water Science*, 2(2), e1176. <https://doi.org/10.1002/aws2.1129>.

665 Tong, K., A. Ramaswami, C. Xu, R. Feiock, P. Schmitz, and M. Ohlsen. 2021. "Measuring social equity in urban
666 energy use and interventions using fine-scale data." *Proceedings of the National Academy of Sciences*, 118(24),
667 e2023554118.

668 Treuer, G., E. Koebele, A. Deslatte, K. Ernst, M. Garcia, and K. Manago. 2017. "A narrative method for analyzing
669 transitions in urban water management: The case of the Miami-Dade Water and Sewer Department." *Water
670 Resources Research*, 53(1), 891-908. <https://doi.org/10.1002/2016WR019658>.

671 Wentz, E. A., and P. Gober. 2007. "Determinants of small-area water consumption for the city of Phoenix, Arizona."
672 *Water Resources Management*, 21, 1849-1863.

673