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SCIENCE FOR SOCIETY Climate change, due primarily to increasing carbon dioxide concentrations in the
atmosphere, is posing a significant threat to natural and managed ecosystems. Particularly responsive to
changing climate is the carbon balance: how much carbon an ecosystem absorbs and sequesters versus
how much carbon it releases into the atmosphere. Climate mitigation plans reliant on ecosystems for car-
bon sequestration thus require accurate information on how climate change will impact their carbon bal-
ance. In this study, we built improved predictions showing that under climate change, ecosystem carbon
balance is highly variable both in space and through time. Importantly, the impact on Amazon forests is sen-
sitive to the level of warming, with carbon sequestration decreasing under low levels of warming while
increasing under higher levels. Better carbon balance predictions will help inform which ecosystems will
continue to absorb human emissions of carbon and where to focus climate mitigation efforts.
SUMMARY
The balance between net carbon assimilation by plants and carbon losses through heterotrophic respiration
plays an important role in regulating the terrestrial carbon balance and the Earth’s climate. The current high
uncertainty in themagnitude of these carbon fluxes in Earth systemmodels (ESMs), however, limits our ability
to project the dynamics of net ecosystem productivity (NEP), which primarily determines to what extent eco-
systems can store carbon. Here, we apply a data-model fusion approach to constrain global carbon flux es-
timates from ESMs. The analysis reveals that the spatial and temporal variability of NEP may be higher than
currently expected from ESM simulations. Particularly, the NEP of Amazon forests is projected to decline
considerably by the end of the century under SSP126 but will likely increase under higher emission scenarios
due to the CO2 fertilization effect, highlighting the need for effective actions to maintain their C storage ca-
pacity under climate change.
INTRODUCTION

Understanding the dynamics of terrestrial ecosystem carbon

(C) storage is crucial for implementing effective environmental

policy and management strategies to enhance terrestrial C

sequestration for climate change mitigation.1 Whether and to

what extent an ecosystem can store C is primarily determined

by the relative magnitude of two opposing ecosystem C fluxes,

i.e., the vegetation net primary productivity (NPP) and heterotro-

phic respiration (Rh), whose difference is referred to as the net

ecosystem productivity (NEP). The balance among these two

fluxes as well as C emissions from disturbances such as fire

and land use change control the terrestrial C pool, whose alter-
ation can further influence the Earth’s climate system through

the climate-C cycle feedback.2–4 Unfortunately, accurate esti-

mations of NPP, Rh, and NEP remain a challenge.

Recent environmental changes, including atmospheric CO2

rise, shifts in rainfall regime, land use change, and nitrogen depo-

sition,5 have been driving a widespread greening of the world

over the last several decades.6–8 This worldwide greening is

associated with an overall increase in NPP, which has the poten-

tial to enhance soil C storage and mitigate climate change. How-

ever, both empirical and modeling evidence also suggests an

increasing trend of Rh globally,9,10 likely due to increased sub-

strate availability and/or enhanced soil organic C (SOC) mineral-

ization under climate change (e.g., warming and changes in soil
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moisture regime). Although recent work revealed the potential

negative effect of future climate warming on Northern Hemi-

sphere summer vegetation productivity,11 the net impact of

changes in NPP and Rh on ecosystem C storage remains rela-

tively uncertain, as evidenced by the contradictory results from

Earth system models (ESMs) and field experiments.3,10,12 The

recent IPCC Sixth Assessment Report (AR6) in fact reaffirms

the highly uncertain future of the global land C sink, despite a

reduction in the inter-model variability from the Coupled Model

Intercomparison Project phase 5 (CMIP5) to CMIP6.13 The signif-

icant uncertainty in C fluxes projections from ESMs may arise

from imperfect model formulation and parameterization as well

as from inaccurate representation of external variables influ-

encing the terrestrial C dynamics.14–16

As a result of these uncertainties, it remains unclear whether

and to what extent the C balance of different ecosystems will

be impacted by climate change.17 For example, forests are

generally considered as a major C sink.17–19 Recent evidence,

however, suggests that tropical forests might act—locally—as

a C source,20 a fact that is not captured by ESMs. The ongoing

intensification of environmental change such as land use

change, drought, and fire disturbance may further reduce the

C storage potential in tropical forests21,22 as well as in other eco-

systems.17 Constraining the temporal and spatial dynamics of

NPP, Rh, and NEP can significantly improve our capability to

accurately project the impact of climate change on various eco-

systems and enable a more efficient planning of land manage-

ment strategies aimed at reducing C emissions and mitigating

climate change.

The arithmetic multi-model averaging has been traditionally

adopted in climate studies and IPCC reports to analyze climate

model projections.23 This approach is a form of ‘‘model democ-

racy,’’ whereby eachmodel is given equal importance regardless

of its performance. This, however, often leads to large differ-

ences between model estimates and observations,24 making it

clear that improved approaches to analyze ESMs are needed.25

The recent emergence of data-driven global datasets of C fluxes

offers new opportunities to adopt statistical approaches for

data-model fusion to post-process the results of ESMs and

obtain projections that are more consistent with observations.

One such approach is Bayesianmodel averaging (BMA),26 which

leverages observations to compute a weighted average among

different candidatemodels, with eachmodel assigned a different

weight depending on their performance in predicting a given var-

iable under certain constraints. BMA has been applied to

improve the estimates of hydrological processes such as rainfall

and runoff,27,28 while whether and to what extent BMA can

constrain global estimates of C fluxes remains largely unex-

plored. Given the large spread in ecosystem C flux simulations

among ESMs, BMA provides an opportunity to improve the pre-

dictive accuracy of future land C dynamics under global change.

Here, we apply a land cover-specific BMA (LC-BMA)

approach (see diagram in Figure S1), which averages CMIP6

ESMs29 based on their performance in capturing a C flux (NPP,

Rh, or NEP) within each land cover type. Taking advantage of

the fact that ESMs, due to their different structures and parame-

terizations, may perform better in some land cover types and

worse in others, BMA assigns for each land cover type a higher

weight to better performing models, allowing us to obtain esti-
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mates that are overall more consistent with observations. We

find that BMA-based historical estimates of ecosystem C fluxes

are overall more consistent with global observation-based data-

sets than ESM ensemble estimates. BMA estimates also reveal

higher variations in the spatial and temporal patterns of NEP.

For instance, the NEP of Amazon forests may exhibit opposite

trends under low and high carbon emission scenarios. Improving

carbon balance projections by combining global datasets with

ESMs (here through BMA) is crucial to support targeted environ-

mental policy and management strategies to protect the C stor-

age of climate-sensitive ecosystems.

RESULTS

Methods summary
We first test the performance of CMIP6 multi-model ensemble

versus BMA estimates in capturing the observation-based

C flux data during the historical period 2001–2010. We then

apply BMA to CMIP6 models to project the future NEP from

2021 to 2100 under low (SSP126), medium (SSP370), and high

(SSP585) emission scenarios by the end of the 21st century.

We also analyze trends in NPP and Rh—the latter helped by a

recently developed probabilistic soil microbial model that pre-

dicts long-term Rh from NPP and rainfall30 (referred to as PMM

hereafter)—to explore the major drivingmechanisms (i.e., rainfall

and/or NPP) of long-term NEP dynamics. The analysis includes

12 CMIP6models (see Table S1 for details) with available rainfall,

NPP, and Rh data for both historical and future scenarios

(SSP126, SSP370, and SSP585, respectively).

Constraining global C flux estimates among ESMs
via BMA
We begin by exploring the coefficient of variation (CV) of impor-

tant drivers of NEP dynamics, namely rainfall (as a key input in

PMM), NPP, and Rh, computed among the CMIP6 ESMs esti-

mates during the historical 2001–2010 period. The analysis illus-

trates the relatively high variation in global rainfall, NPP, and Rh

estimates among different ESMs (Figures 1A–1C and 1E). Spe-

cifically, NPP and Rh estimates are the most uncertain, with a

higher intermodal variability in northern Canada, Western Asia,

and Eastern Europe than other regions. Recently developed

data-driven datasets (i.e., the CRU TS rainfall dataset,31 the

vegetation gross primary productivity [GPP] dataset based on

an improved light use efficiency theory,32 the CARDAMOM

vegetation CUE dataset,33 the Rh dataset by upscaling empirical

observations from the Global Soil Respiration Database using

random forest,34 and the FLUXCOM NEP database35) can be

leveraged to improve these estimates. To constrain the uncer-

tainty in historical rainfall, NPP, and Rh estimates from ESMs,

we first divide the global data based on 11 land cover types

and apply BMA for each land cover type (see experimental pro-

cedures and Figure S1). The results show that BMA-based

rainfall and NPP estimates are overall more consistent with

global data-driven databases (slope = 0.88 and 0.94, root-

mean-square error [RMSE] = 0.09 and 114.1, both p < 0.001,

respectively) than the CMIP6 ensemble median estimates

(slope = 0.96 and 0.84, RMSE = 0.13 and 182.9, both

p < 0.001, respectively), especially for high rainfall and NPP

values (Figures 1B and 1D). Similarly, the BMA-based Rh
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Figure 1. Application of Bayesian model averaging (BMA) to constrain the CMIP6 model estimates during 2001–2010

(A) The global coefficient of variation (CV, %) of daily rainfall rate (cm day�1) across 12 CMIP6 models.

(B) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating CRU rainfall data.

(C) The global CV of annual vegetation net primary productivity (NPP, gC m�2 yr�1) across 12 CMIP6 models.

(D) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating VPM-derived NPP.

(E) The global CV of annual heterotrophic respiration (Rh, gC m�2 yr�1) across 12 CMIP6 models.

(F) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating data-driven Rh. The black 1:1 line (dash) and

the standardized major axis (SMA) regression lines (solid) are shown. The bare land was excluded from the analyses due to the high uncertainty in climate model

output in this region.
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estimates are more consistent with the global data-driven Rh da-

taset (slope = 0.87, RMSE = 94.8, p < 0.001) than the CMIP6

ensemble median estimates (slope = 1.35, RMSE = 201.2,

p < 0.001) (Figure 1F), suggesting that BMA can be used as a

robust approach to constrain the global estimates of rainfall,

NPP, and Rh from ESMs.

We then apply BMA to directly constrain global NEP estimates

from ESMs during 2001–2010. Both the observation-based

FLUXCOM NEP (standard deviation SD = 193.5 gC m�2 yr�1)

and BMA-based NEP (SD = 171.5) show a significantly higher
degree of spatial variation than the CMIP6 ensemble median

(SD = 33.3) during the historical period 2001–2010, with promi-

nently higher NEP estimates in the eastern United States, South

America, Central and Eastern Africa, and Southeastern Asia

(Figures 2A–2C). The CMIP6 ensemble median NEP ranges

from �4.3 to 187.2 gC m�2 yr�1 (global mean = 49.0), while the

BMA-based NEP ranges from �91.8 to 832.6 gC m�2 yr�1

(global mean = 208.6) (Table 1).

Overall, the better performance following aBMAapproach can

be seen in Figure 2D, where BMA-based NEP estimates are
One Earth 7, 1–10, March 15, 2024 3
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Figure 2. The high uncertainty in net

ecosystem productivity (NEP) estimates by

CMIP6 models

(A–C) The estimated global 10-year average NEP

(gC m�2 yr�1) during 2001–2010 by the CMIP6

ensemble median, FLUXCOM, and the CMIP6

ensemble BMA, respectively.

(D) Comparison of the performance of the CMIP6

ensemble BMA versus the CMIP6 ensemble me-

dian in estimating FLUXCOM NEP. The black 1:1

line (dash) and the standardized major axis (SMA)

regression lines (solid) are shown. The bare land

was excluded from the analyses due to the high

uncertainty in climate model output in this region.

ll
Article

Please cite this article in press as: Huang et al., Widespread temporal and spatial variability in net ecosystem productivity under climate change, One
Earth (2024), https://doi.org/10.1016/j.oneear.2024.01.008
more positively correlated with FLUXCOMNEP across the globe

(slope = 0.89, RMSE = 89.1, p < 0.001) than the CMIP6 ensemble

median (slope = 0.17, RMSE = 208.4, p < 0.001). Figure 2D also

reveals that the CMIP6 ensemble median estimates a relatively

neutral NEP balance, regardless of the specific land cover type

or geographic location. In addition, we also test the performance

of each of the 12 ESMs and find that despite some variations

across different ESMs, in general all models substantially under-

estimate the observation-based NEP (Figure S2).

Higher variability of NEP than currently projected
We then compare projections of global 10-year average annual

NEP by BMA and the CMIP6 ensemble median from 2021–

2030 to 2091–2100 under SSP126, SSP370, and SSP585. The

CMIP6 ensemble median projections show minor changes in

NEP by the end of the century, with consistently positive low

values of NEP across the globe (Figure S3 and Table 1). By

contrast, BMA projects a more pronounced spatial and temporal

variability of NEP (Figure 3). Specifically, BMA projects a pro-

nounced increase in NEP in some parts of North America, Eu-

rope, and Northern and Eastern Asia under all scenarios with a

higher magnitude under SSP370 and SSP585. At the same

time, BMA projects a decreasing trend in NEP in some parts of

North and South America and Central Africa. Interestingly,

BMA projects a considerable decline in NEP in Amazon forests

by the end of the century under SSP126, but it projects a signif-

icant increase in NEP under higher emission scenarios (SSP370

and SSP585). Overall, BMA-based estimates show an increase

of 44.1, 101.2, and 129.5 gC m�2 yr�1 in the mean NEP across

the 11 land cover types under SSP126, SSP370, and SSP585,

respectively, compared to a projected increase of 4.5, 35.4,

and 51.5 gC m�2 yr�1 by the CMIP6 ensemble median (Table 1).

The major causes of future NEP changes
BMA also reveals different future patterns of NPP and Rh

(Figures S4 and S5) from those expected based on the CMIP6

ensemble median (Figures S6 and S7). Specifically, the latter

projects a more pronounced increasing trend in both NPP and

Rh across most of the globe under SSP370 compared to

SSP126 (Figures S6 and S7), with the tropics showing a greater

increase in both NPP and Rh than other regions under all sce-

narios. In contrast, BMA projects a significant decline in NPP in
4 One Earth 7, 1–10, March 15, 2024
some tropical regions such as part of South America and Central

and Eastern Africa under all scenarios (Figure S4). In addition,

BMA projects a pronounced increase in Rh in many polar regions

and a detectable decrease in part of South America and South-

eastern Asia especially under SSP370 and SSP585 (Figure S5),

which, according to PMM (used to link trends in Rh to changes

in NPP and rainfall), results primarily from the same directional

changes in NPP (Figure S4) and a projected decrease in rainfall

rate in South America and Southeastern Asia (Figure S8). The

BMA-projected increase in NEP in North America, Eastern Eu-

rope, and Eastern Asia is likely driven by the greater increase

in NPP than Rh in these regions especially under SSP370 and

SSP585 (Figures S4 and S5). In particular, BMA projects a

decrease in NEP in Amazon forests by the end of the century un-

der SSP126, which may be attributed to the greater increase in

Rh than NPP in these regions. However, BMA projects an in-

crease in NEP in Amazon forests by the end of the century under

SSP370 and SSP585. This is mainly a result of the enhanced

NPP under higher emission scenarios, given the less significant

changes in Rh due to the future decline in rainfall (Figure S8).

DISCUSSION

Our findings reveal that the historical global estimates of NPP

and Rh are highly uncertain across CMIP6 ESMs, as evident

from the high CV in CMIP6 ensemble estimates across the globe

(Figures 1C and 1E). Given that NEP is the difference between

NPP and Rh, uncertainties in NPP and Rh compound in NEP.

Recent data-driven global datasets contain important informa-

tion about ecosystem dynamics that can be leveraged to

constrain CMIP6 predictions. The LC-BMA approach signifi-

cantly improves the agreement between global NEP estimates

and observations (Figure 2). The CMIP6 ensemble median NEP

estimates are overall positive but low, with relatively uniform

spatial patterns across the globe during 2001–2010. This ap-

pears unlikely, as the observation-based FLUXCOM NEP data-

base suggests a high spatial variation across the globe. The

NEP estimates from each single ESM as well as the ensemble

median in fact show a weak correlation with FLUXCOM NEP

(Figures 2D and S2), underlining the current high uncertainty in

estimating the terrestrial C balance. In contrast, the BMA-based

NEP shows a good agreement with FLUXCOM NEP, providing



Table 1. Summary of the terrestrial 10-year average NEP (gC m–2 yr–1) estimated by the CMIP6 ensemble median and BMA during the

historical and future periods

Latitudinal zone Method 2001–2010 SSP 2021–2030 2051–2060 2091–2100

Tropical (0�–23.5�) CMIP6 median 68.8 (0.4, 187.2) 126 82.1 (4.8, 214.2) 82.7 (0.3, 232.2) 61.7 (�1.2, 197.5)

370 82.7 (0.6, 216.6) 96.6 (2.3, 261.1) 103.2 (�51.7, 298.3)

585 79.0 (�1.4, 250.8) 109.4 (1.4, 337.1) 128.4 (�1.6, 506.0)

BMA 367.8 (�91.8, 832.6) 126 365.9 (�166.0, 861.9) 379.7 (�120.6, 816.2) 336.1 (�138.0, 689.5)

370 379.6 (�124.2, 944.2) 416.4 (�206.0, 1129.0) 418.1 (�236.2, 1370.3)

585 352.3 (�173.8, 1005.9) 438.8 (�359.4, 1155.5) 473.0 (�254.3, 1321.1)

Temperate

(23.5�–66.5�)
CMIP6 median 39.7 (�4.3, 136.8) 126 52.1 (�4.1, 206.0) 60.0 (0, 206.0) 48.1 (�1.4, 194.6)

370 47.1 (�0.6, 174.2) 63.6 (�0.7, 238.2) 72.4 (�1.6, 283.4)

585 48.3 (�45.7, 202.9) 66.9 (0, 341.4) 81.9 (�0.4, 274.3)

BMA 120.0 (�72.8, 631.5) 126 186.9 (�67.3, 644.1) 212.5 (�73.6, 669.4) 187.0 (�148.8, 591.5)

370 166.4 (�153.2, 748.3) 205.3 (�237.5, 679.3) 233.1 (�231.6, 810.2)

585 167.7 (�576.5, 672.5) 210.4 (�223.3, 744.2) 241.3 (�223.3, 791.5)

Polar (66.5�–90�) CMIP6 median 4.3 (�4.3, 23.4) 126 2.5 (�1.0, 19.0) 3.3 (�1.9, 19.5) 3.4 (�2.2, 22.8)

370 1.7 (�1.3, 26.8) 4.1 (�3.1, 25.6) 3.5 (�3.6, 43.7)

585 2.6 (�1.8, 58.6) 4.1 (�1.7, 63.6) 4.5 (�4.6, 90.2)

BMA 9.8 (�44.2, 110.5) 126 47.5 (�33.9, 152.6) 56.3 (�33.0, 129.2) 56.5 (�43.0, 136.7)

370 35.4 (�40.9, 137.0) 53.5 (�41.7, 165.6) 49.8 (�292.4, 207.8)

585 40.5 (�38.6, 153.5) 50.9 (�50.1, 174.2) 42.5 (�300.3, 191.2)

Global CMIP6 median 49.0 (�4.3, 187.2) 126 64.9 (�4.1, 214.2) 69.4 (�1.9, 232.2) 53.5 (�2.2, 197.5)

370 61.6 (�1.3, 216.6) 76.7 (�3.1, 261.1) 84.4 (�51.7, 298.3)

585 60.7 (�45.7, 250.8) 84.1 (�1.7, 341.4) 100.5 (�4.6, 506.0)

BMA 208.6 (�91.8, 832.6) 126 266.1 (�166.0, 861.9) 286.0 (�120.6, 816.2) 252.7 (�148.8, 689.5)

370 256.5 (�153.2, 944.2) 294.0 (�237.5, 1129.0) 309.8 (�292.4, 1370.3)

585 245.5 (�576.5, 1005.9) 306.6 (�359.4, 1155.5) 338.1 (�300.3, 1321.1)

The area-weighted mean as well as the minimum and maximum values are shown. The grid cells dominated by the 11 land cover types (i.e., tropical

evergreen trees, tropical deciduous trees, extra-tropical evergreen trees, extra-tropical deciduous trees, shrubs, C3 grass, C4 grass, C3 pasture, C4

pasture, C3 crops, and C4 crops) were included for the analysis. The bare land was excluded from the analyses due to the high uncertainty in climate

model output in this region.
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support to the idea that ‘‘model democracy’’ may not yield real-

istic estimates.24 We note that in this study, we did not specif-

ically account for internal model variability since only a few

CMIP6models provide multiple ensemblemembers for both his-

torical and future periods. Recent work has shown that internal

model variability might also contribute to model uncertainty in

climate estimates and projections.36,37 This highlights the need

for producing multiple ensemble members for each model in

the upcoming CMIP7 simulations, which will enable critical as-

sessments of the contributions of internal model variability to

model uncertainty.

Although recent evidence suggests a potential shift in the

summer GPP-temperature relationship from positive to nega-

tive in the Northern Hemisphere under future climate warm-

ing,11 the future NEP dynamics under climate change remain

highly uncertain, as demonstrated by the disagreement be-

tween ESMs and field experiments.3,10,12 The BMA analysis

suggests a considerably higher spatial and temporal variability

of NEP than ESM projections especially under higher emission

scenarios, highlighting the critical need for improved simula-

tions of land C dynamics in ESMs. Moreover, BMA projections

suggest that some regions such as part of North and South

America and Africa will experience a significant decline in
NEP due to the decrease in NPP or the greater increase in Rh

than NPP (Figures 3, S4, and S5), therefore potentially reducing

the C storage capacity of these ecosystems. Notably, the NEP

in Amazon forests is projected to decline considerably by the

end of the century under SSP126. This is consistent with previ-

ous work suggesting a long-term decline in tropical forest car-

bon sink over the past several decades38,39 which will likely

continue in the future.40 However, BMA analysis also suggests

that the NEP in Amazon forests will likely increase under

SSP370 and SSP585, owing to the enhanced NPP induced

by the CO2 fertilization effect.6–8 In addition, the projected

decrease in rainfall in Amazon forests under higher emission

scenarios limits the magnitude of the changes in Rh according

to PMM, therefore further enhancing the NEP in Amazon

forests.

AlthoughBMAshowsagreater capacity to constrain thehistor-

ical C flux estimates among ESMs, there might exist uncertainty

in transferring the land cover-specific BMA weights from the his-

torical period to the future climate scenarios. For example, the

ongoing environmental changes and their interactions may

confound their current impacts on climate and C dynamics and

therefore affect the consistency of the model’s performance in

historical and future simulations. These aspects are still highly
One Earth 7, 1–10, March 15, 2024 5
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Figure 3. Global projections of 10-year average annual NEP (gC m–2 yr–1) by CMIP6 ensemble BMA during 2021–2100

(A, D, and G) Projections under SSP126.

(B, E, and H) Projections under SSP370.

(C, F, and I) Projections under SSP585. The bare land was excluded from the analyses due to the high uncertainty in climate model output in this region.
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unpredictable and need to be better represented in ESMs, which

will consequently improve the accuracy of BMA projections. Yet,

BMA weights assigned based on historical data still remain our

best guess for future projections. In addition, even though we

have accounted for the future land cover change in ourBMAanal-

ysis, we note that other environmental changes such as drought,

fire disturbance, and land degradation will also jointly alter global

C balance.17,21 For example, drought-induced treemortality may

turn ecosystems from C sinks to sources.41,42 Moreover, future

land cover change is highly uncertain43 and may further alter

the dynamics of NEP, although it should have limited effects on

our results because we focus on relatively long-term NEP dy-

namics at the regional scale. Nevertheless, these factors should

be considered for accurate assessment of net ecosystem C bal-

ance. The development of effective environmental policy and

management, such as the adoption of nature-based solutions44

or land-based CO2 removal (e.g., enhanced weathering),45,46

may be required for regions that show strong NEP dynamics un-

der climate change to achieve ecosystem sustainability and C

neutrality.1 Restoration efforts aiming to increase vegetation pro-

ductivity, such as afforestation, reforestation, and sustainable

forest management, might be a potentially important approach

to enhance ecosystem C storage,47,48 although increased C in-

puts might also accelerate soil C decomposition.49
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While fusion of model and global data provides a valuable

approach to post-process ESM projections, we would like

to note that the accuracy of the fused product necessarily de-

pends on the quality of the global data input. The FLUXCOM

NEP estimates, which are based on the upscaling of

FLUXNET eddy covariance data using machine learning algo-

rithms, may carry some biases from the upscaling algorithm

or the data input.4 In fact, scaling up from site-level NEP mea-

surements to regional-scale patterns remains a challenge, as it

introduces a variety of uncertainties related to the inhomogene-

ity in rainfall regimes and vegetation and soil types within each

grid cell.4,17 Yet, BMA remains a valuable and simple approach

to constrain global estimates of C fluxes, and—as observation-

based databases improve—the accuracy of the fused product

will also improve, especially if BMA can be based on simulta-

neous observations of multiple variables (and not NEP only).

In addition to BMA, other statistical weighting approaches

that have been developed and applied for climate projec-

tions50,51 could also be leveraged to improve the estimates of

terrestrial C dynamics and merit further investigation.

Lastly, our analysis—also helped by PMM30 (see Note S1)—

suggests that the current high uncertainty in bothNPP andRh es-

timates from ESMs may be one of the major causes leading to

uncertain NEP estimation (Figures 1, 2, S9, and S10). In fact,
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Rh has already been regarded as one of the most poorly con-

strained ecosystem C fluxes,52 and many ESMs still model Rh

based on simplified kinetics of soil C dynamics, which result in

a nearly proportional relationship with NPP (Figure S11A). This

is unlikely, as evidenced by site-level observations and data-

driven global datasets (Figures S11B and S11C). Efforts are

thus required to reduce the uncertainty in the key biogeochem-

ical processes underlying both NPP and Rh in ESMs. Promising

approaches are being developed to improve vegetation models

based on optimality principles53 and to expand soil C models to

explicitly include microbial processes.54–58 These novel model

structures and parameterizations14–16 are being successful in

capturing the response of biological systems to environmental

changes and, if combined with the utilization of global empirical

datasets, may offer an opportunity to significantly enhance the

performance of ESMs in predicting the terrestrial C balance.

EXPERIMENTAL PROCEDURES

Resource availability
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Further information and requests for resources should be directed to Heng

Huang (huangh557@mail.sysu.edu.cn).

Materials availability
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Data and code availability

TheCMIP6 rainfall andC flux datasets are available at https://esgf-node.llnl.gov/

projects/cmip6/. The CRU temperature and rainfall datasets are available at

https://crudata.uea.ac.uk/cru/data/hrg/. The FLUXCOM NEP database is avail-

able at https://www.fluxcom.org/. The VPM GPP dataset is available at https://

doi.org/10.6084/m9.figshare.c.3789814. The CARDAMOM vegetation CUE

dataset is available at https://datashare.ed.ac.uk/handle/10283/875. The data-

driven global heterotrophic respiration dataset is available at https://figshare.

com/articles/dataset/global_SHR_datasets_zip/11340770. The R code devel-

oped in this study can be found at https://osf.io/x5usc/?view_only=82c861cf2d

5a4d02a8bc9145855fcab4.

CMIP6 multi-model ensemble

To limit biases from individual model formulations, we used the multi-model

ensemble of CMIP6 to compare rainfall and C flux estimates between BMA

and ESMs. We selected 12 CMIP6 models (see Table S1 for details) that pro-

vide available monthly rainfall, NPP, Rh, and NEP data for both historical and

three future scenarios (i.e., shared socioeconomic pathways SSP126,

SSP370, and SSP585, representing low, medium, and high radiative forcing

by the end of the 21st century, respectively). For all ESMs, the ensemble mem-

ber ‘‘r1i1p1f1’’ was chosen. Prior to analyses, all CMIP6 models were re-

sampled to the same spatial resolution (1� 3 1�) using the bilinear interpolation

approach. We focused on the 10-year average (i.e., 2001–2010 for the histor-

ical period, and from 2021–2030 to 2051�2060 and 2091�2100 for future sce-

narios) to smooth out time-series fluctuations and to yield more steady and

robust results.

Bayesian model averaging for historical rainfall, NPP, Rh, and NEP

We applied the BMA26 approach using the bicreg function from the R package

BMA59 to constrain the estimates of rainfall, NPP, Rh, and NEP among

12 ESMs during the 2001–2010 period. BMA is a postprocessing approach

that merges multi-model ensemble into a fused version based on the following

equation:

pðyjf1;.; fKÞ =
XK

k = 1

wkgkðyjfkÞ; [Equation 1]

where y represents the quantity to be forecasted, fk represents the forecasts

from each of theK different models, which are linear functions of different com-

binations of ESMs, i.e., fk =
P12

i = 1ða +biESMiÞ,wk is the posterior probability
of forecast k being the best one and indicates each model’s predictive capac-

ity in the training period, and gkðyjfkÞ represents the conditional probability

density function of y conditional on fk, given that fk is the best model. The pa-

rameters a and bi are estimated through linear regression analysis of empirical

observations versus ESM estimates. The use of parameters a and bi can be

considered as a simple statistical approach to correct the bias in model fore-

casts. The BMA predictive mean (Y) can be calculated as follows:

Y =
XK

k = 1

wkfk : [Equation 2]

Detailed descriptions of BMA can be found in Raftery et al.26,59

The data-driven global datasets used in the BMA analyses include the

CRU TS rainfall dataset,31 the GPP dataset based on an improved light

use efficiency theory,32 the CARDAMOM vegetation CUE dataset,33 the

Rh dataset by upscaling empirical observations from the Global Soil Respi-

ration Database using a random forest ensemble machine learning algo-

rithm,34 and the FLUXCOM NEP database created by upscaling the eddy

covariance C flux observations using multiple machine learning methods

(random forest, multivariate regression splines, and artificial neural

network).35 The ensemble median of Rh and NEP datasets based on

different machine learning approaches and/or different input datasets was

chosen for our analysis. We applied BMA analysis independently to obtain

BMA-based estimates of rainfall, NPP, Rh, and NEP. The BMA analysis was

conducted for each of the 11 land cover types (i.e., tropical evergreen trees,

tropical deciduous trees, extra-tropical evergreen trees, extra-tropical de-

ciduous trees, shrubs, C3 grass, C4 grass, C3 pasture, C4 pasture, C3

crops, and C4 crops) based on the land cover data from the model MPI-

ESM1-2-LR, which was chosen because it provides a detailed land cover

classification and also showed a good agreement with the observed vege-

tation distribution.60 We note that the land cover type ‘‘bare land’’ was

excluded from the analyses due to the high uncertainty in climate model

output in this region. The deciduous and ‘‘raingreen’’ (i.e., drought-decidu-

ous) shrubs were merged into a larger classification (i.e., shrubs) due to the

relatively limited number of grid cells for both land cover types. We calcu-

lated the mean fractional cover of each land cover type within each 1� 3

1� grid cell during 2001–2010. The land cover type with the maximum

factional cover was used to represent the land cover type for each grid

cell. We then conducted the standardized major axis regression (SMA)

regression using the lmodel2 function from the R package lmodel261 to

examine the congruence between BMA-based estimates and data-driven

gridded datasets for rainfall, NPP, Rh, and NEP, respectively.
Calibration of PMM based on global data-driven datasets

Given that ecosystem models, such as ESMs, can be computationally com-

plex, simple models, or so-called emulators, may be more amenable to and

efficient in model uncertainty analysis and calibration.62,63 In this regard, we

have recently developed a parsimonious probabilistic soil microbial model

(PMM) to describe the temporal dynamics of Rh across different ecosystems

worldwide as driven by dominant environmental factors.30 When resolved

over long temporal scales, PMM suggests that the annual Rh (gC m�2 yr�1)

is mainly controlled by rainfall characteristics and NPP, and it can be predicted

from Rh = C � Ra � NPPb, where C is a constant, R is the mean rainfall rate

over the studied time frame (cm day�1), and a and b are exponents of R and

NPP, respectively. As shown in Huang et al.,30 the model predictions were

well supported by empirical observations from the FLUXNET 2015 database,

demonstrating the robustness of PMM. The functional form based on power

laws also allows upscaling from ecosystem to regional scale by adjusting

the power-law exponents.

We refitted the parameters in PMM to increase model accuracy using the

data-driven globalRh dataset,
34 since the original model parameters were esti-

mated based on site-level data, and it is expected that scaling up from the site

level to regional level involves additional uncertainties in input variables that

need to be reduced through the calibration of PMM. Through nonlinear regres-

sion analysis using the nls function from the R package stats, we obtained the

calibratedupscaledPMM,which is expressedasRh = 64:84 � R0:24 � NPP0:35.

The SMA regression analysis was conducted, and the RMSE was also calcu-

lated to test the consistency between PMM estimates and global Rh dataset.
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Wenote that although temperature hasbeenwidely considered asan important

factor influencingRh,
64 we found that the effect of temperature on long-termRh

across the globe was relatively weak and has been primarily accounted for in

PMM (see Note S2 and Figure S12).

Projecting the future global NPP, Rh, and NEP patterns

We first tested the performance of BMA and PMM versus the CMIP6 multi-

model ensemble median in estimating the FLUXCOM NEP (gC m�2 yr�1) dur-

ing the 2001�2010 period. The PMM-based global NEP was estimated as the

BMA-based NPP minus the PMM-based Rh. The CMIP6 ensemble median

NEP was calculated as the median of the NEP estimates from the selected

12 CMIP6 models. As mentioned above, we also calculated the BMA-based

global NEP directly using the NEP estimates from 12 CMIP6 ESMs. SMA

regression analysis was conducted to test the consistency between estimates

from different approaches (BMA, PMM, and the CMIP6 ensemblemedian) and

FLUXCOM NEP across the globe.

We then retrieved global data from 12 CMIP6 models to project the 10-year

average rainfall, NPP, Rh, and NEP during the 2021�2100 period. Data from

SSP126, SSP370, and SSP585 were used to compare projections under

different future emission scenarios. In order to constrain the uncertainty in

CMIP6 model projections, we utilized the land cover-specific BMA weights

for the 2001–2010 period to obtain BMA-based projections of 10-year average

global rainfall, NPP, Rh, and NEP during 2021–2100 and compared their per-

formance with the CMIP6 ensemble median. To account for the land use

and land cover change in the future, we retrieved the land cover projections

during 2021–2100 from the model MPI-ESM1-2-LR and calculated the frac-

tional cover of each land cover type for each 10-year period to determine

the land cover type of each grid in the future.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

oneear.2024.01.008.
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