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In brief

Accurate projections of ecosystem
carbon dynamics are important for
enhancing global carbon storage and
mitigating climate change. However,
current estimation of ecosystem carbon
balance by Earth system models remains
highly uncertain. By merging new data
and models, we reveal higher spatial and
temporal variability of net ecosystem
productivity than current model
simulations. The net ecosystem
productivity of Amazon forests, for
example, may exhibit opposite trends
under different climate scenarios. These
improved estimates enable effective
actions to protect ecosystem carbon
storage.
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SCIENCE FOR SOCIETY Climate change, due primarily to increasing carbon dioxide concentrations in the
atmosphere, is posing a significant threat to natural and managed ecosystems. Particularly responsive to
changing climate is the carbon balance: how much carbon an ecosystem absorbs and sequesters versus
how much carbon it releases into the atmosphere. Climate mitigation plans reliant on ecosystems for car-
bon sequestration thus require accurate information on how climate change will impact their carbon bal-
ance. In this study, we built improved predictions showing that under climate change, ecosystem carbon
balance is highly variable both in space and through time. Importantly, the impact on Amazon forests is sen-
sitive to the level of warming, with carbon sequestration decreasing under low levels of warming while
increasing under higher levels. Better carbon balance predictions will help inform which ecosystems will
continue to absorb human emissions of carbon and where to focus climate mitigation efforts.

SUMMARY

The balance between net carbon assimilation by plants and carbon losses through heterotrophic respiration
plays an important role in regulating the terrestrial carbon balance and the Earth’s climate. The current high
uncertainty in the magnitude of these carbon fluxes in Earth system models (ESMs), however, limits our ability
to project the dynamics of net ecosystem productivity (NEP), which primarily determines to what extent eco-
systems can store carbon. Here, we apply a data-model fusion approach to constrain global carbon flux es-
timates from ESMs. The analysis reveals that the spatial and temporal variability of NEP may be higher than
currently expected from ESM simulations. Particularly, the NEP of Amazon forests is projected to decline
considerably by the end of the century under SSP126 but will likely increase under higher emission scenarios
due to the CO, fertilization effect, highlighting the need for effective actions to maintain their C storage ca-
pacity under climate change.

INTRODUCTION ation can further influence the Earth’s climate system through
the climate-C cycle feedback.”™ Unfortunately, accurate esti-
mations of NPP, Ry,, and NEP remain a challenge.

Recent environmental changes, including atmospheric CO,
rise, shifts in rainfall regime, land use change, and nitrogen depo-
sition,” have been driving a widespread greening of the world

over the last several decades.®® This worldwide greening is

Understanding the dynamics of terrestrial ecosystem carbon
(C) storage is crucial for implementing effective environmental
policy and management strategies to enhance terrestrial C
sequestration for climate change mitigation.” Whether and to
what extent an ecosystem can store C is primarily determined

by the relative magnitude of two opposing ecosystem C fluxes,
i.e., the vegetation net primary productivity (NPP) and heterotro-
phic respiration (Ry), whose difference is referred to as the net
ecosystem productivity (NEP). The balance among these two
fluxes as well as C emissions from disturbances such as fire
and land use change control the terrestrial C pool, whose alter-

associated with an overall increase in NPP, which has the poten-
tial to enhance soil C storage and mitigate climate change. How-
ever, both empirical and modeling evidence also suggests an
increasing trend of Ry, globally,”° likely due to increased sub-
strate availability and/or enhanced soil organic C (SOC) mineral-
ization under climate change (e.g., warming and changes in soil
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moisture regime). Although recent work revealed the potential
negative effect of future climate warming on Northern Hemi-
sphere summer vegetation productivity,'' the net impact of
changes in NPP and R, on ecosystem C storage remains rela-
tively uncertain, as evidenced by the contradictory results from
Earth system models (ESMs) and field experiments.>'%"'? The
recent IPCC Sixth Assessment Report (AR6) in fact reaffirms
the highly uncertain future of the global land C sink, despite a
reduction in the inter-model variability from the Coupled Model
Intercomparison Project phase 5 (CMIP5) to CMIP8."® The signif-
icant uncertainty in C fluxes projections from ESMs may arise
from imperfect model formulation and parameterization as well
as from inaccurate representation of external variables influ-
encing the terrestrial C dynamics.'*'®

As a result of these uncertainties, it remains unclear whether
and to what extent the C balance of different ecosystems will
be impacted by climate change.'” For example, forests are
generally considered as a major C sink.'”~"® Recent evidence,
however, suggests that tropical forests might act—locally—as
a C source,?® a fact that is not captured by ESMs. The ongoing
intensification of environmental change such as land use
change, drought, and fire disturbance may further reduce the
C storage potential in tropical forests®'?? as well as in other eco-
systems.!” Constraining the temporal and spatial dynamics of
NPP, Ry, and NEP can significantly improve our capability to
accurately project the impact of climate change on various eco-
systems and enable a more efficient planning of land manage-
ment strategies aimed at reducing C emissions and mitigating
climate change.

The arithmetic multi-model averaging has been traditionally
adopted in climate studies and IPCC reports to analyze climate
model projections.?® This approach is a form of “model democ-
racy,” whereby each model is given equal importance regardless
of its performance. This, however, often leads to large differ-
ences between model estimates and observations,”* making it
clear that improved approaches to analyze ESMs are needed.”®
The recent emergence of data-driven global datasets of C fluxes
offers new opportunities to adopt statistical approaches for
data-model fusion to post-process the results of ESMs and
obtain projections that are more consistent with observations.
One such approach is Bayesian model averaging (BMA),® which
leverages observations to compute a weighted average among
different candidate models, with each model assigned a different
weight depending on their performance in predicting a given var-
iable under certain constraints. BMA has been applied to
improve the estimates of hydrological processes such as rainfall
and runoff,?”?® while whether and to what extent BMA can
constrain global estimates of C fluxes remains largely unex-
plored. Given the large spread in ecosystem C flux simulations
among ESMs, BMA provides an opportunity to improve the pre-
dictive accuracy of future land C dynamics under global change.

Here, we apply a land cover-specific BMA (LC-BMA)
approach (see diagram in Figure S1), which averages CMIP6
ESMs*° based on their performance in capturing a C flux (NPP,
Ry, or NEP) within each land cover type. Taking advantage of
the fact that ESMs, due to their different structures and parame-
terizations, may perform better in some land cover types and
worse in others, BMA assigns for each land cover type a higher
weight to better performing models, allowing us to obtain esti-
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mates that are overall more consistent with observations. We
find that BMA-based historical estimates of ecosystem C fluxes
are overall more consistent with global observation-based data-
sets than ESM ensemble estimates. BMA estimates also reveal
higher variations in the spatial and temporal patterns of NEP.
For instance, the NEP of Amazon forests may exhibit opposite
trends under low and high carbon emission scenarios. Improving
carbon balance projections by combining global datasets with
ESMs (here through BMA) is crucial to support targeted environ-
mental policy and management strategies to protect the C stor-
age of climate-sensitive ecosystems.

RESULTS

Methods summary

We first test the performance of CMIP6 multi-model ensemble
versus BMA estimates in capturing the observation-based
C flux data during the historical period 2001-2010. We then
apply BMA to CMIP6 models to project the future NEP from
2021 to 2100 under low (SSP126), medium (SSP370), and high
(SSP585) emission scenarios by the end of the 21st century.
We also analyze trends in NPP and R,,—the latter helped by a
recently developed probabilistic soil microbial model that pre-
dicts long-term Ry, from NPP and rainfall*® (referred to as PMM
hereafter)—to explore the major driving mechanisms (i.e., rainfall
and/or NPP) of long-term NEP dynamics. The analysis includes
12 CMIP6 models (see Table S1 for details) with available rainfall,
NPP, and Ry data for both historical and future scenarios
(SSP126, SSP370, and SSP585, respectively).

Constraining global C flux estimates among ESMs

via BMA

We begin by exploring the coefficient of variation (CV) of impor-
tant drivers of NEP dynamics, namely rainfall (as a key input in
PMM), NPP, and R, computed among the CMIP6 ESMs esti-
mates during the historical 2001-2010 period. The analysis illus-
trates the relatively high variation in global rainfall, NPP, and Ry,
estimates among different ESMs (Figures 1A-1C and 1E). Spe-
cifically, NPP and Ry, estimates are the most uncertain, with a
higher intermodal variability in northern Canada, Western Asia,
and Eastern Europe than other regions. Recently developed
data-driven datasets (i.e., the CRU TS rainfall dataset,®’ the
vegetation gross primary productivity [GPP] dataset based on
an improved light use efficiency theory,®> the CARDAMOM
vegetation CUE dataset,® the Ry, dataset by upscaling empirical
observations from the Global Soil Respiration Database using
random forest,®* and the FLUXCOM NEP database®°) can be
leveraged to improve these estimates. To constrain the uncer-
tainty in historical rainfall, NPP, and R, estimates from ESMs,
we first divide the global data based on 11 land cover types
and apply BMA for each land cover type (see experimental pro-
cedures and Figure S1). The results show that BMA-based
rainfall and NPP estimates are overall more consistent with
global data-driven databases (slope = 0.88 and 0.94, root-
mean-square error [RMSE] = 0.09 and 114.1, both p < 0.001,
respectively) than the CMIP6 ensemble median estimates
(slope = 0.96 and 0.84, RMSE = 0.13 and 182.9, both
p < 0.001, respectively), especially for high rainfall and NPP
values (Figures 1B and 1D). Similarly, the BMA-based Ry
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Figure 1. Application of Bayesian model averaging (BMA) to constrain the CMIP6 model estimates during 2001-2010
(A) The global coefficient of variation (CV, %) of daily rainfall rate (cm day ") across 12 CMIP6 models.

(B) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating CRU rainfall data.
(C) The global CV of annual vegetation net primary productivity (NPP, gC m~2 yr’1) across 12 CMIP6 models.

(D) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating VPM-derived NPP.

(E) The global CV of annual heterotrophic respiration (R, gC m~—2

yr~") across 12 CMIP6 models.

(F) Comparison of the performance of the CMIP6 ensemble BMA versus the CMIP6 ensemble median in estimating data-driven Ry,. The black 1:1 line (dash) and
the standardized major axis (SMA) regression lines (solid) are shown. The bare land was excluded from the analyses due to the high uncertainty in climate model

output in this region.

estimates are more consistent with the global data-driven Ry, da-
taset (slope = 0.87, RMSE = 94.8, p < 0.001) than the CMIP6
ensemble median estimates (slope = 1.35, RMSE = 201.2,
p < 0.001) (Figure 1F), suggesting that BMA can be used as a
robust approach to constrain the global estimates of rainfall,
NPP, and Ry, from ESMs.

We then apply BMA to directly constrain global NEP estimates
from ESMs during 2001-2010. Both the observation-based
FLUXCOM NEP (standard deviation SD = 193.5 gC m~2 yr™")
and BMA-based NEP (SD = 171.5) show a significantly higher

degree of spatial variation than the CMIP6 ensemble median
(SD = 33.3) during the historical period 2001-2010, with promi-
nently higher NEP estimates in the eastern United States, South
America, Central and Eastern Africa, and Southeastern Asia
(Figures 2A-2C). The CMIP6 ensemble median NEP ranges
from —4.3 to 187.2 gC m~2 yr~" (global mean = 49.0), while the
BMA-based NEP ranges from —91.8 to 832.6 gC m 2 yr’
(global mean = 208.6) (Table 1).

Overall, the better performance following a BMA approach can
be seen in Figure 2D, where BMA-based NEP estimates are
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Figure 2. The high uncertainty in net
ecosystem productivity (NEP) estimates by
CMIP6 models

(A-C) The estimated global 10-year average NEP
(9C m~2 yr ") during 2001-2010 by the CMIP6
ensemble median, FLUXCOM, and the CMIP6
ensemble BMA, respectively.

(D) Comparison of the performance of the CMIP6
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more positively correlated with FLUXCOM NEP across the globe
(slope =0.89, RMSE = 89.1, p < 0.001) than the CMIP6 ensemble
median (slope = 0.17, RMSE = 208.4, p < 0.001). Figure 2D also
reveals that the CMIP6 ensemble median estimates a relatively
neutral NEP balance, regardless of the specific land cover type
or geographic location. In addition, we also test the performance
of each of the 12 ESMs and find that despite some variations
across different ESMs, in general all models substantially under-
estimate the observation-based NEP (Figure S2).

Higher variability of NEP than currently projected

We then compare projections of global 10-year average annual
NEP by BMA and the CMIP6 ensemble median from 2021-
2030 to 2091-2100 under SSP126, SSP370, and SSP585. The
CMIP6 ensemble median projections show minor changes in
NEP by the end of the century, with consistently positive low
values of NEP across the globe (Figure S3 and Table 1). By
contrast, BMA projects a more pronounced spatial and temporal
variability of NEP (Figure 3). Specifically, BMA projects a pro-
nounced increase in NEP in some parts of North America, Eu-
rope, and Northern and Eastern Asia under all scenarios with a
higher magnitude under SSP370 and SSP585. At the same
time, BMA projects a decreasing trend in NEP in some parts of
North and South America and Central Africa. Interestingly,
BMA projects a considerable decline in NEP in Amazon forests
by the end of the century under SSP126, but it projects a signif-
icant increase in NEP under higher emission scenarios (SSP370
and SSP585). Overall, BMA-based estimates show an increase
of 44.1,101.2, and 129.5 gC m~2 yr—' in the mean NEP across
the 11 land cover types under SSP126, SSP370, and SSP585,
respectively, compared to a projected increase of 4.5, 35.4,
and 51.5 gC m~2 yr~" by the CMIP6 ensemble median (Table 1).

The major causes of future NEP changes

BMA also reveals different future patterns of NPP and Ry
(Figures S4 and S5) from those expected based on the CMIP6
ensemble median (Figures S6 and S7). Specifically, the latter
projects a more pronounced increasing trend in both NPP and
Ry, across most of the globe under SSP370 compared to
SSP126 (Figures S6 and S7), with the tropics showing a greater
increase in both NPP and R, than other regions under all sce-
narios. In contrast, BMA projects a significant decline in NPP in

4 One Earth 7, 1-10, March 15, 2024
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some tropical regions such as part of South America and Central
and Eastern Africa under all scenarios (Figure S4). In addition,
BMA projects a pronounced increase in Ry, in many polar regions
and a detectable decrease in part of South America and South-
eastern Asia especially under SSP370 and SSP585 (Figure S5),
which, according to PMM (used to link trends in Ry, to changes
in NPP and rainfall), results primarily from the same directional
changes in NPP (Figure S4) and a projected decrease in rainfall
rate in South America and Southeastern Asia (Figure S8). The
BMA-projected increase in NEP in North America, Eastern Eu-
rope, and Eastern Asia is likely driven by the greater increase
in NPP than Ry, in these regions especially under SSP370 and
SSP585 (Figures S4 and S5). In particular, BMA projects a
decrease in NEP in Amazon forests by the end of the century un-
der SSP126, which may be attributed to the greater increase in
Ry, than NPP in these regions. However, BMA projects an in-
crease in NEP in Amazon forests by the end of the century under
SSP370 and SSP585. This is mainly a result of the enhanced
NPP under higher emission scenarios, given the less significant
changes in Ry, due to the future decline in rainfall (Figure S8).

DISCUSSION

Our findings reveal that the historical global estimates of NPP
and R, are highly uncertain across CMIP6 ESMs, as evident
from the high CV in CMIP6 ensemble estimates across the globe
(Figures 1C and 1E). Given that NEP is the difference between
NPP and Ry, uncertainties in NPP and R;, compound in NEP.
Recent data-driven global datasets contain important informa-
tion about ecosystem dynamics that can be leveraged to
constrain CMIP6 predictions. The LC-BMA approach signifi-
cantly improves the agreement between global NEP estimates
and observations (Figure 2). The CMIP6 ensemble median NEP
estimates are overall positive but low, with relatively uniform
spatial patterns across the globe during 2001-2010. This ap-
pears unlikely, as the observation-based FLUXCOM NEP data-
base suggests a high spatial variation across the globe. The
NEP estimates from each single ESM as well as the ensemble
median in fact show a weak correlation with FLUXCOM NEP
(Figures 2D and S2), underlining the current high uncertainty in
estimating the terrestrial C balance. In contrast, the BMA-based
NEP shows a good agreement with FLUXCOM NEP, providing
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Table 1. Summary of the terrestrial 10-year average NEP (gC m~2 yr') estimated by the CMIP6 ensemble median and BMA during the

historical and future periods

Latitudinal zone Method 2001-2010 SSP  2021-2030 2051-2060 2091-2100
Tropical (0°-23.5°) CMIP6 median 68.8 (0.4, 187.2) 126 82.1(4.8,214.2) 82.7 (0.3, 232.2) 61.7 (—1.2, 197.5)
370 82.7 (0.6, 216.6) 96.6 (2.3, 261.1) 103.2 (-51.7, 298.3)
585 79.0 (—1.4, 250.8) 109.4 (1.4, 337.1) 128.4 (—1.6, 506.0)
BMA 367.8(—91.8,832.6) 126 365.9(—166.0,861.9) 379.7 (—120.6, 816.2)  336.1 (—138.0, 689.5)
370 379.6 (—124.2,944.2)  416.4 (—206.0, 1129.0) 418.1 (—236.2, 1370.3)
585 352.3(—173.8,1005.9) 438.8 (—359.4, 1155.5) 473.0 (—254.3, 1321.1)
Temperate CMIP6 median  39.7 (—4.3, 136.8) 126 52.1 (—4.1, 206.0) 60.0 (0, 206.0) 48.1 (—1.4, 194.6)
(23.5°-66.5°) 370 47.1(-0.6, 174.2) 63.6 (—0.7, 238.2) 72.4 (—1.6, 283.4)
585  48.3 (—45.7,202.9) 66.9 (0, 341.4) 81.9 (—0.4, 274.3)
BMA 120.0 (-72.8,631.5) 126 186.9 (—67.3, 644.1) 212.5 (—73.6, 669.4) 187.0 (—148.8, 591.5)
370 166.4 (—153.2,748.3)  205.3 (—237.5,679.3)  233.1 (—231.6, 810.2)
585 167.7 (—576.5,672.5) 210.4 (—223.3,744.2)  241.3 (—223.3, 791.5)
Polar (66.5°-90°)  CMIP6 median 4.3 (—4.3, 23.4) 126 2.5(-1.0, 19.0) 3.3(-1.9, 19.5) 3.4 (-2.2,22.8)
370 1.7 (-1.3,26.8) 4.1(=3.1, 25.6) 3.5 (—3.6, 43.7)
585 2.6 (—1.8, 58.6) 4.1(-1.7, 63.6) 4.5 (—4.6,90.2)
BMA 9.8 (—44.2,110.5) 126 47.5(—33.9, 152.6) 56.3 (—33.0, 129.2) 56.5 (—43.0, 136.7)
370 35.4(—40.9, 137.0) 53.5 (—41.7, 165.6) 49.8 (—292.4, 207.8)
585 40.5(—38.6, 153.5) 50.9 (—50.1, 174.2) 425 (—300.3, 191.2)
Global CMIP6 median  49.0 (—4.3, 187.2) 126 64.9 (—4.1,214.2) 69.4 (—1.9, 232.2) 53.5 (—2.2, 197.5)
370 61.6(—1.3,216.6) 76.7 (-3.1, 261.1) 84.4 (—51.7, 298.3)
585  60.7 (—45.7, 250.8) 84.1 (=1.7, 341.4) 100.5 (—4.6, 506.0)
BMA 208.6 (—91.8,832.6) 126 266.1 (—166.0,861.9) 286.0 (—120.6, 816.2)  252.7 (—148.8, 689.5)
370 256.5(—153.2,944.2)  294.0 (—237.5,1129.0) 309.8 (—292.4, 1370.3)
585 2455 (—576.5,1005.9) 306.6 (—359.4, 1155.5) 338.1 (—300.3, 1321.1)

The area-weighted mean as well as the minimum and maximum values are shown. The grid cells dominated by the 11 land cover types (i.e., tropical
evergreen trees, tropical deciduous trees, extra-tropical evergreen trees, extra-tropical deciduous trees, shrubs, C3 grass, C4 grass, C3 pasture, C4
pasture, C3 crops, and C4 crops) were included for the analysis. The bare land was excluded from the analyses due to the high uncertainty in climate

model output in this region.

support to the idea that “model democracy” may not yield real-
istic estimates.?* We note that in this study, we did not specif-
ically account for internal model variability since only a few
CMIP6 models provide multiple ensemble members for both his-
torical and future periods. Recent work has shown that internal
model variability might also contribute to model uncertainty in
climate estimates and projections.*®*” This highlights the need
for producing multiple ensemble members for each model in
the upcoming CMIP7 simulations, which will enable critical as-
sessments of the contributions of internal model variability to
model uncertainty.

Although recent evidence suggests a potential shift in the
summer GPP-temperature relationship from positive to nega-
tive in the Northern Hemisphere under future climate warm-
ing,"" the future NEP dynamics under climate change remain
highly uncertain, as demonstrated by the disagreement be-
tween ESMs and field experiments.>'%'2 The BMA analysis
suggests a considerably higher spatial and temporal variability
of NEP than ESM projections especially under higher emission
scenarios, highlighting the critical need for improved simula-
tions of land C dynamics in ESMs. Moreover, BMA projections
suggest that some regions such as part of North and South
America and Africa will experience a significant decline in

NEP due to the decrease in NPP or the greater increase in Ry,
than NPP (Figures 3, S4, and S5), therefore potentially reducing
the C storage capacity of these ecosystems. Notably, the NEP
in Amazon forests is projected to decline considerably by the
end of the century under SSP126. This is consistent with previ-
ous work suggesting a long-term decline in tropical forest car-
bon sink over the past several decades®®>° which will likely
continue in the future.*® However, BMA analysis also suggests
that the NEP in Amazon forests will likely increase under
SSP370 and SSP585, owing to the enhanced NPP induced
by the CO, fertilization effect.°® In addition, the projected
decrease in rainfall in Amazon forests under higher emission
scenarios limits the magnitude of the changes in Ry, according
to PMM, therefore further enhancing the NEP in Amazon
forests.

Although BMA shows a greater capacity to constrain the histor-
ical C flux estimates among ESMs, there might exist uncertainty
in transferring the land cover-specific BMA weights from the his-
torical period to the future climate scenarios. For example, the
ongoing environmental changes and their interactions may
confound their current impacts on climate and C dynamics and
therefore affect the consistency of the model’s performance in
historical and future simulations. These aspects are still highly
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Figure 3. Global projections of 10-year average annual NEP (gC m~2 yr™') by CMIP6 ensemble BMA during 2021-2100

(A, D, and G) Projections under SSP126.
(B, E, and H) Projections under SSP370.

(C, F, and I) Projections under SSP585. The bare land was excluded from the analyses due to the high uncertainty in climate model output in this region.

unpredictable and need to be better represented in ESMs, which
will consequently improve the accuracy of BMA projections. Yet,
BMA weights assigned based on historical data still remain our
best guess for future projections. In addition, even though we
have accounted for the future land cover change in our BMA anal-
ysis, we note that other environmental changes such as drought,
fire disturbance, and land degradation will also jointly alter global
C balance."”?! For example, drought-induced tree mortality may
turn ecosystems from C sinks to sources.*'*? Moreover, future
land cover change is highly uncertain®® and may further alter
the dynamics of NEP, although it should have limited effects on
our results because we focus on relatively long-term NEP dy-
namics at the regional scale. Nevertheless, these factors should
be considered for accurate assessment of net ecosystem C bal-
ance. The development of effective environmental policy and
management, such as the adoption of nature-based solutions**
or land-based CO, removal (e.g., enhanced weathering),*>*
may be required for regions that show strong NEP dynamics un-
der climate change to achieve ecosystem sustainability and C
neutrality.’ Restoration efforts aiming to increase vegetation pro-
ductivity, such as afforestation, reforestation, and sustainable
forest management, might be a potentially important approach
to enhance ecosystem C storage,*’**® although increased C in-
puts might also accelerate soil C decomposition.*®

6 One Earth 7, 1-10, March 15, 2024

While fusion of model and global data provides a valuable
approach to post-process ESM projections, we would like
to note that the accuracy of the fused product necessarily de-
pends on the quality of the global data input. The FLUXCOM
NEP estimates, which are based on the upscaling of
FLUXNET eddy covariance data using machine learning algo-
rithms, may carry some biases from the upscaling algorithm
or the data input.” In fact, scaling up from site-level NEP mea-
surements to regional-scale patterns remains a challenge, as it
introduces a variety of uncertainties related to the inhomogene-
ity in rainfall regimes and vegetation and soil types within each
grid cell.*'” Yet, BMA remains a valuable and simple approach
to constrain global estimates of C fluxes, and—as observation-
based databases improve —the accuracy of the fused product
will also improve, especially if BMA can be based on simulta-
neous observations of multiple variables (and not NEP only).
In addition to BMA, other statistical weighting approaches
that have been developed and applied for climate projec-
tions®*®" could also be leveraged to improve the estimates of
terrestrial C dynamics and merit further investigation.

Lastly, our analysis—also helped by PMM*° (see Note S1)—
suggests that the current high uncertainty in both NPP and R}, es-
timates from ESMs may be one of the major causes leading to
uncertain NEP estimation (Figures 1, 2, S9, and S10). In fact,
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R has already been regarded as one of the most poorly con-
strained ecosystem C fluxes,*® and many ESMs still model Ry,
based on simplified kinetics of soil C dynamics, which result in
a nearly proportional relationship with NPP (Figure S11A). This
is unlikely, as evidenced by site-level observations and data-
driven global datasets (Figures S11B and S11C). Efforts are
thus required to reduce the uncertainty in the key biogeochem-
ical processes underlying both NPP and R, in ESMs. Promising
approaches are being developed to improve vegetation models
based on optimality principles® and to expand soil C models to
explicitly include microbial processes.** > These novel model
structures and parameterizations'*~'® are being successful in
capturing the response of biological systems to environmental
changes and, if combined with the utilization of global empirical
datasets, may offer an opportunity to significantly enhance the
performance of ESMs in predicting the terrestrial C balance.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to Heng
Huang (huangh557@mail.sysu.edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

The CMIP6 rainfall and C flux datasets are available at https://esgf-node.lInl.gov/
projects/cmip6/. The CRU temperature and rainfall datasets are available at
https://crudata.uea.ac.uk/cru/data/hrg/. The FLUXCOM NEP database is avail-
able at https://www.fluxcom.org/. The VPM GPP dataset is available at https://
doi.org/10.6084/m9.figshare.c.3789814. The CARDAMOM vegetation CUE
dataset is available at https://datashare.ed.ac.uk/handle/10283/875. The data-
driven global heterotrophic respiration dataset is available at https:/figshare.
com/articles/dataset/global_SHR_datasets_zip/11340770. The R code devel-
oped in this study can be found at https://osf.io/x5usc/?view_only=82c861cf2d
5a4d02a8bc9145855fcab4.

CMIP6 multi-model ensemble

To limit biases from individual model formulations, we used the multi-model
ensemble of CMIP6 to compare rainfall and C flux estimates between BMA
and ESMs. We selected 12 CMIP6 models (see Table S1 for details) that pro-
vide available monthly rainfall, NPP, R}, and NEP data for both historical and
three future scenarios (i.e., shared socioeconomic pathways SSP126,
SSP370, and SSP585, representing low, medium, and high radiative forcing
by the end of the 21st century, respectively). For all ESMs, the ensemble mem-
ber “r1i1p1f1” was chosen. Prior to analyses, all CMIP6 models were re-
sampled to the same spatial resolution (1° x 1°) using the bilinear interpolation
approach. We focused on the 10-year average (i.e., 2001-2010 for the histor-
ical period, and from 2021-2030 to 2051—-2060 and 2091—2100 for future sce-
narios) to smooth out time-series fluctuations and to yield more steady and
robust results.

Bayesian model averaging for historical rainfall, NPP, Ry, and NEP
We applied the BMA?® approach using the bicreg function from the R package
BMA®® to constrain the estimates of rainfall, NPP, Ry, and NEP among
12 ESMs during the 2001-2010 period. BMA is a postprocessing approach
that merges multi-model ensemble into a fused version based on the following
equation:

K
PWIf, ) = D wigk(yIfi), [Equation 1]
k=1

where y represents the quantity to be forecasted, f, represents the forecasts
from each of the K different models, which are linear functions of different com-
binations of ESMs, i.e., fy = Zfi 1(a +bESM;), wi is the posterior probability

¢? CellPress

of forecast k being the best one and indicates each model’s predictive capac-
ity in the training period, and gx(y|f) represents the conditional probability
density function of y conditional on f, given that f is the best model. The pa-
rameters a and b; are estimated through linear regression analysis of empirical
observations versus ESM estimates. The use of parameters a and b; can be
considered as a simple statistical approach to correct the bias in model fore-
casts. The BMA predictive mean (Y) can be calculated as follows:

Y = iwkfk.
k=1

Detailed descriptions of BMA can be found in Raftery et al.?®°°

The data-driven global datasets used in the BMA analyses include the
CRU TS rainfall dataset,®' the GPP dataset based on an improved light
use efficiency theory,*> the CARDAMOM vegetation CUE dataset,*® the
R, dataset by upscaling empirical observations from the Global Soil Respi-
ration Database using a random forest ensemble machine learning algo-
rithm,** and the FLUXCOM NEP database created by upscaling the eddy
covariance C flux observations using multiple machine learning methods
(random forest, multivariate regression splines, and artificial neural
network).>®> The ensemble median of R, and NEP datasets based on
different machine learning approaches and/or different input datasets was
chosen for our analysis. We applied BMA analysis independently to obtain
BMA-based estimates of rainfall, NPP, Ry, and NEP. The BMA analysis was
conducted for each of the 11 land cover types (i.e., tropical evergreen trees,
tropical deciduous trees, extra-tropical evergreen trees, extra-tropical de-
ciduous trees, shrubs, C3 grass, C4 grass, C3 pasture, C4 pasture, C3
crops, and C4 crops) based on the land cover data from the model MPI-
ESM1-2-LR, which was chosen because it provides a detailed land cover
classification and also showed a good agreement with the observed vege-
tation distribution.°® We note that the land cover type “bare land” was
excluded from the analyses due to the high uncertainty in climate model
output in this region. The deciduous and “raingreen” (i.e., drought-decidu-
ous) shrubs were merged into a larger classification (i.e., shrubs) due to the
relatively limited number of grid cells for both land cover types. We calcu-
lated the mean fractional cover of each land cover type within each 1° x
1° grid cell during 2001-2010. The land cover type with the maximum
factional cover was used to represent the land cover type for each grid
cell. We then conducted the standardized major axis regression (SMA)
regression using the Imodel2 function from the R package Imodel2®' to
examine the congruence between BMA-based estimates and data-driven
gridded datasets for rainfall, NPP, R,, and NEP, respectively.

[Equation 2]

Calibration of PMM based on global data-driven datasets

Given that ecosystem models, such as ESMs, can be computationally com-
plex, simple models, or so-called emulators, may be more amenable to and
efficient in model uncertainty analysis and calibration.®>° In this regard, we
have recently developed a parsimonious probabilistic soil microbial model
(PMM) to describe the temporal dynamics of Ry, across different ecosystems
worldwide as driven by dominant environmental factors.> When resolved
over long temporal scales, PMM suggests that the annual Ry, (C m~2 yr™")
is mainly controlled by rainfall characteristics and NPP, and it can be predicted
from R, = Cx*R* « NPP®, where C is a constant, R is the mean rainfall rate
over the studied time frame (cm day "), and « and P are exponents of R and
NPP, respectively. As shown in Huang et al.,** the model predictions were
well supported by empirical observations from the FLUXNET 2015 database,
demonstrating the robustness of PMM. The functional form based on power
laws also allows upscaling from ecosystem to regional scale by adjusting
the power-law exponents.

We refitted the parameters in PMM to increase model accuracy using the
data-driven global Ry, dataset,** since the original model parameters were esti-
mated based on site-level data, and it is expected that scaling up from the site
level to regional level involves additional uncertainties in input variables that
need to be reduced through the calibration of PMM. Through nonlinear regres-
sion analysis using the nls function from the R package stats, we obtained the
calibrated upscaled PMM, whichis expressed as R, = 64.84 x R024 « NPP%3%,
The SMA regression analysis was conducted, and the RMSE was also calcu-
lated to test the consistency between PMM estimates and global Ry, dataset.
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We note that although temperature has been widely considered as an important
factor influencing R,°* we found that the effect of temperature on long-term Ry,
across the globe was relatively weak and has been primarily accounted for in
PMM (see Note S2 and Figure S12).

Projecting the future global NPP, R;,, and NEP patterns

We first tested the performance of BMA and PMM versus the CMIP6 multi-
model ensemble median in estimating the FLUXCOM NEP (gC m 2 yr~") dur-
ing the 2001-2010 period. The PMM-based global NEP was estimated as the
BMA-based NPP minus the PMM-based R;. The CMIP6 ensemble median
NEP was calculated as the median of the NEP estimates from the selected
12 CMIP6 models. As mentioned above, we also calculated the BMA-based
global NEP directly using the NEP estimates from 12 CMIP6 ESMs. SMA
regression analysis was conducted to test the consistency between estimates
from different approaches (BMA, PMM, and the CMIP6 ensemble median) and
FLUXCOM NEP across the globe.

We then retrieved global data from 12 CMIP6 models to project the 10-year
average rainfall, NPP, Ry, and NEP during the 2021-2100 period. Data from
SSP126, SSP370, and SSP585 were used to compare projections under
different future emission scenarios. In order to constrain the uncertainty in
CMIP6 model projections, we utilized the land cover-specific BMA weights
for the 2001-2010 period to obtain BMA-based projections of 10-year average
global rainfall, NPP, Ry, and NEP during 2021-2100 and compared their per-
formance with the CMIP6 ensemble median. To account for the land use
and land cover change in the future, we retrieved the land cover projections
during 2021-2100 from the model MPI-ESM1-2-LR and calculated the frac-
tional cover of each land cover type for each 10-year period to determine
the land cover type of each grid in the future.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
oneear.2024.01.008.
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