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A B S T R A C T

The Penman and Penman–Monteith equations are widely used for estimating surface evapotranspiration (ET)
at regional and global scales. These nonlinear equations were derived from the turbulent transport of heat
fluxes and, in theory, need to be applied to a temporal scale ranging from half hour to an hour. However,
these equations have been frequently applied with hydrometeorological variables averaged at daily, monthly,
and even decadal time intervals, resulting in biases due to their nonlinearities. In this study, we used global
reanalysis data and Taylor expanded Penman and Penman–Monteith equations to explore their nonlinear
components and the biases associated with the timescale mismatches. We found that global average biases for
approximating Penman equation range from 0.72 to 1.31 mm day−1 from daily to annual timescales, which
mainly stem from the temperature–radiation, temperature–vapor pressure deficit (VPD), and aerodynamic
conductance–VPD covariances. For Penman–Monteith equation, the corresponding biases vary from 0.47 to
0.53 mm day−1, which may be associated with the addition of stomatal conductance–VPD covariances. As
a reference, the global averages from Penman and Penman–Monteith at hourly timescale over one year are
7.1 and 1.7 mm day−1. Large biases also exist around the world across various climate zones, where one or
multiple covariances between meteorological variables makes the first-order approximations of Penman and
Penman–Monteith equations less accurate. This analysis serves as a reminder of nonlinearities in Penman and
Penman–Monteith equations, hence the requirement of data at high temporal resolution for estimating potential
or actual evapotranspiration.
1. Introduction

On average, global evapotranspiration (ET) is directly associated
with approximately 82 W m−2 of latent heat flux, equivalent to a
quarter of incoming solar radiative flux at the top of the Earth’s
atmosphere (Wild et al., 2017). These latent heat fluxes are critical for
boundary layer dynamics, atmospheric convection, and cloud forma-
tion, playing an important role in controlling the Earth’s energy balance
and climate system. At regional scales, ET is an important component of
the water budget, thus influencing local water resources management
and ecological processes. Due to its inherent interlinkage with the latent
heat flux, modeling ET requires coupling surface energy balance to the
equations of turbulent heat transport. Penman (1948) linearized the
Clausius–Clapeyron relation to obtain the explicit expressions for ET
from wet surfaces. Monteith (1965) further extended this approach to
ind ET from non-wet surfaces with the assumption of saturated con-
ition inside the stomates. Penman and Penman–Monteith equations
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have been widely used in various fields ranging from regional water
resources management to global climate projections.

Penman and Penman–Monteith equations were derived from the
turbulent transport of heat fluxes, whose time frame is from half an
hour to an hour. Directly applying these equations at longer timescales
may thus result in biased results due to the nonlinearities in these
equations. While this problem seems obvious, it has not received much
attention and is often ignored. For example, FAO modified Penman–
Monteith equation (Allen et al., 1998), a standard for estimating crop
water demand, is often applied at daily timescale (e.g., Cai et al.,
2007; Suleiman and Hoogenboom, 2007), which is usually integrated
into longer intervals for specific applications. The Climatic Research
Unit (CRU) used the Penman–Monteith equation to calculate global
potential evapotranspiration (PET) at monthly timescale (Harris et al.,
2020). Huang et al. (2015), Wang et al. (2020), Song et al. (2023)
used monthly climate model outputs to calculate global PET. Zomer
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et al. (2022) used climatology data averaged over 1970–2020 (Fick
and Hijmans, 2017) in each month to calculate global PET and aridity,
hich have been extensively used in a wide range of applications.
These applications are evidences that Penman and Penman–Mont-

ith equations have been widely used on various timescales longer
han the time frame of turbulent transport of heat fluxes (hereafter the
‘timescale mismatch’’). Direct application of Penman equation on long
imescales has in fact resulted in large biases in various countries, such
s China (Yang and Zhong, 2011), Australia (Perera et al., 2015), and
the United States (Itenfisu et al., 2003; Suleiman and Hoogenboom,
009). While these case studies suggest that biases associated with
imescale mismatch exist, they have been mostly restricted to data
omparisons without systematically explaining the reasons for these
iases. More insights on the nonlinearities of the Penman or Penman–
onteith equations are needed to understand how they affect their
pplications in hydrometeorological studies.
Here we Taylor expanded the Penman and Penman–Monteith equa-

ions to investigate their nonlinear components and explored how
hey can lead to biases in evaporation predictions. There are various
efinitions of PET (e.g., Lhomme, 1997); here we used the term "PET"
or the rate computed from Penman (or Penman-Monteith with 𝑔𝑠 ≫ 𝑔𝑎)
nd used the term "ET" for the rate computed from Penman-Monteith
ith 𝑔𝑠 from Jarvis’ equation. While in principle an analysis of the non-
inearities could be conducted purely theoretically (e.g., by estimating
iases for any possible time-series of meteorological variables), here
e use available data to obtain actual estimates of expected biases
nd quantify how they vary spatially across the globe. In particular,
everaging the state-of-the-art global reanalysis data from the European
entre for Medium-Range Weather Forecasts (ECMWF) at high tempo-
al resolutions over the world (Hersbach et al., 2020), we found that
he biases when applying the Penman equation are associated with the
emperature–radiation, temperature–vapor pressure deficit (VPD), and
erodynamic conductance–VPD covariances. The biases when applying
he Penman–Monteith equation are relatively larger and may be also
ssociated with stomatal conductance–VPD covariances. The rest of
he article is organized as follows. In Section 2, we explained the
imescales of Penman and Penman–Monteith equations, which were
hen expanded into Taylor series for decomposition of their nonlinear
omponents. These components were quantified in Section 3 with re-
nalysis data to provide global overview of the biases for approximating
enman and Penman–Monteith equation at different timescales. The
onclusions were summarized in Section 4.

. Methods

.1. Penman and Penman–Monteith equations

Penman (1948) found the explicit expression for ET rate from wet
urfaces (or PET from hypothetical wet surfaces), P, by solving turbu-
ence transport of latent and sensible heat flux (see Appendix A) with
urface energy balance equation and linearized Clausius–Clapeyron
elationship,

P(𝑄, 𝑇𝑎, 𝑔𝑎, 𝑉 ) = 𝛥𝑄
𝜌𝑤𝜆𝑤 (𝛥 + 𝛾)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

P,e(𝑄,𝑇𝑎)

+
𝛾𝐸𝐴

𝜌𝑤(𝛥 + 𝛾)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
P,d(𝑇𝑎 ,𝑔𝑎 ,𝑉 )

, (1)

and

𝐸𝐴 = 𝜖
𝑝0

𝜌𝑔𝑎[𝑒sat (𝑇𝑎) − 𝑒𝑎] =
𝜖
𝑝0

𝜌𝑔𝑎𝑉 , (2)

here 𝜆𝑤 is latent heat of water vaporization, 𝜌𝑤 is water density,
= (𝑒sat (𝑇𝑎) − 𝑒𝑎) is vapor press deficit (VPD), 𝑄 = 𝐻 + 𝜌𝑤𝜆𝑤𝐸

is the available energy defined as the sum of the latent and sensible
heat fluxes, 𝐸𝐴 is drying power of the air, 𝛥 = 𝑑𝑒sat∕𝑑𝑇 |𝑇=𝑇𝑎 is the
slope of the saturation vapor pressure against air temperature, 𝑔𝑎 is
2

aerodynamic conductance, and 𝛾 is the psychrometric constant, which a
weakly depends on temperature and air pressure. Further analysis
show that the daily, monthly, and annual variations of psychrometric
constant have negligible impacts on the results and therefore 𝛾 is
treated as a local constant in the given study area. The aerodynamic
conductance can be modeled by Monin–Obukhov similarity theory
with consideration of atmospheric stability conditions (see Eq. (A.3) in
Appendix A). Neglecting the stability correction function could reduce
the estimated evaporation by nearly 50% in the afternoon with modest
instabilities, although the biases are smaller when averaged over the
whole day (Mahrt and Ek, 1984).

The first term is often referred to as equilibrium evaporation, P,e,
which is a function of 𝑇𝑎 and 𝑄, and the second term is evaporation
due to the drying power of the air, P,d, which is a function of 𝑇𝑎, 𝑔𝑎,
and 𝑉 . While it is common to omit the bars of Reynolds average in
Eqs. (1) and (2), 𝑇𝑎 and 𝑒𝑎, same as those in Eqs. (A.1) and (A.2), are
till Reynolds-averaged variables, and therefore the Penman equation
emains valid at sub-hourly to hourly timescales (also see chapter 2 in
orporato and Yin, 2022). Note that a more accurate solution without
inearizing the Clausius–Clapeyron relationship can be found by using
he Lambert-W function (McColl, 2020).
For non-wet surfaces, Monteith (1965) further extended Penman’s

combination approach by assuming saturated water vapor pressure
inside the stomates (Porporato and Yin, 2022) and using stomatal
conductance, 𝑔𝑠, to model the reduced evaporation rate, PM, as

PM(𝑄, 𝑇𝑎, 𝑉 , 𝑔𝑎, 𝑔𝑠) =
𝛥𝑄

𝜌𝑤𝜆𝑤
[

𝛥 + 𝛾
(

1 + 𝑔𝑎∕𝑔𝑠
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PM,e

+
𝛾𝐸𝐴

𝜌𝑤
[

𝛥 + 𝛾
(

1 + 𝑔𝑎∕𝑔𝑠
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PM,d

,

(3)

which reduces to the Penman Eq. (1) for complete opening of stomata
(e.g., 𝑔𝑠 ≫ 𝑔𝑎). Similar to the Penman Eq. (1), the bars of Reynolds
average in the Penman–Monteith equation are also omitted but the
equation should still be applied at sub-hourly to hourly timescale. For
convenience, we also split PM into PM,e and PM,d, corresponding
to the contributions from surface available energy and vapor pressure
deficit, respectively.

Applying Penman and Penman–Monteith equations at longer time-
scales simply by using meteorological variables at daily, monthly, or
annual (DMA) time steps introduces biases. As shown in Appendix B,
for any given nonlinear function, the average of the function is not the
same as the function of the averages of the independent variables. The
difference depends on the variances, covariances, and higher moments
of the independent variables as analyzed in the next sections.

2.2. Nonlinear components of Penman and Penman–Monteith equations

The first term in the Penman equation is a bivariate nonlinear
function of 𝑇𝑎 and 𝑄, i.e., P,e(𝑇𝑎, 𝑄) = 𝑓 (𝑇𝑎, 𝑄), where for convenience
the function notation 𝑓 is used as an equivalent to P,e. Applying Taylor
series in Appendix B to P,e(𝑇𝑎, 𝑄) and acknowledging the second-order
derivative with respect to 𝑄 is zero yields

⟨P,e(𝑇𝑎, 𝑄)⟩
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

I

= P,e(⟨𝑇𝑎⟩, ⟨𝑄⟩)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

II

+1∕2𝑓𝑇𝑎𝑇𝑎𝜎
2
𝑇𝑎

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
III

+ 𝑓𝑇𝑎𝑄cov(𝑇𝑎, 𝑄)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

IV

+ ⟨H.O.T.⟩
⏟⏞⏟⏞⏟

V

,

(4)

here the subscripts in 𝑓 indicate the variables with respect to which
he partial derivatives are taken. In Eq. (4), P,e(𝑇𝑎, 𝑄) refers to equi-
ibrium part at subhourly to hourly timescale, and ⟨⋅⟩ is different
rom Reynolds averages and refers to the averages for given periods.
herefore, the first term, ⟨P,e(𝑇𝑎, 𝑄)⟩, is the average of P,e(𝑇𝑎, 𝑄) at
onger timescales (e.g., DMA), which can be regarded as the exact value.
erm II, P,e(⟨𝑇𝑎⟩, ⟨𝑄⟩), as the approximation, is the function of the

verages of 𝑇𝑎 and 𝑄 at the corresponding timescales. According to
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c
a

Fig. 1. Approximations of Penman equation at varying timescales. In panels (a)–(c), the exact values of equilibrium evaporation, ⟨P,e(𝐗)⟩, are compared with first-order
approximations, P,e(⟨𝐗⟩), (i.e., Term I vs. Term II in Eq. (4)) at the (a) daily, (b) monthly, and (c) annual scales, respectively. In panels (d)–(f), the exact values, ⟨P,d(𝐗)⟩,
are compared with the first-order approximations, P,d(⟨𝐗⟩), (i.e., term I vs. term II in Eq. (5)) at the (d) daily, (e) monthly, and (f) annual scales, respectively. In panels (g)–(i),
the sum of ⟨P,e(𝐗)⟩ and ⟨P,d(𝐗)⟩ is compared with P,e(⟨𝐗⟩) and P,d(⟨𝐗⟩) at (g) daily, (h) monthly, and (i) annual timescales. The vector 𝐗 refers to the list of variables in the
orresponding functions; ⟨ (⋅)⟩ refers to the average of the function;  (⟨⋅⟩) refers to the function of the averages. Note that there are 2337 resampled locations over the global land
nd the total sample sizes are 365 × 2337, 12 × 2337, and 2337 at DMA timescales (also see data source in Section 2.3). The quantity color bars show the numbers of the samples.
⟨

o
c
(

2

h
a
a

Eq. (4), the differences between the two (i.e., subtract term II from term
I) depend on the temperature variances (III), temperature–radiation
covariances (IV), and higher-order terms (V) (i.e., the sum of all terms
above second order).

The second term in the Penman equation is a function of three
variables, P,d(𝑇𝑎, 𝑔𝑎, 𝑉 ) = 𝑔(𝑇𝑎, 𝑔𝑎, 𝑉 ), where for convenience the
function notation 𝑔 is used as an equivalent to P,d. Considering that
its second-order derivatives with respect to 𝑔𝑎 and VPD are zeros, one
can express its Taylor-series expansion as (also see Appendix B)

⟨P,d(𝑇𝑎, 𝑔𝑎, 𝑉 )⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

=P,d(⟨𝑇𝑎⟩, ⟨𝑔𝑎⟩, ⟨𝑉 ⟩)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

II

+1∕2𝑔𝑇𝑎𝑇𝑎𝜎
2
𝑇𝑎

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
III

+ 𝑔𝑇𝑎𝑔𝑎cov(𝑇𝑎, 𝑔𝑎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

IV

+ 𝑔𝑇𝑎𝑉 cov(𝑇𝑎, 𝑉 )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

V

+ 𝑔𝑔𝑎𝑉 cov(𝑔𝑎, 𝑉 )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

VI

+ ⟨H.O.T.⟩
⏟⏞⏟⏞⏟

VII

,

(5)

where the subscripts in 𝑔 indicate the variables with respect to which
the partial derivatives are taken. In Eq. (5), term I, ⟨P,d(𝑇𝑎, 𝑔𝑎, 𝑉 )⟩, is
the average of P,d(𝑇𝑎, 𝑔𝑎, 𝑉 ) at longer timescales and refers to the exact
values calculated from Penman equation. Term II, 𝑔(⟨𝑇𝑎⟩, ⟨𝑔𝑎⟩, ⟨𝑉 ⟩), is
the corresponding approximation. The differences between these two
are therefore associated with temperature variances (III), temperature–
aerodynamic conductance covariances (IV), temperature–VPD covari-
ances (V), aerodynamic conductance–VPD covariances (VI), and higher-
order terms (VII).
3

C

For Penman–Monteith equation, it is a function of five variables,
and subsequently its Taylor series to the second order can be as many as
16 terms, complicating the decomposition of the biases. In this regard,
we only expand it to the first order around the averages as

⟨PM(𝑄, 𝑇𝑎, 𝑉 , 𝑔𝑎, 𝑔𝑠)⟩ = PM(⟨𝑄⟩, ⟨𝑇𝑎⟩, ⟨𝑉 ⟩, ⟨𝑔𝑎⟩, ⟨𝑔𝑠⟩) + ⟨H.O.T.⟩, (6)

where ⟨PM(𝑄, 𝑇𝑎, 𝑉 , 𝑔𝑎, 𝑔𝑠)⟩ refers to the exact values and PM(⟨𝑄⟩, ⟨𝑇𝑎⟩,
𝑉 ⟩, ⟨𝑔𝑎⟩, ⟨𝑔𝑠⟩) is the first-order approximation. We will take advantage
f the global reanalysis data and attempt to diagnose the nonlinear
omponents of this Penman–Monteith equation by comparing its bias
i.e., ⟨H.O.T.⟩) with the covariances between different variables.

.3. ERA-5 global reanalysis data

To quantify the importance of each term in Eqs. (4), (5), and (6), we
used the latest state-of-the-art reanalysis of ERA-5 produced at ECMWF
(datasets are available at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels). ERA-5 reanalysis datasets with
global coverage and continuous meteorological variable outputs at
hourly timescale have shown great promise in capturing the diurnal
and seasonal cycles of surface heat fluxes (Hoffmann et al., 2019;
Hersbach et al., 2020; Dai, 2023). From ERA-5, latent and sensible
eat fluxes were combined as the available energy, 𝑄, air temperature
t 2 meters is used for variable 𝑇𝑎, dew point temperature (𝑇𝑑) and
ir temperature were used to estimate vapor pressure deficit using
lausius–Clapeyron relationship, 𝑉 = 𝑒 (𝑇 ) − 𝑒 (𝑇 ), and 𝑔 and
sat 𝑎 sat 𝑑 𝑎

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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Table 1
Bias statistics of Penman and Penman–Monteith equations. The vector, X, refers to the list of variables in the corresponding functions.
Time scales Statistics ⟨P,e(𝐗)⟩

vs.
P,e(⟨𝐗⟩)

⟨P,d(𝐗)⟩
vs.
P,d(⟨𝐗⟩)

⟨P(𝐗)⟩
vs.
P(⟨𝐗⟩)

⟨PM(𝐗)⟩
vs.
PM(⟨𝐗⟩)

Daily
RMSB 0.12 0.87 0.90 0.53
MAB 0.09 0.44 0.48 0.30
MB 0.08 0.13 0.22 0.28

Monthly
RMSB 0.12 0.70 0.72 0.47
MAB 0.09 0.38 0.40 0.29
MB 0.08 0.04 0.12 0.25

Annual
RMSB 0.22 1.41 1.31 0.47
MAB 0.18 0.77 0.74 0.33
MB 0.16 −0.39 −0.23 0.23
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𝑔𝑠 were estimated by Eqs. (A.3) and (A.4). Note that the Monin–
Obukhov length in Eq. (A.3) was numerically solved in an implicit
quation between stability parameter and bulk Richardson number
ith estimated surface heat fluxes outputs from ERA-5 (ECMWF, 2023).
ur analysis was conducted over a typical year of 1994, when neither El
iño nor La Niña conditions were strong. To make it computationally
ess expensive, the original ERA-5 data with 0.25◦ latitude–longitude
rids were resampled into 2337 equal-area grids over the land using
he nearest neighbor interpolation method, which preserves more in-
ormation regarding the spatial variability of meteorological variables
ithout using spatial smoothing methods and provides a rough repre-
entation of global conditions. It should be noted the methods proposed
ere for analyzing the nonlinearities of Penman and Penman–Monteith
quations should not be limited to reanalysis data. However, obtaining
igh-resolution global meteorological variables remains a challenge.
or instance, no FLUXNET records (Pastorello et al., 2020) are available
f any low-quality data (qc ≥ 1) is excluded.

. Results and discussions

.1. Nonlinearity of Penman equation

We substituted hourly 𝑇𝑎 and 𝑄 from ERA-5 into Eq. (1) to calculate
ourly P,e for the equilibrium part of the Penman equation and then
veraged at DMA scales to obtain exact values of evaporation. Since the
and surface is not always wet, the results calculated from the Penman
quation only refer to the PET as the atmospheric water demand. The
ourly data were also used to calculate the variance and covariance
i.e., 𝜎2𝑇𝑎 and cov(𝑇𝑎, 𝑄)) at DMA scales. Finally, these values were
sed to calculate each term in Eq. (4) to assess the nonlinearity of the
equilibrium part of the Penman equation. Note that term V is calculated
as the residual of the whole equation, i.e., Term V = Term I − Term II
− Term III − Term IV.

As shown in Fig. 1 a–c, the approximations (i.e., term II, P,e(⟨𝑇𝑎⟩,
⟨𝑄⟩)) at daily and monthly timescales are quite close to the exact value
(i.e., term I, ⟨P,e(𝑇𝑎, 𝑄)⟩), and only become less accurate at annual
timescales (see statistics in Table 1). To quantify the importance of
each term in Eq. (4), we plotted each term against the total biases
(i.e. Term III+IV+V) in Fig. 2. As can be seen, the 𝑇𝑎-𝑄 covariance
term (i.e. term IV) is very close to 1:1, accounting for almost all of
the total biases, whereas 𝑇𝑎 variance term (i.e. Term III) and H.O.T.
(i.e. Term V) are close to zeros and only become nontrivial at the annual
timescale. Therefore, this analysis, using ERA-5 data, highlights the sig-
nificance of temperature–radiation variances in estimating equilibrium
evaporation, particularly at annual scale.

This dominant covariance term seems to be often positive (see
Fig. 2a–c), which can be explained by the signs of both the deriva-
tive and the covariance. Solar radiation warms the Earth’s surface
and increases the air temperature, thus often leading to the positive
correlation between radiation and temperature at various timescales,
cov(𝑇𝑎, 𝑄) > 0. The derivative, expressed as

𝑓𝑇 ,𝑄 = 𝑑 𝛥 , (7)
4

𝑎 𝑑𝑇𝑎 𝜆𝑤(𝛥 + 𝛾) t
s also positive because of the monotonically increasing functions of
∕(𝛥 + 𝛾) and 𝛥(𝑇𝑎). Therefore, the covariance term often results in
nderestimation of equilibrium evaporation for applying Penman equa-
ion at different timescales.
Following the same approach for analyzing P,e, we calculate each

erm in Eq. (5) using ERA-5 (see Fig. 1 d–f). Overall, the biases due
o timescale mismatch due to drying power of the air, P,d, are much
arger than those from the equilibrium counterpart, P,e (also see Ta-
le 1). Similarly to the results in P,e, the biases in P,d are also smaller
t daily and monthly timescales than those at annual timescales.
To investigate the significance of each term in Eq. (5), we compared

ach term against the total bias (i.e. Term III+IV+V+VI+VII). Overall,
erms III–VI are an order of magnitude smaller than terms V–VI; term III
nd term VI are usually positive; term IV and term V are often negative;
he higher-order term is relatively small. While there is no single term
hat fits the total biases well, the majority of the biases are close to the
ombination of terms V and VI (see Fig. 2d–f), which is associated with
he 𝑇𝑎-VPD and 𝑔𝑎-VPD covariances. These terms change from positive
alues in most daily cases to negative values in most annual cases,
esulting in slight underestimation of daily PET and overestimation of
nnual PET (see bias statistics in Table 1).

.2. Nonlinearity of Penman–Monteith equation

For the Penman–Monteith equation, we split PM into PM,e and
PM,d and compared them with the corresponding first-order approx-
mations at DMA timescales in Fig. 3. As can be seen, data points
or PM,e are more scattered at daily and monthly timescales than
hose at annual timescale, whereas they are less scattered for PM,d
t monthly timescale than those at daily and annual timescales. The
verall biases at daily timescale in terms of root mean square bias
RMSB, see Appendix C) for PM are larger than those at monthly
nd annual timescales (see Table 1). The averages of the biases in
erms of MB (see Appendix C) are positive at all timescales, suggesting
irst-order approximations of Penman–Monteith usually underestimate
T.
Due to the complexity of the Penman–Monteith equation, it is not

ractical to Taylor expand the biases into different terms as was done
or the Penman equation in Section 3.1. Given the importance of covari-
nce terms in the Penman equation, we also explored the relationship
etween the total biases (i.e., H.O.T. in Eq. (6)) and some covariances
etween the input variables in the Penman–Monteith equation (see
able 2). While all these relationships are statistically significant, 𝑇𝑎-
, 𝑇𝑎-𝑉 , and 𝑔𝑎-𝑉 covariances, as the primary sources of biases in the
pproximations of Penman equation, seem to be less important than
he covariances between 𝑔𝑠 and other meteorological variables. Par-
icularly, 𝑔𝑠-𝑉 covariances are highly correlated with the total biases,
hereas 𝑔𝑠-𝑇𝑎 and 𝑔𝑠-𝑄 covariances are relatively larger at daily and
onthly timescales, exhibiting complex nonlinear behavior at different

emporal scales.
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Table 2
Correlation coefficients between total biases (i.e., H.O.T. in Eq. (6)) and some covariance terms in the Penman–Monteith equation. All coefficients
are statistically significant (𝛼 = 0.05, two-tailed Student-𝑡 test)
Time scales cov(𝑇𝑎, 𝑄) cov(𝑇𝑎, 𝑉 ) cov(𝑔𝑎, 𝑉 ) cov(𝑔𝑠, 𝑄) cov(𝑔𝑠, 𝑉 ) cov(𝑔𝑠, 𝑇𝑎) cov(𝑔𝑠, 𝑔𝑎)

Daily 0.67 0.24 0.50 0.66 0.72 0.70 0.60
Monthly 0.63 0.11 0.49 0.70 0.72 0.71 0.67
Annual 0.41 −0.20 0.14 0.57 0.70 0.58 0.58
Fig. 2. Comparison of the bias terms with the total bias for approximating Penman equation at varying timescales. In panels (a)–(c), the bias terms in Eq. (4) are compared with
the corresponding total bias at (a) daily, (b) monthly, and (c) annual timescales, respectively. In panels (d)–(f), the bias terms in Eq. (5) are compared with the total bias at (d)
daily, (e) monthly, and (f) annual scales, respectively. See data source in Section 2.3.
3.3. Spatial distribution of biases

Both Penman and Penman–Monteith equations have shown certain
biases when applied at DMA timescales. Overall, the average biases
measured by RMSB for approximating the Penman equation range
from 0.72 to 1.31 mm day−1, and the average biases for approxi-
mating the Penman–Monteith equation vary from 0.47 to 0.53 mm
day−1. As a reference, the global averages from Penman and Penman–
Monteith equation at hourly timescale over the year 1994 are 7.1
and 1.7 mm/day. It should be noted that PET estimated here with
5

consideration of the atmospheric stability tends to be larger than those a
without stability correction (Mahrt and Ek, 1984). This suggests high
nonlinearities of Penman and Penman–Monteith equations and thus
advises its application over long temporal scales with extra caution.

An advantage of using available climatological data is that we can
readily geolocate biases, especially the large biases. As shown in Fig. 4,
the regions of large biases at daily, monthly, and annual timescales
were found across various climate zones. This is also consistent with
previous studies which found large biases in China, Australia, and the
United States (Yang and Zhong, 2011; Perera et al., 2015; Itenfisu
et al., 2003; Suleiman and Hoogenboom, 2009). For PET estimated by
pproximating the Penman equation at daily timescale, there are large
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H

Fig. 3. Approximations of Penman–Monteith equation at varying timescales. In panels (a)–(c), the exact values, ⟨PM,e(𝐗)⟩, are compared with first-order approximations, PM,e(⟨𝐗⟩),
at the (a) daily, (b) monthly, and (c) annual scales, respectively. In panels (d)–(f), the exact values, ⟨PM,d(𝐗)⟩, are compared with the first-order approximations, PM,d(⟨𝐗⟩), at
the (d) daily, (e) monthly, and (f) annual scales, respectively. In panels (g)–(i), the exact values, ⟨PM(𝐗)⟩ are compared with the first order approximation PM(⟨𝐗⟩) at (g) daily,
(h) monthly, and (i) annual timescales. The vector 𝐗 refers to the list of variables in the corresponding functions; ⟨ (⋅)⟩ refers to the average of the function;  (⟨⋅⟩) refers to the
function of the averages. Note that there are 2337 resampled locations over the global land and the total sample sizes are 365 × 2337, 12 × 2337, and 2337 at DMA timescales (also
see data source in Section 2.3). The quantity color bars show the numbers of the samples.
biases in Asia, Southern Africa, and coastal regions of the Americas.
This gradually shifts towards Europe, Northern Asia, and Canada at
monthly and annual timescales. For ET estimated by approximating the
Penman–Monteith equation, large biases are located around Southern
Africa, South Asia, Australia, and Americas.

To interpret this global pattern, we focused on the major bias
sources, which are 𝑇𝑎-𝑄, 𝑇𝑎-𝑉 , 𝑔𝑎-𝑉 covariances for the Penman equa-
tion and also include 𝑔𝑠-𝑉 covariance for the Penman–Monteith equa-
tion. As shown in Fig. 5, larger 𝑇𝑎-𝑄 covariances can be found in
temperate and cold regions, where the local surface heating may be
one of the most important sources for warming the atmosphere air.
For 𝑇𝑎-𝑉 covariances, the large values are often found in dry regions,
where the nonlinear relationship between temperature and saturation
vapor pressure may be responsible for the variations in VPD. For 𝑔𝑎-
𝑉 , their covariances are more prominent in the tropics and Southern
Hemisphere. The covariances of 𝑔𝑠-𝑉 related to the Penman–Monteith
equation are more negative around the Sahel region, Mideast, and
South Asia. This implies that the biases present in various regions are
linked to distinct climate forcing factors, hence requiring particular
attention for applying these equations at long timescales.

The biases from the first-order approximation of PET could influ-
ence the estimation of the dryness index (= PET∕𝑃 ), which has been
extensively used in a wide range of hydrological, climatological, and
biogeochemical applications (e.g., Arora, 2002; Zarch et al., 2015;
Greve et al., 2019; Calabrese and Porporato, 2020; Porporato, 2021;
uang et al., 2023). To explore this effect, we compared the global

dryness index based on both accurate PET and its first-order approx-
imations (see Fig. 6). Overall, the dryness index biases are larger in
6

dry regions, where the low precipitation in the denominator of the
dryness index (= PET∕𝑃 ) tends to amplify the biases. The small biases
in the climate transitional zone also should not be ignored, as the small
variations in dryness index potentially shift the hydrological processes
from water-limit to energy-limit regimes. These biases at annual scales
are relatively larger than those at daily and monthly scales, consistent
with the corresponding PET biases.

4. Conclusions

In this study, we explored the nonlinearities of Penman and Penman–
Monteith equations to address the potential biases associated with
timescale mismatches. We Taylor expanded Penman and Penman–
Monteith equations to compare their first-order approximations with
the corresponding variance, co-variance, and higher-order terms. Using
the state-of-the-art global reanalysis data, we found that the biases
from approximating equilibrium evapotranspiration from the Penman
equation mainly come from the temperature–radiation covariance term,
whereas the biases from approximating evaporation due to the drying
power of the air are primarily associated with covariances between
temperature and VPD and between aerodynamic conductance and
VPD. Relatively larger biases were observed in approximating the
Penman–Monteith equation for the calculation of ET from a non-wet
surface, as the addition of stomatal conductance, probably due to its
covariance with VPD, significantly increases the nonlinearity of the
Penman–Monteith equation.

The biases can be larger in certain regions across different climate
zones, where distinct climate forcings tend to have one or multiple
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o
s

Fig. 4. Spatial distribution of large biases (a, b, c) for approximating Penman and (d, e, f) Penman–Monteith equations. The dots indicate that the number of the cases with 20%
r larger relative biases and ET > 3 mm day−1 or PET > 3 mm day−1 is larger than 30 at (a, d) daily scales and larger than or equal to one at (b, e) monthly and (c, f) annual
cales.
Fig. 5. Global distributions of (a) 𝑇𝑎-𝑄, (b) 𝑇𝑎-VPD, (c) 𝑔𝑎-VPD, and (d) 𝑔𝑠-VPD covariances calculated from hourly time series of 𝑇𝑎, 𝑄, VPD, 𝑔𝑎, 𝑔𝑠 over the whole year of 1994.
higher covariances among different meteorological variables and thus
makes these first-order approximations less accurate. It also important
to note that the relationships among temperature, radiation, humidity,
and wind are not necessarily the same under changing climates. Global
warming tends to increase day and night temperatures at different
rates (Cox et al., 2020) and alter the tropospheric stability (Ceppi and
Gregory, 2017), resulting in changes in the dynamics of the atmosphere
boundary layer and the diurnal variations of atmospheric humidity.
Variations in these hydrometeorological variables may lead to changes
in biases. Caution should be exercised when using daily, monthly, or
annual climate model outputs to calculate global evaporation under
future scenarios, which may result in an inaccurate assessment of the
future water cycle.

Interestingly, there may also be a problem of ‘‘spatial scale mis-
7

match’’ when applying Penman and Penman–Monteith equations. Each
grid point in ERA-5 datasets has a resolution of 0.25◦, within which
land use and land cover is not necessarily homogeneous. Using spatially
averaged meteorological variables in each grid point as inputs for
Penman and Penman–Monteith equations may in fact introduce biases.
Future analyses through comparison between site observations and
these grid data may provide insight into this ‘‘spatial scale mismatch’’
problem.

Finally, it should be kept in mind that this study focused on the
Penman and Penman–Monteith equations and did not address biases
associated with the original assumptions behind these equations, such
as linearization of saturation vapor pressure and saturated conditions
inside the stomates of non-wet surfaces. It is estimated that the Penman
equation with linearized saturation vapor pressure curve consistently
underestimates evaporation and the relative biases in certain extreme

cases can be as high as 10% (Paw U and Gao, 1988; Milly, 1991;
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Fig. 6. Differences in dryness index (= PET∕𝑃 ) with PET calculated from the Penman
equation and its first-order approximation at daily (a), monthly (b), and annual (c)
timescales. The precipitation (𝑃 ) and meteorological variables for Penman equations
are from ERA-5 reanalysis over the whole year of 1994.

McColl, 2020). Using global meteorological data, it is estimated that
he overall biases are around 0.1 mm/day, approximately 2.4% of the
nnual PET (Liu et al., 2021). Exploration of these assumptions and
the use of other comprehensive datasets at high spatial and temporal
resolutions may be an interesting future extension of this work.
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Appendix A. Turbulent transport of surface heat fluxes

The Penman and Penman–Monteith equations were derived from
the turbulent transport of latent and sensible heat fluxes from the
surface to the atmosphere (Stull, 1988; Garratt, 1994; Brutsaert, 2013;
orporato and Yin, 2022)

= 𝜌𝑐𝑝𝑤′𝑇 ′ = 𝜌𝑐𝑝𝑔𝑎(𝑇0 − 𝑇𝑎) (A.1)

𝑤𝐸 = 𝜌𝑤′𝑞′ = 𝜌
𝑔𝑎𝑔𝑠

𝑔𝑎 + 𝑔𝑠
𝜖
𝑝0

[

𝑒0 − 𝑒𝑎
]

(A.2)

here𝐻 is sensible heat flux, 𝐸 is evapotranspiration rate, 𝑐𝑝 is specific
heat capacity, 𝜌𝑤 is water density, 𝜌 is the air density, 𝜖 (≈ 0.622)
is the ratio of the water and air molar masses, 𝑝0 is atmospheric
pressure, 𝑒 is vapor pressure, 𝑞 (≈ 𝜖𝑒∕𝑝0) is specific humidity, 𝑇0 is the
surface temperature, the bars indicate Reynolds averages at timescale
of half hour to an hour (Stull, 1988), and subscripts 0 and 𝑎 refer the
corresponding variables at the surface and in the atmosphere (e.g., low
level of the mixing layer), 𝑇𝑎 and 𝑒𝑎 are temperature and vapor pressure
in the atmosphere, and 𝑔𝑎 and 𝑔𝑠 are the aerodynamic and stomatal (or
canopy) conductances. While there are various models for simulating
aerodynamic conductance (see a list in Liu et al., 2007), we followed
the Monin–Obukhov similarity theory and modeled 𝑔𝑎 as (ECMWF,
2023) Eq. (A.3) given in Box I where 𝜅 is the von Karman constant,
̄𝑎 is wind speed at 𝑧𝑎, 𝑧0𝑀 and 𝑧0𝐻 are the momentum and thermal
roughness heights, 𝛹𝑀 and 𝛹𝐻 are the stability correction functions
for momentum and heat transfer, 𝐿 is the Monin–Obukhov length.
We followed ECMWF (2023) and used the correction functions given
y Paulson (1970) for unstable conditions and the correction functions
y Holtslag and De Bruin (1988) for stable situations. The stomatal
conductance, 𝑔𝑠, refers to the controls of leaf stomatal openings to the
water flux for vegetated surface and is treated as a limiting factor from
unsaturated soil for non-vegetated areas,

𝑔𝑠 = 𝑐𝑔𝑠,max𝑓1(𝑅𝑠)𝑓2(𝑠𝑟)𝑓3(𝑉 ) + (1 − 𝑐)𝑔soil,max𝑓4(𝑠1), (A.4)

where 𝑐 is vegetation coverage, 𝑔𝑠,max is the maximum stomatal con-
ductance for the given vegetation, 𝑅𝑠 is the downward shortwave
radiation, 𝑠𝑟 and 𝑠1 are the root-zone and surface-layer soil moisture, 𝑉
is vapor pressure deficit, and 𝑔soil,max is the maximum conductance from
bare soil surface with a typical value of 0.02 ms−1, 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are
the empirical functions modeling the impacts of each variable (ECMWF,
2023).

For wet surfaces with high stomatal conductance (𝑔𝑠 ≫ 𝑔𝑎), one
finds the explicit expression for ET in Eq. (1) by solving Eqs. (A.1) and
A.2) with surface energy balance equation and linearized saturation
apor pressure curve. For non-wet surface with an assumption of 𝑒0 =
sat (𝑇0), a similar expression for ET can be derived as in Eq. (3).

ppendix B. Taylor series for multivariable functions

Application of Penman equation at a longer timescale should pro-
eed with caution. To explain this point, we consider the general case

f two nonlinear functions, ℎ(𝑥, 𝑦) and ℎ(𝑥, 𝑦, 𝑧). Taylor expanding the

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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)
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(
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Box I.
F

G
G

H

H

H

H

H

H

I

L

L

L

irst function at the mean values of 𝑥 and 𝑦, and the second one at the
ean values of 𝑥, 𝑦 and 𝑧 gives

(𝑥, 𝑦) = ℎ(⟨𝑥⟩, ⟨𝑦⟩) + (𝑥 − ⟨𝑥⟩)ℎ𝑥 + (𝑦 − ⟨𝑦⟩)ℎ𝑦
+ 1∕2(𝑥 − ⟨𝑥⟩)2ℎ𝑥𝑥 + 1∕2(𝑦 − ⟨𝑦⟩)2ℎ𝑦𝑦
+ (𝑥 − ⟨𝑥⟩)(𝑦 − ⟨𝑦⟩)ℎ𝑥𝑦 + H.O.T.,

(B.1)

and
ℎ(𝑥, 𝑦, 𝑧) = ℎ(⟨𝑥⟩, ⟨𝑦⟩, ⟨𝑧⟩) + (𝑥 − ⟨𝑥⟩)ℎ𝑥

+ (𝑦 − ⟨𝑦⟩)ℎ𝑦 + (𝑧 − ⟨𝑧⟩)ℎ𝑧 + 1∕2(𝑥 − ⟨𝑥⟩)2ℎ𝑥𝑥
+ 1∕2(𝑦 − ⟨𝑦⟩)2ℎ𝑦𝑦 + 1∕2(𝑧 − ⟨𝑧⟩)2ℎ𝑧𝑧
+ (𝑥 − ⟨𝑥⟩)(𝑦 − ⟨𝑦⟩)ℎ𝑥𝑦 + (𝑥 − ⟨𝑥⟩)(𝑧 − ⟨𝑧⟩)ℎ𝑥𝑧
+ (𝑦 − ⟨𝑦⟩)(𝑧 − ⟨𝑧⟩)ℎ𝑦𝑧 + H.O.T.,

(B.2)

where ⟨𝑥⟩, ⟨𝑦⟩ and ⟨𝑧⟩, different from Reynolds averages, refer to the
averages of 𝑥, 𝑦, 𝑧 for any given period, function ℎ with subscripts are
the corresponding derivatives evaluated at (⟨𝑥⟩, ⟨𝑦⟩) or (⟨𝑥⟩, ⟨𝑦⟩, ⟨𝑧⟩),
and H.O.T. are higher-order Taylor series terms. Applying averages for
the whole equations ((B.1) and (B.2)) yields

⟨ℎ(𝑥, 𝑦)⟩ = ℎ(⟨𝑥⟩, ⟨𝑦⟩) + 1∕2ℎ𝑥𝑥𝜎2𝑥 + 1∕2ℎ𝑦𝑦𝜎2𝑦
+ ℎ𝑥𝑦cov(𝑥, 𝑦) + ⟨H.O.T.⟩,

(B.3)

nd
ℎ(𝑥, 𝑦, 𝑧)⟩ = ℎ(⟨𝑥⟩, ⟨𝑦⟩, ⟨𝑧⟩) + 1∕2ℎ𝑥𝑥𝜎2𝑥 + 1∕2ℎ𝑦𝑦𝜎2𝑦

+ 1∕2ℎ𝑧𝑧𝜎2𝑧 + ℎ𝑥𝑦cov(𝑥, 𝑦) + ℎ𝑥𝑧cov(𝑥, 𝑧)

+ ℎ𝑦𝑧cov(𝑦, 𝑧) + ⟨H.O.T.⟩,

(B.4)

here 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are standard deviations of 𝑥, 𝑦 and 𝑧, cov(𝑥, 𝑦) is the
ovariance of 𝑥 and 𝑦; similarly, cov(𝑥, 𝑧) and cov(𝑦, 𝑧) are the covari-
nces of the corresponding variables. In linear system, e.g., ℎ(𝑥, 𝑦) = 𝑥+
, Eq. (B.3) is reduced to ⟨ℎ(𝑥, 𝑦)⟩ = ℎ(⟨𝑥⟩, ⟨𝑦⟩), and for ℎ(𝑥, 𝑦, 𝑧) = 𝑥+𝑦+
, Eq. (B.4) is reduced to ⟨ℎ(𝑥, 𝑦, 𝑧)⟩ = ℎ(⟨𝑥⟩, ⟨𝑦⟩, ⟨𝑧⟩); in multiplicative
ystem, e.g., ℎ(𝑥, 𝑦) = 𝑥𝑦, Eq. (B.3) is reduced to ⟨ℎ(𝑥, 𝑦)⟩ = ℎ(⟨𝑥⟩, ⟨𝑦⟩) +
𝑥𝑦cov(𝑥, 𝑦), and for ℎ(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧, Eq. (B.4) is reduced to ⟨ℎ(𝑥, 𝑦, 𝑧)⟩ =

ℎ(⟨𝑥⟩, ⟨𝑦⟩)+ℎ𝑥𝑦cov(𝑥, 𝑦)+ℎ𝑥𝑧cov(𝑥, 𝑧)+ℎ𝑦𝑧cov(𝑦, 𝑧); for Penman equation,
most terms in Eq. (B.3) and (B.4) reserve.

ppendix C. Bias statistics

To quantify the differences between the approximate values and the
xact values over a sample of size 𝑛, we used three statistical indices,
amely root mean square bias (RMSB), mean absolute bias (MAB), and
ean bias (MB). The formulas are as follows,

MSB =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑌𝑒,𝑖 − 𝑌𝑎,𝑖
)2, (C.1)

AB = 1
𝑛

𝑛
∑

𝑖=1
|𝑌𝑒,𝑖 − 𝑌𝑎,𝑖|, (C.2)

nd

B = 1
𝑛

( 𝑛
∑

𝑖=1
𝑌𝑒,𝑖 −

𝑛
∑

𝑖=1
𝑌𝑎,𝑖

)

, (C.3)

here a set of exact value 𝑌𝑒,𝑖 of size 𝑛 is compared with the corre-
ponding approximation, 𝑌 .
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