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ABSTRACT

A painting, like human skin, develops cracks on the surface as it dries and ages. The painting
cracks, also known as craquelure, are often considered analogous to human fingerprints; these
have been regarded as a unique signature reflective of the painting’s characteristics and are
important in art authentication. Intriguingly, studies in other fields, such as geology, have
observed the presence of distinctive characteristics in soil desiccation cracks. These cracks
exhibit self-similarity, forming patterns that suggest broader geological processes at work. In
light of this connection, the primary objective of this study is to investigate whether the
painting cracks also exhibit a self-similar nature. By delving into this, we seek to shed light
on the underlying properties of the painting cracks. This study also aims to investigate
whether the characteristic self-similar trait of the cracks can serve as an identifier in relation
to the provenances of the paintings. To this end, this study adopts the methodology
originally designed to characterize the phenotypic traits of 3D particle geometries in
granular materials research. This study develops a 2D equivalent concept, focusing on the
phenotypic traits of the individual islands enclosed by cracks within paintings. The results
successfully demonstrate that the phenotypic trait of painting cracks exhibits a self-similar
nature, which can reveal characteristics associated with the provenances of paintings. The
findings will offer valuable insights into the scientific examination of artworks based on
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painting cracks.

Introduction

A painting is like human skin in some sense. Just as
genetic makeup leaves unique physical characteristics
on our skin such as fingerprints, painting cracks known
as craquelure have been recognized as an important
characteristic of a painting that may serve as a
unique identifier. The cracks naturally manifest on
the surface of a painting due to drying and aging (Krze-
mien et al. 2016). The drying cracks (desiccation cracks)
begin to form within the first few weeks after applying
paint, as volatile solvents evaporate from the painted
surface. This process is strongly influenced by factors
such as adhesion to the sublayer, thickness and com-
position of the pictorial layers, etc. On the other
hand, the aging cracks start to form after the pictorial
layers are dried. The cracks develop over the paint-
ing’s lifetime, and as a result of the slow and
gradual process their formation is affected by many
environmental factors (Giorgiutti-Dauphiné and Pau-
chard 2016). Therefore, the delicate and intricate
cracks, shaped by the painter’'s choice of materials,
techniques, and the way the artwork was stored,
may exhibit unique characteristics that are
common to the artist’s paintings which differ from
those of other artists. As such, analyzing the painting
cracks has become an important part of art

examination, offering valuable information about
the painting’s authenticity (Barron and Sharma
2020; Pauchard and Giorgiutti-Dauphiné 2020);
crack analysis is considered a technique to help
determine the painting’s origin and potentially
establish a connection to a particular artist or
period (Sidorov and Hardeberg 2019).

Some descriptive methods have been developed in
the art conservation community as an effort to charac-
terize the crack patterns and link those to the origins of
paintings. Bucklow 1997 is widely regarded as the
seminal work that pioneered a systematic approach
for quantifying crack patterns and establishing their
connection to the origin of paintings. Bucklow
adopted a set of statistical and classification tech-
niques to develop a formal description of painting
cracks. As a result of the study, a collection of descrip-
tive terms was developed to associate the crack pat-
terns with the origins of paintings. The descriptions
include the predominant direction, orientation,
smoothness, straightness, thickness, and regularity of
cracks, as well as the shape and size of islands enclosed
by cracks. This approach was demonstrated, as shown
in Table 1, to differentiate Italian, Flemish, Dutch, and
French paintings created from different historical
periods. Bucklow (1998) also utilized a repertory grid
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Table 1. Descriptive crack patterns associated with the origins of paintings (Bucklow 1997).

Italian (fourteenth-fifteenth

Flemish (fifteenth-sixteenth

Dutch (seventeenth century) French (eighteenth-nineteenth

century) century) century)

Predominant Often have Nearly always have Usually have Usually do not have
direction
Orientation Usually perpendicular to grain ~ Usually parallel to grain Usually perpendicular to N/A
longest side

Island size Usually small to medium sizes  Usually very small sizes Usually medium sizes Usually large sizes
Island shape N/A Usually square Often square Usually not square
Smoothness Usually jagged Usually smooth Usually jagged Usually smooth
Straightness N/A Usually straight N/A Usually curved
Crack thickness Sometimes distinct secondary  Often uniform thickness of ~ N/A N/A

cracks cracks
Regularity N/A Usually highly ordered N/A N/A

cracks

approach to represent the structure of painting
cracks in numerical ratings. This approach improved
the quantitative aspect of the analysis and facilitated
the comparison of crack patterns across different
paintings and art-historical categories. Later, Bucklow
(1999) introduced an image-based painting crack
analysis whereby digitized crack images were segmen-
ted and converted into a set of Bezier curves for further
analysis. The quantitative nature of this approach was
recognized as a great advantage. However, a signifi-
cant drawback was also highlighted: the prohibitive
computational cost required for image processing, pri-
marily due to the limited computing power available at
the time of the research. Bucklow reported it took
several months for the computer to represent 40
crack patterns, whereas it took 9 hours for the
author to heuristically complete the representation of
528 crack patterns.

Since then, with significant advances in computing
resources and algorithmic enhancements, image pro-
cessing has become more feasible. In general, image
processing involves the manipulation of digital
images through mathematical algorithms with the
goal of enhancing or extracting information from
them. Image segmentation is an image processing
technique that partitions an image into meaningful
segments or regions based on color information,
texture, or intensity gradients of the image. It is con-
sidered a critical step in many image processing appli-
cations, such as object recognition, classification, and
tracking, as it enriches image data and enhances the
accuracy of subsequent analysis. Image processing,
including segmentation, has played a key role in the
development of computer vision systems (Suri 2000).
These advancements have transformed image-based
crack analysis into a more systematic endeavor for
2D (Abas 2004; Spagnolo and Somma 2010) and 3D
analyses (Kim et al. 2022). Recent studies in image-
based crack analysis have focused on representing
the painting crack network as a graph (Sidorov and
Hardeberg 2019; Zabari 2021) and/or employing
image-based deep learning techniques to learn and
identify the crack patterns for further classification
(Sindel, Maier, and Christlein 2021; Yuan et al. 2023).

Crack analysis is not exclusive to the field of paint-
ings, but also an important research subject in
geology and geological engineering. Existing cracks
indicate broader geological processes at work,
affecting the behavior of geo-materials such as rock
and soil. Specifically, fractures refer to cracks resulting
from geological and mechanical separations, such as
those in rocks caused by internal or external stresses,
including physical impacts and environmental con-
ditions. Identification of fracture patterns in rock is
important to better understand the geomechanical
and hydrological behavior of the rock materials (Lei,
Latham, and Tsang 2017). In addition to being indica-
tive of past stresses and strains, physical crack proper-
ties such as crack shape, size, roughness, and
connectivity can have significant implications for the
stability and functionality of the materials. Recently,
image-based analysis has become increasingly
popular in the fields for crack identification in
tandem with the advances in imaging techniques
(Liu et al. 2013). Digital images have been heavily
used to characterize soil desiccation cracks (Bordoloi,
Ni, and Ng 2020; Liu et al. 2020, 2022; Zeng et al.
2022), and fractal analysis has been frequently con-
ducted to assess cracking characteristics. For
example, Hirata (1989) demonstrated the fractal struc-
ture of rock fracture geometry by using a box method
to obtain the fractal dimension. This involved dividing
the intricate crack web into a series of smaller square
boxes, each with a side length of r.

N(r) ~ r @ 1)

flex) = Blex)™ = c9Bx 9 = cUf(x) o< f(x) ()

Hirata (1989) showed that r and the number of boxes N
(r) that crack enters follow a relationship as expressed
in Equation (1), where d is the fractal dimension. When
plotted on a log-log scale, a linear relation is realized
with a slope of —d. More specifically, the presence of
the linear graph in a log-log space signifies self-simi-
larity across multiple scales. Mathematically, self-simi-
larity manifests itself in a power-law as shown in
Equation (2). A power function f(x) =Bx that scales
the argument x by a constant ¢ results in a



proportionate scaling of the function itself (Newman
2005), exhibiting a self-similar nature across different
scales. This self-similarity has been observed in soil
desiccation cracks (Baer, Kent, and Anderson 2009;
Vallejo 2009; Goehring et al. 2015), which is discussed
as an indication of distinctive characteristics associated
with soil.

In view of this, two questions arise: would painting
cracks display self-similarity as with soil desiccation
cracks? And if so, could the characteristic self-similar
trait of the cracks be linked to the provenances of
paintings? These questions are currently difficult to
answer due to the limited evidence available within
the research community. Few studies have analyzed
painting cracks to identify self-similarity. Eggert
(2006) discussed the fractal geometries of cracks in
artwork, which relate to glass rather than paintings.
The objective of this study is to address the two ques-
tions above. The next section discusses the method-
ology, followed by a section examining the painting
crack images presented in Bucklow (1997), focusing
on the analysis of how the identified cracks from the
methodology correlate with different paintings.

Methodology
Two approaches for crack analysis

When it comes to analyzing cracks in paintings, there
are two possible approaches that can be employed.
The first approach involves focusing directly on the
crack network, while the second considers the charac-
teristics of individual islands enclosed by the cracks.
Figure 1 illustrates an example of an island. The first
approach is more conventional, which has been
adopted in most crack analyses, representing a crack
network as a graph. On the other hand, the second
approach is far less common. To our best knowledge,
Bucklow (1997, 1998) and Freeman et al. (2013) are
the only studies that attempted to analyze the island
geometries in painting cracks. Our study will adopt
the second approach, drawing an analogy between
the discrete islands in painting cracks and the discrete
soil clods (i.e. distinct clumps or aggregates of soil) in

Figure 1. Example of an island enclosed by painting cracks
(Image courtesy of Jeronimo Perez Roca — South Florida Art
Conservation LLC (Roca 2013)).
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desiccation cracks. To this end, we employ a method-
ology proposed by Lee et al. (2022), originally devel-
oped to analyze the geometries of soil particles.
Specifically, it characterizes the phenotypic trait of the
particles, showing that the trait exhibits a pattern in
log-log space, which can be formulated as a power
function, as in Equation (2). In light of the findings,
our study aims to characterize the phenotypic trait of
the islands by adapting the methodology in Lee
et al. (2022) to answer the afore-stated two questions.
It is worth noting that the phenotypic trait is a geome-
try concept that goes beyond shape and size; it
extends to the underlying properties associated with
those. As an analogy, people of an ethnic origin may
have some variations in their appearances but share
a phenotypic trait due to a common genetic origin
and biological history. For example, while each
Korean woman possesses a distinct facial appearance,
they also share a common phenotypic trait that stems
from their shared genetic origin. This phenotypic trait
sets them apart from women of other origins, who
have different genetic backgrounds and exhibit their
own unique set of characteristics. Likewise, mineral
particles that originate from the same geologic origin
and experienced the same history possess a shared
phenotypic trait, despite exhibiting variations in their
shapes and sizes. Similarly, the painting cracks and
the islands share a common origin attributed to the
use of specific materials and painting techniques, as
well as the history of drying and aging. Given the simi-
larities, we may hypothesize the existence of a
common phenotypic trait behind the formation of
crack islands in paintings created by the same artist.

Phenotypic trait of 3D geometries

Lee et al. (2022) reported that a power-law relationship
exists between the surface area-to-volume ratio (A/V)'
and the volume (V) for a family of particles having a
common geologic origin and history. Graphically, the
data points realize a linear relationship between A/V
and Vin a log-log space, which indicates the presence
of a phenotypic trait of the 3D particle geometries. A
demonstration is shown in Figure 2. The set for analysis
contains 100 Florida limestone particles from Tripathi
et al. (2023). The particles were individually scanned
using a Polyga C504 structured light 3D scanner, pro-
viding a high resolution and accuracy down to 6
microns (Polyga 2021). The scanner, positioned directly
above a particle, captured its 3D geometry by taking
images from multiple angles as the particle was
rotated and flipped, ensuring thorough scanning of
all surfaces. Typically, 15-20 scans were conducted
per particle to ensure comprehensive coverage. The
individual scan images were then merged to construct
a 3D digital representation of the particle. Finally,
Blender (2022), a 3D graphics software, was utilized
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Figure 2. A demonstration to uncover phenotypic traits: (a) 100 Florida limestone particles; and (b) Two phenotypic traits of par-

ticle geometries uncovered in terms of A/V and V.

to measure the 3D geometrical attributes of the digi-
tally represented particle including surface area (A)
and volume (V). Further details on the scanning and
digitization processes can be found in Tripathi et al.
(2023).

The 100 Florida limestone particles consisted of two
different groups of particles, each originating from dis-
tinct sources (Figure 2(a)), yet their distinct identities
elude the naked eye. However, a power regression
analysis on the A/V and V geometry data brings to
light the presence of two coherent data clusters.
These data clusters exhibit two distinct linear relation-
ships in the log-log space (Figure 2(b)). They are posi-
tioned at dissimilar locations with different variations.
The coefficient of determination (R?) for each group
is calculated as 0.73 and 0.94, respectively. The
dataset located in the upper region of the plot, charac-
terized by larger values of V, corresponds to the larger
particles, while the data in the lower region represent
smaller particles. The data orientations, as represented
by the power regression slopes, depend on the
relationship between particle shape and size of each
group. These serve as identifiers that unveil two dis-
tinct phenotypic traits exhibited by the particles,
much like genetic footprints. This suggests that this
group comprises a mixture of two different kinds of
particles.

Phenotypic trait of 2D geometries

The methodology by Lee et al. (2022), introduced
above, was originally developed to analyze 3D geome-
try. This study adapts and develops a 2D equivalent
concept to reveal the phenotypic trait of the island
geometries, whereby the 2D island area (A) is used in

the place of 3D particle volume (V), and the 2D
island perimeter (P) substitutes 3D particle surface
area (A). This study therefore examines whether a phe-
notypic trait presented by the perimeter-to-area (P/A)
and area (A) data can be correlated with the prove-
nances of paintings. Another modification in this
study is the utilization of bivariate ellipses to compre-
hensively represent the location and variation of the
data. For consistency in utilizing the bivariate ellipse,
the eigenvector of the ellipse is also employed to indi-
cate the orientation of the data, thus eliminating the
need for a separate adoption of a power regression
line as employed by Lee et al. (2022) and illustrated
in the example above (Figure 2(b)). Although the
slope of the eigenvector may exhibit a slight difference
compared to that of the power regression, both remain
proportionate. Therefore, it is deemed suitable for the
purpose of this study.

Co = Pc/P (3)

Cr = Ceox = 4TA/P* =47 x (PJA 2 x A7 (4)

The P/A and A data are also useful for characterizing
the 2D shape, particularly in terms of perimeter circular-
ity (Cp) (Tripathi et al. 2024). Circularity measures how
closely a 2D shape resembles a perfect circle, with
values ranging from 0 to 1, where 1 represents a per-
fectly circular shape. As shown in Equation (3), Cp
quantifies a 2D shape by comparing the 2D object’s
perimeter (P) to that of a circle with the same area
(Po). The square of Cp is formulated as shown in
Equation (4), which corresponds to Cc, as defined by
Cox (1927). Using the relationship Pc*=4mA, Cp and
Ccox Can be obtained with P/A and A. Therefore, the



P/A and A data of 2D objects can be directly utilized to
measure circularity.

Analysis
Images of painting cracks

This study analyzes the crack images of Italian, Flemish,
Dutch, and French paintings from the fourteenth to the
nineteenth centuries collected by and presented in
Bucklow (1997). Table 2 presents a summary of the
origins and descriptions of all seventeen images in
Bucklow (1997). Please note that the figures in
Bucklow (1997) are referred to as ‘Image,’ while the
figures in this paper are labeled as ‘Figure’ to avoid con-
fusion. The specified horizontal dimension in the table
indicates the length scale of each Image. The qualitative
description by Bucklow is also presented in the table.

Analysis procedure

The workflow adopted for this study is shown in
Figure 3. Various image-based methods for crack
detection have been developed, and the workflow
presented in Figure 3 may be seen as a variation of
those image-based crack detection methods. The
major adaptation is the detection and characterization
of the individual islands enclosed by painting cracks,
shifting the focus from the cracks themselves, which
has been the common emphasis in the existing
methods. Recent comprehensive reviews, including
the one by Munawar et al. (2021), have reported gen-
erally excellent performance in crack detection using
currently available algorithms. These findings suggest
that inaccuracies likely stem from camera resolution
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rather than the detection algorithms. Consequently, if
cracks are adequately presented in an image, modern
algorithms are generally capable of detecting them
effectively. Since the images in Bucklow (1997), taken
more than two decades ago, may not clearly present
the hairline cracks, Step 1 involves enhancing the
quality of these images using an artificial intelligence
(Al)-powered image processing tool (Pickwish 2023).
The purpose of this enhancement is to clearly depict
the boundaries of the islands, facilitating an improved
image segmentation process.

The image segmentation process (Step 2) involves
converting the original crack images into binary
images. The converted black and white binary
images are shown in Figure 4, where the islands are
represented as white pixels and the cracks are rep-
resented as black pixels. Image Segmenter app (Math-
Works 2021a), a MATLAB image processing toolkit, is
then utilized for segmenting the crack images,
thereby identifying the individual islands within each
image. The effectiveness of this segmentation pro-
cedure using the Image Segmenter app has been
demonstrated in the authors’ previous study (Abu-
Haifa and Lee 2022, 2023).

The boundary of each segmented island is then cap-
tured using the MATLAB boundary tracing function,
bwboundaries (MathWorks 2021b), and represented
as a polygon (Step 3). The vertices of the polygon,
representing the boundaries of the polygonal islands,
are given in pixels. On average, each island is rep-
resented by more than 100 vertices, ensuring a
sufficient level of detail for accurately depicting the
geometries. In Step 4, the islands are scaled to their
actual sizes (i.e. pixels are converted to cm) based on
the horizontal dimension provided in Table 2.

Table 2. Descriptions of all seventeen images presented in Bucklow (1997).

Image Origin Painter Painting
#

1 French  Nicolas de Largilliére  Study of Hands

2 Flemish  Hieronymus Bosch Christ Mocked

3 Italian Paolo Uccello The Battle of San Romano

4 Dutch Frans Hals Portrait of Woman with a Fan

5 French  Alexandre Gabriel The Caravan

Decamps

6 Italian Sandro Botticelli Four Scenes from the Life of
Saint Zenobius

7 Italian Master of the Fogg Saint Lawrence

Pieta

8 French  Francois Boucher Venus Asks Vulcan for Arms for
Aeneas

9 Italian Paolo Uccello The Battle of San Romano

10 Dutch Johannes Lingelbach  The Army of Charles Il

1" Italian Duccio Annunciation

12 Flemish  Master of St Giles Saint Giles

13 French  Francois Boucher Diana Bathing

14 Italian Lorenzo Monaco The Coronation of the Virgin

15 Flemish  Robert Campin Virgin and Child before a
Firescreen

16 Dutch  Jan van de Cappelle  River Scene with a Large Ferry

17 French  Jean Simeon Chardin  The House of Cards

Horizontal dimension,  Description of crack pattern

dp (cm)

7 No direction

45 Parallel to the wood grain

45 Perpendicular to the wood grain

7 Jagged and straight cracks with square islands

7 Smooth and curved cracks, and not square islands

45 Small islands

45 Large islands

7 Cracks of uniform thickness

45 Secondary network

7 Connected network

7 Broken network

4.5 Ordered network

7 Random network

45 Typical pattern for an Italian fourteenth/fifteenth-
century painting on panel

45 Typical pattern for a Flemish fifteenth/sixteenth-
century painting on panel

7 Typical pattern for a Dutch seventeenth-century
painting on canvas

7 Typical French eighteenth-century painting on

canvas
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Raw : raquelure Extractin Real unit ; Phenotypic
Resolution Craue p A & ca Geometrical OYP
craquelure — — segmentation — island —  scaling — ) trait
. enhancement . . features L
image (islands) geometry (pixel to cm) examination

Figure 3. Workflow to analyze the phenotypic trait of painting cracks.

In Step 5, the geometrical information (i.e. area A considered part of the boundary and included
and perimeter P) for each island is determined from (Figure 5(b)), otherwise it is excluded (Figure 5(c)).
the polygons using the built-in MATLAB functions, Lastly, the phenotypic trait is analyzed in terms of
polyarea and perimeter (MathWorks 2023a, 2023b). In  the P/A and A data (Step 6).
case a partial crack is present within an island, as illus-
trated in Figure 5(a), a threshold crack width of 2 pixels
is utilized to determine whether the partial crack
should be included as part of the boundary. If the  The phenotypic traits of painting cracks in all 17

Results and discussion

width of the partial crack is at least 2 pixels, it is  images are presented in Figure 6, shown on log-log
el
(a) Image 1 (dn: 7 cm) (b) Image 2 (dn: 4.5 cm)
) B < s
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(c) Image 3 (dn: 4.5 cm)
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(e) Image 5 (dn: 7 cm)

(g) Image 7 (dn: 4.5 cm) (h) Image 8 (dn: 7 cm)

Figure 4. Binary crack images, where dj, indicates the horizontal dimension of image.
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Figure 4 Continued

scales, using the P/A and A data of the islands within
each image. The values along each axis are presented
on a logarithmic scale with a base of 10. For example, 0
in the axes indicates the numerical value 1 (= 10°). The
scale range is set to be sufficiently large, ensuring con-
sistency across all images. The length units are cm, so
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the unit of P/A is cm™". A bivariate ellipse is plotted
to provide a comprehensive representation of the
data’s location, orientation, and variance determined
by the statistical properties of the data and the
chosen confidence level (Van Houwelingen, Zwinder-
man, and Stijnen 1993). To construct probability
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Figure 5. Determination of island boundary: (a) Presence of a partial crack; (b) A partial crack is considered part of the boundary
(in green) if the width is at least 2 pixels; and (c) A small crack is not considered as part of the boundary.
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Figure 6. Phenotypic traits of painting cracks, presented by the P/A and A data.
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Figure 6 Continued

ellipses for a bivariate distribution at a given confi-
dence level, the process begins by calculating the
means of both data sets and their covariance matrix.
Each ellipse is then centered around the means and
aligned according to the direction of the first eigenvec-
tor of the covariance matrix, which represents the
direction of maximum variance. The length of the
primary axis of each ellipse is determined by the
square root of the percentile of the chi-squared distri-
bution corresponding to the desired confidence level.
All bivariate ellipses in this paper are constructed with
the estimates performed at a 99% confidence level.
While the ellipse represents the overall trend, variance,
and uncertainty of the data, the distribution within the

PHENOTYPIC TRAIT OF PAINTING CRACKS 9

9
O L
=
o
Q
— L
-5 . . )
2 5
2 .
0 L
=t
&0
Q
— L
-5 s - . s - !
g 0 5
Log(P/A)
(h) Image 8

ellipse might appear asymmetrical. This asymmetry
occurs because the ellipse is shaped based on the
covariance matrix and the chi-squared value, which
primarily capture the global properties of the dataset
rather than localized variations or distinct clusters.

As demonstrated in Figure 6, each data point, repre-
senting the geometry of a crack island, aligns in a
coherent linear relationship within the log-log space.
The eigenvector of the ellipse is plotted to enhance
the visualization of the orientation. This linear align-
ment, indicative of a power-law relationship between
these quantities, suggests that the system exhibits
scale invariance, a hallmark of self-similar structures.
This implies that painting cracks, like other natural
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Figure 6 Continued

formations such as soil desiccation cracks, also exhibit
the characteristic feature of self-similarity. The slope of
the power-law in a log-log plot, hovering around —1.9,
suggests a specific scaling behavior consistent across
different scales. These observations thus address the
first research question posed in this paper.

The MATLAB functions, polyarea and perimeter, used
to measure A and P data of the islands, essentially rely
on pixel counting and distance summation of bound-
ary pixels, respectively. Given that the island sizes in
the images are typically much larger than the crack
width, the pixel counting method to estimate the
island area is deemed sufficiently accurate (Liu et al.
2011). However, estimating the perimeter of islands
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is complex due to the fractal nature. This complexity
mirrors the coastline paradox, famously explored by
Lewis Fry Richardson (1961) and further articulated
by Benoit Mandelbrot (1967). The paradox demon-
strates that the measured length of a coastline, or
similar fractal geometries such as cracks, increases as
the size of the measuring unit decreases. Mandelbrot
noted that the fractal dimensions of coastlines
usually range between 1 and 2, which reflects the
increase rate in measured length with finer measure-
ments. Liu et al. (2011, 2013) proposed a method
using line segments to measure the perimeter by con-
necting ‘key’ pixels in a crack image. They reported
that this line segment method provided a more
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accurate perimeter measurement, as the conventional
method of summing distances of ‘all’ boundary pixels
could overestimate the perimeter by 5% or more.
However, the line segment method does not account
for the fractal nature of cracks; from the perspective of
fractal analysis, employing such longer line segments
that connect ‘key’ pixels (i.e. coarser measuring units)
could lead to an underestimation of the perimeter.
While further research is needed to address the error
estimation in perimeter measurements, the geometric
data presented in Figure 6 effectively capture self-
similar fractal characteristics, akin to those observed in
other natural formations. This therefore supports the
validity of the measurements used in this study.

The bivariate ellipses are used to address the
second research question posed in this paper. Specifi-
cally, this investigation explores whether the phenoty-
pic trait exhibited by the P/A and A data can exhibit
characteristics associated with the provenances of
the paintings. Figure 7 illustrates the ellipses estimated
for the crack images from Flemish paintings (Images 2,
12, and 15). Figure 8 presents those for Dutch paint-
ings (Images 4, 10, and 16), and Figure 9 shows the
ellipses estimated for the crack images from Italian
paintings (Images 3, 6, 7, 9, 11, and 14). Those for
French paintings (Images 1, 5, 8, 13, and 17) are pre-
sented in Figure 10. Figure 7 shows evidence of com-
parable ellipses for the Flemish paintings. Figure 8
also supports this finding by demonstrating that paint-
ings originating from the same source exhibit similar
ellipses, suggesting the presence of shared phenotypic
traits influenced by the provenance of the paintings.

On the other hand, Figure 9 reveals the presence of
two distinct sub-groups, A and B, within the Italian
paintings, with the ellipses indicating that the physical

9 -
Image 2
L Image 12
Image 15
0t
g L
an
Q
— L
=5 .
9 0 5

Log(P/A)

Figure 7. Bivariate ellipses estimated for the crack images
from the Flemish paintings.
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Figure 8. Bivariate ellipses estimated for the crack images
from the Dutch paintings.

characteristics of the painting cracks exhibiting clear
differences between them. As shown in Figure 4,
Images 3, 6, 9 and 14 (sub-group A) commonly
feature small to medium-sized islands. In contrast,
Images 7 and 11 (sub-group B) display much larger
islands, with some instances of a broken crack
network. Please note the horizontal dimension d, of
Image 11 is 7 cm, which is larger than the others. The
variations in cracks can be attributed to many factors,
including the age of paintings, the specific materials
used, the painting techniques employed by the
artists, and the environmental conditions present
during the creation and preservation stages (Flores
2018; Elkhuizen et al. 2019; Maev, Baradarani and
Taylor 2020). All paintings in the sub-group A are by
painters who were born, trained, and worked in Flor-
ence (Berti 1964; Roy and Gordon 2001; Gloria 2004;
Higgitt and White 2005). On the other hand, little is
known about the Master of the Fogg Pieta, who
painted Saint Lawrence (Image 7), and Duccio, who
painted Annunciation (Image 11), worked in Siena
(Harvard Art Museums 2014; Carli 2024). Another key
differentiator between the Italian sub-groups A and B
is clearly the age of the paintings; sub-group A corre-
sponds to paintings created in the fifteenth century,
while sub-group B represents paintings from the early
fourteenth century (Robb 1936; Fehm 1976; Griffiths
1978; Dunkerton and Roy 1996; Bucklow 1997).

While the bivariate ellipse effectively aids in quanti-
fying traits to interpret crack patterns in paintings —
such as those found in the sub-groups of Italian paint-
ings — it may not conclusively pinpoint provenances.
For instance, ellipses from Images in lItalian sub-
group A show some similarities to those in Flemish
paintings (Figure 7), while ellipses from images in
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Figure 9. Comparable bivariate ellipses within each sub-group of the Italian paintings.

Italian sub-group B resemble one of the sub-groups in
French paintings (Figure 10(a)).

In French paintings, it is observed that the cracks
form larger islands compared to paintings of
different origins, as shown in Figure 4, resulting in
data with correspondingly large area A. Consequently,
the ellipses representing these islands occupy the plot
space associated with high A values (Figure 10). The
French paintings also have sub-groups. The cracks in
Images 1, 8, and 13 (Figure 10(a)) show similar pheno-
typic traits, leading to comparable ellipses. Likewise,
Images 5 and 17 (Figure 10(b)) exhibit comparable
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traits and ellipses. As with the Italian paintings, the
trend suggests that paintings created within the
same century tend to exhibit similar traits in cracks.
Images 1, 8, and 13 correspond to paintings created
in the eighteenth century (Meyer 1995; Ledbury
and Hyde 2006; Louvre Museum 2014), while Image
5 is from the nineteenth century. Image 17 is from
the eighteenth century but has a different provenance
from the other French paintings, which may have
influenced the aging crack formation and, conse-
quently, the attributes of the bivariate ellipses,
placing it in sub-group B. While the other French
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Figure 10. Comparable bivariate ellipses within each sub-group of the French paintings.



14 (&) M.ABU-HAIFAETAL.

paintings have been collected and stored in the
Louvre, The House of Cards (Image 17) became part
of the collection of Catherine I, Empress of Russia,
after it was painted in 1737 and was housed at the
Imperial Hermitage Gallery in Saint Petersburg,
Russia. It remained in the Hermitage until Andrew
W. Mellon purchased it in 1931 and later gifted it to
the National Gallery of Art in Washington, DC, in
1937 (The National Gallery of Art 2016). As a result,
the painting underwent preservation practices distinct
from those of the other French paintings.

Concluding remarks

This paper introduces a new perspective on painting
cracks, also known as craquelure, investigating two
questions: Do painting cracks exhibit self-similarity?
And if so, can the characteristic self-similarity of these
cracks be correlated with the provenances of paint-
ings? To this end, we employ the concept of the phe-
notypic trait of painting cracks, with a specific focus on
the 2D geometries of islands enclosed by cracks. A set
of 17 crack images from French, Italian, Flemish, and
Dutch paintings, available in Bucklow (1997), which
span the fourteenth to nineteenth centuries is ana-
lyzed. Digital image analysis techniques, including
image segmentation and boundary detection, are uti-
lized to extract the 2D geometrical features from the
images.

This study evidences a power-law relationship
between perimeter-to-area (P/A) and area (A) data of
the islands in a log-log space. This power-law relation-
ship highlights the inherent self-similar nature present
behind the various painting crack patterns. Bivariate
ellipses and their eigenvectors are employed to
provide a comprehensive representation of the
location, variance, and orientation of the island geo-
metry data. The study finds that comparable ellipses
tend to emerge when cracks exhibit similar phenotypic
traits, particularly in cases where paintings share an
origin and similar painting techniques, and undergo
common preservation practices. Therefore, these phe-
notypic traits appear to reveal characteristics that can
be associated with the provenances of the paintings.
It is important to note that establishing a universal
measure to pinpoint the origin of a painting solely
based on its cracks remains a challenge. This
difficulty arises due to variations in preservation prac-
tices, including storing and handling, which can
influence the development of aging cracks over time.
Nevertheless, the comparative study presented in
this paper provides compelling evidence supporting
the validity of the proposed approach that utilizes
the P/A and A data of islands.

This study analyzes the images from Bucklow
(1997), thus limiting its scope to the samples docu-
mented therein. Bucklow’s investigation focused on

small segments of entire paintings, and our study simi-
larly concentrates on these segments. A question,
then, is the reliability of analyzing such small seg-
ments, as they may not represent the characteristics
of the entire painting. This was not fully addressed in
our study, yet the promising results encourage
further exploration. For example, both Images 3 and
9 are from The Battle of San Romano, and they are suc-
cessfully categorized within the same sub-group using
the proposed analysis method. A limitation of this
study is that the craquelure analysis applies only to
paintings with discernible cracks that can be segmen-
ted into distinct islands. We avocate for further
research with expanded image sets and a more com-
prehensive examination of multiple crack patterns
that may be present within the same paintings to
assess the broader applicability of the proposed
approach. Therefore, we invite the research commu-
nity to further explore the approach to unlock the
potential for elucidating the phenotypic traits of paint-
ing cracks.

In addition to the field of scientific examination of
artworks, the findings in this paper have far-reaching
significance. The approach employed in this study
introduces a new paradigm for crack analysis, empha-
sizing the examination of islands formed within cracks.
By shifting the focus from the crack network itself, this
approach offers a departure from conventional crack
analyses and will open up new avenues for under-
standing the physical characteristics and underlying
mechanisms of cracks.

Note

1. For clarity, hereafter, symbols with an underscore are
used to denote 3D geometric properties, while
symbols without an underscore indicate 2D properties.
For example, A represents a 3D object’s surface area,
while A represents a 2D object’s area.
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