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Abstract—Intracortical brain-machine interfaces have shown
promise for restoring function to people with paralysis, but their
translation to portable and implantable devices is hindered by
their high power consumption. Recent devices have drastically
reduced power consumption compared to standard experimental
brain-machine interfaces, but still require wired or wireless connec-
tions to computing hardware for feature extraction and inference.
Here, we introduce a Neural Recording And Decoding (NeuRAD)
application specific integrated circuit (ASIC) in 180 nm CMOS that
can extract neural spiking features and predict two-dimensional
behaviors in real-time. To reduce amplifier and feature extraction
power consumption, the NeuRAD has a hardware accelerator for
extracting spiking band power (SBP) from intracortical spiking
signals and includes an M0 processor with a fixed-point Matrix
Acceleration Unit (MAU) for efficient and flexible decoding. We
validated device functionality by recording SBP from a nonhuman
primate implanted with a Utah microelectrode array and pre-
dicting the one- and two-dimensional finger movements the mon-
key was attempting to execute in closed-loop using a steady-state
Kalman filter (SSKF). Using the NeuRAD’s real-time predictions,
the monkey achieved 100% success rate and 0.82 s mean target
acquisition time to control one-dimensional finger movements using
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just 581 µW. To predict two-dimensional finger movements, the
NeuRAD consumed 588 µW to enable the monkey to achieve a
96% success rate and 2.4 s mean acquisition time. By employing
SBP, ASIC brain-machine interfaces can close the gap to enable
fully implantable therapies for people with paralysis.

Index Terms—Application specific integrated circuit (ASIC),
brain machine interface (BMI), low-power, neural prosthesis,
spiking band power (SBP).

I. INTRODUCTION

B
RAIN-MACHINE interfaces (BMIs) have shown promise

towards restoring motor function to people with spinal cord

injury [1], [2]. Extracting intention information from brain activ-

ity can provide more accurate and natural control of hands and

fingers than conventional methods, such as muscle-controlled

prostheses and exoskeletons. An increasing number of studies

have demonstrated that BMIs have these advantages through

experiments with both non-human primates (NHP) [3]–[5] and

humans [6], [7].

However, high power consumption has been a major obstacle

for out-of-laboratory usage of BMI-based neural prostheses. To

decode brain activity accurately, conventional approaches ex-

tracted features from high-bandwidth neural signals, inevitably

consuming high amounts of electrical power [4], [8]. Such

power-hungry systems are difficult to use as portable devices,

since they require wired connections to computing racks to

process the neural activity, nor as implantable devices, due to

the high-power (i.e. hundreds of mW) that could result in unsafe

tissue temperatures or large battery sizes [9], [10].

To resolve the power consumption issue, many research

groups have developed application-specific integrated circuits

(ASICs) to perform the necessary computations in place of

general-purpose computers [11]–[13]. Several groups have pre-

sented spike-sorting accelerators [14]–[20] to compress the

data for wireless transmission or devices that perform local

decoding [21], [22]. Although promising for data acquisition

purposes, these devices are often untested in vitro or in vivo, so

their usability in a brain-machine interface environment is yet

undetermined. Of those devices that have been tested in vitro or

in vivo [23]–[31], all would still require wireless transmission

of the neural data to external processing hardware to provide the

full functionality of a brain-machine interface.
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The wireless link may potentially add substantial power con-

sumption and may also limit the usable environment of the brain-

machine interface to locations where wireless communication

to external hardware is achievable. These works demonstrate

that application-specific hardware can cut power, but none have

addressed all of the end-to-end issues of implantable brain-

machine interfaces. Many research groups have also taken a

signal processing approach towards reducing the power con-

sumption of BMIs. Electroencephalography (EEG) and electro-

corticography (ECoG) has been shown to well-represent hand

postures [32], [33]. However, discrete classification of hand

postures restricts the natural capabilities of BMIs, and long inte-

gration times can make usage feel sluggish and unnatural. Other

groups have attempted continuous decoding from ECoG signals,

but the efficacy of these signals in complex, multi-dimensional,

non-oscillatory tasks is yet unknown [34], [35]. Intracortical

neural features have shown specificity to individual neurons that

enable high performance decoding for a variety of applications.

Sorting spikes isolates the activity of individual neurons and

creates strong discrete and continuous decoding [36]–[40]. This

has motivated a number of the ASICs mentioned above, but the

spike sorting procedure is inherently of the most computation-

ally expensive neural features to extract. As such, the field has

primarily shifted to counts of thresholded neural spikes in time

bins to estimate the underlying firing rate of recorded multiu-

nit neurons [41]. This technique has maintained the decoding

performance of sorted units [8], [42] while eliminating much of

the post-processing for real-time tasks, even functioning offline

with lower bandwidths to reduce power consumption [43].

To address these issues in an alternative way, we and others

have proposed the use of spiking band power (SBP), or the

averaged intracortical signal in the 300–1,000 Hz frequency

band. Previously we found that SBP lowers power due to its

low-bandwidth, can detect firing rates of low amplitude units

that would be invisible to threshold detectors, is more single

unit specific than threshold detectors, and outperforms thresh-

old detectors in prediction performance due to its specificity

[44]–[46]. We recently demonstrated the simplicity of SBP

on an embedded platform, requiring 33.6 mW to extract SBP

from 96 channels [47]. Unfortunately, despite the cut in power

consumption relative to high-bandwidth systems, the require-

ment to recharge a medical-grade 200 mAh battery daily is

still a hindrance to implantability, even as a research tool. Fur-

thermore, with processing consuming over 50% of that power

consumption, it remains unknown how hardware acceleration

can reduce processing consumption via clock speed reductions

and offloading computations.

In this paper, we propose a Neural Recording And Decoding

ASIC (NeuRAD) that better fits the requirements of an im-

plantable device. By adopting SBP and developing optimized

feature extraction hardware for it, the NeuRAD alone required

581 µW to extract 93 channels of SBP, predict finger move-

ments in real-time with NHP, and interface with commercial

bioelectrical Analog Front End (AFE) chips (Intan RHD series,

Intan Technologies LLC., Los Angeles, CA, USA). By including

both feature extraction and kinematics prediction on a single

chip, the data rate could be reduced by a factor of 4,800× or

Fig. 1. Usage Scenario. This work enables low-power intracortical signal
processing and decoding for embedded neural prostheses.

Fig. 2. Architecture of the NeuRAD. *The device can work with auxiliary
prosthetic hardware, which is not included in this work.

2,325× for one- or two-dimensional predictions, respectively,

compared to the transmission of raw neural signals. This device

is a fully integrated brain-machine interface relevant to a wide

variety of neuroprosthetic applications, such as for the control

of functional electrical stimulation [1], [2], computers [48], or

exoskeletons [49] (Fig. 1). To our knowledge, this is the first

ASIC capable of extracting SBP and decoding it into finger

movements in real-time, validated in vivo with NHP, with a

power consumption low enough for relevance to implantable

brain-machine interfaces.

II. METHOD

A. Hardware Design

1) Architecture of Neural Processor: Fig. 2 presents the top-

level architecture of the NeuRAD, supporting on-chip feature

extraction and general processing. It has a fixed-point Signal

Band Power Unit (SBPU), a fixed-point Matrix Acceleration

Unit (MAU), and an ARM Cortex M0, interconnected by the

AMBA High-performance Bus (AHB) lite. Using the neural

signal data sampled from the AFE chips, Intan RHD2132 s in this

case, the SBPU calculates the SBP in customized signal bands
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Fig. 3. Signal Band Power Unit. The SBPU samples neural signals from off-chip biomedical amplifiers and computes the SBP feature. The maximum number
of channels is constrained to 93 by the number of accumulators in the SBPU.

Fig. 4. Processing pipeline of SBPU. The binning period n is configurable. The channels which are sampled are configurable, so the processing time for the data
from each AFE can vary.

on-the-fly, which can be referenced to a Common Average Ref-

erence (CAR), if enabled [50]. The MAU executes fixed-point

matrix calculations to further process the SBP from the SBPU,

which will be described in the following sections. The Cortex M0

core orchestrates all the blocks via the AHB lite. Interfaces such

as Serial Peripheral Interface (SPI), Controller Area Network

(CAN), and a proprietary serial interface are controlled through

the bus. SPI is used to interface with the AFE chips and any

other auxiliary chips, such as an Atmel AT32UC3C2256 C

(Microchip Technology Inc., Chandler, AZ, USA) included in

our testing environment. CAN can be used to transmit relevant

neural information or post-processed data to external devices,

such as functional electrical stimulation systems or exoskele-

tons. Through the proprietary serial interface, the processor is

fully programmable in C using an ARM compiler.

We implemented multiple voltage and clock domains to min-

imize power consumption. The voltage level of the system was

set to 0.625 V except for chip’s interfaces at 3.3 V, and clock

generators at 1.21 V. There are four clock domains for the various

components, and their frequencies can be tuned separately to

meet required usage conditions. The SBPU uses a neural clock

and a sampling clock, and their frequencies decide the sampling

rate of the AFEs. The system clock controls the processing time

of the MAU and M0 core. The CAN clock determines the speed

of the CAN interface, which needs to be tuned according to the

baudrate of the CAN bus for valid communication. Addition-

ally, clock gating is extensively used across the chip to further

eliminate unnecessary power consumption.

2) Scalable Signal Band Power Unit: SBPU is a dedicated

hardware block to extract SBP features for reducing power

consumption. In our case, we configured the SBPU to extract

SBP from the 300–1,000 Hz signals provided by the AFE chips at

2 kSps. Channel usage and precision can be fully customized, en-

abling power saving opportunities that can be fit to the user with-

out losing accuracy when post-processing the neural signals.

Fig. 3 shows the functional block diagram of the SBPU while

Fig. 4 presents its processing pipeline. The SBPU samples the

filtered and absolute-valued neural signal (a feature included

in the RHD2132) of the enabled channels (maximum 93) from

the AFE chips via SPI. This is executed in a single sampling

time step of 0.5 ms, corresponding to a 2 kSps sampling rate.

If enabled for some subset of channels, the data of the con-

figured channels is used to simultaneously compute a common

average reference. While the sampled neural signals are tem-

porarily stored in the 3-lane FIFO (93× 16 bits), the data of the

configured channels for CAR are accumulated and multiplied

by 1/(number of referenced channels) for each sampling time

step, yielding the CAR value for that time step. CAR has been

shown to reduce noise by >30% compared to standard types of

electrical referencing [50]. The sampled neural signals are then

digitally referenced to the calculated common average, if en-

abled, and accumulated per-channel to meet the binning period

(100 samples for the closed-loop experiments conducted here).

Finally, when the desired quantity of samples per accumulation

period has been reached, the accumulated values per channel are

multiplied by 1/(number of samples), resulting in SBP.
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Fig. 5. Matrix Acceleration Unit. The MAU performs matrix-vector multipli-
cation and accumulation for efficient decoder processing.

The list of channels which are sampled by the SBPU and the

list of channels used to calculate the CAR are independently and

fully configurable to reduce power consumption. Not all chan-

nels are informative and a particular channel may not remain

representative of task-relevant information from day-to-day.

Therefore, by disabling uninformative channels used for record-

ing or for computation of the common average reference, the

chip can reduce unnecessary data transfer and the corresponding

operations, slowing down operation frequency and cutting power

consumption.

The SBPU also supports scalable fixed-point precision to

reduce power consumption. Every arithmetic operation and

sampled datum from the AFEs is followed by a configurable

shifting operation, which allows the precision to be optimized

based on the incoming data. When scaled precision is used, only

the MSBs are used for computation while the LSBs are zeroed,

thereby reducing switching activity and saving electrical power.

The SBPU reduces power consumption by 44× compared to

the baseline M0 core system without the SBPU, as illustrated

in Fig. 11. The SBPU consumes only 0.34 mW to extract SBP

from 2 kSps neural signals of 93 channels with CAR calculated

across all 93 channels, while the consumption of the M0 core

to perform the same calculations was 15.08 mW. In terms of

memory usage, 186 bytes are persistently used and overwritten

to store SBP measurements (93 channels with two bytes per

channel) and two bytes are persistently used and overwritten to

store the current sample’s common average reference, if enabled.

3) Matrix Acceleration Unit for Neural Signal Processing:

The MAU (Fig. 5) enables efficient processing of 16-bit fixed-

point matrix-vector multiplication, which is required to imple-

ment decoding algorithms with high quantities of matrix opera-

tions. Although the steady-state Kalman filter implemented here

(see subsequent Methods sections) is computationally efficient

and would not take substantial advantage of a matrix accelerator,

the MAU allows for more complex decoding algorithms (such

as [51]) to be implemented while keeping computation latency

and power consumption lower than if using the M0 core.

The multiplication-accumulation (MAC) unit has a vector

operand, which is stored in a FIFO, to calculate the matrix-vector

product as the matrix data is streamed in. During the matrix-

vector multiplication, the vector data is reused via a circular

path. If the product vector is needed for the next operation,

it can be automatically routed back into the FIFO through a

result-reuse path, making it immediately ready for the subse-

quent calculation. This eliminates any processor intervention to

queue intermediate calculations and improves the efficiency of

the computation.

The MAU includes configurable precision in the MAC unit

to reduce excessive signal toggling, like the SBPU. As different

intermediate data may not necessarily share the same dynamic

range, being able to configure the fractional bit widths for each

recording channel allows maximum precision in 16-bit while

maintaining the power savings of fixed-point.

The MAU reduces power consumption by 1.6× and 2.6× for

1D and 2D inference, respectively, compared to the baseline M0

core system without the accelerator, as illustrated in Fig. 11. The

MAU consumes only 15.6 µW and 17.4 µW to predict 1D and

2D kinematics, respectively, from 93 channels of SBP. A single

M0 core consumes 25.1 µW and 45.4 µW for the same 1D or

2D predictions, respectively.

B. Operating Modes

The device was tested in two operating regimes: a training

mode and an inference mode. In both modes, the NeuRAD

used the SBPU, MAU, and M0 in the same fashion to execute

all computations. In inference mode, the NeuRAD exported

only the predicted positions and velocities. In training mode,

the NeuRAD additionally exported the 93 channels of neural

data to support decoders requiring second-stage training, such

as the ReFIT Kalman filter (see subsequent sections). Exporting

the additional data requires higher M0 clock speeds, increasing

power consumption. Training modes were always used when

testing with the NHP to minimize code swapping, just requiring

updates to the decoder’s parameters. We attempted to minimize

downtime of the task to keep monkey motivation high. Function-

ality and consumption during inference modes were benchtop

tested offline.

C. System Evaluation

We validated the chip’s proper functionality through online

neural decoding experiments, as detailed below. All procedures

were approved by the University of Michigan Institutional An-

imal Care and Use Committee.

1) Behavioral Task: We trained one adult male rhesus

macaque, Monkey N, to perform movements of the index and

middle-ring-small fingers (MRS) as a group to hit fingertip

position targets in a virtual hand simulator, as illustrated in Fig. 6

and as described previously [46], [52]–[54]. Briefly, the NHP

subject sat in a shielded chamber with its left arm flexed 90

degrees and resting on a table. The monkey’s palm was lightly

constrained facing inward, with the fingers available to move

a manipulandum. A flex sensor (FS-L-0073-103-ST, Spectra

Symbol) was fastened to each door of the manipulandum (one

for each finger group), measuring its position. Position data

were recorded by a computer running xPC Target (Mathworks,

Natick, MA, USA). A screen in front of the subject displayed

a virtual model of a monkey hand (MusculoSkeletal Modeling
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Fig. 6. In-vivo experiment setup. The monkey moved his fingers together or his
index finger individually separated from the middle-ring-small (MRS) fingers as
a group to hit virtual targets presented on a computer screen. The virtual fingers
were controlled by the monkey’s physical finger movements or the NeuRAD’s
decode of the brain activity.

Software [55]), which was controlled by either physical position

data (sensor value) or the predicted position data from the

NeuRAD.

At the start of each trial, a spherical target appeared in the path

of the virtual finger(s) of interest, and the monkey was required

to move the virtual finger(s) to hit the target(s) and hold for a set

period (500–750 ms, depending on the stage of training). Targets

were presented in a center-out pattern. Initially, a target is shown

in the neutral position, half-way between flexed and extended.

Once the monkey successfully hit and held the target, the next

one was generated randomly from a few set positions in the finger

movement path. After the target(s) was successfully acquired or

the trial timed out, the neutral target was again presented until

success. The monkey was motivated with apple juice for reward

following success.

2) Electrophysiology: We implanted Monkey N with two

64-channel Utah arrays (Blackrock Microsystems LLC, Salt

Lake City, UT, USA) in primary motor cortex using the arcuate

sulcus as an anatomic landmark for hand area (see [52] for more

details). Only 93 of the 128 total channels were used in this

study. During some experiments, broadband neural signal data

was recorded at 30 kSps using a Cerebus neural signal proces-

sor (Blackrock Microsystems) for later offline analysis. Dur-

ing online NeuRAD testing, the CerePort breakout (Blackrock

Microsystems) was connected directly to the pedestal mounted

to the monkey’s skull and to the connectors included on the

NeuRAD’s testing board (see Fig. 8). Fig. 7 shows the array

implants.

Since the Cerebus is the state-of-the-art recording system for

brain-machine interfaces in people, we wanted to compare its

recording quality to that of the RHD2132 s. On two consecutive

days, we recorded from one of Monkey N’s electrodes that

showed the highest amplitude spike according to the Cerebus,

with the Cerebus recording on the first day and the RHD2132 s

recording on the second day. The Cerebus recorded the raw

signal at 30 kSps with a 0.3 to 7,500 Hz bandwidth, and the

Fig. 7. Surgical photographs of Monkey N’s microelectrode array implants.
Asterisked arrays were used in this study. A means anterior, L means lateral, CS
means central sulcus.

Fig. 8. Experimental testing board. The NeuRAD ASIC was tested on the
printed circuit board. The neural signal simulator (Blackrock Microsystems)
was connected directly to the AFE chips, Intan RHD2132 s, for offline system
evaluation. The simulator’s reference was connected to the board’s ground plane.
For closed-loop testing, the simulator was replaced with the connections to
Monkey N’s implants. The AFE chips were connected to the NeuRAD for data
extraction, and the extracted SBP and predicted kinematics were transferred
to the Atmel microcontroller for transmission to the xPC Target computer.
The NeuRAD is also capable of exporting predicted kinematics via the CAN
transceiver, which was not investigated in this study.

RHD2132 s were configured to record at 10 kSps with a 0.1 to

5,000 Hz bandwidth. The DSP filters in the RHD2132 s were also

configured to high-pass filter above 0.19 Hz. Then, we used a

2nd-order Butterworth high-pass filter to filter each signal above

250 Hz, with an additional 2nd-order Butterworth low-pass filter

to filter the Cerebus signal below 5,000 Hz so that the pass-bands

matched. Then, we set a −6.4×RMS threshold to extract just

the largest amplitude unit’s spikes and calculated each system’s

signal-to-noise ratio. Signal-to-noise ratio was calculated as the

ratio between the magnitude of the mean spike waveform’s

negative peak and the root-mean-square of the recording.

3) System Incorporation: To test the NeuRAD in applica-

tion, we switched control of the virtual hand from the manipulan-

dum to the predictions made by the NeuRAD (Fig. 6). First, the

monkey performed at least 350 trials using the manipulandum

to control the virtual hand while the finger positions and the

SBP activity were synchronously recorded in real-time. The SBP

activity was calculated using the NeuRAD, which transmitted

one averaged 16-bit value for each of the 93 channels to the

attached Atmel AT32UC3C2256 C via the SPI interface at the

completion of each integration bin. The Atmel processor then
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TABLE I
COMPUTATIONAL COMPLEXITY

*s: number of states, n: number of channels, v: number of velocity states

exported the measurements to the xPC Target computer for

real-time synchronization over a 230,400 Bd UART connection.

A MAX3222E (Maxim Integrated, San Jose, CA, USA) was

powered by the NeuRAD’s testing board to convert the UART

signal to RS232 for compatibility with the xPC Target computer.

Then, we trained a steady-state position/velocity Kalman

filter (SSKF; described in the subsequent section) from the

manipulandum control trials using Matlab R2019b (Mathworks,

Natick, MA, USA) on an external computer. These parameters

were programmed to the NeuRAD [46], [52]. Finally, we used

the predictions calculated by the NeuRAD using the SSKF to

control the virtual hand in real-time. The NeuRAD computed the

16-bit fixed-point values for each degree-of-freedom’s predicted

positions and velocities using the SBP values computed by the

SBPU in real-time. It then transmitted these predictions to the

Atmel processor. The Atmel processor converted the fixed-point

values to floating-point (for compatibility with the existing xPC

Target software) then exported the floating-point predictions

alongside the SBP measurements to the xPC Target computer

via RS232.

4) Feature Extraction and Decoding: We extracted SBP by

first configuring the RHD2132 s to filter incoming signals from

300–1,000 Hz (with an additional 220.6 Hz DSP high-pass filter)

and absolute value the samples. Then, the SBPU coordinated

sampling of the data from each RHD2132 at 2,000 samples per

second per channel, and averaged the samples in 50 ms bins.

The vector of 93 SBP measurements for each 50 ms bin was

transferred to the decoding pipeline.

For decoding, we implemented the SSKF because it offers

lower computational complexity and fewer stored parameters in

comparison to the standard Kalman Filter (Table I). Importantly,

SSKF shows comparable accuracy to the standard Kalman filter

as the Kalman gain converges to a steady-state value within a

few seconds of use [56]. Thus, calculation of the Kalman gain,

which involves a computationally expensive matrix inversion,

can be pre-computed during training and does not have to be

executed in real-time.

Training was performed in Matlab R2019b with 10-fold cross

validation at a variety of open-loop lags from zero to five,

inclusive. The Kalman filter parameters were computed via least

squares regression as described previously [52]. The steady-state

Kalman gain was computed by making five seconds worth of

predictions [56]. The parameters of the lag which produced

the highest cross-validated velocity correlation were used for

online control. No manual lag was added during online control,

meaning once a prediction was computed, it was immediately

transmitted to be displayed as feedback.

We additionally optimized parameter storage and operations

by pre-computing matrix products. The original SSKF decoder

computes updates via the following equation 1:

x̂t = Ax̂t−1 +K(yt − CAx̂t−1) (1)

where x is the state, i.e. position, velocity, etc.; A is the state

transition matrix; y is the observation vector, i.e. SBP; K is

the Kalman gain; C is the observation matrix; and subscript

t is the time step. The number of MAC operations and the

storage of parameters can be reduced by grouping and computing

parameter products as in equation 2:

x̂t = (I −KC)Ax̂t−1 +Kyt (2)

In our case, training of the Kalman filter parameters assumed

a three dimensional state space [p, v, 1] for 1D and a five

dimensional state space [pI , pMRS , vI , vMRS , 1] for 2D with

a 93-dimensional observational space. The optimizations from

the steady-state Kalman filter, as detailed above, enable us to

compress the position-velocity Kalman filter we have previously

published [52] to a velocity Kalman filter without change in

functionality, with the initial position set to 0.5 (halfway between

full flexion and full extension). In our implementation, the

1 s state estimate was replaced with a 1, eliminating excess

calculations. This further reduces the required stored parameters

to 1× 3 for the (I −KC)A matrix and 1× 93 for the Kalman

gain for 1D or 2× 3 and 2× 93, respectively, for 2D. The

complexity is additionally reduced by integrating velocity to

predict position, which overall results in 2, 883× lower compu-

tational complexity and 31× fewer stored parameters. In terms

of storage, the velocity SSKF stores only the previous time step’s

kinematic predictions (four bytes for a 1D, eight bytes for 2D

Kalman filter) and trained parameters (188 bytes for 1D, 380

bytes for 2D Kalman filter).

In our circuit implementation, we used the MAU to conserve

power during computation of the predicted state. First, at the

conclusion of a 50 ms accumulation bin, the M0 streamed the

measured SBP values yt to the MAU followed by the trained K

matrix. This yields a kinematic state prediction from the neural

state. The result of this operation is fed to the MAU’s result-reuse

path and is summed with the (I −KC)Ax̂t−1 computed during

the previous time step. This yields the current time step’s velocity

prediction, which is added to the previous time step’s position

and displayed on the screen. Then, the state prediction is sent to

the result-reuse path to compute the (I −KC)Ax̂t product for

the subsequent prediction. Finally, the MAU awaits the next set

of SBP measurements.

For optimal SSKF performance, we performed a second

stage of training for the Kalman filter parameters known

as recalibrated feedback intention-training (ReFIT) in Matlab

R2019b [3]. To adapt the ReFIT method to control multiple one-

dimensional fingers, we rotated the net velocities of the fingers in

two-dimensional space towards the net two-dimensional target

(where applicable), and back-calculated each finger’s individual

velocity prior to retraining, as was done previously [54]. While

the ReFIT Kalman filter requires an additional training step,

the retrained parameters fit into the same SSKF framework dis-

cussed in the prior paragraph. All closed-loop results presented

in this manuscript represent control using the ReFIT Kalman

filter with the NeuRAD operating in training mode.
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Fig. 9. Die photo of the NeuRAD (left). Summary of the chip (right).

Fig. 10. Measured shmoo plot. The dashed line shows the minimum NCLK
frequency for sampling neural signal data from 93 channels at 2 kSps.

To compare performance to the state-of-the-art finger decod-

ing rig, we performed the same task with the monkey using

the ReFIT Kalman filter and SBP but with the high-powered

brain-machine interface rig. For these control experiments, the

Cerebus acquired the neural activity, which was processed into

SBP by the xPC Target computer. Then, the xPC Target computer

predicted the finger movements from the SBP to control the

virtual hand, as described previously [46], [52]–[54]. Control ex-

periments were performed within one month of the correspond-

ing NeuRAD test (i.e. one-dimensional or two-dimensional) to

minimize the effects of signal quality over time.

III. RESULTS

A. Chip Analysis

The NeuRAD was implemented in TSMC 180 nm CMOS

technology as summarized in Fig. 9. The area of the ASIC was

9 mm2. Core voltage was reduced to 0.625 V to achieve low

power consumption while meeting required constraints for in-

vivo testing, such as the neural signal sampling rate. Fig. 10

shows the shmoo plot of the chip’s overall function, overlaying

the required constraints for sampling neural activity. I/O voltage

was set to 3.3 V for communication with the other components

such as the Intan RHD2132 s.

Fig. 9 shows a photograph of the die for the ASIC. The

chip included customized low-leakage SRAM. Other functional

Fig. 11. Power consumption comparison for the two hardware accelerators.
(Left) SBP feature extraction with CAR from 93 channels at 2 kSps. M0 controls
the three SPI blocks and calculates referenced SBP with a 31.5 MHz clock at
1.35 V, while the SBPU requires a 2.9 MHz clock at 0.63 V. (Right) Continuous
SSKF inference from 93 channels of SBP data every 50 ms. M0 calculates SSKF
updates with a 240 kHz clock at 0.63 V or a 484 kHz clock at 0.63 V for 1D or
2D, respectively. MAU requires a 67.8 kHz clock at 0.63 V.

components such as SBPU, MAU, M0, and interface blocks

were organized via automatic placement and routing (APR).

Additional interfaces, including GPIOs, a CAN controller, and

an MBUS interface [57] were included to assist with debugging

and communication with other equipment as needed.

To estimate the power savings resulting from using hardware

accelerators over using a general purpose microprocessor, we

measured the power consumption of the system when the actions

of the two accelerators, the SBPU and the MAU, were instead

performed by the M0 core. Fig. 11 compares these measurements

to the levels of power consumption when using each accelerator.

The SBPU reduces power consumption by 44×, cutting the

15.08 mW required by the M0 core down to 0.34 mW to extract

93 channels of SBP features at 2 kSps with CAR of the entire 93

channels. To accomplish this functionality of the SBPU, the M0

operating frequency and voltage had to be boosted to 31.5 MHz

and 1.36 V. For decoding, the MAU reduces power consumption

by 1.6× for 1D (from 25.1 µW to 15.6 µW) and 2.6× for 2D

(from 45.4 µW to 17.4 µW). To execute these computations, the

M0 clock frequency had to be boosted to 240 kHz for 1D and to

484 kHz for 2D.

The NeuRAD substantially cut data rate by integrating feature

extraction and inference in a single device, thereby reducing

throughput and the corresponding transmission power. The col-

lected signals from AFEs were processed by the SBPU into

SBP via a mean-absolute value computation every 50 ms, then

decoded into kinematic predictions of finger movements. Trans-

mitting mean-absolute value computations across integration

bins instead of raw recordings results in a data rate reduction

corresponding to the number of samples accumulated. In this

specific case of a 50 ms integration period, data reduction was

100× showing that the data rate can be reduced substantially

during the decoder training period. Furthermore, in application,

when only the predicted positions require transmission and not

the SBP measurements, the data rate is reduced to a factor of

the number of degrees-of-freedom. In the case of two-degrees

of freedom, which is popular in the literature for controlling

computer cursors, the data rate reduction is 2, 325× for our

50 ms update period. The data rate reduction saves 174 µW
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TABLE II
POWER MEASUREMENT OF NEURAD IN VARIOUS CONFIGURATIONS

Gray rows were used for in vivo testing, with results displayed in Fig. 13

*67.8 kHz is the slowest system clock can be achieved by the internal clock generator.

Fig. 12. Power break down of the NeuRAD in the demonstrated one-
dimensional prediction configuration. 93 sampled channels at 2 KSps with a
100-sample SBP bin size, resulting in a 50 ms inference period. Total power of
the NeuRAD is 581 µW in this configuration.

compared to the case of transferring sampled neural signal

in-order.

Table II compares power consumption of the NeuRAD across

various configurations. As a base configuration demonstrating

1°-of-freedom (DoF) kinematics inference, the NeuRAD was

configured to sample 93 channels, calculate mean absolute-

value in 100 sample bins with a 2.9 MHz clock frequency

(neural clock) using SBPU, and compute KF updates with a

67.8 kHz clock frequency (system clock) using MAU. To do so,

the NeuRAD consumed 581 µW. In a heavily optimized case,

where we reduce the channel quantity to the 8 most-informative

channels with a corresponding reduction in the sampling clock

frequency to 1.18 MHz, the NeuRAD consumed only 200 µW.

When adding CAR to this base configuration, the power con-

sumption increased by just 5 µW, where this 0.86 % increase is

easily justified by the improved SNR. When lowering the mean

absolute-value and KF update periods from 50 ms to 30 ms

(which may improve performance [54]), an additional 15 µW

of power is consumed on top of the base configuration. 2-DoF

kinematics inference consumes an additional 7 µW over the

1-DoF baseline configuration.

The power consumed by various device components in the

demonstration scenario with the NHP using the NeuRAD to

control one-dimensional finger movements (see subsequent sec-

tion) is broken down in Fig. 12. The power for each component

was measured by switching off the other active components and

observing the change in power consumption. The total power

consumption of the NeuRAD was 581 µW. SBPU consumed

59% (342 µW) of the total, collecting and processing SBP with

a 2.9 MHz clock frequency. The MAU’s power consumption

was 2.6% (15.6 µW) of the total, processing a 1D SSKF with a

67.8 KHz clock frequency. Raising the voltage level and driving

external I/O signals at 3.3 V took 30% (174µW) of the total. The

remaining chip components, including the two clock generators

for the system and neural clocks, consumed the remaining 8.4%

(49 µW).

A comparison between the NeuRAD in the in-vivo testing

configuration and other state-of-the-art systems is shown in Ta-

ble III. The NeuRAD system consumes only 12.58 mW (12 mW

from three Intan RHD2132 s) for the complete BMI chain

from recording to decoding. Our former work [47], which only

extracts SBP features from three Intan RHD2132 s, consumes

3× more power than the NeuRAD system. Comparing just

processor consumption, the NeuRAD consumes 37× less power

by avoiding an off-the-shelf microcontroller (MCU). The other

neural recording devices [10], [58]–[61] consume 51 mW or

90.6 mW each for recording the neural signal wirelessly, which

are 4× and 7× higher than the NeuRAD, respectively. In [21],

[31], the mixed signal computing array chips consumed 0.4 µW

and 4 mW, respectively, though the power overhead of the MCU,

AFE, and TX/RX interfaces was not included and the devices

were not tested in-vivo.

B. Closed-Loop Decoding

Offline testing of the NeuRAD enabled validation of the

components with rapid timelines. However, there are a number

of real-time variables that can impact the NeuRAD’s capabilities

of accurately predicting a user’s intentions online, such as re-

duced SNRs due to higher electrode impedance compared to the

amplifier input impedance, the presence of visual feedback, and

the impact of the prediction latency on the BMI feedback loop.

We validated functionality of the NeuRAD by directly recording

from Monkey N’s Utah arrays using the RHD2132 bioamplifiers

and predicting his intended finger movements in real-time using

1D and 2D SSKFs.

Fig. 13 illustrates 1D and 2D closed-loop prediction capa-

bilities. In a one-dimensional task, Monkey N could use the

NeuRAD to acquire targets with a 100% success rate with a mean

acquisition time of 0.82 s, which was comparable to the best

performance we previously presented using our high-powered
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TABLE III
COMPARISION WITH PREVIOUS WORK

*Off-chip feature extraction used.

**Power of MCU, AFE, TX/RX not included.

Fig. 13. In vivo closed-loop decoding experiment results with the NeuRAD. The top row represents one-dimensional control, and the bottom row represents
two-dimensional control. Asterisks indicate significant difference by a two-tailed two-sample t-test, p < 0.001. (a) The traces of the virtual finger positions as
predicted by NeuRAD. (b) The success rates of target acquisition for each control system. (c) Target acquisition times for each control system. Each dot represents
one trial.

brain-machine interface rig (99% success rate with a 1.3 s mean

acquisition time) [46]. Cross-validated training correlation for

velocity during the manipulandum control trials was 0.49. In the

control experiment collected four days later, Monkey N acquired

100% of the targets with a mean acquisition time of 0.55 s using

the high-power brain-machine interface, which exceeds but is

comparable to the NeuRAD’s performance.

In a two-dimensional task, Monkey N could acquire 96% of

the targets with a 2.4 s mean acquisition time, which is lower

but comparable to the best performance we previously presented

(99% success rate with a 1.01 s mean acquisition time) [54].

Cross-validated training correlation for velocity during the ma-

nipulandum control trials was 0.29. In the control experiment

collected 20 days prior, Monkey N could acquire 100% of the

targets with a 0.96 s mean acquisition time. Supplementary

Video 1 illustrates Monkey N’s usage of the NeuRAD to control

the 1D and 2D movements of the virtual hand in real-time

with comparison to the control sessions using the high-powered

brain-machine interface rig. Fig. 15 shows the quality of spiking

activity the day following the two-dimensional decoding exper-

iment. Although the performance is adequate for a closed-loop

BMI, we hypothesized that the reduction in performance was

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 18,2023 at 15:34:45 UTC from IEEE Xplore.  Restrictions apply. 



404 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, JUNE 2022

Fig. 14. Comparison between the recording qualities of the RHD2132 and the Cerebus. (a) Example recordings from each system acquired on two consecutive
days. (b) Comparison between spike waveform signal-to-noise ratios (SNRs).

Fig. 15. Snapshot of Monkey N’s array the day after the two-dimensional
decoding experiment. Each square shows time-aligned threshold crossings of a
-4.5 RMS voltage level for each electrode sampled at 30 kSps by the Cerebus.

either due to lower fixed-point precision when computing SSKF

predictions or worse signal-to-noise ratios when recording with

the RHD2132 s instead of the Cerebus. First, we took the same

SBP measurements recorded during Monkey N’s usage of the

1D closed-loop ReFIT Kalman filter and predicted behavior with

a double-precision SSKF (not in closed-loop, but using SBP

measured during closed-loop control). The correlation between

the two sets of predictions was 0.9997, suggesting precision did

not substantially impact performance. To validate the impact

of recording quality, we recorded a high-signal-to-noise ratio

unit from Monkey N’s array at a high sampling rate using both

recording systems. Fig. 14 shows example snippets from each

recording as well as the sorted units overlaid as recorded by each

system. We found that the RHD2132 s recorded the unit with a

8.09 signal-to-noise ratio, approximately 8.6% smaller than the

8.85 signal-to-noise ratio with which the Cerebus recorded.

To achieve this level of performance, the NeuRAD consumed

just 581 µW for 1-DoF inference task and 588 µW for 2-DoF

task with the bioamplifiers consuming a total 12 mW.

IV. CONCLUSION

Here, we have presented NeuRAD, a neural recording and

decoding ASIC capable of real-time feature extraction and two

degree-of-freedom predictions. Utilizing the Intan RHD2132 s

for power-efficient digital conversion of neural activity enabled

low-power data acquisition and processing within the Neu-

RAD. The optimized SBPU hardware accelerator off-loaded the

power-hungry SBP computations from the M0 processing core,

leaving the M0 and the MAU to make intention predictions with

the flexibility to choose the decoding algorithm. The NeuRAD

also demonstrates that low-power, closed-loop, intracortical

brain-machine interfaces are feasible in just 13 mW with off-

the-shelf amplifiers, drastically reducing the power consumption

compared to our previously published device and others while

simultaneously incorporating additional functionality (on-chip

feature extraction and decoding).

The power consumption of the Intan RHD2132 bioamplifiers

was optimized by taking advantage of the 300–1,000 Hz spiking

band power as a neural feature. Such a low-bandwidth setting

brought the consumption of the amplifiers to 4 mW per chip,

or 12 mW total. While this is substantially low-power for 32

low-noise, high-gain neural amplifiers, the RHD2132 s support

flexible filter cutoffs, sampling rates, and other features that

make them the primary dominating component of the BMI

compared to the processing hardware. The AFE could be made

even more efficient by customizing the amplifiers to the spiking

band, as we have shown previously [62], [63], or by developing

the device with a more advanced process node. Additionally, by

integrating the AFE into the NeuRAD, an additional 30% power

savings could be achieved in the digital domain by eliminating

the integrated level-shifter the NeuRAD requires to communi-

cate with the Intan RHD2132 s. We previously presented such

an advantage [63] in a device which integrates an AFE and

an SBP calculation unit in a single chip to save power for

a free-floating mote application. In the device, pulse-interval

modulated SBP was calculated by accumulating pulses, which

were generated from the neural signal, and it was transmitted

accordingly [64]. The scheme reduces power consumption for a

free-floating mote application at the cost of measurement quality

of the signal and off-chip demodulation overhead. Despite these

potential power-saving customizations, using an off-the-shelf

AFE provided its own set of advantages. Computation in the

analog domain can have reliability and scalability issues, so we
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could avoid a potentially iterative process and focus on a rapid

digital circuit prototype by using the established RHD2132 s.

Moreover, with devices like those we previously presented [62],

[63], SBP output needs to be demodulated for inference

calculation. Additionally, with the devices, implementing a com-

mon average referencing scheme would be challenging, some-

thing relatively trivial with raw samples in the digital domain, as

was done in the NeuRAD. Lastly, using a validated, commercial

AFE as the interface to the electrodes, device safety validation

for human use might be accelerated, as the RHD2132 has already

been used with humans [65].

Although the Kalman filter has been established in the litera-

ture as a high-performance control algorithm for brain-machine

interfaces, many groups are investigating the use of more com-

plex prediction algorithms to achieve higher levels of perfor-

mance and longer decoder stability. For example, the shallow-

layer, feed-forward neural network we recently presented that

may improve performance over standard linear algorithms [51]

might also be supported by this architecture. Unfortunately, in

cases of greater computational complexity, the SRAM capac-

ity incorporated in the NeuRAD quickly becomes a limiting

factor in the number of learned parameters that can be stored.

However, the architecture demonstrated here could support

additional SRAM units for increased algorithmic complexity,

replacement of the M0 core with a more powerful processing

unit, or replacement of the M0 core with a customized integrated

processing unit, such as a neural network accelerator [66], [67].

We have previously shown that brain-machine interface power

consumption is heavily dominated by the AFE [46], indicating

the possibility of incorporating even more complex processing

hardware than what we have implemented here without drasti-

cally increasing power consumption.

In terms of closed-loop feedback control, the NeuRAD

demonstrated it could predict one- and two-dimensional hand

movements in real-time with high accuracy and reasonable

acquisition times compared to our high-powered BMI rig. We

hypothesize that the performance losses are direct results of

worse SNRs when using the RHD2132 s, which have amplifiers

with substantially lower input impedances compared to the

Cerebus (13 MΩ vs. >1 TΩ, respectively). From the perspective

of functional restoration, however, the capability to control

multiple dimensions simultaneously opens a realm of tasks

that cannot be accomplished with one-dimensional control. In

addition to the restoration of multiple-degree-of-freedom finger

and arm function through functional electrical stimulation [68],

controlling just two-dimensions enables the usage of computers,

which have become central to modern livelihood. Several studies

have investigated the use of high-powered BMIs to control com-

puter cursors for typing [48], [69], [70] and tablet control [71].

The work presented here demonstrates that the same functional

restoration can be achieved with a low-power BMI in a package

suitable for portability and implantability.

The investigation of brain-machine interfaces in people with

paralysis has grown drastically over the past two decades, with

landmark accomplishments in the use of prostheses, develop-

ment of novel techniques, and improvements in performance [1],

[2], [6], [72]–[74]. These impressive outcomes from laboratory

research reinforce the necessity of portable, clinically-viable

brain-machine interfaces to translate these accomplishments

to use in everyday life. The NeuRAD presented here and the

work of others [10], [28], [58], [60] demonstrate that BMI

technology has advanced far enough to be simultaneously op-

timized for power consumption, portability, implantability, and

performance, in one complete package. However, only one such

device has translated to use with humans [60], with a few more

in the development stages at various venture interests [28].

There remain many improvements to BMIs that can be validated

without incorporation into a monolothic device and instead

can take advantage of existing off-the-shelf components. It still

remains unclear what characteristics of these devices people with

paralysis will find most important, motivating a need to safely

and rapidly test modular solutions, which can be accomplished

with off-the-shelf devices.
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