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Computational methods of problem solving are increasingly emphasized by physics programs across the
country, and some have adopted efforts to incorporate computational methods across the curriculum. However,
there are no robust tools currently available that were designed to evaluate the effectiveness of these initiatives.
This paper presents an exploratory factor analysis of data acquired using a survey developed to evaluate a
department-wide computational initiative. The factor analysis supports previously published work establishing
the validity and reliability of the survey, particularly a survey section which aims to gauge students’ general
attitudes toward using computational methods. The exploratory factor analysis conducted suggests a two-factor
model, but with significant cross-loading between these factors for three of the survey items. This paper reports
and interprets the results of the factor analysis and suggests improvements to the survey based on rephrasing the
three cross-loaded items.
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I. INTRODUCTION

A. Integration of Computational Methods in Physics

The physics community has considered myriad ways to in-
corporate computers in undergraduate education over many
decades [1], [2], [3], [4]. In recent years, the discussion has
focused on teaching students to use computers as physicists
do: for modeling complex problems, analyzing large data
sets, producing static and animated visualizations, etc. [5—
8]. Inclusion of computational thinking and methods across
the curriculum has been promoted by the American Associa-
tion of Physics Teachers (AAPT) [9], and by an APS-AAPT
joint task force [10]. Most efforts to incorporate computa-
tion across the curriculum are in their early stages, with a few
exceptions, e.g., Oregon State University [11] and Lawrence
University [12].

Unfortunately, efforts to develop tools to evaluate these
curricular efforts have lagged behind the efforts to teach com-
putation. As of this writing, neither the PICUP project site
[13] nor PhysPort [14] have suitable evaluation instruments
available, but some efforts in this area are beginning [15].
Qualitative research on computational physics has shown that
some faculty favor attitudinal measures as one means of as-
sessing efforts to incorporate computational physics [16]. We
have developed an instrument that evaluates some aspects of
such a program, and reported on efforts to establish its relia-
bility and validity [17]. This paper extends that work. A sec-
ond paper, describing changes in students’ self-efficacy with
respect to computational methods, has also been submitted to
PERC 2024. [18].

Section II of this paper will provide additional contextual
information about our efforts and educational setting. Section
IIT will outline our methodology for conducting the survey
and conducting the exploratory factor analysis. Section IV
will provide the results of these analyses, and Sections V and
VI will present discussion and conclusions, including poten-
tial efforts to improve the survey based on the results obtained
thus far.

II. CONTEXT

A. Institutional context

IU Indianapolis (formerly IUPUI) is an urban, public uni-
versity, its Carnegie Classification is currently “R2: High Re-
search Activity.” [19]. Approximately 25,000 students are
enrolled, of whom roughly 30% are people of color. The un-
dergraduate population is approximately 17,000, and about
30% of that group are first generation college students. The
undergraduate population is heavily weighted (> 80%) to-
wards in-state students, with a majority coming from within a
50 mile radius. The Physics department currently has 13 full-
time faculty and offers B.S., M.S., and Ph.D. degrees. The
undergraduate curriculum follows a traditional model, includ-
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ing a two-course introductory sequence, two upper-level labs,
six required advanced courses, and a research capstone.

B. Prior work

The physics department at Indiana University Indianapolis
began working towards a department-wide adoption of com-
putational methods in 2018. Our overall goal is to “make
computation normal,” that is, students who complete the pro-
gram should recognize computational approaches as a “nor-
mal” way to solve problems, and feel well prepared to do
so. To this end, we have set a target that 25% of all work in
the undergraduate physics curriculum be computational in na-
ture. With no well-established tool available to evaluate this
project, we developed the survey instrument discussed here
in-house. We have previously reported details of the develop-
ment process, and of efforts to establish the validity and reli-
ability of the instrument [17]. For the purposes of this paper,
it is necessary to note that the survey items were developed in
a three step process:

1. Initial items were developed by the project team.

2. The items were subsequently refined in department
meetings, with a goal of attaining consensus support
from the faculty.

3. Some items were adjusted, and several more added, af-
ter consultation with outside experts from the PICUP
collaboration.

This survey was first implemented at the conclusion of the fall
semester of 2018, at the conclusion of step 2. It was given at
the end of each semester for four semesters before step 3. The
updated survey was then given at the end of each semester be-
ginning in the fall of 2020 and continuing through the present.
Data from the spring semester of 2024 are not included in the
analysis presented here due to time constraints.

The survey has two parts, both focused on the affective do-
main. Part 1 is intended to determine the degree to which
students’ general attitudes about computational methods are
similar to those of experts. It is composed of 9 Likert-scale
items such as “Computational, experimental, and analytical
(“pencil and paper math”) methods are all necessary in the
field of physics.” Part 2 is intended to measure students’
self-efficacy with respect to specific computational tools and
methods, such as matrix operations and the use of LaTeX in
scientific communication. This paper focuses on the first part
of the survey - measuring student attitudes. In particular, we
wish to focus on the project goal that our students gradu-
ate with “expert-like” attitudes regarding the use of compu-
tational methods and a degree of confidence with doing so.
To this end, we structure our effort around two research ques-
tions.



C. Present goals

This paper seeks to expand on our prior work. In addition
to including a more complete data set, we focus on answering
the following research questions:

RQ1 How many reliable and interpretable factors are present
in the survey?

RQ2 Does the interpretation of each factor present match the
initial goals in the development of the survey instru-
ment?

It is important to note that the factor analysis conducted
in this paper focuses on just Part 1 of the survey (e.g., the
Likert-scale attitude items), with the initial goals of Part 1
being to (a) measure student attitudes regarding computation
in physics in general, and (b) measure students’ overall self-
efficacy with respect to using computational methods. While
some of Part 1 is intended to measure student self-efficacy, it
is important to note that it is distinguished from Part 2 of the
survey (also measures self-efficacy) by the broader scope of
the survey items. Part 1 is intended to measure student self-
efficacy with regards to computational methods as a whole,
while Part 2 measures self-efficacy for a narrower set of com-
putational skills/methods.

III. METHODS

A. Survey method and participants

At the conclusion of each fall and spring semester, a link to
the survey is sent to all students completing physics majors’
courses by one of the authors (MD) who is not a member of
the physics department. Students are informed that the survey
is designed to be completed each semester, so they should do
so even if they have completed it previously. We intention-
ally structured the survey this way in order to provide infor-
mation about students’ development over time. Students are
not offered any incentives, either monetary or academic to
complete the survey. Students are informed that their partici-
pation is optional and can be withdrawn at any time. Students
are also informed that neither the fact of their participation
nor specifics of their responses will be available to their pro-
fessors at any time. We acknowledge that this mechanism
can produce self-selection bias, and consider this in drawing
conclusions from our results.

The introductory portion of the survey requests students’
names and student identification numbers, and provides
check boxes for students to indicate which physics courses
they completed that semester. MD removes all identifying
characteristics and assigns a research ID number that cannot
be connected to individuals by any member of the physics
department.

The next 9 items ask students the Likert-scale “attitudinal”
prompts described above. The latter 22 items are intended
to measure students self-efficacy with respect to a variety of
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computational skills and platforms. Results from those have
been submitted in a separate manuscript [18]. For brevity in
later discussions, Table I provides brief identifiers for each of
the survey prompts analyzed in the factor analysis.

Only surveys completed from the fall semester of 2020
through the fall semester of 2023 are used here. Data from the
first 4 semesters of the survey are excluded since several of
the questions had changed slightly. We also exclude surveys
that are only partially complete. Occasionally, a student will
complete (or partially complete) the survey more than once
in a single semester. In such cases, we retain only the last
complete survey from that student in that semester. Finally, a
Mahalanobis distance test was completed to check for outliers
using recommended guidelines of significance (p < 0.001),
and these outliers were discarded as well [20]. Overall, these
requirements lead to dropping 24 surveys, including seven for
incomplete responses, four for repeat surveys, and 13 outliers.
The final data set analyzed for this work included N = 356
surveys, with Nijgo = 180, Nogg = 139, N3p9 = 23, and
Nyoo = 14. These levels roughly correspond to students in
their first year (100-level) second year (200-level), etc. Stu-
dents do occasionally take courses out of order, which we
note is a source of noise in our data.

TABLE 1. The survey items analyzed with convenient identifiers.
Students are asked to provide their agreement with each item on
a Likert-scale which is then converted to a numeric 1-5 scale for
analysis.

Identifier Survey Item

L1 Computational, experimental, and analytical
(“pencil and paper math”) methods are all nec-
essary in the field of physics.

L2 Using computational methods helps me under-
stand physics topics.

L3 I can sometimes use computational methods to
understand problems that I am unable to do ana-
lytically.

L4 I can judge whether a given problem is most eas-
ily/better solved by computational vs. analytical
means.

L5 Computational methods can be useful in con-
junction with analytical methods for understand-
ing physical phenomena.

L6 Using analytical and experimental methods helps
me understand physics topics.

L7 I’m confident in the results of codes I develop.

LS8 I feel well-prepared for using computational
methods in graduate school or a future job.

L9 I have used computational methods outside my

classes, such as in a research project, internship,
or job.




B. Data analysis plan

To examine the psychometric properties of the nine survey
items, we focused on assessing two sources: internal structure
validity and internal consistency which we operationalize us-
ing the Standards set by a joint committee of education and
psychology research organizations [21]. Internal structure va-
lidity, or the degree to which the relationship between items
and components align with the latent construct that informs
survey interpretation, was assessed using an exploratory fac-
tor analysis (EFA). Internal consistency, a form of reliability
evidence that demonstrates the extent of agreement between
items, was assessed using Cronbach’s alpha coefficient.

IV. RESULTS
A. Preliminary analyses

As a preliminary assessment, we evaluated whether the
nine items were appropriate for factor analysis based on the
following criterion: (1) linearity between items, (2) factora-
bility and multicollinearity, (3) normality, and (4) the absence
of outliers.

Linearity was determined by examining scatterplots for all
possible relationships between survey items. Upon examina-
tion, all item relationships appear to exhibit linear relation-
ships. It is important to note that the size of the linear rela-
tionship is also important, as the relationships must be large
enough to indicate factorability, but not so sizable as to be
redundant. Factorability was determined by computing inter-
item correlations, with results ranging from |0.16] to |0.63|,
with a majority (69%) showing at least a moderate correlation
(> |0.32|) based on recommended ranges [20]. Further, none
of the correlations fell above the recommended upper limit of
|0.70|, indicating a lack of multicollinearity [22].

Univariate normality of the data was screened by examin-
ing the skewness and kurtosis values of each item. The skew-
ness for all items fell below the recommended value for nor-
mality of |2.0| [23]. The kurtosis values for most items fell
below this threshold as well, except for one item which had
a kurtosis of 2.26, though this value still falls well below the
liberal kurtosis guideline of |7.0|, and thus was determined to
not be of concern [22].

B. Psychometric Analyses

Before conducting the EFA, we used Horn’s Parallel Anal-
ysis in STATA (version 17) to estimate an initial number
of factors because mechanical rules of thumb (i.e., examin-
ing the scree plot or eigenvalues) alone do not always pro-
duce reliable factor structures [24]. The results of the par-
allel analysis suggest that two factors are present. The EFA
was then conducted using a Principle Component Analysis
(PCA), where a direct oblimin rotation was set to zero, the
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TABLE II. Results of the principle component analysis with factor
loading and communalities (h?) for survey items. Bold text indicates
the sole or larger loading. Factor loadings displayed are based on the
rotated structure matrix. The percent variance explained per factor
(F1 and Fb) is also included.

Survey Item Fi Fy h?
L1 0.83 0.71
L2 0.54 0.65 0.51
L3 0.55 0.60 0.47
L4 0.69 0.40 0.49
L5 0.84 0.71
L6 0.53 0.60 0.46
L7 0.84 0.42 0.71
L8 0.82 0.67
L9 0.71 0.52
% of variance explained 44.47 13.82

number of factors constrained was set to two, and all coeffi-
cients less than the recommended 0.32 moderate correlation
were suppressed.

Additionally, a Bartlett’s test of sphericity and Kaiser-
Meyer-Olkin (KMO) measure were conducted. Both are sta-
tistical tests meant to justify an EFA by determining whether
measured variables are sufficiently intercorrelated, as a sta-
tistically significant Bartlett’s test combined with a KMO
value above the recommended value of 0.7 indicate appropri-
ate factorability [25]. The Bartlett’s test results of y?(36) =
1054.29, p < 0.001, and the KMO measure result of KMO
= 0.86 indicate sufficient intercorrelations to justify proceed-
ing with a factor analysis [25]. The component structure of
the PCA explained 58.29% of the variance, with the first fac-
tor containing four items, and the second containing five. The
solution with all item communalities, loadings, and variances
explained by components can be seen in Table II.

The internal consistency analysis results in a value of Cron-
bach’s o = 0.77 for both factors one and two. These values
are generally taken to indicate a relatively high degree of con-
sistency among items, especially when triangulated with the
EFA results and conceptual knowledge. [26].

V. DISCUSSION

The observed factor loadings in Table II indicate all nine
items are strong enough to be useful. A commonly used cat-
egorization is that items above 0.55 be considered “good,”,
above 0.63 is “very good,” and above 0.71 “excellent” [20].

While a two-factor structure was suggested and retained,
there is cross-loading between factors for five of the nine
items. This indicates that those questions do not clearly fall
into a single category. In two cases, (L4, and L7) one of the
loadings is substantially larger than the other. In three (L2,



L3, and L6) the loadings are nearly equal. Rather than dis-
carding these items, as is sometimes done, it is our plan to
refine the survey in an attempt to reduce cross-loading for a
more cohesive survey instrument.

To refine the survey, it is first necessary to understand
the two-factor structure and the source of the cross-loading.
What follows is a hypothesis that can be tested by further psy-
chometric development and analysis.

We begin by categorizing the items according to the factor
loading we observe, then tentatively identify the structures
that underlie the groups. Based on this, we can make changes
to refine the structure and test those changes in subsequent
runs of the survey. Our initial categorization is as follows:

F1 L8 and L9 are exclusively associated with factor 1, and
L4 and L7, despite some cross-loading, can be clearly
identified with this factor.

F2 L1 and L5 are exclusively associated with factor 2.

M (Mixed) L2, L3, and L6 have substantial cross-loading.
The EFA places them more strongly with factor 2, but
clearly improvement is needed.

We observe that all four items in F1 begin with the word
“I” and indicate significant confidence in a specific ability,
e.g., L4, which is “I can judge whether a problem is most
easily/better solved by computational vs. analytical means.”
As such, this factor appears to serve our goal of measuring
students’ overall comfort with computational methods.

We also note that items L1 and L5 make no reference to
students’ judgements of their own abilities. Rather, they are
strictly focused on students’ sense of what is generally true
in physics as a discipline. Item L1 is a clear example: “Com-
putational, experimental, and analytical (“pencil and paper
math”) methods are all necessary in the field of physics.” This
identification of F2 corresponds to our goal of determining
whether students have adopted “expert-like” opinions regard-
ing the value of computational methods.

For the present two-factor structure, we tentatively have
named the first factor, F1, “Self-Efficacy in Computational
Physics.” Similarly, we consider the second factor, F2, as
“Attitudes towards Computational Physics.”

We have labeled Items L2, L3, and L6 as M (mixed) due to
the substantial cross-loading observed. At first glance, these
items appear to be a better fit to F1, as they refer to the stu-
dents’ ability. However, we note that these items are softer
in tone. They do not begin with “I”, nor do they express
complete confidence. Instead, they contain qualifiers, such
as “sometimes” as in L3, which reads “I can sometimes use
computational methods to understand problems that I am un-
able to do analytically.” Similarly, items L2 and L6 both use
the term “helps” as in “Using computational methods helps
me understand physics topics.” This is clearly a weaker state-
ment than saying, e.g., “I can use computational methods to
understand physics topics.”

Based on this understanding of the factor analysis, we plan
to rephrase the three mixed items. Our goal is a robust instru-
ment with two clear factors; F1 “self-efficacy” and F2 “expert

160

attitudes,” as described above. At present, F2 has only two
strong items, so we will revise currently cross-loaded ques-
tions as below, with the intent to shift them clearly into F2 by
removing references to the students’ own abilities.

* L2 (revised): Physicists can use computational meth-
ods to better understand physics topics.

* L3 (revised): Computational methods can be used to
understand problems that cannot be solved analytically.

» L6 (revised): Physicists can use experimental and com-
putational methods in a complementary way to under-
stand complex problems.

VI. CONCLUSIONS

This paper sought to address the following two research
questions:

RQ1 How many reliable and interpretable factors are present
in the survey?

RQ2 Does the interpretation of each factor present match the
initial goals in the development of the survey instru-
ment?

Preliminary tests showed linear relationships among the
nine survey items analyzed in this paper. An estimate of the
number of factors in the survey using Horn’s Parallel Analy-
sis suggested two factors. An exploratory factor analysis was
conducted using a Principle Component Analysis, and the re-
sults allow us to answer RQ1 by identifying two reliable and
interpretable factors present in the survey instrument.

The two factors, F1 and F2, present were tentatively iden-
tified as “Self-Efficacy in Computational Physics” and “At-
titudes towards Computational Physics,” respectively. This
identification of the factors provides a positive answer to
RQ2. The factors are well aligned with the goals of the in-
strument as an evaluation tool for our departmental initiative.

However, there is significant cross-loading between the
factors for three survey items, weakening the identification
of the two factors. Based on this, we plan to re-structure the
survey by refining three of the cross-loaded items so they fit
better with F2. Subsequent runs of the survey will determine
whether this effort is successful.

We recognize that our instrument needs refining, but be-
lieve this can be accomplished easily. As such, we believe
it can provide a useful step towards creating a robust set of
computational physics assessments that can be used by the
community.
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