
Ergod. Th. & Dynam. Sys., (2024), 44, 2454–2532 © The Author(s), 2024. Published by Cambridge

University Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use,

distribution and reproduction, provided the original article is properly cited.

doi:10.1017/etds.2023.114

2454

Eliminating Thurston obstructions and

controlling dynamics on curves

MARIO BONK†, MIKHAIL HLUSHCHANKA ‡§ and ANNINA ISELI ¶‖

† Department of Mathematics, University of California, Los Angeles, CA 90095, USA
(e-mail: mbonk@math.ucla.edu)

‡ Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, 1090 GE
Amsterdam, The Netherlands

§ Mathematisch Instituut, Universiteit Utrecht, 3508 TA Utrecht, The Netherlands
(e-mail: mikhail.hlushchanka@gmail.com)

¶ Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
‖ Institute of Mathematics, École Polytechnique Fédérale de Lausanne,

1015 Lausanne, Switzerland
(e-mail: annina.iseli@epfl.ch)

(Received 1 February 2022 and accepted in revised form 7 November 2023)

Abstract. Every Thurston map f : S2 → S2 on a 2-sphere S2 induces a pull-back

operation on Jordan curves α ⊂ S2 \ Pf , where Pf is the postcritical set of f. Here the

isotopy class [f −1(α)] (relative to Pf ) only depends on the isotopy class [α]. We study

this operation for Thurston maps with four postcritical points. In this case, a Thurston

obstruction for the map f can be seen as a fixed point of the pull-back operation. We

show that if a Thurston map f with a hyperbolic orbifold and four postcritical points has a

Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying 2-sphere and

construct a new Thurston map f̂ for which this obstruction is eliminated. We prove that

no other obstruction arises and so f̂ is realized by a rational map. In particular, this allows

for the combinatorial construction of a large class of rational Thurston maps with four

postcritical points. We also study the dynamics of the pull-back operation under iteration.

We exhibit a subclass of our rational Thurston maps with four postcritical points for which

we can give positive answer to the global curve attractor problem.
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1. Introduction
In this paper, we consider Thurston maps and the dynamics of the induced pull-back

operation on Jordan curves on the underlying 2-sphere. By definition, a Thurston map
is a branched covering map f : S2 → S2 on a topological 2-sphere S2 such that f is

not a homeomorphism and every critical point of f (points where f is not a local

homeomorphism) has a finite orbit under iteration of f. These maps are named after

William Thurston who introduced them in his quest for a better understanding of the

dynamics of postcritically-finite rational maps on the Riemann sphere. We refer to [BM17,

Ch. 2] for general background on Thurston maps and related concepts.
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For a branched covering map f : S2 → S2, we denote by Cf the set of critical points of

f and by f n the nth iterate of f for n ∈ N. Then the postcritical set of f is defined as

Pf =
⋃

n∈N

{f n(c) : c ∈ Cf }.

For a Thurston map f, this set has finite cardinality 2 ≤ #Pf < ∞ (for the first inequality,

see [BM17, Corollary 2.13]).

A Thurston map f often admits a description in purely combinatorial-topological terms.

In this context, it is an interesting question whether f can be realized (in a suitable sense)

by a rational map with the same combinatorics. Roughly speaking, this means that f is

conjugate to a rational map ‘up to isotopy’ (see §3 for the precise definition).

It is not hard to see that each Thurston map with two or three postcritical points is

realized. The situation is much more complicated for Thurston maps f with #Pf ≥ 4.

William Thurston found a necessary and sufficient condition when a Thurston map can be

realized by a rational map [DH93]. Namely, if f has an associated hyperbolic orbifold (this

is always true apart from some well-understood exceptional maps), then f is realized if and

only if f has no (Thurston) obstruction. Such an obstruction is given by a finite collection

of disjoint Jordan curves in S2 \ Pf (up to isotopy) with certain invariance properties (see

§3.2 for more discussion).

The ‘if’ part of this statement gives a positive criterion for f to be realized, but it is

very hard to apply in practice, because, at least in principle, it involves the verification

of infinitely many conditions for the map f. For this reason, in each individual case, a

successful verification for a map, or a class of maps, is difficult and usually constitutes an

interesting result in its own right.

We mention two results in this direction. The first one is the ‘arcs intersecting

obstructions’ theorem by Pilgrim and Tan Lei [PL98, Theorem 3.2] that gives control on

the position of an obstruction and has many applications in holomorphic dynamics (see, for

instance, [DMRS19, PL98]). The other one is the ‘mating criterion’ by Tan Lei, Rees, and

Shishikura that addresses the question when two postcritically-finite quadratic polynomials

can be topologically glued together to form a rational map (see [Lei92, Ree92, Shi00]).

The investigation of obstructions of a Thurston map f : S2 → S2 is closely related to

the study of the pull-back operation on Jordan curves. It is easy to show that if α ⊂ S2 \ Pf

is a Jordan curve, then the isotopy class [f −1(α)] (relative to Pf ) only depends on the

isotopy class [α] (see Lemma 3.4). Intuitively, the number of postcritical points of a

Thurston map can be seen as a measure of its combinatorial complexity. In this paper,

we focus on the simplest non-trivial case, namely Thurston maps f with #Pf = 4. In this

case, the pull-back operation gives rise to a well-defined map, the slope map, on these

isotopy classes [α] (we will discuss this in more detail below). The search for obstructions

of f amounts to understanding the fixed points of the slope map.

There exist various natural constructions that allow one to combine or modify given

(rational) Thurston maps to obtain a new dynamical system. The most studied construc-

tions are mating (see [Lei92, SL00]), tuning (see [Ree92]), and capture (see [Hea88,

Lei97]). In this paper, we study the operation of blowing up arcs, originally introduced

by Pilgrim and Tan Lei in [PL98]. This operation can be applied to an arbitrary Thurston
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map f and results in a new Thurston map f̂ that is of higher degree, but combinatorially

closely related to the original map f. In particular, f and f̂ have the same set of postcritical

points and the same dynamics on them. Nevertheless, the dynamical behavior of Jordan

curves under the pull-back operation for the original map f and the new map f̂ may differ

drastically.

We show that if a Thurston map f : S2 → S2 with #Pf = 4 has an obstruction α, then

one can naturally modify f by blowing up certain arcs to produce a new Thurston map f̂

for which this obstruction α is eliminated. The main result of this paper is the fact that

then, no new obstructions arise for f̂ and so it is realized by a rational map.

THEOREM 1.1. Let f : S2 → S2 be a Thurston map with #Pf = 4 and a hyperbolic
orbifold. Suppose that f has an obstruction represented by a Jordan curve α ⊂ S2 \ Pf ,
and E 	= ∅ is a finite set of arcs in (S2, f −1(Pf )) that satisfy the α-restricted blow-up
conditions.

Let f̂ be a Thurston map obtained from f by blowing up arcs in E (with some
multiplicities) so that λf̂ (α) < 1. Then f̂ is realized by a rational map.

The technical verbiage and the notation in this formulation will be explained in

subsequent sections (see in particular equation (3.3) for the definition of the ‘eigenvalue’

λf̂ (α) and Definition 6.5 for α-restricted blow-up conditions).

Recently, Dylan Thurston provided a positive characterization when a Thurston map is

realized, at least in the case when each critical point eventually lands in a critical cycle

under iteration. He proved that such a Thurston map f is realized by a rational map if

and only if there is an ‘elastic spine’ (that is, a planar embedded graph in S2 \ Pf with

a suitable metric on it) that gets ‘looser’ under backwards iteration (see [Thu16, Thu20]

for more details). In concrete cases, especially for Thurston maps that should be realized

by rational maps with Julia sets homeomorphic to the Sierpiński carpet, the application of

Dylan Thurston’s criterion is not so straightforward. Moreover, his criterion is only valid

for Thurston maps with periodic critical points. In contrast, for some maps for which Dylan

Thurston’s criterion is not applicable or hard to apply, Theorem 1.1 can be used to verify

that the maps are realized. In particular, many maps obtained by blowing up Lattès maps

(see below) are of this type.

1.1. Blowing up Lattès maps. We will now discuss a special case of Theorem 1.1 in

detail to give the reader some intuition for the geometric ideas behind this statement and

its proof.

Let P be a pillow obtained from two copies of the unit square [0, 1]2 ⊂ R2 ∼= C glued

together along their boundaries. We consider the two copies of [0, 1]2 in P as the front

and back side of P and call them the tiles of level 0 or simply 0-tiles. We denote by

A := (0, 0) ∈ P the lower left corner of P (see the right part of Figure 1). The pillow P is

a topological 2-sphere. Actually, if we consider P as an abstract polyhedral surface, then P

carries a conformal structure making P conformally equivalent to the Riemann sphere Ĉ.

See §2.4 for more discussion.

We now fix n ∈ N with n ≥ 2. We subdivide each of the two 0-tiles of P into n2 small

squares of sidelength 1/n, called the 1-tiles. We color these 1-tiles in a checkerboard
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FIGURE 1. The (4 × 4)-Lattès map.

FIGURE 2. Gluing in a flap.

fashion black and white so that the 1-tile in the front 0-tile that contains the vertex A
on its boundary is colored white (see the left part of Figure 1). We map this white 1-tile to

the front 0-tile of the right-hand pillow by an orientation-preserving Euclidean similarity

that fixes the vertex A. This similarity scales distances by the factor n. We can uniquely

extend the similarity by a successive Schwarz reflection process to the whole pillow P to

obtain a continuous map Ln : P → P. Then on each 1-tile S, the map Ln is a Euclidean

similarity that sends S to the front or back 0-tile of P depending on whether S is white or

black. We callLn the (n × n)-Lattès map, because under a suitable conformal equivalence

P ∼= Ĉ, the map Ln is conjugate to a rational map obtained from n-multiplication of a

Weierstrass ℘-function. See Figure 1 for an illustration of the map L4. Here, the marked

points on the left pillow P (the domain of the map) correspond to the preimage points

L−1
4 (A). Note that there is exactly one preimage of A in the interior of the back side of the

pillow.

It is easy to see that the (n × n)-Lattès map Ln : P → P is a Thurston map with four

postcritical points, namely, the four corners of the pillow P. The map Ln is realized by a

rational map, because it is even conjugate to such a map.

We now modify the map Ln by gluing in vertical or horizontal flaps to P. This is a

special case of the more general construction of blowing up arcs mentioned above. We

will describe this in detail in §4, but will illustrate the procedure in Figure 2, where we

show how to glue in one horizontal flap.

We cut the pillow P open along a horizontal side e of one of the 1-tiles. Note that

in this process, e is ‘doubled’ into two arcs e′ and e′′ with common endpoints. We then

take two disjoint copies of the Euclidean square [0, 1/n]2 and identify them along three

corresponding sides to obtain a flap F. It has two ‘free’ sides on its boundary. We glue each

free side to one of the arcs e′ and e′′ of the cut in the obvious way.
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FIGURE 3. An example of a map L̂ obtained from L4 by gluing in flaps.

In general, one can repeat this construction and glue several flaps at the location given

by the arc e. We assume that this has been done simultaneously for nh ≥ 0 flaps along

horizontal edges and nv ≥ 0 flaps along vertical edges. By this procedure, we obtain a

‘flapped’ pillow P̂, which is still a topological 2-sphere (see the left part of Figure 3). By

construction, it is tiled by 2n2 + 2(nh + nv) squares of sidelength 1/n, which we consider

as the 1-tiles of P̂. The checkerboard coloring of the base surface P extends in a unique

way to the new surface P̂. The original (n × n)-Lattès map Ln : P → P can naturally be

‘extended’ to a continuous map L̂ : P̂ → P so that each 1-tile S of P̂ is mapped to the front

or back 0-tile of P (depending on the color of S) by a Euclidean similarity scaling distances

by the factor n. See Figure 3 for an illustration of a map L̂ obtained from the Lattès map

L4 by gluing in flaps at a vertical and a horizontal edge. Similarly as in Figure 1, on the

left, we marked the preimages of A under L̂.

To obtain a Thurston map f : P → P from this construction, we need to choose a

homeomorphism φ : P̂ → P. Roughly speaking, φ is a homeomorphism that identifies P̂

with P and fixes each corner of the pillow. The precise choice of φ is somewhat technical

and so we refer to §4.2 for the details. Then, one easily observes that the postcritical set

Pf consists of the four corners of the pillow P. The map f is uniquely determined up to

Thurston equivalence (see Definition 3.2) independently of the choice of φ under suitable

restrictions. We refer to f as a Thurston map obtained from the (n × n)-Lattès map by
gluing nh horizontal and nv vertical flaps to P.

Now the following statement is true. As we will explain, it can be seen as a special case

of our main result.

THEOREM 1.2. Let n ∈ N with n ≥ 2 and f : P → P be a Thurston map obtained from the
(n × n)-Lattès map Ln by gluing nh ≥ 0 horizontal and nv ≥ 0 vertical flaps to P, where
nh + nv > 0. Then the map f has a hyperbolic orbifold. It has an obstruction if and only
if nh = 0 or nv = 0. In particular, if nh > 0 and nv > 0, then f is realized by a rational
map.

If nh = nv = 0, then no flaps were glued to P and the map f coincides with the original

(n × n)-Lattès map Ln (strictly speaking, only if we choose the homeomorphism φ used

in the construction above to be the identity on P, as we may). Then f = Ln has a parabolic

orbifold. Therefore, Thurston’s criterion as formulated in §3.2 does not apply.
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If nh = 0 or nv = 0, but nh + nv > 0 as in Theorem 1.2, then it is immediate to see

that f has an obstruction (see §5.1) and therefore f cannot be realized by a rational map.

So the interesting part of Theorem 1.2 is the claim that if nh > 0 and nv > 0, then f has

no obstruction.

Even though Theorem 1.2 follows from our more general statement formulated in

Theorem 1.1, we will give a complete proof. We will argue by contradiction and assume

that a map f with nh > 0 and nv > 0 has an obstruction. In principle, there are infinitely

many candidates represented by essential isotopy classes of Jordan curves α ⊂ P \ Pf .

These isotopy classes in turn are distinguished by different slopes in Q̂ = Q ∪ {∞} (as

will be explained in §2.5). For such an isotopy class represented by α to be an obstruction,

it has to be f -invariant in the sense that f −1(α) should contain a component α̃ isotopic to

α relative to Pf . It seems to be a very intricate problem to find all slopes in Q̂ that give an

invariant isotopy class for f. Since we have been able to decide this question only for very

simple maps f, we proceed in a more indirect manner.

We assume that the Jordan curve α ⊂ P \ Pf is f -invariant and gives an obstruction.

We then investigate the mapping degrees of f on components of f −1(α) and consider

intersection numbers of some relevant curves together with a careful counting argument.

We heavily use the fact that the horizontal and vertical Jordan curves (see (2.4)) are

f -invariant. Ultimately, we arrive at a contradiction. See §5 for the details of this argument.

Our idea to use intersection numbers (as in Lemma 5.5) to control possible locations of

obstructions and dynamics on curves is not new (see, for example, [PL98, Theorem 3.2],

[CPL16, §8], and [Par18]). However, the previously available results do not provide sharp

enough estimates applicable in our situation.

One can think of Theorem 1.2 in the following way. Suppose that instead of directly

passing from the Lattès map Ln to a map, let us now call it f̂ , obtained by gluing nh > 0

horizontal and nv > 0 vertical flaps to P, we first create an intermediate map f obtained

by gluing nh > 0 horizontal, but no vertical flaps. Then f has a hyperbolic orbifold and

an obstruction given by a ‘horizontal’ Jordan curve α. In the passage from f to f̂ , we

kill this obstruction, because we glue additional vertical flaps that serve as obstacles and

increase the mapping degree on some pullbacks of α. Theorem 1.1 then says that no other

obstructions arise for f̂ . Therefore, Theorem 1.1 generalizes Theorem 1.2 if we interpret it

in the way just described. The proof of Theorem 1.1 is based on the ideas that we use to

establish Theorem 1.2, but substantial refinements and extensions are required.

1.2. The global curve attractor problem. The mapping properties of Jordan curves play

an important role in Thurston’s characterization of rational maps. The original proof of this

statement associates with a given Thurston map f : S2 → S2 with a hyperbolic orbifold

a certain Teichmüller space Tf and an analytic map σf : Tf → Tf , called Thurston’s
pullback map. One can show that the map f is realized by a rational map if and only if σf

has a fixed point [DH93]. This reduction to a fixed point problem in a Teichmüller space

has also been successfully applied by Thurston in other contexts such as uniformization

problems and the theory of 3-manifolds (there is a rich literature on the subject; see, for

example, [FLP12, Hub16, Thu88, Thu98, Ota01]).
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In recent years, the pullback map σf and its dynamical properties have been subject

to deeper investigations (see, for example, [KPS16, Lod13, Pil12, Sel12]). In particular,

Selinger showed in [Sel12] that σf extends to the Weil–Petersson boundary of Tf . The

behavior of σf on this boundary is closely related to the behavior of Jordan curves under

pull-back by f. This in turn leads to the following difficult open question in holomorphic

dynamics, called the global curve attractor problem (see [Lod13, §9]).

Conjecture. Let f : S2 → S2 be a Thurston map with a hyperbolic orbifold that is realized

by a rational map. Then there exists a finite set A(f ) of Jordan curves in S2 \ Pf such that

for every Jordan curve γ ⊂ S2 \ Pf , all pullbacks γ̃ of γ under f n are contained in A(f )

up to isotopy relative to Pf for all sufficiently large n ∈ N.

A set of Jordan curves A(f ), as in this conjecture, is called a global curve attractor
of f. We will give a solution of this problem for maps as in Theorem 1.2 with n = 2 and

nh, nv ≥ 1. Unfortunately, our methods only apply for n = 2 and not for n ≥ 3.

THEOREM 1.3. Let f : P → P be a Thurston map obtained from the (2 × 2)-Lattès map
by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to the pillow P. Then f has a global
curve attractor A(f ).

One can show that the Julia set of a rational map, as provided by Theorem 1.2, is either

a Sierpiński carpet or the whole Riemann sphere depending on whether the map has

periodic critical points or not (see Proposition 9.1). Accordingly, Theorem 1.3 provides

the first examples of maps with Sierpiński carpet Julia set for which an answer to the

global curve attractor problem is known. In fact, we obtain such maps with arbitrarily large

degrees.

Recently, Belk et al proved the existence of a finite global curve attractor for all

postcritically finite polynomials [BLMW22]. The conjecture is also known to be true

for all critically fixed rational maps (that is, rational maps for which each critical point

is fixed) and some nearly Euclidean Thurston maps (that is, Thurston maps with exactly

four postcritical points and only simple critical points); see [FKK+17, Hlu19, Lod13].

In [KL19], Kelsey and Lodge verified the conjecture for all quadratic non-Lattès maps

with four postcritical points. However, for general postcritcally finite rational maps, the

conjecture remains wide open.

Since the maps we consider have four postcritical points, it is convenient to reformulate

the global curve attractor problem by introducing the slope map (it is closely related to the

Thurston pull-back map σf on the Weil–Petersson boundary of Tf ). To define it in the

special case relevant for us, we consider the marked pillow (P, V ), where V is the set

consisting of the four corners of P, and assume that f : P → P is a Thurston map with

Pf = V . Up to topological conjugacy, every Thurston map with four postcritical points

can be assumed to have this form.

As we already mentioned, there is a bijective correspondence between isotopy classes

[α] of essential Jordan curves α in (P, V ) and slopes r/s ∈ Q̂ (see Lemma 2.3). We

introduce the additional symbol 
 to represent peripheral Jordan curves in (P, V ). We

now define the slope map µf : Q̂ ∪ {
} → Q̂ ∪ {
} associated with f as follows. We set
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µf (
) := 
. This corresponds to the fact that each pullback of a peripheral Jordan curve

α in (P, V ) under f is peripheral (see Corollary 3.5(i)). If r/s ∈ Q̂ is an arbitrary slope,

then we choose a Jordan curve α in (P, V ) whose isotopy class [α] is represented by r/s. If

all pullbacks of α under f are peripheral, we set µf (r/s) := 
. Otherwise, there exists an

essential pullback α̃ of α under f. Then the isotopy class [̃α] is independent of the choice

of the essential pullback α̃ (see Corollary 3.5(ii)) and so it is represented by a unique slope

r ′/s′ ∈ Q̂. In this case, we set µf (r/s) := r ′/s′. In this way, µf (x) ∈ Q̂ ∪ {
} is defined

for all x ∈ Q̂ ∪ {
}. Since the map µf has the same source and target, we can iterate it.

If n ∈ N0, then we denote by µn
f the nth iterate of µf . We will then prove the following

statement.

THEOREM 1.4. Let f : P → P be a Thurston map obtained from the (2 × 2)-Lattès map
by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to the pillow P. Then there exists
a finite set S ⊂ Q̂ ∪ {
} with the following property: for each x ∈ Q̂ ∪ {
}, there exists
N ∈ N0 such that µn

f (x) ∈ S for all n ≥ N .

Note that Pf = V in this case; so our previous considerations apply and the map µf

is defined. It is clear that the previous theorem leads to the solution of the global curve

attractor problem for the maps f considered.

Proof of Theorem 1.3 based on Theorem 1.4. To obtain a finite attractor A(f ), pick

a Jordan curve in each isotopy class represented by a slope in S and add five Jordan

curves that represent the isotopy classes of peripheral Jordan curves in (P, V ) (one for

null-homotopic curves and one for each corner of P).

For the proof of Theorem 1.4, we will establish a certain monotonicity property of the

slope map µf for a map f as in the statement (see Proposition 8.1). Roughly speaking, this

monotonicity means that up to isotopy relative to Pf = V , complicated essential Jordan

curves in (P, V ) get ‘simpler’ and ‘less twisted’ if we take successive preimages under f
and eventually end up in the global curve attractor.

Our methods again rely on the consideration of intersection numbers. The algebraic

methods for solving the global curve attractor problem developed in [Pil12] (specifically,

[Pil12, Theorem 1.4]) do not apply in general for the maps considered in Theorem 1.3 (see

the discussion in §9.3).

Some of our ideas can also be used for the study of the global dynamics of the slope

map for Thurston maps that are not covered by Theorem 1.4. In particular, we are able to

describe the iterative behavior of µf for a specific obstructed Thurston map f obtained by

blowing up the (2 × 2)-Lattès map (see §9.2 for the details). This provides an answer to a

question by Pilgrim.

While it is straightforward to compute µf (x) for individual values x ∈ Q̂ ∪ {
}, we

have been unable to give an explicit formula for µf for the maps f we consider. In

general, these slope maps show very complicated behavior. Currently, very few explicit

computations of slope maps are known in the literature. Except for some very special

situations (for example, when the slope map is constant, that is, when µf (x) = 
 for

all x ∈ Q̂ ∪ {
}), we are only aware of computations of slope maps for nearly Euclidian
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Thurston maps in [CFPP12, §5] and [Lod13, §6]. See also [FPP18] for some general

properties of the slope map µf .

An undergraduate student at UCLA, Darragh Glynn, performed some computer

experiments to compute µf for maps f as in Theorem 1.2 for n ≥ 3 (and nh, nv ≥ 1

corresponding to the rational case). His results show that in these cases, the map µf does

not have the monotonicity property as for n = 2, but indicate that these maps f still have a

global curve attractor (see §9.2 for more discussion).

1.3. Organization of this paper. Our paper is organized as follows. In the next two

sections, we review some background. In §2, we fix notation and state some basic

definitions. We also discuss isotopy classes of Jordan curves in spheres with four marked

points, how isotopy classes of such curves correspond to slopes in Q̂, as well as some

relevant facts about intersection numbers. Even though all of this is fairly standard, we

give complete proofs in the appendix, because it is hard to track down this material in the

literature with a detailed exposition.

In §3, we recall some basics about Thurston maps and the relevant concepts for a precise

formulation of Thurston’s characterization of rational maps for Thurston maps with four

postcritical points—the only case relevant for us (see §3.2).

We explain the blow-up procedure for arcs in §4 and relate this to the proce-

dure of gluing flaps to the pillow P (see §4.2). The proof of Theorem 1.2 is then

given in §5.

The proof of our main result, Theorem 1.1, requires more preparation. This is the

purpose of §6. There we introduce the concept of essential circuit length that will allow us

to formulate tight estimates for the number of essential pullbacks of a Jordan curve under

a Thurston map with four postcritical points. This is formulated in the rather technical

Lemma 6.2 which is of crucial importance though. The proof of Theorem 1.1 is then given

in §7.

Section 8 is devoted to the proof of Theorem 1.4. In §9, we discuss some further

directions related to this work. As we already mentioned, the appendix is devoted to the

discussion of isotopy classes and intersection numbers of Jordan curves in spheres with

four marked points.

2. Preliminaries
In this section, we discuss background relevant for the rest of the paper.

2.1. Notation and basic concepts. We denote by N = {1, 2, . . .} the set of natural

numbers and by N0 = {0, 1, 2, . . .} the set of natural numbers including 0. The sets of

integers, real numbers, and complex numbers are denoted by Z, R, and C, respectively. We

write i for the imaginary unit in C, and Im(z) for the imaginary part of a complex number

z ∈ C.

As usual, R2 := {(x, y) : x, y ∈ R} is the Euclidean plane and Ĉ := C ∪ {∞} is the

Riemann sphere. Here and elsewhere, we write A := B for emphasis when an object A
is defined to be another object B. When we consider two objects A and B, and there is

a natural identification between them that is clear from the context, we write A ∼= B. For
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example, R2 ∼= C if we identify a point (x, y) ∈ R2 with x + iy ∈ C. We will freely switch

back and forth between these different viewpoints of R2 ∼= C.

We use the notation I := [0, 1] ⊂ R for the closed unit interval, D := {z ∈ C : |z| < 1}

for the open unit disk in C, and Z2 := {x + iy : x, y ∈ Z} for the square lattice in C. If

z, w ∈ C, then we write [z, w] := {z + t (w − z) : t ∈ I} for the line segment in C joining

z and w. We also use the notation [z0, w0) := [z0, w0] \ {w0} and (z0, w0) := [z0, w0] \

{z0, w0}.

The cardinality of a set X is denoted by #X ∈ N0 ∪ {∞} and the identity map on X by

idX. If X is a topological space and M ⊂ X, then cl(M) denotes the closure, int(M) the

interior, and ∂M the boundary of M in X.

Let f : X → Y be a map between sets X and Y. If M ⊂ X, then f |M stands for the

restriction of f to M. If N ⊂ Y , then f −1(N) := {x ∈ X : f (x) ∈ N} is the preimage of N
in X. Similarly, f −1(y) := {x ∈ X : f (x) = y} is the preimage of a point y ∈ Y .

Let f : X → X be a map. For n ∈ N, we denote by

f n := f ◦ · · · ◦ f︸ ︷︷ ︸
n factors

the nth iterate of f. It is convenient to define f 0 := idX. For n ∈ N0, we denote by

f −n(M) := {x ∈ X : f n(x) ∈ M} and f −n(p) := {x ∈ X : f n(x) = p} the preimages of

a set M ⊂ X and a point p ∈ X under f n, respectively.

A surface S is a connected and oriented topological 2-manifold. We denote its Euler
characteristic by χ(S). Note that χ(S) ∈ {2, 1, 0, −1, . . .} ∪ {−∞}. Throughout this

paper, we use the notation S2 for a (topological) 2-sphere, that is, S2 indicates a surface

homeomorphic to the Riemann sphere Ĉ. An annulus is a surface homeomorphic to

{z ∈ C : 1 < |z| < 2}.

A Jordan curve α in a surface S is the image α = η(∂D) of a (topological) embedding

η : ∂D → S of the unit circle ∂D = {z ∈ C : |z| = 1} into S. An arc e in S is the image

e = ι(I) of an embedding ι : I → S. Then ι(0) and ι(1) are the endpoints of e, and we

define ∂e := {ι(0), ι(1)}. The set int(e) := e \ ∂e is called the interior of e. The notions of

endpoints and interior of e only depend on e and not on the choice of the embedding ι.

Note that the notation ∂e and int(e) is ambiguous, because it should not be confused with

the boundary and interior of e as a subset of S. For arcs e in a surface S, we will only use

∂e and int(e) with the meaning just defined.

A subset U of a surface S is called an open or closed Jordan region if there

exists a topological embedding η : cl(D) = {z ∈ C : |z| ≤ 1} → S such that U = η(D) or

U = η(cl(D)), respectively. In both cases, ∂U = η(∂D) is a Jordan curve in S. A crosscut
e in an open or closed Jordan region U is an arc e ⊂ cl(U) such that int(e) ⊂ int(U) and

∂e ⊂ ∂U .

A path γ in a surface S is a continuous map γ : [a, b] → S, where [a, b] ⊂ R is a

compact (non-degenerate) interval. As is common, we will use the same notation γ for the

image γ ([a, b]) of the path if no confusion can arise. The path γ joins two sets M , N ⊂ S

if γ (a) ∈ M and γ (b) ∈ N , or vice versa. A loop in S based at p ∈ S is a path γ : [a, b] →

S such that γ (a) = γ (b) = p. The loop γ is called simple if γ is injective on [a, b). So

essentially, a simple loop is a Jordan curve run through with some parameterization.
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Let M , N , K be subsets of a surface S. We say that K separates M and N if every path

in S joining M and N meets K. Note that here, K is not necessarily disjoint from M or N.

We say that K separates a point p ∈ S from a set M ⊂ S if K separates {p} and M.

Let Z ⊂ S be a finite set of points in a surface S. Then we refer to the pair (S, Z) as a

marked surface, and the points in Z as the marked points in S. The most important case for

us will be when S = S2 is a 2-sphere and Z ⊂ S2 consists of four points.

A Jordan curve α in a marked surface (S, Z) is a Jordan curve α ⊂ S \ Z. An arc e in
(S, Z) is an arc e ⊂ S with ∂e ⊂ Z and int(e) ⊂ S \ Z. We say that a Jordan curve α in

a marked sphere (S2, Z) is essential if each of the two connected components of S2 \ α

contains at least two points of Z; otherwise, we say that α is peripheral.
Let (S2, Z) be a marked sphere with #Z = 4. A core arc of an essential Jordan curve α

in (S2, Z) is an arc in (S2, Z) that is contained in one of the two connected components of

S2 \ α and joins the two points in Z that lie in this component.

Let A be an annulus. Then a core curve of A is a Jordan curve β ⊂ A such that

under some homeomorphism ϕ : A → A′, the curve β ′ = ϕ(β) separates the boundary

components of A′ = {z ∈ C : 1 < |z| < 2}.

2.2. Branched covering maps. Let X and Y be surfaces. Then a continuous map

f : X → Y is called a branched covering map if for each point q ∈ Y , there exists an

open set V ⊂ Y homeomorphic to D with q ∈ V that is evenly covered in the following

sense: for some index set J 	= ∅, we can write f −1(V ) as a disjoint union

f −1(V ) =
⋃

j∈J

Uj (2.1)

of open sets Uj ⊂ X such that Uj contains precisely one point pj ∈ f −1(q). Moreover,

we require that for each j ∈ J , there exists dj ∈ N and orientation-preserving homeomor-

phisms ϕj : Uj → D with ϕj (pj ) = 0 and ψj : V → D with ψj (q) = 0 such that

(ψj ◦ f ◦ ϕ−1
j )(z) = zdj

for all z ∈ D (see [BM17, §A.6] for more background on branched covering maps). For

given f, the number dj is uniquely determined by p = pj , and called the local degree of

f at p and denoted by deg(f , p). A point p ∈ X with deg(f , p) ≥ 2 is called a critical
point of f. The set of all critical points of f is a discrete set in X and denoted by Cf .

If f is a branched covering map, then it is a covering map (in the usual sense) from X \

f −1(f (Cf )) onto Y \ f (Cf ).

In the following, suppose X and Y are compact surfaces, and f : X → Y is a branched

covering map. Then Cf ⊂ X is a finite set. Moreover, if deg(f ) ∈ N denotes the

topological degree of f, then
∑

p∈f −1(q)

deg(f , p) = deg(f )

for each q ∈ Y .

If γ : [a, b] → Y is a path, then we call a path γ̃ : [a, b] → X a lift of γ (under f ) if

f ◦ γ̃ = γ . Every path γ in Y has a lift γ̃ in X (see [BM17, Lemma A.18]), but in general, γ̃
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is not unique. If γ ([a, b)) ⊂ Y \ f (Cf ) and x0 ∈ f −1(γ (a)), then there exists a unique lift

γ̃ : [a, b] → X of γ under f with γ̃ (a) = x0. This easily follows from standard existence

and uniqueness theorems for lifts under covering maps (see [BM17, Lemma A.6]).

If e ⊂ Y is an arc, then an arc ẽ ⊂ X is called a lift of e (under f ) if f |̃e is a

homeomorphism of ẽ onto e. It easily follows from the existence and uniqueness statements

for lifts of paths just discussed that if e is an arc in (Y , f (Cf )), y0 ∈ int(e), and

x0 ∈ f −1(y0), then there exists a unique lift ẽ ⊂ X of e with x0 ∈ ẽ.

Let V ⊂ Y be an open and connected set, and U ⊂ f −1(V ) be a (connected) component

of f −1(V ). Then f |U : U → V is also a branched covering map. Each point q ∈ V

has the same number d ∈ N of preimages under f |U counting local degrees. We set

deg(f |U) := d . If the Euler characteristic χ(V ) is finite, then χ(U) is also finite and

we have the Riemann–Hurwitz formula

χ(U) +
∑

p∈U∩Cf

(deg(f , p) − 1) = deg(f |U) · χ(V ). (2.2)

2.3. Planar embedded graphs. A planar embedded graph in a sphere S2 is a pair

G = (V , E), where V is a finite set of points in S2 and E is a finite set of arcs in (S2, V )

with pairwise disjoint interiors. The sets V and E are called the vertex and edge sets of G,

respectively. Note that our notion of a planar embedded graph does not allow loops, that is,

edges that connect a vertex to itself, but it does allow multiple edges, that is, distinct edges

that join the same pair of vertices. The degree of a vertex v in G, denoted degG(v), is the

number of edges of G incident to v. Note that 2 · #E =
∑

v∈V degG(v).

The realization of G is the subset G of S2 given by

G := V ∪
⋃

e∈E

e.

A face of G is a connected component of S2 \ G. Usually, we conflate a planar embedded

graph G with its realization G. Then it is understood that G contains a finite set V ⊂ G

of distinguished points that are the vertices of the graph. Its edges are the closures of the

components of G \ V .

A subgraph of a planar embedded graph G = (V , E) is a planar embedded graph

G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E. A path of length n between vertices v and v′

in G is a sequence v0, e0, v1, e1, . . . , en−1, vn, where v0 = v, vn = v′, and ek is an edge

incident to the vertices vk and vk+1 for k = 0, . . . , n − 1. A path that does not repeat

vertices is called a simple path.

A path v0, e0, v1, e1, . . . , en−1, vn with v0 = vn and n ≥ 2 is called a circuit of length
n in G and is denoted by (e0, e1, . . . , en−1). Such a circuit is called a simple cycle if all

vertices vk , k = 0, . . . , n − 1, are distinct.

A planar embedded graph G is called connected if any two distinct vertices of G can be

joined by a path in G. Equivalently, G is connected if its realization G is connected as a

subset of S2. Note that if G is connected, then each face of G is simply connected.

As follows from [Die05, Lemma 4.2.2], the topological boundary ∂U of each face U
of G may be viewed as the realization of a subgraph of G. Moreover, a walk around any
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FIGURE 4. The Euclidean square pillow P.

connected component of the boundary ∂U traces a circuit (e0, e1, . . . , en−1) in G such that

each edge of G appears zero, one, or two times in the sequence e0, e1, . . . , en−1. We will

say that the circuit (e0, e1, . . . , en−1) traces (a connected component of) the boundary

∂U . If U is simply connected, then ∂U is connected, and the length of the (essentially

unique) circuit that bounds U is called the circuit length of U in G.

A planar embedded graph (V , E) is called bipartite if we can split V into two disjoint

subsets V1 and V2 such that each edge e ∈ E has one endpoint in V1 and one in V2.

2.4. The Euclidean square pillow. As discussed in the introduction, we consider a

square pillow P obtained from gluing two identical copies of the unit square I2 ⊂ R2 along

their boundaries by the identity map. Then P is a topological 2-sphere. We equip P with

the induced path metric that agrees with the Euclidean metric on each of the two copies of

the unit square. We call this metric space P the Euclidean square pillow. The vertices and

edges of the unit square I2 in P are called the vertices and edges of P. One copy of I2 in P

is called the front and the other copy the back side of P. In a dynamical context, we also

refer to these two copies of I2 as the 0-tiles of P. We color the front side of P white, and

its back side black. Finally, we equip P with the orientation that agrees with the standard

orientation on the front side I2 of P (represented by the positively oriented standard flag

((0, 0), I × {0}, I2); see [BM17, Appendix A.4]).

We label the vertices and edges of P in counterclockwise order by A, B, C, D and

a, b, c, d , respectively, so that A ∈ P corresponds to the vertex (0, 0) ∈ I2 and the edge

a ⊂ P corresponds to [0, 1] × {0} ⊂ I2. Then a has the endpoints A and B. We can view the

boundary ∂I2 of I2 as a planar embedded graph in P with the vertex set V := {A, B, C, D}

and the edge set E := {a, b, c, d}. We call a and c the horizontal edges, and b and d the

vertical edges of P; see Figure 4.

The pillow P is an example of a Euclidean polyhedral surface, that is, a surface obtained

by gluing Euclidean polygons along boundary edges by using isometries. Note that the

metric on P is locally flat except at its vertices, which are Euclidean conic singularities. So

P is an orbifold (see, for example, [Mil06a, Appendix E] and [BM17, Appendix A.9]).

An alternative description for the pillow P can be given as follows. We consider the unit

square I2 ⊂ R2 ∼= C and map it to the upper half-plane in Ĉ by a conformal map, normal-

ized so that the vertices 0, 1, 1 + i, i are mapped to 0, 1, ∞, −1, respectively. By Schwarz
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FIGURE 5. The map ℘ : C → P.

reflection, this map can be extended to a meromorphic function ℘ : C → Ĉ. Then ℘ is

a Weierstrass ℘-function (up to a postcomposition with a Möbius transformation) that is

doubly periodic with respect to the lattice 2Z2 := {2k + 2ni : k, n ∈ Z} ⊂ C. Actually, for

z, w ∈ C, we have

℘(z) = ℘(w) if and only if z − w ∈ 2Z2 or z + w ∈ 2Z2. (2.3)

We can push forward the Euclidean metric on C to the Riemann sphere Ĉ by ℘.

With respect to this metric, called the canonical orbifold metric for ℘, the sphere Ĉ

is isometric to the Euclidean square pillow P. In the following, we identify the pillow

P with Ĉ by the orientation-preserving isometry that maps the vertices A, B, C, D to

0, 1, ∞, −1, respectively. Then we can consider ℘ : C → Ĉ ∼= P as a map onto the

pillow P. Actually, ℘ is the universal orbifold covering map for P (see [BM17, §A.9]

for more background). A very intuitive description of this map can be given if we color the

squares [k, k + 1] × [n, n + 1], k, n ∈ Z, in checkerboard manner black and white so that

[0, 1] × [0, 1] is white. Restricted to such a square S, the map ℘ is an isometry that sends

S to the white 0-tile of P if S is white, and to the black 0-tile P if S is black; see Figure 5

for an illustration. Here, the points in the complex plane C marked by a black dot (on the

left) are mapped to A by ℘ and are elements of ℘−1(A) = 2Z2.

2.5. Isotopies and intersection numbers. Let X and Y be topological spaces. Then a

continuous map H : X × I → Y is called a homotopy from X to Y. For t ∈ I, we denote

by Ht := H(·, t) : X → Y the time-t map of the homotopy. The homotopy H is called an

isotopy if Ht is a homeomorphism from X onto Y for each t ∈ I. If Z ⊂ X, then a homotopy

H : X × I → Y is said to be a homotopy relative to Z if Ht (p) = H0(p) for all p ∈ Z and

t ∈ I. In other words, the image of each point in Z remains fixed during the homotopy H.

Isotopies relative to Z are defined in a similar way.

Two homeomorphisms h0, h1 : X → Y are called isotopic (relative to Z ⊂ X) if there

exists an isotopy H : X × I → Y (relative to Z) with H0 = h0 and H1 = h1. Given

M , N , Z ⊂ X, we say that M is isotopic to N relative to Z (or M can be isotoped into N
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relative to Z), denoted by M ∼ N relative to Z, if there exists an isotopy H : X × I → X

relative to Z with H0 = idX and H1(M) = N . Recall that idX is the identity map on X.

Let (S, Z) be a marked surface (with a finite, possibly empty set Z ⊂ S of marked

points). If α is a Jordan curve in (S, Z), then its isotopy class [α] (with (S, Z) understood)

consists of all Jordan curves β in (S, Z) such that α ∼ β relative to Z.

The following statement gives a sufficient condition for two Jordan curves in (S, Z) to

be isotopic relative to Z.

LEMMA 2.1. Let α and β be disjoint Jordan curves in a marked surface (S, Z). Suppose
there is an annulus U ⊂ S \ Z such that ∂U = α ∪ β. Then α and β are isotopic relative
to Z.

Proof. This is standard and we will only give a sketch of the proof. Since Jordan curves in

surfaces are tame, one can slightly enlarge the annulus U to an annulus U ′ ⊂ S2 \ Z that

contains α and β. Then α can be isotoped into β by an isotopy on U ′ that is the identity

near ∂U ′. This isotopy on U ′ can be extended to an isotopy on S2 relative to Z that isotopes

α into β.

Let (S, Z) be a marked surface. If α and β are arcs or Jordan curves in (S, Z), we define

their (unsigned) intersection number as

i(α, β) := inf{#(α′ ∩ β ′) : α ∼ α′ relative to Z and β ∼ β ′ relative to Z}.

The relevant marked surface (S, Z) here will be understood from the context, and we

suppress it from our notation for intersection numbers. If we want to emphasize it, we will

say that we consider intersection numbers in (S, Z). The intersection number is always

finite, because we can always reduce to the case when α and β are piecewise geodesic with

respect to some Riemannian metric on S (see [Bus10, Lemma A.8]). If α and β satisfy

i(α ∩ β) = #(α ∩ β), then we say that α and β are in minimal position (in their isotopy

classes relative to Z).

Suppose α and β are arcs or Jordan curves in (S, Z). Then we say that α and β meet
transversely at a point p ∈ α ∩ β ∩ (S \ Z) (or α crosses β at p) if p is an isolated point

in α ∩ β and if the following condition is true for a (small) arc σ ⊂ α containing p as an

interior point such that σ ∩ β = {p}: let σL and σR be the two subarcs of σ into which σ

is split by p, then with suitable orientation of β near p, the arc σL lies to the left and σR

to the right of β. We say that α and β meet transversely or have transverse intersection if

the set α ∩ β is finite and if α and β meet transversely at each point p ∈ α ∩ β ∩ (S \ Z).

LEMMA 2.2. Suppose α and β are Jordan curves or arcs in a marked surface (S, Z). If α

and β are in minimal position, then α and β meet transversely.

Proof. This is essentially a standard fact (see, for example, [Bus10, pp. 416–417]), and we

will only give an outline of the proof.

Since #(α ∩ β) = i(α ∩ β), the set α ∩ β consists of finitely many isolated points.

To reach a contradiction, suppose that α and β do not meet transversely at some point

p ∈ α ∩ β ∩ (S \ Z). Then there exists an arc σ ⊂ α containing p as an interior point such

that σ ∩ β = {p} and with the following property: if σ1 and σ2 denote the two subarcs of
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σ into which σ is split by p, then σ1 and σ2 lie on the same side of β (equipped with some

orientation locally near p). In other words, α touches β locally near p from one side and

does not cross β at p.

We can then modify the curve α near p by an isotopy that pulls the subarc σ away from

β so that the new curve α does not have the intersection point p with β while no new

intersection points of α and β arise. This contradicts our assumption that for the original

curve α, we have #(α ∩ β) = i(α ∩ β).

2.6. Jordan curves in spheres with four marked points. If (S2, Z) is a marked sphere

where Z ⊂ S2 consists of exactly four points, then, up to homeomorphism, we may assume

that S2 is equal to the pillow P, and Z = V = {A, B, C, D} consists of the four vertices

of P. We will freely switch back and forth between a general marked sphere (S2, Z) with

#Z = 4 and (P, V ).

We need some statements about isotopy classes of Jordan curves and arcs in (P, V ) and

their intersections numbers. They are ‘well known’, but unfortunately we have been unable

to track down a comprehensive account in the literature. Accordingly, we will provide a

complete treatment. This may be of independent interest apart from the main objective of

the paper. We will give the statements in this section, but will provide the details of the

proofs in the appendix.

As we will see, there is a natural way to define a bijection between the set of isotopy

classes [γ ] of essential Jordan curves γ in (P, V ) and the set of extended rational numbers
Q̂ := Q ∪ {∞}. Throughout this paper, whenever we write r/s ∈ Q̂, we assume that r ∈ Z

and s ∈ N0 are two relatively prime integers. We allow s = 0 here, in which case we

assume r = 1. Then r/s = 1/0 := ∞ ∈ Q̂.

We say that a (straight) line � ⊂ C has slope r/s ∈ Q̂ if it is given as

� = {z0 + (s + ir)t : t ∈ R} ⊂ C

for some z0 ∈ C. We use the notation �r/s(z0) for the unique line in C with slope r/s

passing through z0 ∈ C, and the notation �r/s (when the point z0 is not important) for any

line in C with slope r/s.

Let �r/s ⊂ C be any line with slope r/s ∈ Q̂. If �r/s does not contain any point in the

lattice Z2 = ℘−1(V ) and so �r/s ⊂ C \ Z2, then τr/s := ℘(�r/s) is a Jordan curve in P \ V .

Actually, τr/s is a simple closed geodesic in the Euclidean square pillow P (see Figure 6

for an illustration). If �r/s contains a point in Z2, then ξr/s := ℘(�r/s) is a geodesic arc in

(P, V ).

It is easy to see that every simple closed geodesic or geodesic arc τ in (P, V ) has the

form τ = ℘(�r/s) for a line �r/s ⊂ C with some slope r/s ∈ Q̂. In the following, we use

the notation τr/s for a simple closed geodesic and ξr/s for a geodesic arc obtained in this

way.

It follows from (2.3) that for fixed r/s ∈ Q̂, we obtain precisely two distinct arcs ξr/s

and ξ ′
r/s of the form ℘(�r/s(z0)) depending on z0 ∈ Z2. For each simple closed geodesic

τr/s , the arcs ξr/s and ξ ′
r/s are core arcs of τr/s lying in different components of P \ τr/s

(see the appendix for more details). In particular, τr/s is always an essential Jordan curve

in (P, V ).
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FIGURE 6. A line �2 and the corresponding Jordan curve τ2 = ℘(�2) in P.

It turns out that the isotopy classes of essential Jordan curves in (P, V ) are closely

related to the simple closed geodesics τr/s .

LEMMA 2.3. Let γ be an essential Jordan curve in (P, V ). Then there exists a unique
slope r/s ∈ Q̂ with the following property. Let �r/s be any line in C with slope r/s and
�r/s ⊂ C \ Z2, and set τr/s := ℘(�r/s). Then τr/s is an essential Jordan curve in (P, V )

with γ ∼ τr/s relative to V. Moreover, the map [γ ] �→ r/s gives a bijection between isotopy
classes [γ ] of essential Jordan curves γ in (P, V ) and slopes r/s ∈ Q̂.

While this is well known (see, for example, [FM12, Proposition 2.6] or [KS94,

Proposition 2.1]), we find the available proofs too sketchy. This is the reason why we

provide a detailed proof in the appendix. Implicit in Lemma 2.3 is the fact that the isotopy

class [τr/s] of τr/s = ℘(�r/s) only depends on r/s and not on the specific choice of the

line �r/s with �r/s ⊂ C \ Z2 (see Lemma A.7 for an explicit statement).

Recall that a, c denote the horizontal, and b, d the vertical edges of P. In the following,

we denote by αh = τ0 a horizontal essential Jordan curve in (P, V ) (corresponding to slope

0 and separating the edges a and c of P) and by αv = τ∞ a vertical essential Jordan curve

in (P, V ) (corresponding to slope ∞ and separating b from d). To be specific, we set

αh := ℘(R × {1/2}) and αv := ℘({1/2} × R). (2.4)

The following lemma summarizes the intersection properties of essential Jordan curves

and arcs in (P, V ).

LEMMA 2.4. Let α and β be essential Jordan curves in (P, V ) and r/s, r ′/s′ ∈ Q̂ be
the unique slopes such that α ∼ τr/s and β ∼ τr ′/s′ relative to V, where τr/s and τr ′/s′

are simple closed geodesics in (P, V ) with slopes r/s and r ′/s′, respectively. Let ξ be a
core arc of β, and ξr ′/s′ be a geodesic arc in (P, V ) with slope r ′/s′. Then the following
statements are true for intersection numbers in (P, V ):

(i) if r/s = r ′/s′, then i(α, β) = 0, and if r/s 	= r ′/s′, then i(α, β) = #(τr/s ∩ τr ′/s′) =

2|rs′ − sr ′| > 0;
(ii) i(α, ξ) = #(τr/s ∩ ξr ′/s′) = 1

2
i(α, β) = |rs′ − sr ′|;
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FIGURE 7. Counting intersections of τ2 with the horizontal curve αh and the horizontal edges a and c.

(iii) i(α, a) = #(τr/s ∩ a) = |r|, i(α, c) = #(τr/s ∩ c) = |r|;
(iv) i(α, b) = #(τr/s ∩ b) = s, i(α, d) = #(τr/s ∩ d) = s;
(v) i(α, αh) = 2|r| and i(α, αv) = 2s.

We will prove this lemma in the appendix. Note that Figure 7 illustrates statements (iii)

and (v) when α = τ2. It follows from the lemma that τr/s for r/s 	= 0, ∞ is in minimal

position with each of the curves a, b, c, d , αh, αv .

Let γ be a Jordan curve or an arc in a surface S, and M1, M2 ⊂ S be two disjoint

sets with 0 < #(γ ∩ Mj ) < ∞ for j = 1, 2. We say that the points in γ ∩ M1 	= ∅ and

γ ∩ M2 	= ∅ alternate on γ if any two points in one of the sets are separated by the other,

that is, any subarc σ ⊂ γ with both endpoints in either of the sets γ ∩ M1 or γ ∩ M2 must

contain a point in the other set.

More intuitively, this situation when the points in γ ∩ M1 and γ ∩ M2 alternate

on an arc γ can be described as follows. Suppose we traverse γ in some (injective)

parameterization starting from one of its endpoints. Then we will first meet a point in

either M1 or M2, say in M1. Then as we continue along γ , we will meet a point in M2,

then a point in M1, etc. A similar remark applies when γ is a Jordan curve. Note that is

this case #(γ ∩ M1) = #(γ ∩ M2).

LEMMA 2.5. Let τ = ℘(�r/s) be a simple closed geodesic or a geodesic arc in (P, V )

obtained from a line �r/s ⊂ C with slope r/s ∈ Q̂. If r/s 	= 0, then the sets a ∩ τ and
c ∩ τ are non-empty and finite, and the points in a ∩ τ and c ∩ τ alternate on τ .

A similar statement is true if r/s 	= ∞ and we replace a, c with b, d , respectively.

Lemma 2.5 is related to a similar statement in a more general setting that is the key to

proving Lemma 2.3 (see Lemma A.3).

Proof. Define ω := s + ir ∈ Z2. Suppose first that τ = ℘(�r/s) is a simple closed

geodesic. Then τ = ℘([z0, w0]), where z0 ∈ �r/s ⊂ C \ Z2 and w0 = z0 + 2ω, and the

map u ∈ [0, 1] �→ ℘(uz0 + (1 − u)w0) provides a parameterization of τ as a simple loop

as follows from (2.3).
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Now the set ℘−1(a ∪ c) consists precisely of the lines �0(ni) = {z ∈ C : Im(z) = n},

n ∈ Z. These lines alternate in the sense that ℘ maps �0(ni) onto a or c depending on

whether n ∈ Z is even or odd, respectively. Since r/s 	= 0, we have r ∈ Z \ {0}, and so

Im(w0 − z0) = Im(2ω) = 2r is a non-zero even integer. This implies that the line segment

[z0, w0] ⊂ �r/s has non-empty intersections (consisting of finitely many points) with each

of the sets ℘−1(a) and ℘−1(c). Moreover, the points in these intersections alternate on the

segment [z0, w0]. From this, together with the fact that

#(℘−1(a) ∩ [z0, w0)) = |r| = #(℘−1(c) ∩ [z0, w0)),

the statement follows (the latter fact is needed to argue that the points in a ∩ τ and c ∩ τ

alternate on the simple closed geodesic τ ).

If τ is a geodesic arc, then there exists z0 ∈ Z2 such that τ = ℘([z0, w0]), where

w0 = z0 + ω. The map ℘ sends [z0, w0] homeomorphically onto τ . Again, [z0, w0]

has non-empty intersections consisting of finitely many points with each of the sets

℘−1(a) and ℘−1(c). Moreover, the points in the sets ℘−1(a) ∩ [z0, w0] 	= ∅ and

℘−1(c) ∩ [z0, w0] 	= ∅ alternate on the segment [z0, w0]. The statement also follows

in this case.

We conclude this section with a statement related to the previous considerations

formulated for an arbitrary sphere with four marked points.

LEMMA 2.6. Let (S2, Z) be a marked sphere with #Z = 4, and α, γ be essential Jordan
curves in (S2, Z). Suppose that aα and cα are core arcs of α that lie in different components
of S2 \ α. Then the following statements are true:

(i) i(α, γ ) = 2i(aα , γ ) = 2i(cα , γ );
(ii) if i(α, γ ) > 0, then there exists a Jordan curve γ ′ in (S2, Z) with γ ′ ∼ γ relative to

Z such that γ ′ is in minimal position with α, aα , cα and the points in aα ∩ γ ′ 	= ∅

and cα ∩ γ ′ 	= ∅ alternate on γ ′.

Proof. We may identify the marked sphere (S2, Z) with the pillow (P, V ) by a homeo-

morphism that sends α, aα , cα to αh, a, c, respectively. Then, by Lemma 2.3, the curve γ

is isotopic to a simple closed geodesic τr/s with slope r/s ∈ Q̂. Statement (i) then follows

from Lemma 2.4(iii) and (v).

If i(α, γ ) = i(αh, τr/s) = 2|r| > 0, then we can choose γ ′ = τr/s in statement (ii).

Indeed, then γ ′ = τr/s ∼ γ relative to V = Z, and γ ′ = τr/s is in minimal position with

αh = τ0, aα = a, cα = c as follows from Lemma 2.4 (i) and (iii). Since r/s 	= 0 in this

case, the statement about alternation follows from Lemma 2.5.

3. Thurston maps
Here we provide a very brief summary of some relevant definitions and facts. For more

details, we refer the reader to [BM17, Ch. 2].

Let f : S2 → S2 be a branched covering map of a topological 2-sphere S2. A point

p ∈ S2 is called periodic (for f ) if f n(p) = p for some n ∈ N. Recall that Cf denotes

the set of all critical points of f. The union
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Pf =
⋃

n∈N

f n(Cf )

of the orbits of critical points is called the postcritical set of f. Note that

f (Pf ) ⊂ Pf ⊂ f −1(Pf ).

The map f is said to be postcritically finite if its postcritical set Pf is finite, in other words,

if every critical point of f has a finite orbit under iteration.

Definition 3.1. A Thurston map is a postcritically finite branched covering map

f : S2 → S2 of topological degree deg(f ) ≥ 2.

Natural examples of Thurston maps are given by rational Thurston maps, that is,

postcritically finite rational maps on the Riemann sphere Ĉ.

The ramification function of a Thurston map f : S2 → S2 is a function αf : S2 →

N ∪ {∞} such that αf (p) for p ∈ S2 is the lowest common multiple of all local degrees

deg(f n, q), where q ∈ f −n(p) and n ∈ N are arbitrary. In particular, αf (p) = 1 for

p ∈ S2 \ Pf and αf (p) ≥ 2 for p ∈ Pf .

Definition 3.2. Two Thurston maps f : S2 → S2 and g : Ŝ2 → Ŝ2, where Ŝ2 is another

topological 2-sphere, are called Thurston equivalent if there are homeomorphisms

h0, h1 : S2 → Ŝ2 that are isotopic relative to Pf such that h0 ◦ f = g ◦ h1.

We say that a Thurston map is realized (by a rational map) if it is Thurston equivalent

to a rational map. Otherwise, we say that it is obstructed.

The orbifold Of associated with a Thurston map f is the pair (S2, αf ). The Euler
characteristic of Of is

χ(Of ) := 2 −
∑

p∈Pf

(
1 −

1

αf (p)

)
. (3.1)

Here we set 1/∞ := 0.

The Euler characteristic of the orbifold Of satisfies χ(Of ) ≤ 0. We call Of hyperbolic
if χ(Of ) < 0, and parabolic if χ(Of ) = 0.

If f : S2 → S2 is a Thurston map, then f (Cf ∪ Pf ) ⊂ Pf , which implies Cf ∪ Pf ⊂

f −1(Pf ). The reverse inclusion is related to the parabolicity of Of .

LEMMA 3.3. Let f : S2 → S2 be a Thurston map. If f has a parabolic orbifold, then
f −1(Pf ) = Cf ∪ Pf . Moreover, conversely, if #Pf ≥ 4 and f −1(Pf ) ⊂ Cf ∪ Pf , then
f has a parabolic orbifold.

The second part follows from [DH93, Lemma 2], but for the convenience of the reader,

we will provide the simple proof. Here the assumption #Pf ≥ 4 cannot be omitted as some

examples with #Pf = 3 show (such as the Thurston map arising from the ‘barycentric

subdivision rule’; see [BM17, Example 12.21]).
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Proof. Let αf be the ramification function of f. Then p ∈ Pf if and only if αf (p) ≥ 2.

First suppose that f has a parabolic orbifold. Then αf (q) · deg(f , q) = αf (f (q)) for all

q ∈ S2 (see [BM17, Proposition 2.14]). So if q ∈ f −1(Pf ), then f (q) ∈ Pf which implies

αf (q) · deg(f , q) = αf (f (q)) ≥ 2.

This is only possible if αf (q) ≥ 2 in which case q ∈ Pf , or if deg(f , q) ≥ 2 in which case

q ∈ Cf . Hence, q ∈ Cf ∪ Pf , and so f −1(Pf ) ⊂ Cf ∪ Pf . Since the reverse inclusion is

true for all Thurston maps, we see that f −1(Pf ) = Cf ∪ Pf if f has a parabolic orbifold.

For the converse, suppose that f : S2 → S2 is an arbitrary Thurston map with #Pf ≥ 4

and f −1(Pf ) ⊂ Cf ∪ Pf . Let d := deg(f ) ≥ 2. Note that f −1(Pf ) ⊂ (Cf \ Pf ) ∪ Pf

by our hypotheses.

Each point p ∈ S2 has precisely d preimages counting multiplicities, that is,

d =
∑

q∈f −1(p)

deg(f , q).

Furthermore, since Cf ⊂ f −1(Pf ) and deg(f , q) ≥ 2 for q ∈ S2 if and only if q ∈ Cf ,

the Riemann–Hurwitz formula implies

#(Cf \ Pf ) ≤ #Cf ≤
∑

c∈Cf

(deg(f , c) − 1) =
∑

q∈f −1(Pf )

(deg(f , q) − 1)

= 2d − 2.

It follows that

d · #Pf =
∑

q∈f −1(Pf )

deg(f , q) =
∑

q∈f −1(Pf )

(deg(f , q) − 1) + #f −1(Pf )

= (2d − 2) + #f −1(Pf ) ≤ (2d − 2) + #(Cf \ Pf ) + #Pf

≤ 4(d − 1) + #Pf .

Hence, (d − 1) · #Pf ≤ 4(d − 1) and so 4 ≤ #Pf ≤ 4. This implies #Pf = 4 and that all

the previous inequalities must be equalities. In particular, #(Cf \ Pf ) = 2d − 2, which

shows that at all critical points, the local degree of f is equal to 2 and no critical points

belong to Pf .

As a consequence, under iteration of f, the orbit of any point p ∈ S2 passes through at

most one critical point. It follows that we have αf (p) = 1 for p ∈ S2 \ Pf and αf (p) = 2

for p ∈ Pf . This implies that the Euler characteristic (see equation (3.1)) of the orbifold

Of associated with f is equal to

χ(Of ) = 2 −
∑

p∈Pf

(
1 −

1

αf (p)

)
= 2 − (1/2 + 1/2 + 1/2 + 1/2) = 0.

We conclude that f has a parabolic orbifold.

3.1. The (n × n)-Lattès map. In general, a Lattès map is a rational Thurston map with

parabolic orbifold that does not have periodic critical points. Here we provide the analytic

definition for the Lattès maps that we use in this paper and interpret this from a more
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geometric perspective. See [Mil06b] and [BM17, Ch. 3] for a general discussion of Lattès

maps.

Let P ∼= Ĉ be the Euclidean square pillow and ℘ : C → P be its universal orbifold

covering map, as discussed in §2.4. Fix a natural number n ≥ 2. It follows from (2.3) that

there is a unique (and well-defined) map Ln : P → P such that

Ln(℘ (z)) = ℘(nz) for z ∈ C. (3.2)

We call Ln the (n × n)-Lattès map. In fact, Ln is a rational map under the identification

P ∼= Ĉ as discussed in §2.4.

Alternatively, we can describe the map Ln in a combinatorial fashion as follows. Recall

that the front side of P is colored white, and the back side black. These are the two 0-tiles of

P, and we subdivide each of them into n2 squares of sidelength 1/n. We refer to these small

squares as 1-tiles (with n understood), and color them in a checkerboard fashion black and

white so that the 1-tile S in the white side of P with the vertex A on its boundary is colored

white. We map S to the white side of the pillow P by an orientation-preserving Euclidean

similarity (that scales by the factor n) so that the vertex A is fixed. If we extend this map by

reflection to the whole pillow, we get the (n × n)-Lattès map Ln (see Figure 1 for n = 4).

The map Ln sends each black or white 1-tile homeomorphically (by a similarity) onto the

0-tile in P of the same color.

Based on this combinatorial description, it is easy to see that each critical point of Ln

has local degree 2 and that the postcritical set of Ln coincides with the set of vertices of

P, that is, PLn = {A, B, C, D} = V . One can also check that for the ramification function

of Ln, we have αLn(p) = 2 for each p ∈ PLn . Substituting this into equation (3.1), we see

that χ(OLn) = 0. Thus, Ln has a parabolic orbifold.

3.2. Thurston’s characterization of rational maps. Thurston maps can often be

described from a combinatorial viewpoint as the Lattès map Ln in §3.1 (see, for instance,

[CFKP03] and [BM17, Ch. 12]). The question whether a given Thurston map f can

be realized by a rational map is usually difficult to answer except in some special cases.

William Thurston provided a sharp, purely topological criterion that answers this question.

The formulation and proof of this celebrated result can be found in [DH93]. In this section,

we introduce the necessary concepts and formulate the result only when #Pf = 4, which

is the relevant case for this paper.

In the following, let f : S2 → S2 be a Thurston map. The map f defines a natural

pullback operation on Jordan curves in (S2, Pf ): a pullback of a Jordan curve γ ⊂ S2 \ Pf

under f is a connected component γ̃ of f −1(γ ). Since f is a covering map from

S2 \ f −1(Pf ) onto S2 \ Pf , each pullback γ̃ of γ is a Jordan curve in (S2, Pf ). Moreover,

f |γ̃ : γ̃ → γ is a covering map. For some k ∈ N with 1 ≤ k ≤ deg(f ), each point p ∈ γ

has precisely k distinct preimages in γ̃ . Here k is the (unsigned) mapping degree of f |γ̃

which we denote by deg(f : γ̃ → γ ).

Recall that a Jordan curve γ ⊂ S2 \ Pf is called essential if each of the two connected

components of S2 \ γ contains at least two points from Pf , and is called peripheral
otherwise.

We will need the following standard facts.

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



Thurston obstructions and dynamics on curves 2477

LEMMA 3.4. Let f : S2 → S2 be a Thurston map and let γ and γ ′ be Jordan curves
in (S2, Pf ) with γ ′ ∼ γ relative to Pf . Then there is a bijection γ̃ ↔ γ̃ ′ between
the pullbacks γ̃ of γ and the pullbacks γ̃ ′ of γ ′ under f such that for all pullbacks
corresponding under this bijection, we have γ̃ ∼ γ̃ ′ relative to Pf and deg(f : γ̃ → γ ) =

deg(f : γ̃ ′ → γ ′).

For the proof, see [BM17, Lemma 6.9]. A consequence of this statement is that the

isotopy classes of curves in f −1(γ ) relative to Pf only depend on the isotopy class [γ ]

relative to Pf and not on the specific choice of γ .

COROLLARY 3.5. Let f : S2 → S2 be a Thurston map, and γ be a Jordan curve in
(S2, Pf ).

(i) If γ is peripheral, then every pullback of γ under f is also peripheral.
(ii) Suppose that #Pf = 4 and let γ̃ be a pullback of γ under f. If γ and γ̃ are essential,

then the isotopy class [γ̃ ] relative to Pf only depends on the isotopy class [γ ] relative
to Pf and not on the specific choice of γ and its essential pullback γ̃ .

Proof. (i) Since γ is peripheral, γ can be isotoped (relative to Pf ) into a Jordan curve

γ ′ inside a small open Jordan region V ⊂ S2 such that #(V ∩ Pf ) ≤ 1 and V is evenly

covered by the branched covering map f as in equation (2.1).

Then for each component Uj of f −1(V ), the map f |Uj : Uj → V is given by z ∈ D �→

zdj ∈ D for some dj ∈ N after orientation-preserving homeomorphic coordinate changes

in the source and target. This implies that #(Uj ∩ Pf ) ≤ 1 and that each pullback of γ ′ in

Uj is peripheral. Hence, all pullbacks of γ ′ under f are peripheral and the same is true for

the pullbacks of γ as follows from Lemma 3.4.

(ii) Suppose γ̃ and γ̃ ′ are two distinct essential pullbacks of γ under f. Since these are

components of f −1(γ ), the Jordan curves γ̃ and γ̃ ′ are disjoint. Then the set S2 \ (γ̃ ∪ γ̃ ′)

is a disjoint union S2 \ (γ̃ ∪ γ̃ ′) = V ∪ U ∪ V ′, where V , V ′ ⊂ S2 are Jordan regions and

U ⊂ S2 is an annulus with ∂U = γ̃ ∪ γ̃ ′. Since γ̃ and γ̃ ′ are essential, both V and V ′

must contain at least two postcritical points. Now #Pf = 4, and so U ∩ Pf = ∅. Lemma

2.1 then implies that γ̃ and γ̃ ′ are isotopic relative to Pf .

It follows that the isotopy class [γ̃ ] relative to Pf does not depend on the choice of the

essential pullback γ̃ of γ . At the same time, Lemma 3.4 implies that [γ̃ ] only depends on

the isotopy class [γ ], as desired.

For a general Thurston map f the concept of an invariant multicurve is important to

decide whether f is realized or obstructed. By definition, a multicurve is a non-empty

finite family � of essential Jordan curves in S2 \ Pf that are pairwise disjoint and pairwise

non-isotopic relative to Pf .

Suppose now that #Pf = 4. Then any two essential Jordan curves in S2 \ Pf are either

isotopic relative to Pf or have a non-empty intersection (as follows from the argument in

the proof of Corollary 3.5(ii)). Thus, in this case, each multicurve � consists of a single

essential Jordan curve γ in S2 \ Pf . We say that an essential Jordan curve γ in S2 \ Pf is

f-invariant if each essential pullback of γ under f is isotopic to γ relative to Pf .
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FIGURE 8. The two pullbacks of a curve γ = τ2 under L2.

Definition 3.6. Let f : S2 → S2 be a Thurston map with #Pf = 4 and let γ ⊂ S2 \ Pf be

an essential f -invariant Jordan curve. We denote by γ1, . . . , γn for n ∈ N0 all the essential

pullbacks of γ under f and define

λf (γ ) :=

n∑

j=1

1

deg(f : γj → γ )
. (3.3)

Then γ is called a (Thurston) obstruction for f if λf (γ ) ≥ 1.

Note that if n = 0, then the sum in equation (3.3) is the empty sum and so λf (γ ) = 0.

It immediately follows from Lemma 3.4 that whether or not γ is an obstruction for f only

depends on the isotopy class [γ ] relative to Pf .

The following theorem gives a criterion when a Thurston map f with #Pf = 4 is

realized.

THEOREM 3.7. (Thurston’s criterion) Let f : S2 → S2 be a Thurston map with #Pf = 4

and suppose that f has a hyperbolic orbifold. Then f is realized by a rational map if and
only if f has no obstruction.

With a suitable definition of an obstruction (as an invariant multicurve that satisfies

certain mapping properties), this statement is also true for general Thurston maps with a

hyperbolic orbifold; see [DH93] or [BM17, §2.6].

The example of the (n × n)-Lattès mapLn : P → P with n ≥ 2 shows that Theorem 3.7

is false if f has a parabolic orbifold. Indeed, let γ be any essential Jordan curve in (P, PLn),

where PLn = V = {A, B, C, D} consists of the vertices of the pillow P. Since only the

isotopy class [γ ] relative to V matters, by Lemma 2.3, we may assume without loss of

generality that γ = τr/s = ℘(�r/s(z0)) with z0 ∈ C, r/s ∈ Q̂, and �r/s(z0) ⊂ C \ Z2. Here

r and s are relatively prime integers and so there exist p, q ∈ Z such that pr + qs = 1. Let

ω̃ := −p + iq. Using (2.3) and (3.2), one can verify that underLn, the curve γ has exactly

n distinct pullbacks

γj = ℘(�r/s((z0 + 2jω̃)/n)), j = 1, . . . , n. (3.4)

Moreover, each curve γj is isotopic to γ relative to PLn = V and deg(Ln : γj → γ ) =

n for all j = 1, . . . , n; see Figure 8 for an illustration. Thus, λLn(γ ) = 1 and γ is an

obstruction.
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4. Blowing up arcs
Here, we describe the operation of ‘blowing up arcs’, originally introduced by Pilgrim and

Tan Lei in [PL98, §2.5]. This operation allows us to define and modify various Thurston

maps and plays a crucial role in this paper. We will first describe the general construction

and then illustrate it for Lattès maps. As we will explain, the procedure of ‘gluing a

flap’ that we introduced in §1.1 can be viewed as a special case of blowing up arcs for

Lattès maps.

The construction of blowing up arcs will involve a finite collection E of arcs with

pairwise disjoint interiors in a 2-sphere S2. We denote by V the set of endpoints of these

arcs and consider (V , E) as an embedded graph in S2. In the construction, we will make

various topological choices. The following general statement guarantees that we do not

run into topological difficulties. In the formulation, we equip S2 with a ‘nice’ metric

d so that (S2, d) is isometric to Ĉ carrying the spherical metric with length element

ds = 2|dz|/(1 + |z|2).

PROPOSITION 4.1. Let G = (V , E) be a planar embedded graph in S2 and G ⊂ S2 be its
realization. Then there exists a planar embedded graph G′ = (V , E′) in S2 with the same
vertex set such that its realization G′ is isotopic to G relative to V and such that each edge
of G′ is a piecewise geodesic arc in (S2, d).

An outline of the proof is given in [Bol79, Ch. I, §4]; the proposition also follows from

[Bus10, Lemma A.8].

4.1. The general construction. Before we provide a formal definition, we give some

rough idea of how to ‘blow up’ arcs. In the following, f : S2 → S2 is a fixed Thurston

map. Let e be an arc in S2 such that the restriction f |e is a homeomorphism onto its

image. We cut the sphere S2 open along e and glue in a closed Jordan region D along

the boundary. In this way, we obtain a new 2-sphere on which we can define a branched

covering map f̂ as follows: f̂ maps the complement of int(D) in the same way as the

original map f and it maps int(D) to the complement of f (e) by a homeomorphism that

matches the map f |e. We say that f̂ is obtained from f by blowing up the arc e with

multiplicity 1.

Now we proceed to give a rigorous definition of the blow-up operation in the

general case, where several arcs e are blown up simultaneously with possibly different

multiplicities me ≥ 1 resulting in a new Thurston map f̂ . To this end, let E be a finite

set of arcs in (S2, f −1(Pf )) with pairwise disjoint interiors such that the restriction

f |e : e → f (e) is a homeomorphism for each e ∈ E. In this case, we say that E satisfies

the blow-up conditions.

We assume that each arc e ∈ E has an assigned multiplicity me ∈ N. Since each e ∈ E

is an arc in (S2, f −1(Pf )), its interior int(e) is disjoint from f −1(Pf ) ⊃ Pf and so int(e)

does not contain any critical or postcritical point of f.
For each arc e ∈ E, we choose an open Jordan region We ⊂ S2 so that the following

conditions hold:

(A1) the open Jordan regions We, e ∈ E, are pairwise disjoint;

(A2) for distinct arcs e1, e2 ∈ E, we have cl (We1
) ∩ cl(We2

) = ∂e1 ∩ ∂e2;
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FIGURE 9. Setup for blowing up the arcs e1 and e2 (in the sphere on the left) with the multiplicities me1
= 1 and

me2
= 2.

(A3) int(e) ⊂ We and ∂e ⊂ ∂We for each e ∈ E;

(A4) cl(We) ∩ f −1(Pf ) = e ∩ f −1(Pf ) = ∂e for each e ∈ E;

(A5) f | cl(We) is a homeomorphism onto its image for each e ∈ E.

The existence of such a choice (and also of the choices below) can easily be justified

based on Proposition 4.1 and we will skip the details.

Let e ∈ E and We be chosen as above. Then we choose a closed Jordan region De so

that e is a crosscut in De and De \ ∂e ⊂ We. The two endpoints of e lie on the Jordan curve

∂De and partition it into two arcs, which we denote by ∂D+
e and ∂D−

e . One can think of De

as the resulting region if e has been ‘opened up’. This is illustrated in the left and middle

parts of Figure 9.

To define the desired Thurston map f̂ , we want to collapse De back to e. For this, we

choose a continuous map h : S2 × I → S2 with the following properties:

(B1) h is a pseudo-isotopy, that is, ht := h(·, t) is a homeomorphism on S2 for each

t ∈ [0, 1);

(B2) h0 is the identity map on S2;

(B3) ht is the identity map on S2 \
⋃

e∈E We for each t ∈ [0, 1];

(B4) h1 is a homeomorphism of S2 \
⋃

e∈E De onto S2 \
⋃

e∈E e, and h1 maps ∂D+
e and

∂D−
e homeomorphically onto e for each e ∈ E.

It is easy to see that if we equip S2 with some metric, then the set ht (De) Hausdorff

converges to e as t → 1−. This implies that h1(De) = e. So intuitively, the deformation

process described by h collapses each closed Jordan region De to e at time 1 so that the

points in S2 \
⋃

e∈E We remain fixed.

We now make yet another choice. For a fixed arc e ∈ E, let m = me. We choose m − 1

crosscuts e1, . . . , em−1 in De with the same endpoints as e such that these crosscuts

have pairwise disjoint interiors. We set e0 := ∂D+
e and em := ∂D−

e . The arcs e0, . . . , em

subdivide the closed Jordan region De into m closed Jordan regions D1
e , . . . , Dm

e , called

components of De. This is illustrated in the right-hand part of Figure 9.

We may assume that the labeling is such that ∂Dk
e = ek−1 ∪ ek for k = 1, . . . , m. For

each k = 1, . . . , m, we now choose a continuous map ϕk : Dk
e → S2 with the following

properties:
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FIGURE 10. The map f̂ is obtained from f by blowing up the arcs e1 and e2 with multiplicities me1
= 1 and

me2
= 2.

(C1) ϕk is an orientation-preserving homeomorphism of int(Dk
e ) onto S2 \ f (e) and

maps ek−1 and ek homeomorphically onto f (e);

(C2) ϕ1|e
0 = f ◦ h1|e

0, ϕm|em = f ◦ h1|e
m, and ϕk|e

k = ϕk+1|e
k for k = 1, . . . ,

m − 1.

Note that by the earlier discussion, h1 maps e0 = ∂D+
e and em = ∂D−

e homeomorphically

onto e and f is a homeomorphism of e onto f (e). These choices of the maps ϕk depend

on e, but we suppress this in our notation for simplicity.

A map f̂ : S2 → S2 can now be defined as follows:

(D1) if p ∈ S2 \
⋃

e∈E int(De), we set f̂ (p) = f (h1(p));

(D2) if p ∈ De for some e ∈ E, then p lies in one of the components Dk
e of De and we

set f̂ (p) = ϕk(p).

The matching conditions in property (C2) above immediately imply that f̂ is well defined

and continuous.

Definition 4.2. We say that the map f̂ : S2 → S2 as described above is obtained from the

Thurston map f by blowing up each arc e ∈ E with multiplicity me.

Figure 10 illustrates the construction of f̂ . Here, we blow up the arcs e1 and e2 from

Figure 9 with multiplicities me1
= 1 and me2

= 2. The arcs f (e1) and f (e2) share an
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FIGURE 11. Setup for blowing up the arc set E = {e1, e2} (on the left pillow) with me1
= 1 and me2

= 2.

FIGURE 12. The map f̂ obtained from f = L2 by blowing up the arcs in the set E = {e1, e2} illustrated in

Figure 11 with me1
= 1 and me2

= 2.

endpoint (since e1 and e2 do), but in general, they could have more points in common or

even coincide. For simplicity, we chose to draw them with disjoint interiors.

By construction, f̂ acts in a similar way as f outside the closed Jordan regions

De1
= D1

e1
and De2

= D1
e2

∪ D2
e2

. More precisely, the map f̂ equals f ◦ h1 on

S2 \ (int(De1
)∪ int(De2

)), where h1 collapses the closed Jordan regions De1
and De2

onto e1

and e2, respectively. At the same time, f̂ maps int(De1
) homeomorphically onto S2 \ f (e1),

and each of the regions int(D1
e2

) and int(D2
e2

) homeomorphically onto S2 \ f (e2).

In the next section, we want to relate ‘blowing up arcs’ with ‘gluing flaps’ as discussed

in the introduction. To set this up, we consider the (2 × 2)-Lattès map f = L2. We choose

two edges e1 and e2 of a 1-tile in P as shown in the pillow on the left in Figure 11. Note that

f sends e1 and e2 homeomorphically onto the edges c and b of P, respectively. Thus, the

set E = {e1, e2} satisfies the blow-up conditions. Figure 11 illustrates the setup for blowing

up these arcs e1 and e2 with the multiplicities me1
= 1 and me2

= 2. The resulting map

f̂ : P → P is shown in Figure 12. The points marked by a dot on the left pillow P (the

domain of the map) correspond to the preimage points f̂ −1(V ). The pillow on the left

is subdivided into closed Jordan regions alternately colored black and white. The map f̂

sends each of these closed Jordan regions U homeomorphically onto the back side or front

side of the pillow P depending on whether U is black or white.

The following statement summarizes the main properties of maps f̂ as in Definition 4.2.

LEMMA 4.3. Let f : S2 → S2 be a Thurston map and E be a set of arcs in (S2, f −1(Pf ))

satisfying the blow-up conditions. Suppose f̂ : S2 → S2 is the map obtained by blowing
up each arc e ∈ E with multiplicity me ∈ N.
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Then f̂ is a Thurston map with Pf̂ = Pf . Moreover, the map f̂ is uniquely determined
up to Thurston equivalence independently of the choices in the above construction. More
precisely, up to Thurston equivalence f̂ depends only on the original map f, the isotopy
classes of the arcs in E relative to f −1(Pf ), and the multiplicities me for e ∈ E.

Proof. By construction, f̂ is an orientation-preserving local homeomorphism near each

point p ∈ S2 \ f −1(Pf ). By considering the number of preimages of a generic point in

S2, we see that the topological degree of f̂ is equal to deg(f ) +
∑

e∈E me > 0. The fact

that f̂ : S2 → S2 is a branched covering map can now be deduced from [BM17, Corollary

A.14].

We have deg(f̂ , p) = 1 for p ∈ S2 \ f −1(Pf ) and

deg(f̂ , p) = deg(f , p) +
∑

{e∈E: p∈e}

me

for p ∈ f −1(Pf ). This implies Cf ⊂ Cf̂ ⊂ f −1(Pf ). Since on the set f −1(Pf ) the maps

f and f̂ agree, it follows that Pf̂ = Pf . So f̂ has a finite postcritical set, and we conclude

that f̂ is indeed a Thurston map.

We omit a detailed justification of the second claim that f̂ is uniquely determined up

to Thurston equivalence by f, the isotopy classes of the arcs E, and their multiplicities. A

proof can be given along the lines of [PL98, Proposition 2].

Remark 4.4. If in the previous statement E 	= ∅ and #Pf ≥ 3, then f̂ has a hyperbolic

orbifold. To see this, pick an arc e ∈ E. Then f (e) has at most two points in common with

Pf , and so we can find a point p ∈ Pf \ f (e) ⊂ Pf̂ . Then it follows from the construction

of f̂ that there exists a point q in the interior of the region De associated with e such that

f̂ (q) = p and deg(f̂ , q) = 1. Then q 	∈ Cf̂ , but we also have

q ∈ int(De) ⊂ S2
\ f −1(Pf ) ⊂ S2

\ Pf = S2
\ Pf̂ .

This shows that q ∈ f̂ −1(p) ⊂ f̂ −1(Pf̂ ), but q 	∈ Cf̂ ∪ Pf̂ , and so f̂ must have a

hyperbolic orbifold by the first part of Lemma 3.3.

4.2. Blowing up the (n × n)-Lattès map. Let P be the Euclidean square pillow and

Ln : P → P be the (n × n)-Lattès map for fixed n ≥ 2. We denote by C ⊂ P the common

boundary of the two sides of P. The set C may be viewed as a planar embedded graph

with the vertex set V = {A, B, C, D} and the edge set {a, b, c, d} in the notation from

§2.4. Let C̃ := L−1
n (C) ⊂ P be the preimage of C under Ln, viewed as a planar embedded

graph with the vertex set L−1
n (V ). In the next section, we will study the question whether

a Thurston map is realized by a rational map if it is obtained from Ln by blowing up edges

of C̃. To facilitate this discussion, we will provide a more concrete combinatorial model

for these maps.

By the definition of the map Ln, the graph C̃ subdivides the pillow P into 2n2 1-tiles,

which are squares of sidelength 1/n. The edges of the embedded graph C̃ are precisely the

sides of these squares. We call them the 1-edges of P (for given n). The mapLn sends each
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1-edge e of P homeomorphically onto one of the edges a, b, c, d of C. We call e horizontal
if Ln maps it onto a or c, and vertical if Ln maps it onto b or d.

We take two disjoint copies of the Euclidean square [0, 1/n]2 ⊂ R2 and identify the

points on three of their sides, say the sides {0} × [0, 1/n], [0, 1/n] × {1/n}, and {1/n} ×

[0, 1/n]. We call the object obtained a flap F. Note that it is homeomorphic to the closed

unit disk and has two ‘free’ sides corresponding to the two copies of [0, 1/n] × {0} in F.

We can cut the pillow P open along one of the edges of C̃ and glue in a flap F to the

pillow by identifying each copy of [0, 1/n] × {0} in the flap with one side of the slit by

an isometry (see Figure 2). In this way, we get a new polyhedral surface homeomorphic

to S2. One can also glue multiple copies of the flap to the slit by an isometry and obtain

a polyhedral surface P̂ homeomorphic to S2. This can be described more concretely as

follows. Let e be an edge in C̃ and F1, . . . , Fm be m ≥ 1 copies of the flap. For each

k = 1, . . . , m, we denote the two copies of [0, 1/n] × {0} in the flap Fk by e′
k and e′′

k . We

now construct a new polyhedral surface P̂ in the following way.

(i) First, we cut the original pillow P open along the edge e.

(ii) Then, for each k = 1, . . . , m − 1, we identify the edge e′′
k of Fk with the edge e′

k+1

of Fk+1 by an isometry. We get a polyhedral surface De homeomorphic to a closed

disk, whose boundary consists of two edges e′
1 and e′′

m.

(iii) Finally, we glue the disk De to the pillow P cut open along e by identifying the

edges e′
1 and e′′

m in ∂De with the two sides of the slit by an isometry so that e′
1 and

e′′
m are identified with different sides of the slit. We obtain a polyhedral surface P̂

that is homeomorphic to a 2-sphere.

More generally, we can cut open P simultaneously along several edges e of C̃ and, by the

method described, glue me ∈ N copies of the flap to the slit obtained from each edge e.

If these edges e of C̃ with their multiplicities me are given, then there is essentially only

one way of gluing flaps so that the resulting object is a polyhedral surface homeomorphic

to S2.

Let P̂ be the polyhedral surface obtained from P by gluing a total number of nh ≥ 0

horizontal flaps (that is, flaps glued along horizontal edges of C̃) and a total number of

nv ≥ 0 vertical flaps (that is, flaps glued along vertical edges of C̃). We call this surface

a flapped pillow. We denote by E the set of all edges in C̃ along which flaps were glued

and by me, e ∈ E, the corresponding multiplicities. See the left part of Figure 13 for an

example of a flapped pillow P̂ obtained by gluing one horizontal and two vertical flaps at

the edges e1 and e2 from Figure 11.

The polyhedral surface P̂ is naturally subdivided into

2(n2 + nh + nv) = 2n2 + 2
∑

e∈E

me

squares of sidelength 1/n, called the 1-tiles of the flapped pillow P̂. The vertices and the

edges of these squares are called the 1-vertices and 1-edges of P̂. There is a natural path

metric on P̂ that agrees with the Euclidean metric on each 1-tile. The surface P̂ equipped

with this metric is locally Euclidean with conic singularities at some of the 1-vertices. Such

a conic singularity arises at a 1-vertex v ∈ P̂ if v is contained in kv 	= 4 distinct 1-tiles.
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FIGURE 13. A branched covering map L̂ : P̂ → P induced by the flapped pillow P̂ on the left.

FIGURE 14. The base B(̂P) of the flapped pillow P̂ from Figure 13 depicted in two different ways: as a subset of

P̂ and as the subset P \
⋃

e∈E int(e) of P.

We will assume that P̂ has at least one flap, that is, nh + nv ≥ 1. Let Fj ,

j = 1, . . . , nh + nv , be the collection of flaps glued to P. Each flap Fj consists of two

1-tiles in P̂. We call the four 1-vertices that belong to Fj the vertices of the flap Fj . The

boundary ∂Fj is a Jordan curve in P̂ composed of two 1-edges e′
j and e′′

j , which we call

the base edges of Fj . The 1-edge in Fj that is opposite to the base edges is called the top
edge of the flap Fj . Note that ∂e′

j = ∂e′′
j consists of two vertices of Fj .

We now define the base B(̂P) ⊂ P̂ of the flapped pillow as

B(̂P) := P̂ \

(nh+nv⋃

j=1

(Fj \ ∂e′
j )

)
. (4.1)

In other words, B(̂P) is obtained from P̂ by removing all flaps Fj from P̂, except that we

keep the two vertices in ∂e′
j ⊂ Fj from each flap. There is a natural identification

B(̂P) ∼= P \

⋃

e∈E

int(e) ⊂ P. (4.2)

This means that we can consider the base B(̂P) both as a subset of P̂ and of P. Figure 14

illustrates these two viewpoints. This is slightly imprecise, but this point of view will be

extremely convenient in the following.
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We choose the orientation on P̂ so that the induced orientation on B(̂P) considered as a

subset of P̂ coincides with the orientation on B(̂P) considered as a subset of the oriented

sphere P (if we represent orientations on surfaces by flags, as described in [BM17, §A.4],

then we simply pick a positively oriented flag contained in B(̂P) ⊂ P and declare it to be

positively oriented in P̂ ⊃ B(̂P)).

The set B(̂P) ∼= P \
⋃

e∈E int(e) contains the vertex set L−1
n (V ) ⊂ P of the graph

C̃ = L−1
n (C) ⊂ P. This means that we can naturally view each vertex of C̃ also as a

1-vertex in P̂. Let Â, B̂, Ĉ, D̂ be the 1-vertices of P̂ that correspond to the vertices

A, B, C, D of the original pillow, respectively. We set V̂ := {Â, B̂, Ĉ, D̂} and call

Â, B̂, Ĉ, D̂ the vertices of P̂.

Recall from §3.1 that the faces of the embedded graph C̃ ⊂ P are colored black and

white in a checkerboard manner. This coloring induces a checkerboard coloring on the

1-tiles of the flapped pillow P̂. The original map Ln : P → P can now be naturally

extended to a continuous map L̂ : P̂ → P by reflection so that it preserves the coloring:

L̂ maps each 1-tile of P̂ by a Euclidean similarity (scaling distances by the factor n) onto

the 0-tile of P with the same color; see Figure 13 for an illustration. On the base B(̂P), the

map L̂ agrees with the original (n × n)-Lattès map Ln (if we consider B(̂P) as a subset of

P by the identification in (4.2)).

It is clear that L̂ : P̂ → P is a branched covering map. This map is essentially the

Thurston map obtained from Ln by blowing up each arc e ∈ E with multiplicity me. To

make this more precise, we need a suitable identification of the source P̂ with the target

P of L̂ so that we obtain a self-map on P. For this, we choose a natural homeomorphism

φ : P̂ → P, which we will now define.

We view the set Ĉ := L̂
−1

(C) ⊂ P̂ as a planar embedded graph, whose vertices and

edges are precisely the 1-vertices and the 1-edges of the flapped pillow P̂. Each 1-edge of

P̂ is homeomorphically mapped by L̂ onto one of the edges of P. Similarly as before, the

1-edges of P̂ that are mapped by L̂ onto a or c are called horizontal, while the 1-edges of

P̂ that are mapped by L̂ onto b or d are called vertical.
There is a simple path of length n in the graph Ĉ that connects the vertices Â and

B̂. Clearly, any such path consists only of horizontal 1-edges in P̂. We denote by â the

realization of the chosen path in the sphere P̂, which is an arc in (̂P, V̂ ). The arc â may

not be uniquely determined (namely, if flaps have been glued to slits obtained from edges

e ⊂ a), but any two such arcs are isotopic relative to V̂ . We define b̂, ĉ, d̂ in a similar way

and call â, ĉ the horizontal edges, and b̂, d̂ the vertical edges of P̂.

We now choose an orientation-preserving homeomorphism φ : P̂ → P that sends

Â, B̂, Ĉ, D̂ to A, B, C, D, and â, b̂, ĉ, d̂ to a, b, c, d , respectively. We define

f := L̂ ◦ φ−1, which is a self-map on P. Clearly, f is a branched covering map on P.

To refer to this map, we say that f : P → P is obtained from the (n × n)-Lattès mapLn by
gluing nh horizontal and nv vertical flaps to P. More informally, we call both maps f and

L̂ a blown-up Lattès map.

A point in P̂ is a critical point for L̂ : P̂ → P if and only if it is on the boundary of at

least four 1-tiles subdividing P̂. This implies that the set CL̂ of critical points of L̂ consists

of 1-vertices of P̂ and that each critical point of Ln is also a critical point for L̂ (recall that
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we can view each point in L−1
n (V ) ⊃ CLn as a 1-vertex in P̂). Moreover, if a 1-vertex of P̂

is a critical point of L̂, but not of Ln, then it must be one of the points in V̂ . For example,

Â ∈ V̂ is a critical point of L̂ if and only if a flap was glued to an edge of C̃ incident to

A ∼= Â. In any case, since L̂ sends the 1-vertices of P̂ to the vertices of P, the postcritical

set of f = L̂ ◦ φ−1 coincides with the vertex set V. Thus, f is a Thurston map.

Since we assumed that P̂ contains at least one flap (that is, nh + nv > 0), the orbifold

of the Thurston map f is hyperbolic. Indeed, each 1-vertex of P̂ that is a critical point of

Ln is also a critical point of L̂ with the same or larger local degree. Since we glued at

least one flap, there is at least one 1-vertex v contained in six or more 1-tiles of P̂. Then

deg(L̂, v) = deg(f , v′) ≥ 3, where v′ = φ(v). Now

X := f (v′) = L̂(v) ∈ V = {A, B, C, D} = Pf ,

and so for the ramification function αf of f, we have αf (X) ≥ 3. However, for all other

points Y ∈ V = Pf , we have αf (Y ) ≥ αLn(Y ) ≥ 2. It then follows from equation (3.1)

that χ(Of ) < 0, and so f has indeed a hyperbolic orbifold.

The homeomorphism φ chosen in the definition of f is not unique, but any two

such homeomorphisms are isotopic relative to V̂ (this easily follows from [Bus10,

Theorem A.5]). This implies that f is uniquely determined up to Thurston equivalence.

This map may be viewed (up to Thurston equivalence) as the result of the blowing

up operation introduced in §4.1 applied to the edges e ∈ E with the multiplicities me.

In particular, if we run the procedure for the map L̂ indicated in Figure 13, then we obtain

the map f̂ illustrated in Figure 12 (up to Thurston equivalence).

5. Realizing blown-up Lattès maps
The goal of this section is to determine when a blown-up Lattès map is realized by

a rational map. In particular, we will apply Thurston’s criterion to prove Theorem 1.2.

The strategies and techniques used in the proof will highlight the main ideas needed for

establishing the more general Theorem 1.1.

We fix n ≥ 2, nh, nv ≥ 0, and follow the notation introduced in §4.2. In particular, we

denote by P̂ a flapped pillow with nh horizontal and nv vertical flaps, by L̂ : P̂ → P the

respective blown-up (n × n)-Lattès map, and by φ : P̂ → P the identifying homeomor-

phism. Then f : P → P given as f = L̂ ◦ φ−1 is the Thurston map under consideration.

We will assume that nh + nv > 0, and so P̂ has at least one flap. In this case, f has a

hyperbolic orbifold as we have seen, and so we can apply Thurston’s criterion. For this,

we consider essential Jordan curves γ in (P, Pf ) = (P, V ) and study their (essential)

pullbacks under f.
If γ is such a curve, then the homeomorphism φ sends the pullbacks of γ under L̂ to

the pullbacks of γ under f. So to understand the isotopy types and mapping properties of

the pullbacks under f, we will instead look at the pullbacks of γ under L̂. In particular, if

γ̂ is a pullback of γ under L̂, then deg(L̂ : γ̂ → γ ) = deg(f : φ(γ̂ ) → γ ) and φ(γ̂ ) is

essential in (P, Pf ) = (P, V ) if and only if γ̂ is essential in (̂P, V̂ ), where V̂ denotes the

vertex set of the flapped pillow P̂.
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FIGURE 15. Pullbacks of αh for a blown-up (4 × 4)-Lattès map with nh = nv = 1.

Since the mapping L̂ : P̂ → P is a similarity map on each 1-tile of P̂, the preimage

L̂
−1

(γ ) of a Jordan curve γ in (P, Pf ) (or of any subset γ of P), can be obtained in the

following intuitive way: we rescale and copy the part of γ that belongs to the white 0-tile

of P into each white 1-tile of P̂ and the part of γ that belongs to the black 0-tile of P into

each black 1-tile.

5.1. The horizontal and vertical curves. Recall that αh and αv (see (2.4)) denote the

Jordan curves in (P, V ) = (P, Pf ) that separate the two horizontal and the two vertical

edges of P, respectively. These two curves are invariant under f and will play a crucial role

in the considerations of this section.

LEMMA 5.1. Let f = L̂ ◦ φ−1 : P → P be a Thurston map obtained from the
(n × n)-Lattès map, n ≥ 2, by gluing nh ≥ 0 horizontal and nv ≥ 0 vertical flaps to
P. Then the following statements are true.

(i) The Jordan curve αh has n + nh pullbacks under f. Exactly n of these pullbacks are
essential. Each of these essential pullbacks is isotopic to αh relative to Pf .

(ii) If α̃ is one of the n essential pullbacks of αh, then deg(f : α̃ → αh) = n + nα̃ ,
where nα̃ ≥ 0 is the number of distinct vertical flaps in P̂ that φ−1(̃α) meets.

(iii) We have

λf (αh) =
∑

α̃

1

n + nα̃

,

where the sum is taken over all essential pullbacks α̃ of αh under f.

Analogous statements are true for the curve αv .

Proof. Figure 15 illustrates the proof. It is obvious that the curve αh has exactly n + nh

distinct pullbacks under L̂. Among them, there are n essential pullbacks α̂1, . . . , α̂n that

separate the two horizontal edges of P̂ and thus are isotopic to each other relative to

the vertex set V̂ of P̂. For each j = 1, . . . , n, the image αj := φ(̂αj ) is isotopic to αh.

Moreover, we have deg(L̂ : α̂j → αh) = n + nαj
. The other nh pullbacks of αh under

L̂ are each contained in one of the horizontal flaps and thus are peripheral in (̂P, V̂ ).

Consequently,
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FIGURE 16. Pullbacks of αh for a blown up (4 × 4)-Lattès map with nh = 1 and nv = 0.

λf (αh) =

n∑

j=1

1

deg(f : αj → αh)
=

n∑

j=1

1

deg(L̂ : α̂j → αh)
=

n∑

j=1

1

n + nαj

.

This completes the proof of the lemma for the curve αh. The proof for the curve αv follows

from similar considerations.

The following corollary is an immediate consequence of the previous lemma.

COROLLARY 5.2. Let f = L̂ ◦ φ−1 : P → P be a Thurston map obtained from the
(n × n)-Lattès map, n ≥ 2, by gluing nh ≥ 0 horizontal and nv ≥ 0 vertical flaps to P.
Then αh is an obstruction (for f) if and only if nv = 0, and αv is an obstruction if and only
if nh = 0.

Proof. Let us first suppose that nv = 0, that is, P̂ does not have any vertical flaps. Then

by Lemma 5.1, αh has n essential pullbacks under f, each of which is mapped onto αh

with degree n (this is illustrated in Figure 16 in a special case). Consequently, λf (αh) =

n · (1/n) = 1, which means αh is an obstruction for f.
If nv > 0, the flapped pillow P̂ has at least one vertical flap. Then nα̃ > 0 for at least

one essential pullback α̃ of αh. Lemma 5.1 implies that

λf (αh) ≤ (n − 1)
1

n
+

1

n + 1
< 1,

and so αh is not an obstruction for f.
The proof for the vertical curve αv is completely analogous.

The above corollary can be read as follows: the obstruction αh for the (n × n)-Lattès

map can be eliminated by gluing a vertical flap to P. Similarly, the obstruction αv can be

eliminated by gluing a horizontal flap. We will show momentarily that if both of these

obstructions are eliminated (that is, if there are both horizontal and vertical flaps), then no

other obstructions are present and so the map f is realized.

5.2. Ruling out other obstructions. Now we discuss what happens with the essential

curves in (P, Pf ) that are not isotopic to the horizontal curve αh or the vertical curve αv .
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THEOREM 5.3. Let f = L̂ ◦ φ−1 : P → P be a Thurston map obtained from the
(n × n)-Lattès map, n ≥ 2, by gluing nh ≥ 0 horizontal and nv ≥ 0 vertical flaps to P

and assume that nh + nv > 0. If γ ⊂ P \ Pf is an essential Jordan curve that is not
isotopic to either αh or αv , then γ is not an obstruction for f.

Before we turn to the proof of this theorem, we first record how it implies Theorem 1.2

stated in the introduction.

Proof of Theorem 1.2. Let n, f, nh, and nv with nh + nv > 0 be as in the statement. We

have seen in §4.2 that then f has a hyperbolic orbifold. If nh = 0 or nv = 0, then by

Corollary 5.2, the curve αv or the curve αh is an obstruction, respectively.

If nh > 0 and nv > 0, then f has no obstruction as follows from Corollary 5.2 and

Theorem 5.3. Since f has a hyperbolic orbifold, in this case, f is realized by a rational

map according to Theorem 3.7.

Corollary 5.2 and Theorem 5.3 also imply that if nh = 0, then αv is the only obstruction

for f (up to isotopy relative to Pf ). Similarly, αh is the only obstruction if nv = 0.

Before we go into the details, we will give an outline for the proof of Theorem 5.3. We

argue by contradiction and assume that f has an obstruction given by an essential Jordan

curve γ in (P, Pf ) that is isotopic to neither αh nor αv relative to Pf . Then λf (γ ) ≥ 1.

Let γ1, . . . , γk for some k ∈ N be all the essential pullbacks of γ under f, which must be

isotopic to γ relative to Pf .

Using facts about intersection numbers and the mapping properties of f, one can show

that for the number of essential pullbacks of γ , we have k ≤ n and that the corresponding

mapping degrees satisfy deg(f : γj → γ ) ≥ n for all j = 1, . . . , k. Since λf (γ ) ≥ 1, it

follows that there are exactly k = n essential pullbacks and that deg(f : γj → γ ) = n for

each j = 1, . . . , n.

This in turn implies that none of the essential pullbacks γ̂j := φ−1(γj ) of γ under L̂

goes over a flap in P̂. Then all the n pullbacks γ̂1, . . . , γ̂n belong to the base B(̂P) of P̂. This

means that each γ̂j can be thought of as a pullback of γ under the original (n × n)-Lattès

map Ln. However, there are only n pullbacks of γ under Ln, which cross all the edges of

the graph L−1
n (C), where C is the common boundary of the 0-tiles in P. Consequently, the

pullbacks γ̂1, . . . , γ̂n cross all the 1-edges in the closure of the base B(̂P). It follows that

one of the pullbacks γ̂j must cross one of the base edges of a flap F in P̂, which would

necessarily mean that γ̂j goes over the flap F. This gives the desired contradiction and

Theorem 5.3 follows.

In the remainder of this section, we will fill in the details for this outline. First, we

establish several general facts about degrees and intersection numbers.

Let n ∈ N and f : X → Y be a map between two sets X and Y. We say that f is at most
n-to-1 if #f −1(y) ≤ n for each y ∈ Y . We say that f is n-to-1 if #f −1(y) = n for each

y ∈ Y .

LEMMA 5.4. Let f : X → Y be a map between two sets X and Y. Suppose M ⊂ X,
N ⊂ Y , and f |M : M → f (M) is at most n-to-1 for some n ∈ N. Then

#(M ∩ f −1(N)) ≤ n · #(f (M) ∩ N).
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Proof. The map f sends each point in M ∩ f −1(N) to a point in f (M) ∩ N . Moreover,

each point in f (M) ∩ N has at most n preimages in M ∩ f −1(N) under f. The statement

follows.

LEMMA 5.5. Let f : S2 → S2 be a Thurston map with #Pf = 4, and γ be an essential
Jordan curve in (S2, Pf ). Suppose that α̃ is an essential Jordan curve or an arc in (S2, Pf )

such that:

(i) f (̃α) and α̃ are isotopic relative to Pf ;
(ii) the map f |̃α : α̃ → f (̃α) is at most n-to-1, where n ∈ N;

(iii) i(f (̃α), γ ) = #(f (̃α) ∩ γ ) > 0.

Then k ≤ n, where k ∈ N0 denotes the number of distinct pullbacks of γ under f that are
isotopic to γ relative to Pf . Moreover, if α̃ meets a peripheral pullback of γ , then k < n.

In the formulation and the ensuing proof, intersection numbers are with respect to

(S2, Pf ). Note that since f (̃α) and α̃ are isotopic relative to Pf by assumption, f (̃α)

is of the same type as α̃, that is, a Jordan curve or an arc in (S2, Pf ).

Proof. Let γ1, . . . , γk be the distinct pullbacks of γ under f that are isotopic to γ relative

to Pf . Since f |̃α : α̃ → f (̃α) is at most n-to-1, we can apply Lemma 5.4 and conclude

that

#(̃α ∩ f −1(γ )) ≤ n · #(f (̃α) ∩ γ ) = n · i(f (̃α), γ ).

However,

n · i(f (̃α), γ ) ≥ #(̃α ∩ f −1(γ )) ≥

k∑

j=1

#(̃α ∩ γj ) ≥

k∑

j=1

i(̃α, γj ) = k · i(f (̃α), γ ). (5.1)

Since i(f (̃α), γ ) > 0, we see that k ≤ n. If α̃ meets a peripheral pullback of γ , then the

second inequality in (5.1) is strict and we actually have k < n.

The next result will lead to the strict inequality from Lemma 5.5 in the proof of

Theorem 5.3.

LEMMA 5.6. As before, let L̂ : P̂ → P be the blown-up (n × n)-Lattès map, and suppose
γ = τr/s is a simple closed geodesic in P with slope r/s ∈ Q̂ \ {0, ∞}. Let γ̂ be a pullback
of γ under L̂. If γ̂ intersects the interior of a base edge of a flap F in P̂, then γ̂ also
intersects the top edge of F.

Proof. We have γ = ℘(�r/s), where �r/s ⊂ C \ Z2 is a straight line with slope

r/s 	= 0, ∞. Then γ is an essential Jordan curve in (P, V ). Let γ̂ ⊂ P̂ be as in the

statement. As in §2.4, we denote by a, b, c, d the edges of the pillow P. Let e′ ⊂ P̂ be a

base edge of a flap F in P̂ such that γ̂ ∩ int(e′) 	= ∅. We will assume that F is a horizontal

flap. Then L̂(e′) = a or L̂(e′) = c. We will make the further assumption that L̂(e′) = a.

The other cases, when L̂(e′) = c or when F is a vertical flap, can be treated in a way that

is completely analogous to the ensuing argument.
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FIGURE 17. A pullback γ̂ going over a horizontal flap in P̂.

Let e′′ ⊂ F be the base edge of F different from e′, and ẽ be the top edge of F. Then

L̂(e′′) = a and L̂(̃e) = c. Moreover,

F ∩ L̂
−1

(a) = e′ ∪ e′′ = ∂F and F ∩ L̂
−1

(c) = ẽ. (5.2)

We have γ = ℘(�r/s) with r/s 	= 0, and so by Lemma 2.5, the sets a ∩ γ and c ∩ γ are

finite and non-empty and the points in these sets alternate on γ . Since L̂ is a covering map

from γ̂ onto γ , we conclude that the sets γ̂ ∩ L̂
−1

(a) and γ̂ ∩ L̂
−1

(c) are also finite and

non-empty and the points in these sets alternate on γ̂ .

We choose a point p ∈ γ̂ ∩ int(e′). Since γ = ℘(�r/s), the curve γ has transverse

intersections with int(a). It follows that the pullback γ̂ has a transverse intersection with

int(e′) at p, and so γ̂ crosses into the interior of the flap F at p. Therefore, if we travel

along γ̂ starting at p ∈ γ̂ ∩ L̂
−1

(a) and traverse into the interior of the flap F, we must

meet L̂
−1

(c) before we possibly exit F through its boundary ∂F = e′ ∪ e′′ = F ∩ L̂
−1

(a)

(see equation (5.2)). Now F ∩ L̂
−1

(c) = ẽ and so this implies that the pullback γ̂ meets

the top edge ẽ (see Figure 17 for an illustration). The statement follows.

We are now ready to prove the main result of this section.

Proof of Theorem 5.3. Let f : P → P be a Thurston map as in the statement, obtained

from the (n × n)-Lattès map Ln, n ≥ 2, by gluing nh ≥ 0 horizontal and nv ≥ 0 vertical

flaps, where we assume nh + nv > 0. As described in the beginning of this section, then

f = L̂ ◦ φ−1, where L̂ : P̂ → P is a branched covering map on the associated flapped

pillow P̂ and φ : P̂ → P is an identifying homeomorphism as discussed in §4.2. Note that

P̂ has at least one flap, since nh + nv > 0. Following the notation from §4.2, we denote

by â, b̂, ĉ, d̂ the arcs in (̂P, V̂ ) that, under φ, correspond to the edges a, b, c, d of P,

respectively.

We now argue by contradiction and assume that there exists an essential Jordan curve

γ in (P, Pf ) = (P, V ) that is not isotopic to αh or αv relative to Pf = V , but is an

obstruction for f, that is, λf (γ ) ≥ 1. Since we can replace γ with any curve in the

same isotopy class, by Lemma 2.3, we may assume that γ = ℘(�r/s) for a straight line

�r/s ⊂ C \ Z2 with slope r/s ∈ Q̂. Since γ is not isotopic to αh or αv relative to V, we

have r/s 	= 0, ∞, and so r , s 	= 0. Then it follows from Lemma 2.4(iii) and (iv) that

#(a ∩ γ ) = i(a, γ ) = |r| = i(c, γ ) = #(c ∩ γ ) > 0,

#(b ∩ γ ) = i(b, γ ) =s = i(d , γ ) = #(d ∩ γ ) > 0. (5.3)

In particular, γ ⊂ P \ V intersects the interiors of all four edges of P.
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Let γ1, . . . , γk for some k ∈ N denote all the pullbacks of γ under f that are isotopic to

γ relative to Pf . By construction of the blown-up map, the arc â = φ−1(a) consists of n
1-edges in P̂, each of which is homeomorphically mapped onto a by L̂. This implies that

the map f |a : a → a is at most n-to-1. By (5.3), we can apply Lemma 5.5 to a and γ and

conclude that k ≤ n.

By Lemma 5.1, the horizontal curve αh has n distinct pullbacks under f that are isotopic

to αh relative to Pf . Since

i(γ , αh) = #(γ ∩ αh) = 2|r| > 0 (5.4)

by Lemma 2.4(i), we can apply Lemma 5.5 again, this time to γj and αh (in the roles of α̃

and γ , respectively), and conclude that n ≤ deg(f : γj → γ ) for all j = 1, . . . , k.

Then

1 ≤ λf (γ ) =

k∑

j=1

1

deg(f : γj → γ )
≤ k/n ≤ 1.

Therefore, k = n and deg(f : γj → γ ) = n for each j = 1, . . . , n.

This shows that the curve γ has exactly n essential pullbacks under L̂ given by

γ̂1 := φ−1(γ1), . . . , γ̂n := φ−1(γn). Here, the isotopy classes are considered with respect

to the vertex set V̂ of P̂. We will now use the second part of Lemma 5.5 to show that none

of these pullbacks goes over a flap in P̂.

Claim. For each flap F in P̂ and each pullback γ̂j , j = 1, . . . , n, we have F ∩ γ̂j = ∅.

To see that the claim is true, suppose some pullback γ̂j meets a flap F in P̂. We may

assume that F is a horizontal flap; the other case, when F is vertical, can be treated by

similar considerations. Then F contains a peripheral pullback α̂h of αh under L̂, which

separates the union ∂F of the two base edges of F from the top edge of F. We will first

show that γ̂j intersects α̂h.

Note that ∂F is a Jordan curve and that int(F ) does not contain any point from the

vertex set V̂ of P̂. It follows that the curve γ̂j must intersect ∂F , because γ̂j is essential in

(̂P, V̂ ). Since the curve γ does not pass through Pf = V , its pullback γ̂j under L̂ does not

pass through any 1-vertex in P̂. Consequently, γ̂j must meet the interior of one of the two

base edges of F, which compose the boundary ∂F . Lemma 5.6 now implies that γ̂j also

meets the top edge of F. Therefore, γ̂j meets the peripheral pullback α̂h in F.

It follows that γj = φ(γ̂j ) meets the peripheral pullback φ(̂αh) of αh under f.
Lemma 5.5 now implies that n < deg(f : γj → γ ) = n, which is a contradiction. This

finishes the proof of the claim.

The claim implies that each essential pullback γ̂j , j = 1, . . . , n, belongs to the base

B(̂P) of P̂. By (4.2), we can identify B(̂P) with the subset P \
⋃

e∈E int(e) of the original

pillow P, where E denotes the non-empty subset of all 1-edges of P along which flaps were

glued in the construction of P̂.

Under this identification, the map L̂ on B(̂P) coincides with the (n × n)-Lattès map

Ln. Thus, we may view γ̂1, . . . , γ̂n as pullbacks of γ under Ln on the original pillow P.

Now γ has exactly n pullbacks under Ln (see equation (3.4)). This implies that
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L−1
n (γ ) = γ̂1 ∪ · · · ∪ γ̂n.

Since γ meets the interior of every edge of P, the set L−1
n (γ ) = γ̂1 ∪ · · · ∪ γ̂n meets the

interior of every 1-edge of P. This is impossible, because

γ̂1 ∪ · · · ∪ γ̂n ⊂ B(̂P) = P \

⋃

e∈E

int(e)

does not meet the interior of any 1-edge in E 	= ∅. This is a contradiction and the statement

follows.

6. Essential circuit length
To prove our main result, Theorem 1.1, we need some preparation, in particular, a refined

version of Lemma 5.5. We will also address the question how blowing up arcs modifies the

pullbacks of a curve α under natural restrictions on the blown-up arcs. First, we introduce

some terminology and establish some auxiliary facts.

Let U ⊂ S2 be an open and connected set, and σ ⊂ S2 be an arc. We say that σ is

an arc in U ending in ∂U if there exists an endpoint p of σ such that σ \ {p} ⊂ U and

p ∈ ∂U .

Let G be a connected planar embedded graph in S2 and U be one of its faces. Then U
is simply connected, and so we can find a homeomorphism ϕ : D → U . Since we want

some additional properties of ϕ here, it is easiest to equip S2 with a complex structure and

choose a conformal map ϕ : D → U .

Since ∂U is a finite union of edges of G, this set is locally connected and so the

conformal map ϕ extends to a surjective continuous map ϕ : cl(D) → cl(U) [Pom92,

Theorem 2.1]. This extension has the following property: if σ is an arc in U ending

in ∂U , then ϕ−1(σ ) is an arc in D ending in ∂D (see [Pom92, Proposition 2.14]).

For given G and U, we fix, once and for all, such a map ϕ = ϕG,U from cl(D)

onto cl(U).

Let (e1, e2, . . . , en) be a circuit in G that traces the boundary ∂U . Recall from

§2.3 that the number n is called the circuit length of U in G, and each edge e ∈ ∂U

appears exactly once or twice in the sequence e1, e2, . . . , en depending on whether

the face U lies on one or both sides of e, respectively. Then there is a corresponding

decomposition ∂D = σ1 ∪ · · · ∪ σn of the unit circle ∂D into non-overlapping subarcs

σ1, . . . , σn of ∂D such that ϕ = ϕG,U is a homeomorphism of σm onto em for each

m = 1, . . . , n.

Let 0 < ε < 1. We say that a Jordan curve β ⊂ U is an ε-boundary of U with respect to
G if β ′ := ϕ−1(β) ⊂ Aε := {z ∈ C : 1 − ε < |z| < 1}, and β ′ separates 0 from ∂D. Then

β ′ is a core curve of the annulus Aε .

For the remainder of this section, f : S2 → S2 is a Thurston map. All isotopies on S2

are relative to Pf , and we consider intersection numbers in (S2, Pf ).

Let e be an arc in (S2, Pf ). Then we can naturally view the set G := f −1(e) as a planar

embedded graph with the vertex set f −1(∂e) and the edges given by the lifts of e under f.
Note that G is bipartite.
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LEMMA 6.1. Let f : S2 → S2 be a Thurston map, e be an arc and γ be a Jordan curve in
(S2, Pf ) with #(e ∩ γ ) = i(e, γ ). Suppose thatH is a connected subgraph of G = f −1(e)

and U is a face of H. Let 2n with n ∈ N be the circuit length of U in H. Then for each
0 < ε < 1, there exists an ε-boundary β of U with respect toH such that #(β ∩ f −1(γ )) =

2n · i(e, γ ).

Note that the circuit length of U inH is even sinceH is a bipartite graph.

Proof. Let s := i(e, γ ) ∈ N0. Then e and γ have exactly s distinct points in common,

say p1, . . . , ps ∈ e ∩ γ . Each point pj lies in int(e), because ∂e ⊂ Pf and γ ⊂ S2 \ Pf .

Since e and γ are in minimal position, they meet transversely (see Lemma 2.2), that is, if

we travel along γ toward one of the points pj (according to some orientation of γ ), then

near pj , we stay on one side of e, but cross over to the other side of e if we pass pj .

This implies that we can find disjoint subarcs σ1, . . . , σs of γ such that each arc σj

contains pj in its interior, but contains no other point in e ∩ γ . Moreover, pj splits σj into

two non-overlapping subarcs σL
j and σR

j with the common endpoint pj so that with some

fixed orientation of e, the arc σL
j lies to the left and σR

j lies to the right of e. Note that if

γ ′ := γ \ (σ1 ∪ · · · ∪ σs), then e ∩ γ ′ = ∅.

For the given face U ofH, we fix a map ϕ = ϕH,U : cl(D) → cl(U) as discussed in the

beginning of this section. Let (e1, . . . , e2n) be a circuit inH that traces the boundary ∂U .

As we have already pointed out, the number of edges in the circuit is even, becauseH is a

bipartite graph. With suitable orientation of each arc em, the face U lies on the left of em.

If an arc appears twice in the list e1, . . . , e2n, then it will carry opposite orientations in its

two occurrences.

We want to investigate the set f −1(γ ) ∩ cl(U) near ∂U . Note that f maps each arc em

homeomorphically onto e. This implies that f is a homeomorphism on a suitable Jordan

region that contains em as a crosscut. It follows that we can pull back the local picture near

points in e ∩ γ to a similar local picture for points in em ∩ f −1(γ ). So if we choose the

arcs σj small enough, as we may assume, and pull them back by f, then it is clear that

f −1(γ ) ∩ cl(U) can be represented in the form

f −1(γ ) ∩ cl(U) = K ∪

2n⋃

m=1

s⋃

j=1

σm,j ,

where K has positive distance to ∂U = e1 ∪ · · · ∪ e2n (with respect to some base metric on

S2). Moreover, each σm,j is an arc in U ending in em ⊂ ∂U such that f is a homeomorphism

from σm,j onto σL
j or σR

j depending on whether f |em : em → e is orientation-preserving

or orientation-reversing. If we remove from each arc σm,j its endpoint in em, then the

half-open arcs obtained are all disjoint. Two arcs σm,j and σm′,j ′ share an endpoint precisely

when j = j ′ and they arise from edges em and em′ with the same underlying set, but with

opposite orientations. In this case, f sends one of these arcs to σL
j , and the other one to σR

j .

Since K has positive distance to ∂U , it is clear that if β is an ε-boundary of U with

respect to H for ε > 0 small enough (as we may assume), then β ∩ K = ∅. So to control

#(β ∩ f −1(γ )), we have to worry only about the intersections of β with the arcs σm,j .
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Note that there are exactly 2n · s = 2n · i(e, γ ) of these arcs. If we pull them back by the

map ϕ, then we obtain pairwise disjoint arcs in D ending in ∂D. The statement now follows

from the following fact, whose precise justification we leave to the reader: if α1, . . . , αM

with M ∈ N0 are pairwise disjoint arcs in D ending in ∂D, then for each 0 < ε < 1,

there exists a core curve β ′ of the annulus Aε = {z ∈ C : 1 − ε < |z| < 1} such that

#(β ′ ∩ (α1 ∪ · · · ∪ αM)) = M .

Now we are ready to provide a refined version of Lemma 5.5.

LEMMA 6.2. Let f : S2 → S2 be a Thurston map with #Pf = 4, α and γ be essential
Jordan curves in (S2, Pf ), c be a core arc of α, and assume that #(c ∩ γ ) = i(c, γ ) > 0.

Let H be a connected subgraph of G := f −1(c), and U be a face of H such that for
small enough ε > 0, each ε-boundary β of U with respect toH is isotopic to α relative to
Pf . Let 2n with n ∈ N be the circuit length of U inH.

Then k ≤ n, where k ∈ N0 denotes the number of pullbacks of γ under f that are isotopic
to γ relative to Pf . Moreover, if ∂U ⊂ H meets a peripheral pullback of γ under f, then
k < n.

Proof. Let γ1, . . . , γk be the pullbacks of γ under f that are isotopic to γ relative to Pf .

Then by Lemma 6.1, for sufficiently small ε > 0, we can find an ε-boundary β of U with

respect toH such that β ∼ α relative to Pf and

#(β ∩ f −1(γ )) = 2n · i(c, γ ) = n · i(α, γ ),

where the last equality follows from Lemma 2.6. Hence, we have

n · i(α, γ ) = #(β ∩ f −1(γ )) ≥

k∑

j=1

#(β ∩ γj ) ≥

k∑

j=1

i(β, γj ) = k · i(α, γ ). (6.1)

Since i(α, γ ) = 2 · i(c, γ ) > 0, we conclude that k ≤ n, as desired.

To see the second statement, we have to revisit the proof of Lemma 6.1. There we

identified 2n · i(c, γ ) = n · i(α, γ ) distinct arcs σ in U ending in ∂U (they were called

σm,j in the proof). These arcs were subarcs of f −1(γ ) and accounted for all possible

intersections of β with f −1(γ ) for sufficiently small ε > 0; with a suitable choice of

β, each of these arcs σ gave precisely one such intersection point. Now if a peripheral

pullback γ̃ ⊂ f −1(γ ) of γ under f meets ∂U , then one of these arcs σ is a subarc of γ̃ . It

follows that the first inequality in (6.1) must be strict and so k < n.

For the rest of this section, we fix a Thurston map f : S2 → S2 with #Pf = 4, an

essential Jordan curve α in (S2, Pf ), and core arcs a and c of α that lie in different

components of S2 \ α. We can view the set G := f −1(a ∪ c) as a planar embedded graph

in S2 with the set of vertices f −1(Pf ), and the edge set consisting of the lifts of a and c
under f. Then G is a bipartite graph.

Let U be the unique connected component of S2 \ (a ∪ c). Then U is an annulus and α is

its core curve. The connected components Ũ of f −1(U) are precisely the complementary

components of G = f −1(a ∪ c) in S2. It easily follows from the Riemann–Hurwitz

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



Thurston obstructions and dynamics on curves 2497

FIGURE 18. A Thurston map f. The sphere on the right shows a Jordan curve α in (S2, Pf ) and two core arcs a
and c. The sphere on the left shows the pullbacks of α under f and the planar embedded graph G = f −1(a ∪ c).

formula (see equation (2.2)) that each Ũ is an annulus, and that f : Ũ → U is a covering

map. Moreover, each such annulus contains precisely one pullback α̃ of α under f.
This setup is illustrated in Figure 18. The points marked in black indicate the four

postcritical points of f. The sphere on the right contains two core arcs a and c of a Jordan

curve α in (S2, Pf ). On the left, the lifts of a and c under f are shown in blue and magenta

colors, respectively, and the pullbacks of α in green.

We call a connected component Ũ of f −1(U) = S2 \ G essential or peripheral,
depending on whether the unique pullback α̃ of α contained in Ũ is essential or peripheral

in (S2, Pf ), respectively. Each boundary ∂Ũ has exactly two connected components. One

of them is mapped by f to a and the other one to c; accordingly, we denote them by ∂aŨ

and ∂cŨ , respectively. Then we have

∂Ũ = ∂aŨ ∪ ∂cŨ , ∂aŨ = f −1(a) ∩ ∂Ũ , and ∂cŨ = f −1(c) ∩ ∂Ũ .

The sets ∂aŨ and ∂cŨ are subgraphs of G. Since Ũ is a connected subset of S2 \ G ⊂

S2 \ ∂aŨ , there exists a unique face Va of ∂aŨ (considered as a subgraph of G) such

that Ũ ⊂ Va . Similarly, there exists a unique face Vc of ∂cŨ with Ũ ⊂ Vc. By definition,

the circuit length of ∂aŨ or of ∂cŨ is the circuit length of Va in ∂aŨ or of Vc in ∂cŨ ,

respectively.

Then the following statement is true.

LEMMA 6.3. The circuit lengths of ∂aŨ and ∂cŨ are both equal to 2 · deg(f : Ũ → U).

We call the identical circuit lengths of ∂aŨ and ∂cŨ the circuit length of Ũ (for fixed f,
α, a, and c).

Proof. It is clear that the subgraph ∂aŨ ofG is bipartite, and so ∂aŨ has even circuit length

2n with n ∈ N. Let d := deg(f : Ũ → U). It is enough to show that 2n = 2d , because the

roles of ∂aŨ and ∂cŨ are symmetric, and so the same identity will then also be true for the

circuit length of ∂cŨ .

To see that 2n = 2d , we use a similar idea as in the proof of Lemma 6.1. We choose a

point p ∈ int(a) and an arc σ ⊂ S2 \ c with p ∈ int(σ ) that meets a transversely in p, but

has no other point with a in common. Then p splits σ into two non-overlapping subarcs

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



2498 M. Bonk et al

σL and σR with the common endpoint p so that with some fixed orientation of a, the arc

σL lies to the left and σR lies to the right of a.

Let (e1, . . . , e2n) be a circuit in ∂aŨ that traces the boundary ∂Va = ∂aŨ , where Va is

the unique face of ∂aŨ with Ũ ⊂ Va . With suitable orientation of each arc em, the face Ũ

lies on the left of em. We now consider the set f −1(σ ) ∩ cl(Ũ ) near ∂aŨ . If we choose σ

small enough (as we may), then as in the proof of Lemma 6.1, we see that

f −1(σ ) ∩ cl(Ũ ) =

2n⋃

m=1

σm, (6.2)

where each σm is an arc in Ũ ending in em ⊂ ∂aŨ such that f is a homeomorphism

from σm to σL or σR depending on whether f |em : em → a is orientation-preserving or

orientation-reversing. If we remove from each arc σm its endpoint in em, then the half-open

arcs obtained are all disjoint. However, since f : Ũ → U is a d-to-1 covering map, there

are precisely d distinct lifts of σL \ {p} and d distinct lifts of σR \ {p} under f contained

in Ũ . These must be precisely the half-open arcs obtained from σm, m = 1, . . . , 2n. It

follows that 2n = 2d , as desired.

Suppose Ũ is an essential component of f −1(U). We consider a circuit in ∂Ũ ⊂ G

and denote by H ⊂ G the underlying graph of the circuit. In the following, we will often

conflate the circuit with its underlying graph H, where we think of H as traversed as a

circuit in some way. Since Ũ is a connected set in S2 \ G ⊂ S2 \H, there exists a unique

face V of H such that Ũ ⊂ V . By definition, for 0 < ε < 1, an ε-boundary β of Ũ with

respect to H is an ε-boundary of V with respect to H. This is an abuse of terminology,

because even for small ε > 0, such an ε-boundary β may not lie in Ũ , but it is convenient

in the following. Note that for small enough ε > 0, such ε-boundaries for fixedH have the

same isotopy type relative to Pf .

By definition, the essential circuit length of Ũ is the minimal length of all circuits H

in ∂Ũ such that for all small enough ε > 0, each ε-boundary of Ũ with respect to H is

isotopic to a core curve of Ũ relative to Pf . As we will see momentarily, if we run through

∂aŨ and ∂cŨ as circuits, then they have this property and so the essential circuit length

of Ũ is well defined. We call a circuitH in ∂Ũ that realizes the essential circuit length an

essential circuit for Ũ .

LEMMA 6.4. We have the inequality

circuit length of Ũ ≥ essential circuit length of Ũ .

For example, consider the annulus Ũ containing the pullback α̃ in Figure 18. Then the

circuit length of Ũ equals 6, while the essential circuit length of Ũ equals 4.

Proof. Consider ∂aŨ as a circuit in ∂Ũ . Let Va be the unique face of ∂aŨ that contains

Ũ . Then, for sufficiently small ε > 0, each ε-boundary β of Va with respect to ∂aŨ

necessarily separates ∂aŨ and ∂cŨ , and is thus a core curve of Ũ . The statement

follows.
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FIGURE 19. The Thurston map f from Figure 18 and a set E = {e1, e2} of arcs in (S2, f −1(Pf )) satisfying the

α-restricted blow-up conditions.

Let f̂ be a Thurston map obtained from f by blowing up some set of arcs E in

S2 \ f −1(Pf ). Under certain natural assumptions on the arcs in E, we want to describe

the components of f̂ −1(U) and their properties in terms of the components of f −1(U).

We first formulate suitable conditions that allow such a comparison.

Definition 6.5. (α-restricted blow-up conditions) Let f : S2 → S2 be a Thurston map with

#Pf = 4, α be an essential Jordan curve in (S2, Pf ), and a and c be core arcs of α that lie

in different components of S2 \ α. Suppose E 	= ∅ is a finite set of arcs in (S2, f −1(Pf ))

satisfying the blow-up conditions, that is, the interiors of the arcs in E are disjoint and

f : e → f (e) is a homeomorphism for each e ∈ E.

We say that E satisfies the α-restricted blow-up conditions if

i(f (e), α) = #(f (e) ∩ α) = 1 and f (int(e)) ∩ a = ∅ = f (int(e)) ∩ c (6.3)

for each e ∈ E.

In other words, for each e ∈ E, the arc f (e) is in minimal position with respect to α and

intersects α only once, and f (int(e)) = int(f (e)) belongs to the annulus U = S2 \ (a ∪ c).

Note that the endpoints of f (e) lie in Pf ⊂ a ∪ c = ∂U ; see Figure 19 for an illustration.

The condition in (6.3) is somewhat artificial, because it depends not only on α, but

also on the choices of a and c. One can show that up to isotopy, it can be replaced by the

more natural condition i(f (e), α) = 1 for all e ∈ E. Since the justification of this claim

involves some topological machinery that is beyond the scope of the paper, we prefer to

work with (6.3).

Now the following statement is true.

LEMMA 6.6. Let f : S2 → S2 be a Thurston map with #Pf = 4, α be an essential Jordan
curve in (S2, Pf ), a and c be core arcs of α that lie in different components of S2 \ α.
Suppose a set E of arcs in (S2, f −1(Pf )) satisfies the α-restricted blow-up conditions and
we are given multiplicities me ∈ N for e ∈ E.

Then the Thurston map f̂ obtained from f by blowing up each arc e ∈ E with multiplicity
me can be constructed so that it satisfies the following conditions.
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FIGURE 20. A Thurston map f̂ obtained from the Thurston map f in Figures 18 and 19 by blowing up the arcs e1

and e2 with multiplicities me1
= 2 and me2

= 1, respectively.

(i) G = f −1(a ∪ c) is a subgraph of Ĝ := f̂ −1(a ∪ c).
(ii) Each complementary annulus Û of Ĝ is contained in a unique complementary

annulus Ũ of G. Moreover, the assignment Û �→ Ũ is a bijection between the
complementary annuli of Ĝ and of G.

Let Û and Ũ be corresponding annuli as in condition (ii). Then the following statements
are true.

(iii) The core curves of Û and of Ũ are isotopic relative to Pf = Pf̂ . In particular, Û is

essential if and only if Ũ is essential.
(iv) If Û (and hence also Ũ ) is essential, then the essential circuit lengths of Û and Ũ

are the same. Moreover, if H is an essential circuit for Û , then H is an essential
circuit for Ũ . In particular,H ⊂ ∂Ũ ⊂ ∂Û .

In condition (i), it is understood that the planar embedded graph G = f −1(a ∪ c) ⊂

S2 has the vertex set f −1(Pf ) and that Ĝ = f̂ −1(a ∪ c) has the vertex set f̂ −1(Pf̂ ) ⊃

f −1(Pf ).

To illustrate the lemma, we consider the Thurston map f̂ that is indicated in Figure 20

and obtained from the Thurston map f in Figure 18 by blowing up the arcs e1 and e2

in Figure 19 with multiplicities me1
= 2 and me2

= 1. Here, the lifts of a and c under

the blown-up map f̂ are shown in blue and magenta colors on the left sphere, respectively.

Comparing these figures, we immediately see that in this case, the statements of the lemma

are true.

Proof. Let e ∈ E be arbitrary. Since E satisfies the conditions in Definition 6.5, the set

f (e) is an arc in (S2, Pf ), and so f (e) has its endpoints in Pf . By (6.3), the arc f (e)

meets α precisely once and is in minimal position with respect to α. In particular, f (e)

meets α transversely by Lemma 2.2. This implies that the endpoints of f (e) lie in different

core arcs of α, and so one endpoint of f (e) lies in a and the other one in c. It follows that

e has one endpoint in f −1(a) and the other one in f −1(c).

The set int(e) belongs to a unique annulus Ũ obtained as a complementary component

of G = f −1(a ∪ c). Then one endpoint of e is in ∂aŨ = f −1(a) ∩ ∂Ũ and the other one

in ∂cŨ = f −1(c) ∩ ∂Ũ . In the blow-up construction described in §4.1, we can choose
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the open Jordan region We so that We ⊂ Ũ for each e ∈ E (of course, here the annulus

Ũ depends on e). Now we make choices of the subsequent ingredients in the blow-up

construction as discussed in §4.1. That is, for each fixed arc e ∈ E, we choose a closed

Jordan region De inside We. It is subdivided into m = me components D1
e , . . . , Dm

e .

In addition, we also choose a pseudo-isotopy h : S2 × I → S2 satisfying conditions

(B1)–(B4), as well as maps ϕk : Dk
e → S2, k = 1, . . . , m = me, satisfying conditions

(C1) and (C2). Let f̂ be the Thurston map obtained by blowing up each arc e ∈ E with

multiplicity me according to these choices. We claim that f̂ satisfies all the conditions in

the statement.

It immediately follows from condition (B3) and the definition of f̂ thatG = f −1(a ∪ c)

is a subgraph of Ĝ := f̂ −1(a ∪ c), and so statement (i) is true.

We have Ĝ \ G ⊂
⋃

e∈E De. Condition (C1) now implies that for each e ∈ E and

each k = 1, . . . , m = me, the set Ĝ ∩ Dk
e consists of two disjoint edges, one of which

is homeomorphically mapped onto a and the other one onto c by f̂ . We will call these

edges a-sticks and c-sticks, respectively. Each closed Jordan region De contains exactly me

a-sticks, which have a common endpoint in ∂e ∩ f −1(a), and exactly me c-sticks with a

common endpoint in ∂e ∩ f −1(c). The edge set of Ĝ consists of all the edges of G together

with all the a-sticks and c-sticks.

Each complementary component Û of Ĝ is equal to a unique complementary component

Ũ of G with all the a- and c-sticks removed that are contained in cl(Ũ ). Statement (ii)

follows. Furthermore, since Pf ∩ Ũ = ∅, statement (iii) follows as well.

To prove statement (iv), let Ũ and Û be corresponding essential annuli as in statement

(ii). Viewing ∂Ũ as a subgraph of G and ∂Û as a subgraph of Ĝ, we see that ∂Ũ is a

subgraph of ∂Û . The additional edges of ∂Û are exactly the a- and c-sticks contained in

cl(Ũ ). It follows from the definition that the essential circuit length of Û is greater than or

equal to the essential circuit length of Ũ .

Let H be an essential circuit for Û and suppose H contains an a- or c-stick σ . Then

one of the endpoints of σ has degree 1 in ∂Û , and so σ must appear in two consecutive

positions in the circuit H. Omitting these two occurrences of σ from H, we get a shorter

circuitH′ in ∂Û such that for all small enough ε > 0, each ε-boundary of Û with respect

to H′ is isotopic to a core curve of Û relative to Pf̂ = Pf . This contradicts the choice of

H, and it follows thatH does not contain any a- or c-sticks. Consequently,H ⊂ ∂Ũ ⊂ ∂Û ,

and the definition of the essential circuit length together with statement (iii) imply that H

is an essential circuit for Ũ . Statement (iv) follows.

7. Eliminating obstructions by blowing up arcs
The goal of this section is to show that the blow-up surgery can be applied to an obstructed

Thurston map f with four postcritical points in such a way that the resulting map f̂ is

realized by a rational map. The precise formulation is given in Theorem 1.1 (see also

Remark 7.2). We will prove this statement by contradiction. For this, we assume that f̂

has an obstruction, and will carefully analyze some related mapping degrees. This leads

to a very tight situation, where in some inequalities, we actually have equality. From this,

we want to conclude that f has a parabolic orbifold, in contradiction to our hypotheses in

Theorem 1.1. We first formulate a related criterion for parabolicity.
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LEMMA 7.1. Let f : S2 → S2 be a Thurston map with #Pf = 4. Suppose there exists a
Jordan curve α in (S2, Pf ) such that the following conditions are true:

(i) α is an obstruction for f;
(ii) α has no peripheral pullbacks under f;

(iii) if we choose core arcs a and c of α in different components of S2 \ α and consider
the graph G = f −1(a ∪ c), then G has precisely n ∈ N essential complementary
components U1, . . . , Un with core curves isotopic to α relative to Pf . Moreover,
we assume the essential circuit length of Uj is equal to 2n for each j = 1, . . . , n.

Then f has a parabolic orbifold.

Proof. Each Uj contains precisely one pullback αj of α under f. The curves α1, . . . , αn

are all the pullbacks of α under f. Then it follows from our assumptions that

2 deg(f : αj → α) = 2 deg(f : Uj → U)

= circuit length of Uj (by Lemma 6.3)

≥ essential circuit length of Uj (by Lemma 6.4)

= 2n,

and so deg(f : αj → α) ≥ n for j = 1, . . . , n. However, α is an obstruction for f, and so

1 ≤ λf (α) =

n∑

j=1

1

deg(f : αj → α)
≤ n/n = 1.

It follows that we have equality in all previous inequalities. In particular,

circuit length of Uj = essential circuit length of Uj = 2n

for j = 1, . . . , n.

We want to apply the second part of Lemma 3.3, that is, we want to show that

f −1(Pf ) ⊂ Cf ∪ Pf . To see this, let v ∈ f −1(Pf ) be arbitrary. Then v is a vertex of

G = f −1(a ∪ c). If v is incident with two or more edges in G, then v ∈ Cf .

Otherwise, v is the endpoint of precisely one edge e in G, and so degG(v) = 1. We

claim that then v ∈ Pf ; to see this, we argue by contradiction and assume that v 	∈ Pf .

Since α has no peripheral pullbacks, we have

e ⊂ G =

n⋃

j=1

∂Uj ,

and so e ⊂ ∂Uj for some Uj . Then e is contained in a circuit (e1, . . . , e2n) of length 2n

that traces one of the components of ∂Uj . Since degG(v) = 1, the circuit must traverse e
twice with opposite orientations, that is, the edge e appears precisely in two consecutive

entries in the cycle (e1, . . . , e2n). Erasing these two occurrences from the cycle, we obtain

a new circuit in ∂Uj ⊂ G with length 2n − 2. LetH denote the underlying subgraph of G

corresponding to this shortened circuit and let U be the face of H that contains Uj . Since

the endpoint v of e does not belong to Pf , for every small enough ε > 0, the ε-boundary

ofH with respect to U is isotopic to the curve αj relative to Pf . Then the essential circuit
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length of Uj is ≤ 2n − 2, contradicting the fact that 2n is the essential circuit length of Uj

by our hypotheses. So we must have v ∈ Pf .

It follows that f −1(Pf ) ⊂ Cf ∪ Pf , and so f has a parabolic orbifold by

Lemma 3.3.

We are now ready to prove our main result.

Proof of Theorem 1.1. As in the statement, suppose f : S2 → S2 is a Thurston map with

#Pf = 4 and a hyperbolic orbifold. We assume that f has an obstruction given by a Jordan

curve α in (S2, Pf ). We choose core arcs a and c for α that lie in different components

of S2 \ α, and assume that E 	= ∅ is a finite set of arcs in (S2, f −1(Pf )) that satisfies the

α-restricted blow-up conditions as in Definition 6.5.

We assume that we obtained a Thurston map f̂ : S2 → S2 by blowing up arcs in E (with

some multiplicities) so that λf̂ (α) < 1. Then Pf̂ = Pf and f̂ has a hyperbolic orbifold

(see Lemma 4.3 and Remark 4.4). Up to replacing f̂ with a Thurston equivalent map, we

may also assume that the statements in Lemma 6.6 are true for the map f̂ . We now argue

by contradiction and assume that f̂ is not realized by a rational map. Then by Theorem 3.7,

the map f̂ has an obstruction given by a Jordan curve γ in (S2, Pf ).

We set U = S2 \ (a ∪ c). Since E satisfies the α-restricted blow-up conditions, we have

#(f (e) ∩ α) = 1 and f (int(e)) ∩ a = f (int(e)) ∩ c = ∅ for each e ∈ E. In other words,

f (e) intersects α only once and int(f (e)) belongs to U. Then each arc in E intersects only

one pullback of α and only once.

Since γ is an obstruction for f̂ , but α is not, the curves α and γ are not isotopic relative

to Pf̂ = Pf . So we have i(α, γ ) > 0 for intersection numbers in (S2, Pf ) as follows from

Lemma 2.1. By Lemma 2.6(i), we have

i(a, γ ) = i(c, γ ) = 1
2
i(α, γ ) > 0. (7.1)

As follows from Lemma 2.6(ii), by replacing γ with an isotopic curve relative to Pf̂ = Pf

if necessary, we may also assume that

#(α ∩ γ ) = i(α, γ ), #(a ∩ γ ) = i(a, γ ), #(c ∩ γ ) = i(c, γ ) (7.2)

and that the points in the non-empty and finite sets a ∩ γ and c ∩ γ alternate on γ .

We denote by α1, . . . , αn with n ∈ N the pullbacks of α under f that are isotopic to

α relative to Pf . Now we consider the graphs G = f −1(a ∪ c) and Ĝ = f̂ −1(a ∪ c) as

in §6. By Lemma 6.6, G is a subgraph of Ĝ. Moreover, the following facts are true for

their complementary components. Each αj is a core curve in an essential annulus Uj that

is a component of S2 \ G. Each Uj contains precisely one component Ûj of S2 \ Ĝ. This

component is essential and contains precisely one essential pullback α̂j of α under f̂ . The

essential circuit length of Uj is the same as the essential circuit length of Ûj . The curves

α̂1, . . . , α̂n are precisely all the distinct essential pullbacks of α under f̂ . They are isotopic

to α relative to Pf .

Let γ1, . . . , γk with k ∈ N be the pullbacks of γ under f̂ that are isotopic to γ relative

to Pf̂ = Pf . Applying Lemmas 6.3 and 6.2 (for the latter, equations (7.1) and (7.2) are

important) to an essential circuit for Ûj , we see that
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deg(f : αj → α) = deg(f : Uj → U)

= 1
2

· circuit length of Uj

≥ 1
2

· essential circuit length of Uj

= 1
2

· essential circuit length of Ûj

≥ k (7.3)

for j = 1, . . . , n.

However, α has n distinct essential pullbacks α̂1, . . . , α̂n under f̂ , and so Lemma 5.5

implies that deg(f̂ : γm → γ ) ≥ n for m = 1, . . . , k (again equations (7.1) and (7.2) are

used here). Since α and γ are obstructions for f and f̂ , respectively, we conclude that

1 ≤ λf (α) =

n∑

j=1

1

deg(f : αj → α)
≤ n/k

and

1 ≤ λf̂ (γ ) =

k∑

m=1

1

deg(f̂ : γm → γ )
≤ k/n.

It follows that k = n, which forces deg(f : αj → α) = deg(f̂ : γj → γ ) = n for

j = 1, . . . , n. If we combine this with (7.3), then we also see that

circuit length of Uj = essential circuit length of Uj

= essential circuit length of Ûj = 2n (7.4)

for j = 1, . . . , n.

We now want to apply Lemma 7.1 to our map f and the obstruction α. To verify the

hypotheses of Lemma 7.1, it remains to show that α has no peripheral pullbacks under f,
or equivalently, no peripheral pullbacks under f̂ (see Lemma 6.6(iii)).

We argue by contradiction and assume that α has some peripheral pullbacks under f̂ .

Then there exists at least one peripheral annulus in the complement of Ĝ. Such an annulus

is disjoint from each annulus Ûj . We can then travel from a point p of such a peripheral

annulus to a point in the set Û1 ∪ · · · ∪ Ûn along an arc σ in S2 \ f̂ −1(Pf̂ ) that crosses

each edge in the graph Ĝ transversely. Then there is a first point q on σ where we enter the

closure M of Û1 ∪ · · · ∪ Ûn. The point q is necessarily an interior point of an edge e of Ĝ

contained in the boundary ∂Ûj for some j ∈ {1, . . . , n}. Interior points of the subarc of σ

between p and q that are close to q do not lie in M ∪ Ĝ. Hence, such points must belong to

a peripheral component Û of Ĝ. Then necessarily, e ⊂ ∂Û .

In other words, there exists an edge e in the graph Ĝ that belongs to the boundary

of an essential annulus Ûj and a peripheral annulus Û . Clearly, f̂ (e) = a or f̂ (e) = c.

In the following, we will assume that f̂ (e) = c, that is, e ⊂ ∂cÛj ∩ ∂cÛ ; the other case,

f̂ (e) = a, is completely analogous.

Since i(c, γ ) = #(c ∩ γ ) > 0, there exists a pullback γ̂ of γ under f̂ that meets e
transversely. Consequently, this pullback γ̂ meets both Ûj and Û . Since f̂ : γ̂ → γ is
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a covering map and the points in a ∩ γ 	= ∅ and c ∩ γ 	= ∅ alternate on γ , the points in

f̂ −1(a) ∩ γ̂ 	= ∅ and f̂ −1(c) ∩ γ̂ 	= ∅ alternate on γ̂ . This implies that the curve γ̂ also

meets the sets ∂aÛj and ∂aÛ , and hence both components of the boundary of Ûj and of Û .

We conclude that γ̂ meets the core curve α̂j of Ûj and the core curve α̂ of Û . Note that α̂ is

a peripheral pullback of α under f̂ . To show that this is impossible, we consider two cases.

Case 1: γ̂ is an essential pullback of γ under f̂ , say γ̂ = γm for some m ∈ {1, . . . , n}.

Then Lemma 5.5 (for the map f̂ , and α, γ̂ in the roles of γ , α̃, respectively) shows

n < deg(f̂ : γ̂ → γ ), because α has n essential pullbacks and γ̂ meets a peripheral

pullback of α. However, we know that deg(f̂ : γ̂ → γ ) = deg(f̂ : γm → γ ) = n. This is

a contradiction.

Case 2: γ̂ is a peripheral pullback of γ under f̂ . Let H := ∂cUj . Then it follows from

Lemma 6.6 that H ⊂ ∂cÛj . Moreover, equation (7.4) implies that H (considered as a

circuit) realizes the essential circuit lengths of Uj and Ûj , which are both equal to 2n.

Now e ⊂ ∂cUj = H, and so H meets the peripheral pullback γ̂ of γ under f̂ . The

second part of Lemma 6.2 applied to H implies that the number k of essential pullbacks

of γ under f̂ is less than n, contradicting k = n.

To summarize, these contradictions show that α has no peripheral pullbacks under f̂ ,

and hence no peripheral pullbacks under f by Lemma 6.6(iii). So we can apply Lemma 7.1

and conclude that f has a parabolic orbifold. This is yet another contradiction, because f
has a hyperbolic orbifold by our hypotheses. This shows that our initial assumption that

f̂ has an obstruction is false. Hence, f̂ is realized by a rational map. This completes the

proof of Theorem 1.1.

Remark 7.2. Let f : S2 → S2 be a Thurston map with #Pf = 4 and a hyperbolic orbifold,

and suppose f has an obstruction represented by a Jordan curve α in (S2, Pf ). Then there

always exist a set of arcs E 	= ∅ in (S2, f −1(Pf )) satisfying the α-restricted blow-up

conditions and multiplicities me, e ∈ E, such that the corresponding blown-up map f̂

satisfies λf̂ (α) < 1. We are then exactly in the setup of Theorem 1.1.

To see this, we first fix some core arcs a and c of α lying in different components of

S2 \ α. We now choose an arc e0 in (S2, Pf ) with i(e0, α) = #(e0 ∩ α) = 1 and int(e0) ⊂

S2 \ (a ∪ c). Let E be the (non-empty) set of all lifts of e0 under f. Then E is a set of arcs

in (S2, f −1(Pf )) and it is clear that E satisfies the α-restricted blow-up conditions. If α̃ is

any pullback of α under f, then there exists at least one arc e ∈ E that meets α̃ (necessarily

in an interior point of e). Blowing up the arc e with some multiplicity me ∈ N increases

the mapping degree for the corresponding pullback α̂ under f̂ by me and does not change

the isotopy class of this pullback, that is, [̂α] = [̃α] relative to Pf̂ = Pf (this easily follows

from Lemma 6.6 and its proof). Note that each pullback α̂ of α under f̂ corresponds to

a pullback α̃ of α under f (this is essentially Lemma 6.6(ii)). It follows that if we choose

the multiplicities me, e ∈ E, large enough, then for the Thurston map f̂ , we will have

λf̂ (α) < 1 and so α is not an obstruction for f̂ . By Theorem 1.1, the map f̂ is actually

realized by a rational map. So by a suitable blow-up operation, an obstructed Thurston

map f (with Pf = 4 and a hyperbolic orbifold) can be turned into a Thurston map f̂ that

is realized.
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8. Global curve attractors
In this section, we will prove Theorem 1.4. We consider the pillow P with its vertex

set V = {A, B, C, D}. For the remainder of this section, f : P → P is a Thurston map

obtained from the (2 × 2)-Lattès map by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical

flaps to P. Then f is Thurston equivalent to a rational map by Theorem 1.2. In the following,

all isotopies on P are considered relative to Pf = V .

To prove Theorem 1.4, we want to show that Jordan curves in (P, V ) are getting ‘less

twisted’ under taking preimages under f. To formalize this, we define the complexity ‖x‖

of x ∈ Q̂ ∪ {
} as ‖x‖ := 0 for x = 
 and ‖x‖ := |r| + s for x = r/s ∈ Q̂. Recall that 


represents the isotopy classes of all peripheral curves, and that for a slope r/s ∈ Q̂, we use

the convention that the numbers r ∈ Z and s ∈ N0 are relatively prime and that r = 1 if

s = 0. Note that ‖x‖ = 0 for x ∈ Q̂ ∪ {
} if and only if x = 
.

The complexity admits a natural interpretation in terms of intersection numbers. To

see this, recall that αh and αv (see (2.4)) represent simple closed geodesics in (P, V ) that

separate the two horizontal and the two vertical edges of P, respectively. Suppose the slope

r/s ∈ Q̂ corresponds to the isotopy class [γ ] of a (necessarily essential) Jordan curve γ in

(P, V ). Then by Lemma 2.4(v),

‖r/s‖ = |r| + s = 1
2
i(γ , αh) + 1

2
i(γ , αv).

Moreover, if γ is peripheral, then i(γ , αh) + i(γ , αv) = 0, which agrees with the fact that

‖
‖ = 0.

As we will see, under the slope map µf (as defined in §1.2), complexities do not

increase, and actually strictly decrease unless the slope belongs to a certain finite set. More

precisely, we will show the following statement.

PROPOSITION 8.1. Let f : P → P be a Thurston map obtained from the (2 × 2)-Lattès
map by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to the pillow P. Then the
following statements are true:

(i) ‖µf (x)‖ ≤ ‖x‖ for all x ∈ Q̂ ∪ {
};
(ii) ‖µf (x)‖ < ‖x‖ for all x ∈ Q̂ ∪ {
} with ‖x‖ > 8.

Since the set {x ∈ Q̂ ∪ {
} : ‖x‖ ≤ 8} is finite, we actually have the strict inequality in

statement (i) with at most finitely many exceptions. The proof of the proposition will show

that ‖µf (x)‖ = ‖x‖ if and only if µf (x) = x (see Remark 8.6). As we will see below,

Theorem 1.4 easily follows from Proposition 8.1.

Before we proceed with the proof of this proposition, we will establish several auxiliary

results. As in §2.4, a, b, c, d are the edges of the pillow P, and ℘ : C → P denotes the

Weierstrass function that is doubly periodic with respect to the lattice 2Z2.

We are interested in simple closed geodesics and geodesic arcs τ in (P, V ). Recall that

every such geodesic has the form τ = ℘(�r/s) for a line �r/s ⊂ C with slope r/s ∈ Q̂. If

�r/s ⊂ C \ Z2, then τ = ℘(�r/s) is a simple closed geodesic in (P, V ), that is, τ ⊂ P \ V .

If �r/s contains a point in Z2, then τ = ℘(�r/s) is a geodesic arc in (P, V ), that is, its

interior lies in P \ V and its endpoints are in V.
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LEMMA 8.2. Let τ be a simple closed geodesic or a geodesic arc in (P, V ) with slope
r/s ∈ Q̂. We consider the 1-edges of P with respect to the (n × n)-Lattès map Ln, n ≥ 2,
that is, the lifts of the edges a, b, c, d of P under Ln. Then the following statements are
true.

(i) If |r| > 2n, then τ intersects the interior of every horizontal 1-edge of P.
(ii) If s > 2n, then τ intersects the interior of every vertical 1-edge of P.

Proof. We will only show the first part of the statement. The proof of the second part is

completely analogous.

Let τ be a simple closed geodesic or a geodesic arc in (P, V ) with slope r/s ∈ Q̂, where

|r| > 2n. Suppose that e is a horizontal 1-edge and ẽ is a lift of e under ℘. Then the arc ẽ

is a line segment of length 1/n contained in a line �0 ⊂ C parallel to the real axis. To show

that τ meets int(e), it suffices to represent the given geodesic τ in the form τ = ℘(�r/s)

for a line �r/s ⊂ C with �r/s ∩ int(̃e) 	= ∅.

For this, we choose p, q ∈ Z such that pr + qs = 1 and define ω := 2(s + ir) and

ω̃ := 2(−p + iq). The numbers ω and ω̃ form a basis of the period lattice 2Z2 of ℘. In

particular, if τ = ℘(�r/s(z0)) for some z0 ∈ C, then τ = ℘(�r/s(z0 + jω̃)) for all j ∈ Z.

The lines �r/s(z0 + jω̃), j ∈ Z, are parallel and equally spaced. Actually, two consecutive

lines in this family differ by a translation by ω̃. Since r 	= 0, these lines are not parallel

to the real axis and so they will cut out subsegments of equal length on the line �0 that

contains ẽ. To determine the length of these segments, we write ω̃ in the form

ω̃ = u + vω (8.1)

with u, v ∈ R. It is easy to see that equation (8.1) implies that u = −2/r (multiply

equation (8.1) by the complex conjugate of ω and take imaginary parts), and so the lines

in our family cut �0 into subsegments of length |u| = 2/|r|. Since |u| = 2/|r| < 1/n

by our hypotheses, one of these lines meets int(̃e). This implies that τ ∩ int(e) 	= ∅, as

desired.

We now want to see what happens to a geodesic arc ξ in (P, V ) if we take preimages

under a map f as in Proposition 8.1. Unless ξ has slope in a finite exceptional set, suitable

sets H in the preimage f −1(ξ) will meet the interior of a flap glued to the pillow P, and

consequently a peripheral pullback of the horizontal curve αh ⊂ P or of the vertical curve

αv ⊂ P. We will formulate some relevant statements in a slightly more general situation.

We first introduce some terminology.

Suppose Z ⊂ S2 consists of four distinct points. We say that K ⊂ S2 essentially
separates Z if we can split Z into two disjoint subsets Z1 and Z2 consisting of two points

each such that K separates Z1 and Z2. Note that K trivially has this property if K ∩ Z

consists of two or more points.

Now let n ∈ N, n ≥ 2, and consider the (n × n)-Lattès map Ln : P → P. If ξ is a

geodesic arc in (P, V ), then the preimage L−1
n (ξ) is a disjoint union of simple closed

geodesics and geodesic arcs in (P, V ). Note that each connected component of L−1
n (ξ)

essentially separates V, but no proper subset of such a component does. It follows that if

K ⊂ L−1
n (ξ) is a connected set, then it essentially separates V if and only if K is a simple

closed geodesic or a geodesic arc in (P, V ).
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Let L̂ : P̂ → P be a branched covering map obtained from the (n × n)-Lattès map by

gluing flaps to P. As in §4.2, we denote by V̂ the vertex set and by B(̂P) the base of the

flapped pillow P̂. By construction, L̂ maps each 1-tile of P̂ by a Euclidean similarity (with

scaling factor n) onto a 0-tile of P. We also recall that we can naturally view the base B(̂P)

as a subset of P (see (4.2)) and, with such an identification, the map L̂ coincides with Ln

on B(̂P).

Suppose that a geodesic arc ξ in (P, V ) joins two distinct points X, Y ∈ V . We consider

Ĝ := L̂
−1

(ξ) as a planar embedded graph in P̂ with the set of vertices L̂
−1

({X, Y }) and

the edges given by the lifts of ξ under L̂.

LEMMA 8.3. Let L̂ : P̂ → P be a branched covering map obtained from the (n × n)-Lattès
map with n ≥ 2 by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to P. Suppose ξ is a
geodesic arc in (P, V ) with slope r/s ∈ Q̂ \ {0, ∞} and ξ̂ is a lift of ξ under L̂.

Let F be a flap in P̂ with the base edges e′ and e′′. If

ξ̂ ∩ (int(F ) ∪ int(e′) ∪ int(e′′)) 	= ∅,

then ξ̂ meets a base edge and the top edge of the flap F.

Proof. The proof is similar to the proof of Lemma 5.6. Recall that a, b, c, d denote the

edges of the pillow P. Suppose ξ ⊂ P, ξ̂ ⊂ P̂, and e′, e′′ ⊂ F are as in the statement

of the lemma. Let ẽ ⊂ F be the top edge of F.

Without loss of generality, we will assume that F is a horizontal flap. Then L̂(e′) = a

or L̂(e′) = c. We will make the further assumption that L̂(e′) = a. The other cases, when

L̂(e′) = c or when F is a vertical flap, can be treated in a way that is completely analogous

to the ensuing argument. Then L̂(e′′) = a and L̂(̃e) = c. Moreover,

L̂
−1

(a ∪ c) ∩ F = e′ ∪ e′′ ∪ ẽ. (8.2)

Since ξ is a geodesic arc in (P, V ) with slope r/s 	= 0, by Lemma 2.5, the sets a ∩ ξ

and c ∩ ξ are non-empty and finite, and the points in these sets alternate on ξ . We claim

that there is a point p ∈ ξ̂ ∩ int(F ). By our hypotheses, this can only fail if ξ̂ meets either

int(e′) or int(e′′) in a point q. Since the arc ξ has a transverse intersection with int(a) at

L̂(q), the arc ξ̂ has a transverse intersection with int(e′) or int(e′′) at q. Then ξ̂ meets

int(F ) in a point p in any case.

Since the points in a ∩ ξ 	= ∅ and c ∩ ξ 	= ∅ alternate on ξ , the points in

ξ̂ ∩ L̂
−1

(a) 	= ∅ and ξ̂ ∩ L̂
−1

(c) 	= ∅ alternate on ξ̂ . Note that F ∩ L̂
−1

(c) = ẽ and

F ∩ L̂
−1

(a) = ∂F = e′ ∪ e′′. So, if we trace the arc ξ̂ starting from p in two different

directions, we must meet a base edge of F in one direction and the top edge of F in the

other direction. The statement follows.

Now the following fact is true.

LEMMA 8.4. Let L̂ : P̂ → P be a branched covering map obtained from the (n × n)-Lattès
map with n ≥ 2 by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to P. Suppose that
ξ is a geodesic arc in (P, V ) with slope r/s ∈ Q̂ and H is any connected subgraph of

Ĝ = L̂
−1

(ξ) that essentially separates V̂ ⊂ P̂. If |r| + s > 4n, then H meets a base edge
and the top edge of a flap in P̂.
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Proof. Suppose ξ is a geodesic arc in (P, V ) with slope r/s ∈ Q̂, where |r| + s > 4n, and

H is a connected subgraph of Ĝ = L̂
−1

(ξ) that essentially separates the vertex set V̂ of

P̂. Note that then r/s 	= 0, ∞, which will allow us to apply Lemma 8.3. Each edge of the

graph Ĝ = L̂
−1

(ξ) is a lift ξ̂ of ξ as in this lemma.

We now argue by contradiction and suppose that there is no flap F in P̂ such that H

meets both a base edge and the top edge of F. By the definition of B(̂P) (see (4.1)) and

Lemma 8.3, this means that each edge of H, and thus the graph H itself, is contained in

B(̂P). Consequently, we can considerH as a connected subset of P ⊃ B(̂P). On B(̂P), the

maps L̂ and Ln are identical. Therefore, we can also regard H as a connected subset of

L−1
n (ξ).

The set H, now considered as a subset of P, essentially separates V ⊂ P. To see this,

let V̂1, V̂2 ⊂ V̂ ⊂ P̂ be two pairs of vertices separated byH in P̂. We can identify V̂1 with

a pair V1 and V̂2 with a pair V2 of vertices of P. We claim that V1 and V2 are separated

by H in P. Indeed, if this was not the case, then we could find a path β in P that joins

V1 and V2 without meeting H. This path can be modified as follows to a path β̂ in P̂ that

joins V̂1 and V̂2 and does not meet H ⊂ P̂: if β meets some 1-edge e of P to which one

or several flaps are glued, then on β, there is a first point p ∈ e and a last point q ∈ e. We

now replace the part of β between p and q by a path that joins points corresponding to

p and q in P̂, travels on these flaps, and does not meet H. If we make such replacements

for all these edges e consecutively, then we obtain a path β̂ that joins V̂1 and V̂2, but

is disjoint from H. However, such a path β̂ cannot exist, because H separates V̂1 and

V̂2 in P̂.

We see that H ⊂ L−1
n (ξ) indeed essentially separates V. Since H is connected, the

discussion above (after the definition of essential separation) implies that H is a simple

closed geodesic or a geodesic arc in (P, V ) with slope r/s. Since |r| + s > 4n, either

|r| > 2n or s > 2n. Thus, by Lemma 8.2, the geodesic H meets each horizontal 1-edge

of P in the first case or each vertical 1-edge of P in the second case. Since nh ≥ 1

and nv ≥ 1, in either case, H must meet the interior of a 1-edge along which a flap

is glued and hence cannot be a subset of B(̂P). This is a contradiction and the lemma

follows.

Remark 8.5. Suppose we are in the setup of Lemma 8.4. Then the connected setHmeets a

base edge and the top edge of a flap, say a horizontal flap F. Then there exists a peripheral

pullback α̂ of the horizontal curve αh under the map L̂ that is contained in F. Let e′

and e′′ be the base edges of F, and ẽ be the top edge of F. Then the curve α̂ separates

∂F = e′ ∪ e′′ from ẽ ⊂ F . SinceH is connected and meets both ẽ and e′ ∪ e′′, we conclude

thatH ∩ α̂ 	= ∅. If β is a connected set that tracesH closely, then it will also have points

close to ẽ and close to e′ ∪ e′′. Again this will imply that β ∩ α̂ 	= ∅. This remark will

become important in the proof of Proposition 8.1.

A completely analogous statement to Lemma 8.4 is true (with a very similar proof) if

we assume that ξ is a simple closed geodesic in (P, V ) andH is an essential pullback of ξ

under L̂.

We now turn to the proof of Proposition 8.1.
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Proof of Proposition 8.1. Let f : P → P be a Thurston map obtained from the

(2 × 2)-Lattès map by gluing nh ≥ 1 horizontal and nv ≥ 1 vertical flaps to P. Then

Pf = V , where V = {A, B, C, D} is the set of vertices of P, and A is the unique point in

Pf = V that is fixed by f.
To prove the first statement, let x ∈ Q̂ ∪ {
} be arbitrary. If x = 
, then µf (
) = 


and ‖µf (
)‖ = ‖
‖ = 0. So in the following, we will assume that x = r/s ∈ Q̂. Let

γ ⊂ P \ V be a simple closed geodesic with slope r/s ∈ Q̂. Then γ is an essential

Jordan curve and so each of the two complementary components of γ in P contains

precisely two postcritical points of f. Let ξ and ξ ′ be core arcs of γ belonging to different

components of P \ γ . Here we may assume that ξ and ξ ′ are geodesic arcs in (P, V ) with

slope r/s.

As before, we denote by αh and αv simple closed geodesics in (P, V ) that separate the

two horizontal and the two vertical edges of P, respectively. Then, by Lemma 2.4, we have

i(γ , αh) = 2i(ξ , αh) = #(γ ∩ αh) = 2|r|,

i(γ , αv) = 2i(ξ , αv) = #(γ ∩ αv) = 2s,

‖x‖ = |r| + s = 1
2
i(γ , αh) + 1

2
i(γ , αv).

We call a point p ∈ P a 1-vertex if f (p) ∈ Pf = {A, B, C, D}. We say that a 1-vertex

is of type A, B, C, or D if it is a preimage of A, B, C, or D under f, respectively.

Without loss of generality, we may assume that the core arc ξ connects the point

A with a point X ∈ {B, C, D}. Then ξ ′ joins the two points in {B, C, D} \ {X}. Let

G = f −1(ξ ∪ ξ ′), which we view as a planar embedded graph with the set of vertices

f −1(V ). Note that the degree of a vertex p in G is equal to the local degree of the map f at

p. In addition, the graph G has the following properties.

(P1) G is a bipartite graph. In particular, 1-vertices of type A are connected only to

1-vertices of type X and vice versa.

(P2) Each postcritical point of f is a 1-vertex of type A. If a 1-vertex of type A has degree

≥ 2 in G, then it must be a postcritical point.

The analog of property (P1) is valid for arbitrary Thurston maps with four postcritical

points. To see that property (P2) is true, note that the (2 × 2)-Lattès map sends each of the

four vertices of P to A. This remains true if we glue any number of flaps to P. Moreover,

gluing additional flaps can only create additional preimages of A of degree 1 in G.

If every pullback of γ under f is peripheral, then µf (x) = 
, and so

‖µf (x)‖ = ‖
‖ = 0 < |r| + s = ‖x‖. (8.3)

Suppose γ has an essential pullback γ̃ under f. Then µf (x) ∈ Q̂ is the slope corre-

sponding to the isotopy class of γ̃ . By the discussion in §6, the pullback γ̃ belongs to a

unique component Ũ of P \ G. We use the notation ∂ξ Ũ := f −1(ξ) ∩ ∂Ũ . Then ∂ξ Ũ is

a subgraph of G that only contains 1-vertices of type A and X. Since γ̃ is essential, ∂ξ Ũ

satisfies:

(P3) #(∂ξ Ũ ∩ Pf ) ≤ 2.

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



Thurston obstructions and dynamics on curves 2511

FIGURE 21. Different combinatorial types of the graph ∂ξ Ũ . The subgraph in magenta corresponds to the

appropriate choice ofH in each case. The vertices in black indicate the postcritical points.

Our goal now is to simplify the pullback γ̃ using an isotopy depending on the

combinatorics of ∂ξ Ũ . More precisely, we will construct a curve β that is isotopic to γ̃ , but

has fewer intersections with αh and αv . To obtain a suitable curve β, we now distinguish

several cases that exhaust all possibilities.

Case 1: ∂ξ Ũ does not contain any simple cycle. Then ∂ξ Ũ is a tree and, since γ̃ is

essential, there are exactly two postcritical points in ∂ξ Ũ . These are 1-vertices of type A
by property (P2). LetH ⊂ ∂ξ Ũ be the unique simple path that joins these two postcritical

points in ∂ξ Ũ . By property (P1), the pathH must have length ≥ 2, because the endpoints

ofH have type A and the vertices of types A and X alternate onH.

If the length of H was ≥ 3, then H would contain at least one additional point p of

type A apart from its endpoints. Then degH(p) = 2, so degG(p) ≥ 2, which means p must

be a postcritical point by property (P2). However, then H ⊂ ∂ξ Ũ contains at least three

postcritical points, which contradicts property (P3). We conclude thatH has length 2; see

Figure 21 (Case 1).

Let Û = S2 \H. Then the annulus between γ̃ and H contains no postcritical points of

f, and hence for sufficiently small ε, each ε-boundary β of Û with respect toH is isotopic

to γ̃ , as follows from Lemma 2.1.

Case 2: ∂ξ Ũ contains a simple cycle. Then by property (P1), one of the vertices of

such a cycle must be of type A. Since this vertex has degree equal to 2 in the cycle, and

hence degree ≥ 2 in G, it must be a postcritical point by property (P2). It follows that

#(∂ξ Ũ ∩ Pf ) ≥ 1. So by property (P3), either #(∂ξ Ũ ∩ Pf ) = 1 or #(∂ξ Ũ ∩ Pf ) = 2.

Case 2a: #(∂ξ Ũ ∩ Pf ) = 1. Since γ̃ is essential, there are exactly two postcritical points

in the component of S2 \ γ̃ that contains ∂ξ Ũ . One of them belongs to ∂ξ Ũ , while the other

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



2512 M. Bonk et al

one belongs to a face of ∂ξ Ũ disjoint from Ũ . This postcritical point then necessarily

belongs to a face of a simple cycle H in ∂ξ Ũ . This simple cycle H then necessarily

contains the unique postcritical point in ∂ξ Ũ as we have seen above. Moreover, H must

have length 2, because otherwise, H has an even length ≥ 4 by property (P1). However,

then H contains another 1-vertex of type A with degree ≥ 2, which is necessarily a

postcritical point by property (P2). ThenH ⊂ ∂ξ Ũ contains at least two postcritical points,

which contradicts our assumption for this case. So H has indeed length 2; see Figure 21

(Case 2a).

Let Û denote the face ofH that contains Ũ . Then again, the annulus between γ̃ andH

contains no postcritical points of f, and hence each ε-boundary β of Û with respect to H

is isotopic to γ̃ for sufficiently small ε.

Case 2b: #(∂ξ Ũ ∩ Pf ) = 2. LetH be a simple path in ∂ξ Ũ that joins the two postcritical

points in ∂ξ Ũ . By the same reasoning as in Case 1,H has length 2; see Figure 21 (Case 2b).

Let Û = S2 \H. Since γ̃ is essential, there are no postcritical points in the annulus between

γ̃ andH. Thus, each ε-boundary β of Û with respect toH is isotopic to γ̃ for sufficiently

small ε.

Note that in all cases,H essentially separates V = Pf , because in all cases,H separates

the pairs of points in V contained in different complementary components of γ̃ . Moreover,

by our choice, the circuit length of Û is equal to 4 in Cases 1 and 2b, and equal to 2 in

Case 2a. So in each case, it is ≤ 4. Since ξ and αh are in minimal position, as follows

from Lemma 2.4, we can apply Lemma 6.1 to the face Û ofH. Hence, for each sufficiently

small ε > 0, we can always find an ε-boundary β of Û with respect to H that is isotopic

to γ̃ and satisfies #(β ∩ f −1(αh)) ≤ 4i(ξ , αh).

Let α̃1 and α̃2 be the two pullbacks of αh under f that are isotopic to αh (there are

exactly two such pullbacks by Lemma 5.1). Then in all cases, we have

2i(γ̃ , αh) = 2i(β, αh) = i(β, α̃1) + i(β, α̃2)

≤ #(β ∩ α̃1) + #(β ∩ α̃2)

≤ #(β ∩ f −1(αh))

≤ 4i(ξ , αh)

= 2i(γ , αh). (8.4)

Thus, i(γ̃ , αh) ≤ i(γ , αh). The same reasoning (with a possibly different choice of β) also

shows i(γ̃ , αv) ≤ i(γ , αv). Combining these inequalities, we conclude

‖µf (x)‖ = 1
2
i(γ̃ , αh) + 1

2
i(γ̃ , αv) ≤ 1

2
i(γ , αh) + 1

2
i(γ , αv) = ‖x‖. (8.5)

This completes the proof of the first part of the statement.

Note that the second inequality in (8.4) is strict if β intersects a peripheral pullback

of αh. A similar statement is also true for the analogous inequality for the curve αv .

We now assume that x = r/s ∈ Q̂ satisfies ‖x‖ > 8. We will argue that then either
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the inequality in (8.4) or the analogous inequality for αv is strict. This will lead to

‖µf (x)‖ < ‖x‖.

To see this, first note that f = L̂ ◦ φ−1, where L̂ : P̂ → P is the associated branched

covering map obtained by blowing up the (2 × 2)-Lattès map and φ : P̂ → P is a suitable

homeomorphism (see §4.2 for the details). We proceed as in the first part of the proof and

again represent x by a simple closed geodesic γ in (P, V ) with slope x = r/s. We may

assume that γ has an essential pullback γ̃ under f, because otherwise, we have the desired

strict inequality by (8.3).

We choose a geodesic core arc ξ in (P, V ) and a connected set H ⊂ f −1(ξ) as before

and define Ĥ := φ−1(H). Then Ĥ is a connected subset of L̂
−1

(ξ) that essentially

separates V̂ , where V̂ = φ−1(V ) is the set of vertices of the flapped pillow P̂. Since

‖x‖ = |r| + s > 8, we can apply Lemma 8.4 (with n = 2) and conclude that the set Ĥ

will meet a base edge and the top edge of some flap F in P̂. We will assume that F is a

horizontal flap, the case of a vertical flap being completely analogous.

If ε is small enough, then the ε-boundary β constructed above traces H very closely

in the sense that for each point in H, there is a nearby point in β. The same is true for

β̂ := φ−1(β) and Ĥ. Using Remark 8.5, this implies that if ε is sufficiently small (as we

may assume), then β̂ will meet the peripheral pullback α̂ of αh under L̂ that is contained

in the horizontal flap F. Consequently, β meets the peripheral pullback φ(̂α) of αh under

f. As we already pointed out, this leads to a strict inequality in (8.4) and thus also in (8.5).

The statement follows.

The proof of Theorem 1.4 is now easy.

Proof of Theorem 1.4. Let f : P → P be a Thurston map as in the statement. Then

Proposition 8.1 implies that if x ∈ Q̂ ∪ {
} is arbitrary, then the complexities of the

elements x, µf (x), µ2
f (x), . . . of the orbit of x under iteration of µf strictly decrease

until this orbit eventually reaches the finite set S := {u ∈ Q̂ ∪ {
} : ‖u‖ ≤ 8}. From this

point on, the orbit of x stays in S. The statement follows.

Remark 8.6. The proofs of Theorems 1.3 and 1.4 show that a global curve attractor

A(f ) for f can be obtained from Jordan curves corresponding to slopes in the finite set

S = {x ∈ Q̂ ∪ {
} : ‖x‖ ≤ 8}. Actually, (8.4) and (8.5) imply that ‖µf (x)‖ = ‖x‖ if and

only if µf (x) = x. Therefore, the minimal global curve attractor A(f ) corresponds to

the set {x ∈ Q̂ ∪ {
} : µf (x) = x} ⊂ S. In other words, the minimal A(f ) consists of

peripheral curves and essential curves that are invariant under f (up to isotopy).

In principle, a global curve attractor for a map f, as in Theorem 1.4, depends on the

locations of the flaps. By Remark 8.6, for each concrete case, one can easily determine

the exact attractor by checking if a slope x ∈ Q̂ with ‖x‖ ≤ 8 is invariant. For example,

by using a computer program written by Darragh Glynn, we verified that for the map f
corresponding to the flapped pillow in Figure 22 (with one horizontal flap and one vertical

flap glued at the two 1-edges of P incident to the vertex B), the invariant slopes are 0, ∞,

1, −1.
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FIGURE 22. A flapped pillow.

9. Further discussion
In this section, we briefly discuss some additional topics related to the investigations in

this paper.

9.1. Julia sets of blown-up Lattès maps. An obvious question is what we can say about

the Julia sets of the rational maps provided by Theorem 1.2 (for the definitions of the

Julia and Fatou sets of rational maps and other basic notions in complex dynamics, see

[Mil06a]).

PROPOSITION 9.1. Let g : Ĉ → Ĉ be a rational map that is Thurston equivalent to a
map f : P → P obtained from the (n × n)-Lattès map Ln with n ≥ 2 by gluing nh ≥ 1

horizontal and nv ≥ 1 vertical flaps to the pillow P. Then the following statements are
true.

(i) The Julia set of g is equal to Ĉ if n is even and the vertex A is not contained in a flap,
or if n is odd and none of the points in V is contained in a flap.

(ii) The Julia set of g is equal to a Sierpiński carpet in Ĉ if n is even and A is contained
in a flap, or if n is odd and at least one of the points in V is contained in a flap.

Obviously, these cases cover all possibilities and so the Julia set of g is either the whole

Riemann sphere Ĉ or a Sierpiński carpet, that is, a subset of Ĉ homeomorphic to the

standard 1/3-Sierpiński carpet fractal. As we will see, in the first case, the map g has no

periodic critical points, while it has periodic critical points (namely critical fixed points)

in the second case.

Proof. Let g be a rational map as in the statement. To see what the Julia set of g is, we

will check whether g has periodic critical points or not, and verify in the former case that

g has no Levy arcs (see below for the definition). These conditions are invariant under

Thurston equivalence and therefore it is enough to consider the map f. Then Pf = V ,

where V = {A, B, C, D} is the set of vertices of P. By definition of the (n × n)-Lattès

map Ln, for each X ∈ V , we have Ln(X) = A if n is even and Ln(X) = X if n is odd.
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Since f |V agrees with Ln|V , this implies that for each X ∈ V , we also have f (X) = A if

n is even and f (X) = X if n is odd.

Since the orbit of each critical point under iteration of f passes through the set Pf = V ,

this shows that any periodic critical point of f must be equal to the point A if n is even or

must belong to V if n is odd. Now for X ∈ V , we have degLn
(X) = 1 and so

degf (X) = nX + degLn
(X) = nX + 1,

where nX ∈ N0 is the number of flaps that contain X. These considerations show that f,
and hence also g, has no periodic critical points in case (i). Hence, the Julia set of g is the

whole Riemann sphere Ĉ in this case (see [Mil06a, Corollary 19.8]).

In case (ii), the map f, and hence also g, has a critical fixed point, and so the Fatou set

of g is non-empty. To show that its Julia set is a Sierpiński carpet, we use the following

criterion that follows from [BD18, Lemma 4.16]: the Julia set of g is a Sierpiński carpet

if and only if g, or equivalently f, has no Levy arcs. Here a Levy arc of f is a path α in P

satisfying the following conditions:

(L1) α is an arc in (P, V ), or α is a simple loop based at a point X ∈ V such that

α \ {X} ⊂ P \ V and each component of P \ α contains at least one point in V;

(L2) there exist k ∈ N and a lift α̃ of α under f k such that α and α̃ are isotopic relative

to V.

Now suppose that f has a Levy arc α with α̃ and k ∈ N as in condition (L2). Then f k |̃α

is a 1-to-1 map and either i(α, αh) > 0 or i(α, αv) > 0. Without loss of generality, we

may assume that i(α, αh) = #(α ∩ αh) > 0. If α is an arc in (P, V ), then we can apply

Lemma 5.5 with γ := αh, f := f k , and α̃ := α̃ and conclude that the number of distinct

pullbacks of αh under f k that are isotopic to αh is at most 1. This is also true if α is a

simple loop as in condition (L1) by the argument in the proof of Lemma 5.5.

We reach a contradiction, because it follows from Lemma 5.1 that αh has nk > 1 such

pullbacks. Consequently, f and g do not have any Levy arcs and so the Julia set of g is a

Sierpiński carpet.

9.2. The global curve attractor problem. We were able to prove the existence of a finite

global curve attractor only for blown-up (n × n)-Lattès maps with n = 2. The proof of

Theorem 1.4 crucially relies on Proposition 8.1, which says that the (naturally defined)

complexity of curves does not increase under the pullback operation. The latter statement

is false in general for blown-up (n × n)-Lattès maps with n ≥ 3.

Numerical computations by Darragh Glynn suggest that for some blown-up (3 × 3)-

Lattès map f, one can have infinitely many slopes x ∈ Q̂ such that ‖µf (x)‖ > ‖x‖. For

example, consider the map f obtained from the (3 × 3)-Lattès map by blowing up once

the horizontal and vertical edges incident to the vertex B of P. Then one can prove the

following general relation for the slope map µf :

µf (r/s) = r ′/s′ ⇒ µf (r/(s + 24r)) = r ′/(s′ + 22r ′).

Based on this, one can show that ‖µf (x)‖ > ‖x‖ for all

x ∈ {1/(m + 24k) : m ∈ {7, 8, 9, 15, 16, 17}, k ∈ N0}.
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Actually, it seems that in this case, the slope map µf has orbits with arbitrarily many strict

increases of complexity. For instance, we have two jumps of complexity for the orbit of

slope 1/9 under µf :

1/9 → 3/25 → 3/23 → 1/7 → 3/19 → 3/17 → 1/5 → 1/5.

Note that this orbit stabilizes at the fixed point 1/5 of µf . The numerical computations by

Darragh Glynn also show that there are examples of blown-up (n × n)-Lattès maps with

n ≥ 5 for which the slope map has periodic cycles of length ≥ 2.

It is natural to ask what one can say about the behavior of the slope map µf for an

obstructed Thurston map f (with #Pf = 4). It was already observed in [KPS16] that for

a blown-up (2 × 2)-Lattès map f with only vertical flaps glued to the pillow P, there are

infinitely many (non-isotopic) invariant essential Jordan curves. Indeed, for such a map

f, the curve αv is f -invariant and satisfies λf (αv) = 1. One can use this to show that f
commutes with T 2 (up to isotopy relative to Pf ), where T is a Dehn twist about αv . This

implies that each curve T 2n(αh) is f -invariant. In fact, it is easy to verify directly that

each essential Jordan curve with slope x ∈ Z ∪ {∞} is f -invariant, or equivalently, that

µf (x) = x for x ∈ Z ∪ {∞}.

However, for such a blown-up (2 × 2)-Lattès map f with only vertical flaps glued to the

pillow P, the general behavior of the slope map µf under iteration has not been analyzed

before. The considerations in the proof of the first part of Proposition 8.1 also apply in this

situation. In particular, (8.4) and (8.5) are still true and show that the orbit of an arbitrary

x ∈ Q̂ ∪ {∞} under µf eventually lands in a fixed point of µf . Moreover, results in §8

provide a method to determine all fixed slopes for µf .

The easiest case is the map f obtained from the (2 × 2)-Lattès map L2 by gluing at

least one vertical flap to each of the four vertical 1-edges in the ‘middle’ of the pillow P.

If ξ is a geodesic arc in (P, V ) with an endpoint in A ∈ V and slope x ∈ Q \ Z, then

each component of L−1
2 (ξ) must pass through the interior of one of the four vertical

1-edges in the middle of P. Consequently, we can apply the considerations in the proof

of Lemma 8.4 and in the second part of the proof of Proposition 8.1, and conclude that

‖µf (x)‖ < ‖x‖ for x ∈ Q \ Z. Thus, the orbit of each x ∈ Q̂ ∪ {
} under µf eventually

lands in Z ∪ {∞, 
} (that is, in a fixed point of µf ). Since the map f is easily seen to be

expanding (see [BM17, Definition 2.2 and Theorem 14.1]), this provides an answer to a

question raised by Pilgrim of whether there is an obstructed expanding Thurston map for

which one has a complete understanding of the global dynamics of the slope map.

9.3. Twisting problems. Many natural problems related to Thurston equivalence remain

rather mysterious and are often very difficult to solve. Twisting problems are examples of

this nature.

To explain this, suppose we are given a rational Thurston map f : Ĉ → Ĉ. Let

φ : Ĉ → Ĉ be an orientation-preserving homeomorphism that fixes the postcritical set

Pf pointwise. We now consider the branched covering map g := φ ◦ f on Ĉ, called

the φ-twist of f. Then Cg = Cf and g has the same dynamics on Cf as f. In particular,

Pg = Pf ; so g has a finite postcritical set and is a Thurston map.
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This leads us to the natural questions: Is g realized? And if yes, to which rational map
is g equivalent depending on the isotopy type of φ? In fact, there are only finitely many

rational maps g (up to Möbius conjugation) that can arise in this way from a fixed map f.
A famous instance of this question, called the ‘twisted rabbit problem’, was solved by

Bartholdi and Nekrashevych in [BN06] (see also [BLMW22, Lod13]).

In our context, we can ask which twists of maps, as in Theorem 1.2, are realized. We do

not have an answer to this question, but it seems that this leads to non-trivial and difficult

problems. For example, consider the blown-up (2 × 2)-Lattès map f : P → P correspond-

ing to the flapped pillow P̂ as in Figure 22. Then P̂ has one horizontal and one vertical flap,

and so f is realized by Theorem 1.2. One can check that the Jordan curve γ := ℘(�3/13)

has exactly two essential pullbacks γ1, γ2 ∼ ℘(�1/3) under f with deg(f : γ1 → γ ) = 1

and deg(f : γ2 → γ ) = 2. We now choose an orientation-preserving homeomorphism

φ : P → P that maps γ onto γ1, while fixing each point in V = Pf . Then the curve γ1 is an

obstruction for the twisted map g := φ ◦ f with λg(γ1) = 3/2. An analogous construction

applies to some other essential Jordan curves, for instance, with slopes 3/23 and 3/49, and

gives twists of f with an obstruction.

It follows from this discussion that the mapping class biset associated with the map f
above is not contracting (see [BD17, BD18] for the definitions). Thus, the algebraic meth-

ods for solving the global curve attractor problem developed in [Pil12] (see, specifically,

[Pil12, Theorem 1.4]) do not apply in general for the maps considered in Theorem 1.2.

9.4. Thurston maps with more than four postcritical points. While in this paper we only

discuss the case of Thurston maps f : S2 → S2 with #Pf = 4, it is natural to ask if one

can adapt Theorem 1.1 to the case when #Pf > 4. The main difficulty is that an obstruction

in this case is in general not given by a unique essential Jordan curve in (S2, Pf ), but by

a multicurve. Of course, this fact complicates the analysis of pullback properties of curves

and their intersection numbers. However, we expect that one can naturally generalize our

result for an arbitrary Thurston map: given an obstructed Thurston map f, one can eliminate

all possible multicurve obstructions by successively applying the blow-up operation and

obtain a Thurston map that is realized.

9.5. Other combinatorial constructions of rational maps. The dynamical behavior of

curves under the pullback operation is an important topic in holomorphic dynamics. While

in this paper we only study the realization and the global curve attractor problems, one

is led to similar considerations, for example, in the study of iterated monodromy groups
(see [HM18]). For these investigations, it is important to have explicit classes of rational

maps at hand that are constructed in combinatorial fashion and against which conjectures

can be tested or which lead to the discovery of general phenomena. The maps provided

by Theorem 1.1 may be useful in this respect. Another interesting class of maps worthy

of further investigation are Thurston maps constructed from tilings of the Euclidean or

hyperbolic plane as in [BM17, Example 12.25].

Acknowledgements. The authors would like to thank Kostya Drach, Dima Dudko, Daniel

Meyer, Kevin Pilgrim, and Dylan Thurston for various useful comments and remarks. We

https://doi.org/10.1017/etds.2023.114 Published online by Cambridge University Press



2518 M. Bonk et al

are grateful to Darragh Glynn for allowing us to incorporate some of his numerical findings

in this paper.

M.B. was partially supported by NSF grant DMS-1808856. M.H. was partially sup-

ported by the ERC advanced grant ‘HOLOGRAM’. A.I. was partially supported by the

Swiss National Science Foundation (project no. 181898).

A. Appendix. Isotopy classes of Jordan curves in spheres with four marked points
In this appendix, we will provide proofs for Lemmas 2.3 and 2.4. Our presentation is rather

detailed. We need some additional auxiliary facts that we will discuss first. Throughout,

we will rely on the notation and terminology established in §2.

In the following, we will consider a marked sphere (S2, Z), where Z ⊂ S2 consists of

precisely four points. If M ⊂ S2 and α is a Jordan curve in (S2, Z), then we say that α is

in minimal position with the set M if #(α ∩ M) ≤ #(α′ ∩ M) for all Jordan curves α′ in

(S2, Z) with α ∼ α′ relative to Z.

Let α and β be Jordan curves or arcs in (S2, Z). We say that subarcs α′ ⊂ α and β ′ ⊂ β

form a bigon U in (S2, Z) if α′ and β ′ have the same endpoints, but disjoint interiors, and

if U ⊂ S2 is an open Jordan region with ∂U = α′ ∪ β ′ and U ⊂ S2 \ Z.

LEMMA A.1. Let γ be a Jordan curve in a marked sphere (S2, Z) with #Z = 4, and let a
and c be disjoint arcs in (S2, Z). Suppose γ is in minimal position with the set a ∪ c. Then
γ meets each of the arcs a and c transversely and no subarcs of γ and of a or c form a
bigon U in (S2, Z) with U ∩ (γ ∪ a ∪ c) = ∅.

Proof. These facts are fairly standard in contexts like this (see, for example, [FM12,

§1.2.4]), and so we will only give an outline of the proof.

Our assumptions imply that γ meets each arc a and c transversally and has only finitely

many intersections with a ∪ c (Lemma 2.1 and its proof apply mutatis mutandis to our

situation). We now argue by contradiction and assume that a subarc γ ′ ⊂ γ and a subarc

σ of a or c form a bigon U in (S2, Z) with U ∩ (γ ∪ a ∪ c) = ∅. Note that then, cl(U) ⊂

S2 \ Z. Hence, we can modify the curve γ near U by an isotopy in S2 \ Z that pulls the

subarc γ ′ of γ through U and away from σ so that the new Jordan curve γ does not intersect

σ ⊂ a ∪ c and no new intersection points with a ∪ c arise. This leads to a contradiction,

because the original curve γ was in minimal position with a ∪ c.

A topological space D is called a closed topological disk if there exists a homeomor-

phism η : cl(D) → D of the closed unit disk cl(D) ⊂ C onto D. This is an abstract version

of the notion of a closed Jordan region contained in a surface. The set ∂D := η(∂D) is a

Jordan curve independent of η and called the boundary of D. The interior of D is defined

as int(D) := η(D) = D \ ∂D.

Similarly as for closed Jordan regions, an arc α contained in a closed topological disk

D is called a crosscut (in D) if ∂α ⊂ ∂D and int(α) ⊂ int(D). A crosscut α splits D into

two compact and connected sets S and S′ called the sides of α (in D) such that D = S ∪ S′

and S ∩ S′ = α. With suitable orientations of α and D, one side of α lies on the left and

the other side on the right of α. Each non-empty connected set c ⊂ D that does not meet

α is contained in precisely one side of α.
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If α1, . . . , αn for n ∈ N are pairwise disjoint crosscuts in a closed topological disk

D, then we can define an abstract graph G = (V , E) in the following way: we consider

each component U of D \ (α1 ∪ · · · ∪ αn) as a vertex of G. We join two distinct vertices

represented by components U and U ′ by an edge if one of the crosscuts αj is contained in

the boundary of both U and U ′. Accordingly, the edges of G are in bijective correspondence

with the crosscuts α1, . . . , αn.

LEMMA A.2. Let n ∈ N and α1, . . . , αn be pairwise disjoint crosscuts in a closed
topological disk D, and let G be the graph obtained from the components of the set
D \ (α1 ∪ · · · ∪ αn) as described. The the following statements are true.

(i) The graph G is a finite tree with at least two vertices.
(ii) Let c ⊂ D be a connected set and suppose that c ∩ αk = ∅ for some k ∈ {1, . . . , n}.

Then there exists m ∈ {1, . . . , n} and a side S of αm such that S \ αm is disjoint from
all the sets c, α1, . . . , αn.

If α = αm and S are as in statement (ii), then there exists a subarc β of ∂D with the same

endpoints as ∂α ⊂ D such that ∂S = α ∪ β. Then U := int(S) is an open Jordan region

bounded by the union of the arcs α and β whose only common points are their endpoints.

This region U does not meet c nor any of the arcs α1, . . . , αn. In the proof of Lemma A.3,

we will use such a region U to obtain a bigon in an appropriate context.

Proof. (i) This is intuitively clear, and we leave the details to the reader. By induction on

the number n of crosscuts, one can show that G is a finite connected graph with at least

two vertices. Since a crosscut splits D into two sides, it easily follows that the removal of

any edge from G disconnects it. Hence, G cannot contain any simple cycle and must be a

tree.

(ii) The graph G is a tree; so if we remove the edge corresponding to the crosscut αk

from G, then we obtain two disjoint non-empty subgraphs G1 and G2 of G. The connected

components of D \ (α1 ∪ · · · ∪ αn) corresponding to the vertices of G1 are contained

in one side S′ of αk , while the other connected components of D \ (α1 ∪ · · · ∪ αn)

corresponding to the vertices of G2 lie in the other side S′′ of αk . Since c is connected

and does not meet αk , it must be contained in one of the sides of αk , say c ⊂ S′′. Then c is

disjoint from S′ and hence from all the sets that correspond to vertices in G1.

The tree G has a leaf v in G1 	= ∅, that is, there exists a vertex v of G1 such that

v is connected to the rest of G by precisely one edge. Then the connected component

of D \ (α1 ∪ · · · ∪ αn) corresponding to v has exactly one of the crosscuts, say αm with

m ∈ {1, . . . , n}, on its boundary. Then this component has the form S \ αm, where S is the

unique side of αm contained in S′. Then S \ αm is disjoint from c ⊂ S′′ and from all the

crosscuts α1, . . . , αn.

We can now prove a statement that is the key to the understanding of isotopy classes of

Jordan curves in a sphere with four marked points.

LEMMA A.3. Let γ be a Jordan curve in a marked sphere (S2, Z) with #Z = 4, and let a
and c be disjoint arcs in (S2, Z). Suppose γ is in minimal position with the set a ∪ c. Then
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the sets a ∩ γ and c ∩ γ are non-empty and finite, and the points in these sets alternate on
γ unless γ is peripheral or γ ∩ (a ∪ c) = ∅.

Proof. In the given setup, each of the disjoint sets ∂a and ∂c contains two points in Z.

Since #Z = 4, it follows that a connects two of the points in Z, while c connects the other

two points.

We may assume that γ is essential and that at least one of the arcs a or c meets γ , say

a ∩ γ 	= ∅, because otherwise, we are in an exceptional situation as in the statement.

If none of the arcs a and c meets γ in more than two points, then #(a ∩ γ ) = 1 and

#(c ∩ γ ) ≤ 1. Now a and γ meet transversely by Lemma A.1. This implies that the

endpoints of a lie in different components of S2 \ γ . Since γ is essential, each of these

components contains precisely two points of Z = ∂a ∪ ∂c. Hence, the endpoints of c also

lie in different components of S2 \ γ . This implies that c ∩ γ 	= ∅ and so #(c ∩ γ ) = 1 in

the case under consideration. So both a and c meet γ in exactly one point. It follows that

the statement is true in this case.

We are reduced to the situation where at least one of the arcs a or c meets γ in at

least two (but necessarily finitely many) points, say n := #(a ∩ γ ) ≥ 2. We now endow

γ and a with some orientations. With the given orientation, we denote the initial point

of a by x0 and its terminal point by x1. Let y1, . . . , yn, yn+1 = y1 denote the n ≥ 2

intersection points of γ with a that we encounter while traversing γ once starting from

some point in γ \ a. The same n points also appear on a. We denote them by p1, . . . , pn

in the order they appear if we traverse a starting from x0. For k = 1, . . . , n, we denote

by γ [yk , yk+1] the subarc of γ obtained from traversing γ with the given orientation from

yk to yk+1.

Claim. c ∩ γ [yk , yk+1] 	= ∅ for each k = 1, . . . , n.

To see this, we argue by contradiction and assume that c ∩ γ [yk , yk+1] = ∅ for some

k ∈ {1, . . . , n}. Our goal now is to show that some subarcs of a and γ form a bigon U in

(S2, Z) with U ∩ (γ ∪ a ∪ c) = ∅. This is a contradiction with Lemma A.1, because γ

and a ∪ c are in minimal position.

To produce such bigon U, we want to apply Lemma A.2. To do this, we slit the sphere

S2 open along the arc a. This results in a closed topological disk D whose boundary ∂D

consists of two copies a+ and a− of the arc a. The set S2 \ int(a) can be identified with

int(D), while each point in int(a) is doubled into one corresponding point in a+ and one

in a−.

The arcs a+ and a− have their endpoints x0 and x1 in common. We identify a+

with the original arc a with the same orientation. Then we can think of the intersection

points p1, . . . , pn of γ with a as lying on a+ = a, while each of the points pj has a

corresponding point qj on a−.

Each arc γ [yj , yj+1] corresponds to a crosscut γj in D for j = 1, . . . , n. These

crosscuts have their endpoints in the set P ∪ Q, where P := {p1, . . . , pn} and

Q := {q1, . . . , qn}. Moreover, the crosscuts γ1, . . . , γn are pairwise disjoint. Indeed, the

only possible common intersection point of two of these arcs could be a common endpoint

of two consecutive arcs γj and γj+1 (where γn+1 := γ1) corresponding to yj+1 ∈ a; but

in the process of creating D, the point yj+1 is doubled into the points p� and q� for some
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� ∈ {1, . . . , n}. Since γ meets a transversely, one of these points will be the terminal point

of γj , while the other one will be the initial point of γj+1, and so actually, γj ∩ γj+1 = ∅.

It follows that the hypotheses of Lemma A.2 are satisfied.

It is clear that the arc c, now considered as a subset of D, does not meet the crosscut γk

corresponding to γ [yk , yk+1]. Hence, by Lemma A.2, there exists m ∈ {1, . . . , n} and a

side S of γm in D such that S \ γm is disjoint from c and all the arcs γ1, . . . , γn. Then there

exists an arc β ⊂ ∂D = a+ ∪ a− with the same endpoints as γm such that ∂S = γm ∪ β.

The set S \ γm is disjoint from γ1 ∪ · · · ∪ γn ⊃ P ∪ Q, and so the arc β has its endpoints

in the set P ∪ Q, but no other points in common with P ∪ Q.

This implies that neither x0 nor x1 are contained in β; indeed, suppose x0 ∈ β, for

example. Then the endpoints of β and hence of γm are necessarily the points p1 and q1.

Collapsing D back to S2, we see that the endpoints ym and ym+1 of γ [ym, ym+1] are the

same. This is a contradiction (here the assumption n ≥ 2 is crucial). We arrive at a similar

contradiction (using the points pn and qn) if we assume x1 ∈ β. It follows that β ⊂ int(a+)

or β ⊂ int(a−).

These considerations imply that if we pass back to S2 by identifying corresponding

points in a+ and a−, then from int(S), we obtain a bigon U ⊂ S2 bounded by the subarc

γ [ym, ym+1] of γ and a subarc β̃ of a, where U is disjoint from γ ∪ a ∪ c. This is

impossible by Lemma A.1 since γ is in minimal position with a ∪ c. This contradiction

shows that the claim is indeed true.

The claim implies that c has at least n ≥ 2 intersection points with γ . Hence, we can

reverse the roles of a and c and get a similar statement as the claim also for the arc c. This

implies that the (finitely many) points in a ∩ γ 	= ∅ and c ∩ γ 	= ∅ alternate on γ .

As in §2.4, we now consider the pillow P with its set V of vertices as the marked points,

and the Weierstrass function ℘ : C → P that is doubly periodic with respect to the lattice

2Z2. We will now revert to the notation a and c for the horizontal edges of P. Recall that

I = [0, 1].

LEMMA A.4. Let α : I → C be a simple loop or a homeomorphic parameterization of
an arc. Suppose that the endpoints z0 = α(0) and w0 = α(1) of α lie in C \ ℘−1(a ∪ c)

and that ℘(z0) = ℘(w0). Suppose further that either α ∩ ℘−1(a ∪ c) = ∅, or all of the
following conditions are true: α meets each of the lines in ℘−1(a ∪ c) transversely, we
have

0 < #(α ∩ ℘−1(a)) = #(α ∩ ℘−1(c)) < ∞,

and the points in α ∩ ℘−1(a) and α ∩ ℘−1(c) alternate on α.
Then w0 − z0 ∈ 2Z2. Here w0 − z0 	= 0 unless α ∩ ℘−1(a ∪ c) = ∅.

Proof. Note that the set ℘−1(a ∪ c) consists precisely of the lines Ln := {z ∈ C :

Im(z) = n}, n ∈ Z. Moreover, such a line Ln is mapped to a or c depending on whether n
is even or odd, respectively.

We consider the second case first when α ∩ ℘−1(a ∪ c) 	= ∅. We denote by

0 < u1 < · · · < uk < 1, k ∈ N, all the (finitely many) u-parameter values with α(uj ) ∈

℘−1(a ∪ c) for j = 1, . . . , k. Since α meets each line Ln transversely and the points
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in α ∩ ℘−1(a) 	= ∅ and α ∩ ℘−1(c) 	= ∅ alternate on α, it is clear that the values

Im(α(uj )) either strictly increase by 1 in each step j = 1, . . . , k, or strictly decrease by 1

in each step. Here we have strict increase if Im(α(u1) − α(0)) > 0, and strict decrease if

Im(α(u1) − α(0)) < 0. This implies that k > 0 is precisely the number of lines Ln, n ∈ Z,

that separate z0 and w0. So z0 and w0 lie in different components of C \ ℘−1(a ∪ c) which

shows that z0 	= w0.

By our hypotheses, #(α ∩ ℘−1(a)) = #(α ∩ ℘−1(c)), which implies that the number k
of intersection points of α with ℘−1(a ∪ c) is even. Since ℘(z0) = ℘(w0), by (2.3), we

have w0 = ±z0 + v0 with v0 ∈ 2Z2. We have to rule out the minus sign here.

We argue by contradiction and assume that w0 = −z0 + v0. Then v1 := 1
2
(z0 + w0) =

1
2
v0 ∈ Z2, and so the endpoints z0 and w0 of α are in symmetric position to the point

v1 ∈ Z2. This implies that the number k of lines Ln, n ∈ Z, separating z0 and w0 is odd,

contradicting what we have just seen. We conclude w0 = z0 + v0 with v0 ∈ 2Z2, and the

statement follows in this case. Note that the exact same argument leading to w0 − z0 ∈ 2Z2

also applies if α ∩ ℘−1(a ∪ c) = ∅.

We call a Jordan curve γ in (P, V ) null-homotopic in (P, V ) if γ can be homotoped in

P \ V to a point, that is, if there exists a homotopy H : ∂D × I → P \ V such that H0 is a

homeomorphism of ∂D onto γ and H1 is a constant map.

LEMMA A.5. Let γ be an essential Jordan curve in (P, V ). Then γ is not null-homotopic
in (P, V ).

This statement sounds somewhat tautological, because in topology, ‘essential’ is often

defined as ‘not null-homotopic’. Recall though that in our context γ is called essential if

each of the two components of P \ γ contains precisely two of the points in V. In the proof,

we will use some standard facts about winding numbers; see [Bur79, Ch. 4] for the basic

definitions and background.

Proof. On an intuitive level, every homotopy contracting γ to a point must slide over all

the points in one of the complementary components of γ . Hence, it cannot stay in P \ V ,

and so γ is not null-homotopic in (P, V ).

To make this more rigorous, we argue by contradiction. By the Schönflies theorem,

we may identify P with Ĉ and γ with ∂D and assume that 0 and ∞ belong to the set

Z ⊂ Ĉ of marked points corresponding to the points in V. We now argue by contradiction

and assume that there exists a homotopy H : ∂D × I → Ĉ \ Z ⊂ C \ {0} such that H0

is a homeomorphism on ∂D and H1 is a constant map. Then for each t ∈ I, the map

u ∈ I �→ αt (u) := Ht (e
2πiu) is a loop in C \ {0}. Each loop αt , t ∈ I, has the same winding

number indαt (0) around 0, because this winding number is invariant under homotopies in

C \ {0} (see [Bur79, Theorem 4.12]). However, indα0
(0) = ±1, because α0 is a simple loop

(see [Bur79, Theorem 4.42]), while indα1
(0) = 0, because α1 is a constant loop. This is a

contradiction.

An element x of a rank-2 lattice � (such as 2Z2) in C is called primitive if it

cannot be represented in the form x = ny with y ∈ � and n ∈ N, n ≥ 2. Note that then,

x 	= 0.
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LEMMA A.6. Let γ be a Jordan curve in (P, V ) parameterized as a simple loop β : I → P,
and let α : I → C be a lift of β under ℘.

(i) If α(0) = α(1) and α is a path in a convex subset of C \ Z2, then γ is null-homotopic
in (P, V ).

(ii) If γ is essential, then α(1) − α(0) is a primitive element of 2Z2. It is uniquely
determined up to sign by the isotopy class [γ ] of γ relative to V.

Here we call α a lift of β under ℘ if β = ℘ ◦ α. In this lemma and its proof, we will

carefully distinguish between a path and its image set (unlike elsewhere in the paper).

Proof. Note that since β(I) = γ ⊂ P \ V and ℘ is a covering map over P \ V , a lift α of β

under ℘ exists. Moreover, for each choice of z0 ∈ ℘−1(β(0)), there exists a unique lift α

of β such that α(0) = z0 (for these standard facts see [Hat02, §1.3, Proposition 1.30]). We

will use this uniqueness property of lifts repeatedly in the following.

(i) The idea for the first part is very simple. We use a ‘straight-line homotopy’ between

α and the constant path u ∈ I �→ α(0) and push it to P \ V by applying ℘.

More precisely, we define

H(u, t) := ℘((1 − t)α(u) + tα(0))

for u, t ∈ I. Since the path α lies in a convex set K ⊂ C \ Z2, we have

αt (u) := (1 − t)α(u) + tα(0) ∈ K

for all u, t ∈ I, and so H(I × I) ⊂ ℘(C \ Z2) = P \ V . Hence, H is a homotopy in P \ V .

Moreover, Ht (u) = (℘ ◦ αt )(u) for all u ∈ I, and so Ht = ℘ ◦ αt for all t ∈ I. In particular,

H0 = ℘ ◦ α0 = ℘ ◦ α = β. Moreover, H1(u) = α(0) for u ∈ I, and so H1 is a constant

path.

For all t ∈ I, we have

αt (1) − αt (0) = (1 − t)(α(1) − α(0)) = 0.

Hence, ℘(αt (1)) = ℘(αt (0)) for t ∈ I, and so Ht = ℘ ◦ αt is a loop in P \ V for all t ∈ I. By

identifying the points (0, t) and (1, t) for each t ∈ I, we get a homotopy H : ∂D× I→P \ V

such that

H(e2πiu, t) = H(u, t)

for all u, t ∈ I. Since H 0(e
2πiu) = H0(u) = β(u) for u ∈ I, we see that H 0 is a

homeomorphism of ∂D onto β(I) = γ . However, H 1 is a constant map. Hence, γ is

null-homotopic in (P, V ).

(ii) The proof is somewhat tedious as we have to worry about different choices of the

curve in [γ ], its different parameterizations as a simple loop, and the different lifts of these

parameterizations under ℘.

To prove the statement, we first consider a special case, namely we choose a Jordan

curve γ0 in (P, V ) that lies in the same isotopy class relative to V as γ with the additional

property that γ0 is in minimal position with the set a ∪ c. Since γ0 cannot be a subset

of a ∪ c, we can parameterize γ0 as a simple loop β0 : I → P such that β0(0) = β0(1) 	∈
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a ∪ c. We now consider a lift α0 : I → C of β0 under ℘. Note that α0 is a simple loop or a

homeomorphic parameterization on an arc in C.

Since γ is essential, the Jordan curve γ0 is also essential. Indeed, under an isotopy

relative to V that deforms γ into γ0, the complementary components of γ in P are deformed

into the complementary components of γ0 while the points in V stay fixed. Therefore, each

of the two components of P \ γ0 contains precisely two points of V.

It follows from Lemma A.1 that γ0 meets a and c transversely. Moreover, by Lemma A.3,

either γ0 ∩ (a ∪ c) = ∅, or the sets a ∩ γ0 and c ∩ γ0 are non-empty and finite, and the

points in these sets alternate on γ0. We now define α0 := α0(I). Then α0 is a Jordan curve

or an arc in C. Moreover, we either have α0 ∩ ℘−1(a ∪ c) = ∅, or α0 meets each of the

lines in ℘−1(a ∪ c) transversely,

0 < #(α0 ∩ ℘−1(a)) = #(α0 ∩ ℘−1(c)) < ∞,

and the points in α0 ∩ ℘−1(a) and α0 ∩ ℘−1(c) alternate on α0. Let z0 := α0(0) and

w0 := α0(1). Then

℘(z0) = ℘(α0(0)) = β0(0) = β0(1) = ℘(α0(1)) = ℘(w0),

and by the choice of β0, we have z0, w0 	∈ ℘−1(a ∪ c). Therefore, we are exactly in the

situation of Lemma A.4.

It follows that v0 := w0 − z0 ∈ 2Z2. Here v0 	= 0. Indeed, otherwise z0 = w0. Then

the second part of Lemma A.4 implies that the arc α0 does not meet ℘−1(a ∪ c) and so

it lies in a connected component of C \ ℘−1(a ∪ c). This component is an infinite strip,

and hence a convex set, contained in C \ Z2. Now part (i) implies that γ0 is null-homotopic

in (P, V ). By Lemma A.5, this contradicts the fact that γ0 is essential. We conclude that

indeed v0 = w0 − z0 	= 0.

This shows that α0(1) − α0(0) = w0 − z0 is a non-zero element of the lattice 2Z2.

We claim that w0 − z0 is actually a primitive element of 2Z2. To see this, we argue by

contradiction and assume that w0 − z0 = ny0 with y0 ∈ 2Z2 \ {0} and n ∈ N, n ≥ 2.

We now consider the path σ : I → C \ {0} given as σ(u) = exp((2πi/y0)α0(u)) for

u ∈ I. This is a loop with winding number

indσ (0) =
1

y0
(α0(1) − α0(0)) = n

around 0. Now a simple loop in C \ {0} has winding number 0 or ±1 around 0 (see [Bur79,

Theorem 4.42]), and so σ cannot be simple. This implies that there are numbers 0 ≤ u <

u′ < 1 such that σ(u) = σ(u′). This in turn means that α0(u
′) − α0(u) = ky0 for some

k ∈ Z. Since y0 ∈ 2Z2, it follows that

β0(u
′) = ℘(α0(u

′)) = ℘(α0(u)) = β0(u).

This is impossible, since β0 is injective on [0, 1).

We have shown the first part of the statement for a particular Jordan curve γ0 in [γ ]

with a special parameterization β0, and a choice of a lift α0 of β0 under ℘. We now have to

show that the number v0 = w0 − z0 = α0(1) − α0(0) obtained in this way only depends
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on [γ ] up to sign. For this, we pick an arbitrary Jordan curve in [γ ] which we will simply

call γ .

Since γ0 ∼ γ relative to V, there exists an isotopy H : P × I → P relative to V with

H0 = idP and H1(γ0) = γ . We now define a homotopy H : I × I → P \ V by setting

H(u, t) := H(β0(u), t)

for u, t ∈ I. Note that H maps into P \ V as follows from the facts that γ0 ⊂ P \ V and H
is an isotopy relative to V.

The time-0 map H(·, 0) = β0 of the homotopy H is the parameterization of the loop γ0,

while the time-1 map β := H(·, 1) = H1 ◦ β0 gives some parameterization of γ = H1(γ0)

as a simple loop.

By the homotopy lifting theorem (see [Hat02, Proposition 1.30]), there exists a

homotopy H̃ : I × I → C \ Z2 such that H = ℘ ◦ H̃ and H̃0 = H̃ (·, 0) = α0. Then

α := H̃ (·, 1) is a lift of β = H(·, 1) under ℘. We want to show that α(1) − α(0) =

v0 = w0 − z0.

To see this, we consider the paths σ , τ : I → C \ Z2 defined as σ(t) = H̃ (0, t) and

τ(t) = H̃ (1, t) for t ∈ I. Then

σ(t) := ℘(σ(t)) = ℘(H̃ (0, t)) = H(0, t)

= Ht (β(0)) = Ht (β(1)) = H(1, t) = ℘(H̃ (1, t)) = ℘(τ(t)) (A.1)

for t ∈ I. Note also that

τ(0) = H̃ (1, 0) = α0(1) = α0(0) + v0 = H̃ (0, 0) + v0 = σ(0) + v0.

This implies that the paths τ and t ∈ I �→ σ(t) + v0 have the same initial points.

Since v0 ∈ 2Z2, it follows from (2.3) and (A.1) that the map ℘ sends them both to

σ = ℘ ◦ σ = ℘ ◦ τ , which is a path in P \ V . It follows from the uniqueness of lifts under

℘ that τ(t) = σ(t) + v0 for all t ∈ I.

This implies that

α(1) − α(0) = H̃ (1, 1) − H̃ (0, 1) = τ(1) − σ(1) = v0,

as desired.

Note that for a given parameterization β of γ , the difference α(1) − α(0) is independent

up to sign of the choice of the lift α of β. Indeed, suppose α′ is another lift of β under ℘.

Then

℘(α(0)) = β(0) = ℘(α′(0)),

and so by (2.3), we have

α′(0) = ±α(0) + m0

for some (fixed) choice of the sign ± and m0 ∈ 2Z2. Then t ∈ I �→ ±α(t) + m0 is a lift of

β with the same initial point as α′ and so we see that

α′(t) = ±α(t) + m0
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for all t ∈ I. This implies that

α′(1) − α′(0) = ±(α(1) − α(0)), (A.2)

as desired.

It remains to show that up to sign α(1) − α(0) is independent of the choice of the

parameterization β of γ . For this, we consider another parameterization β ′ of γ as a

simple loop. We first assume that β ′(0) = β(0). Then there exists a homeomorphism

h : I → I such that β ′ = β ◦ h. Here h fixes the endpoints 0 and 1 of I or interchanges

them depending on whether β ′ parameterizes γ with the same or opposite orientation as

β, respectively. In any case, α′ = α ◦ h is a lift of β ′ under ℘. It follows that

α′(1) − α′(0) = α(h(1)) − α(h(0)) = ±(α(1) − α(0)),

as desired. As we now know, this relation is independent of the specific choice of the lift

α′ of β ′.

Finally, we have to consider the case where β ′ has a possibly different initial point than

β, say p0 := β ′(0) ∈ γ . By what we have seen, to establish (A.2), we can choose any

parameterization β ′ of γ as a simple loop with β ′(0) = p0 and any lift α′ of β ′.

We can extend our parameterization β on I periodically to a continuous map β : R → γ

such that β(u + 1) = β(u) for all u ∈ R. Then β lifts under ℘ to a continuous map

α : R → C which agrees with the original lift α on I. Then u ∈ R �→ α(u + 1) − v0 is

also a lift of β under ℘. The initial point of this lift corresponding to u = 0 is equal to

α(0). The uniqueness of lifts implies that this lift and the original lift α are the same paths

and so

α(u + 1) = α(u) + v0 (A.3)

for all u ∈ R.

We can find u0 ∈ [0, 1) such that β(u0) = p0. Then β ′ : I → γ defined as β ′(u) =

β(u0 + u) for u ∈ I is a parameterization of γ as a simple loop with the initial point p0.

Under ℘, this path β ′ has the lift α′ : I → C given by α′(u) = α(u + u0) for u ∈ I. Then

equation (A.3) implies that

α′(1) − α′(0) = α(u0 + 1) − α(u0) = v0,

as desired. The proof is complete.

We are now almost ready to prove Lemma 2.3. Before we get to this, it is useful to

discuss an alternative way to view our pillow P.

We consider a slope r/s ∈ Q̂. Then we can choose p, q ∈ Z such that pr + qs = 1 and

define ω := s + ir and ω̃ := −p + iq. The numbers ω and ω̃ form a basis of C ∼= R2 over

R, and so every point z ∈ C can be uniquely written in the form z = uω̃ + vω with u, v ∈

R. Accordingly, the map z = uω̃ + vω �→ R(z) := uω̃ − vω for u, v ∈ R is a well-defined

‘skew-reflection’ R on C. Note also that Z2 = {nω̃ + kω : n, k ∈ Z}.

We consider the parallelogram Q := {uω̃ + vω : u ∈ [0, 1], v ∈ [−1, 1]} ⊂ C. Then it

follows from (2.3) that ℘(Q) = P. Moreover, for z, w ∈ Q, z 	= w, we have ℘(z) = ℘(w)

if and only if z, w ∈ ∂Q and w = R(z). Intuitively, this means that the pillow P can be
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obtained from Q by ‘folding’ Q in its middle segment [0, ω̃] ⊂ Q and identifying the

points on ∂Q that correspond to each other under the skew-reflection R. The map ℘ sends

the set {0, ω̃, ω̃ + ω, ω} bijectively onto the set {A, B, C, D} of vertices of P (but not

necessarily in that order).

From this geometric picture, it is clear that for each t ∈ (0, 1), the set

τr/s := ℘([tω̃ − ω, tω̃ + ω]) = ℘(�r/s(tω̃))

is a simple closed geodesic in (P, V ). Moreover, the sets

ξr/s := ℘([−ω, +ω]) = ℘(�r/s(0)) and ξ ′
r/s := ℘([ω̃ − ω, ω̃ + ω]) = ℘(�r/s(ω̃))

are geodesic core arcs of τr/s lying in different components of P \ τr/s . In particular, τr/s is

an essential Jordan curve in (P, V ).

It follows from (2.3) that ℘(�r/s(tω̃)) ∩ ℘(�r/s(t
′ω̃)) 	= ∅ for t , t ′ ∈ R if and only if

t ′ − t ∈ 2Z or t ′ + t ∈ 2Z. In this case, we have ℘(�r/s(tω̃)) = ℘(�r/s(t
′ω̃)). Moreover,

τ = ℘(�r/s(tω̃)) is a simple closed geodesic τr/s in (P, V ) if t ∈ R \ Z, it is equal to the

geodesic arc ξr/s if t is an even integer, and is equal to the geodesic arc ξ ′
r/s if t is an odd

integer. Note that �r/s(tω̃) for t ∈ R contains a point in Z2 = {nω̃ + kω : n, k ∈ Z} if and

only if t ∈ Z.

LEMMA A.7. Let τr/s and τ ′
r/s be two distinct simple closed geodesics in (P, V ) with slope

r/s ∈ Q̂. Then τr/s and τ ′
r/s are isotopic relative to V.

Proof. The previous considerations imply that we may assume that the geodesics are

represented in the form τr/s = ℘(�r/s(tω̃)) and τ ′
r/s = ℘(�r/s(t

′ω̃)) with t , t ′ ∈ (0, 1),

t 	= t ′. We may assume t < t ′. Then

U := ℘({uω̃ + vω : u ∈ (t , t ′), v ∈ [−1, 1]})

is an annulus contained in P \ V with ∂U = τr/s ∪ τ ′
r/s . It follows from Lemma 2.1 that

τr/s and τ ′
r/s are isotopic relative to V.

Proof of Lemma 2.3. Let γ be an essential Jordan curve in (P, V ). If we parameterize γ

as a simple loop β : I → P and lift β to a path α : I → C under ℘, then by Lemma A.6,

we know that α(1) − α(0) is a primitive element of 2Z2 uniquely determined by [γ ] up to

sign. Hence, we can find relatively prime integers r , s ∈ Z such that

α(1) − α(0) = 2(s + ir). (A.4)

By switching signs here, which corresponds to parameterizing γ with opposite orientation,

we may assume that r ∈ Z, s ∈ N0, and that r = 1 if s = 0. Note that with these restrictions

on r and s, the primitive element 2(s + ir) of 2Z2 corresponds to the unique slope r/s ∈ Q̂,

and every slope in Q̂ arises from a unique primitive element of 2Z2 in this form.

As before, define ω := s + ir and ω̃ := −p + iq, where p, q ∈ Z are chosen so that

pr + qs = 1. We know that ξ := ℘(�r/s(0)) and ξ ′ := ℘(�r/s(ω̃)) are disjoint geodesic

arcs in (P, V ). The sets ℘−1(ξ) and ℘−1(ξ ′) consist of parallel lines with slope r/s,

and these lines alternate in the following sense: each component of C \ ℘−1(ξ ∪ ξ ′) is

an infinite strip whose boundary contains one line in ℘−1(ξ) and one line in ℘−1(ξ ′).
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We may assume that γ is in minimal position with ξ ∪ ξ ′. Moreover, we may assume

that the parameterization β of γ as a simple loop was chosen so that β(0) = β(1) 	∈ ξ ∪ ξ ′.

Then by Lemmas A.1 and A.3, we know that either ξ ∩ γ = ∅ = ξ ′ ∩ γ , or the

following conditions are true: γ meets ξ and ξ ′ transversely, the sets ξ ∩ γ and ξ ′ ∩ γ

are non-empty and finite, and the points in these sets alternate on γ . We claim that the

latter is not possible.

Otherwise, we choose a lift α of β under ℘. Then α intersects the lines in ℘−1(ξ ∪ ξ ′)

transversely, we have

k := #(α ∩ ℘−1(ξ)) = #(α ∩ ℘−1(ξ ′)) ∈ N,

and the points in α ∩ ℘−1(ξ) 	= ∅ and α ∩ ℘−1(ξ ′) 	= ∅ alternate on α. An argument

very similar to the proof of Lemma A.4 then shows that 2k > 0 is the number of

lines in the set ℘−1(ξ ∪ ξ ′) that separate α(0) from α(1). However, we know that

α(1) − α(0) = 2(s + ir), and so α(1) and α(0) lie on a line with slope r/s and are not

separated by any line in ℘−1(ξ ∪ ξ ′). This is a contradiction.

This shows that ξ ∩ γ = ∅ = ξ ′ ∩ γ . Now consider a simple closed geodesic

τr/s = ℘(�r/s(tω̃)) with slope r/s and 0 < t < 1. Since ξ ∩ γ = ∅, we can choose t
very close to 0 so that τr/s ∩ γ = ∅. Now we can apply considerations very similar

to the proof of Corollary 3.5(ii). The complement of τr/s ∪ γ in P is a disjoint union

P \ (τr/s ∪ γ ) = W ∪ U ∪ W ′, where W , W ′ ⊂ P are open Jordan regions and U ⊂ P

is an annulus with ∂U = τr/s ∪ γ . Since τr/s and γ are essential, both W and W ′ must

contain at least two points in V. Since #V = 4, we have U ∩ V = ∅. Lemma 2.1 now

implies that τr/s and γ are isotopic relative to V. By Lemma A.7, the curve γ is actually

isotopic to each closed geodesic τr/s with slope r/s.

The map [γ ] �→ r/s that sends each isotopy class [γ ] to a slope r/s ∈ Q̂ obtained from

a primitive element in 2Z2 associated with [γ ] according to Lemma A.6 is well defined. It

is clear that it is surjective, because the isotopy class [τr/s] of a geodesic τr/s with slope

r/s ∈ Q̂ is sent to r/s. To see that it is injective, suppose two isotopy classes [γ ] and [γ ′]

are sent to the same slope r/s ∈ Q̂ by this map. If τr/s is a closed geodesic with slope r/s,

then by our previous discussion, we have γ ∼ τr/s ∼ γ ′ relative to V. Hence, [γ ] = [γ ′].

It follows that the map [γ ] �→ r/s is indeed a bijection.

Remark A.8. Suppose γ is an essential Jordan curve in (P, V ) and its isotopy class [γ ]

relative to V corresponds to slope r/s ∈ Q̂ according to Lemma 2.3. Let β : I → γ be a

parameterization of γ as a simple loop, and α : I → C be a lift of β under ℘. Then equation

(A.4) in the proof of Lemma A.6 shows that we always have α(1) − α(0) = ±2(s + ir).

A similar statement is true for arcs in (P, V ).

COROLLARY A.9. Let ξ be an arc in (P, V ). Then ξ is isotopic relative to V to a
geodesic arc ξr/s for some slope r/s ∈ Q̂. Moreover, if β : I → ξ is a homeomorphic
parameterization of ξ and α is any lift of β under ℘, then α(1) − α(0) = ±(s + ir).

Proof. The arc ξ joins two of the points in V, while the other two points in V do not lie on

ξ . Hence, we may ‘surround’ ξ by an essential Jordan curve γ in (P, V ) such that ξ is a
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core arc of γ . By Lemma 2.3, we know that γ is isotopic relative to V to a closed geodesic

τr/s in P with some slope r/s ∈ Q̂. Hence, ξ is isotopic relative to V to a core arc ξ ′ of

τr/s .

Now any two arcs in the interior of a closed topological disk D with the same endpoints

are isotopic by an isotopy that fixes the endpoints of these arcs and the points in ∂D (see

[Bus10, Theorem A.6(ii)]). This implies that any two core arcs of an essential Jordan

curve in (P, V ) are isotopic relative to V if the core arcs have the same endpoints. We

know that the closed geodesic τr/s has precisely two geodesic arcs with slope r/s as

core arcs in different components of P \ τr/s . Therefore, ξ ′, and hence also ξ , is isotopic

relative to V to a geodesic arc ξr/s with slope r/s. This proves the first part of the

statement.

Let β : I → ξ be a homeomorphic parameterization of ξ and α : I → C be a lift of

β under ℘. By what we have seen, we can choose an isotopy H : P × I → P relative to

V with H0 = idP and H1(ξ) = ξr/s . We use this to define a homotopy H : I × I → P by

setting

H(u, t) := H(β(u), t)

for u, t ∈ I. Note that H t for t ∈ I gives a homeomorphic parameterization of an arc in

(P, V ). These arcs have all the same endpoints. In particular, u ∈ I �→ β ′(u) := H 1(u) =

H1(β(u)) gives a homeomorphic parameterization of H1(ξ) = ξr/s .

We can lift H t under ℘ to find a homotopy H̃ : I × I → C such that H̃0 = α and

℘ ◦ H̃t = H t for all t ∈ I. To see this, one first applies the standard homotopy lifting

theorem (see [Hat02, Proposition 1.30]) to the homotopy H restricted (0, 1) × I and

the covering map ℘ : C \ Z2 → P \ V ⊃ H((0, 1) × I) to obtain a unique homotopy

H̃ : (0, 1) × I → C with H̃0 = α|(0, 1). Now as u0 → 0+, the set H((0, u0] × I) shrinks

to the point β(0) ∈ V , and so the connected set H̃ ((0, u0] × I) shrinks to a unique point

in ℘−1(V ) = Z2. This point can only be α(0). Hence, H(u, t) → α(0) uniformly for t ∈ I

as u → 0+, and similarly H(u, t) → α(1) uniformly for t ∈ I as u → 1−. This implies

that we can continuously extend H̃ to a homotopy on I × I with the desired properties by

setting H̃ (0, t) = α(0) and H̃ (1, t) = α(1) for t ∈ I.

Then α′ := H̃1 is a lift of β ′, because ℘ ◦ α′ = ℘ ◦ H̃1 = H 1 = β ′. Since β ′ is a home-

omorphic parameterization of the geodesic arc ξr/s , the path α′ sends I homeomorphically

onto a subsegment of a line �r/s ⊂ C. Since α′ has its endpoints in Z2 and α′((0, 1)) is

disjoint from Z2, this implies α′(1) − α′(0) = ±(s + ir). Since α and α′ have the same

endpoints, the statement follows.

Proof of Lemma 2.4. In the proof all isotopies, isotopy classes, intersection numbers, etc.

are for isotopies on P relative to V. We will use the facts about the geodesics on (P, V )

discussed before Lemma A.7 without further reference.

(i) Let α and β be essential Jordan curves in (P, V ) as in the statement. As before, we

define ω = s + ir and ω̃ = −p + iq, where p, q ∈ Z and pr + qs = 1.

First suppose that r/s = r ′/s′. Then in the isotopy class [α] = [β], we can find

simple closed geodesics with slope r/s that are disjoint, for example, the curves

τr/s = ℘(�r/s(ω̃/3)) and τ ′
r/s = ℘(�r/s(2ω̃/3)). It follows that i(α, β) = 0 in this case.
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We now assume that r/s 	= r ′/s′. To determine i(α, β), we have to find the minimum of

all numbers #(α ∩ β), where α and β range over the given isotopy classes. By applying

a suitable isotopy, we can reduce to the case where α is a fixed curve in its isotopy

class and we only have to take variations over β. So by Lemma 2.3, we may assume

that α = τr/s = ℘(�r/s) is a simple closed geodesic as in the statement. Then τr/s =

℘(�r/s(t0ω̃)) for some t0 ∈ (0, 1). The preimage ℘−1(τr/s) of τr/s under ℘ consists of

the two disjoint families

F1 := {�r/s((t0 + 2j)ω̃) : j ∈ Z} and F2 := {�r/s((−t0 + 2j)ω̃) : j ∈ Z} (A.5)

of distinct lines with slope r/s.

Now let β̃ : I → C be a lift of β under ℘, where we think of β as a simple closed loop

in a parameterization with suitable orientation. Then if z0 := β̃(0) and w0 := β̃(1), we

have w0 − z0 = 2(s′ + ir ′) as follows from Remark A.8. By changing the basepoint of β

if necessary, we may assume that β̃(0), β̃(1) 	∈ ℘−1(τr/s). If ω′ := s′ + ir ′, then we can

write ω′ uniquely in the form

ω′ = kω + nω̃, (A.6)

where k, n ∈ Z. Note that then, |n| = N := |rs′ − sr ′| > 0 (to see this, multiply equation

(A.6) by the complex conjugate of ω and take imaginary parts).

Now each family Fj , j = 1, 2, consists of equally spaced parallel lines with slope r/s

such that consecutive lines in each family differ by a translation by 2ω̃. This implies that

the points z0 and w0 = z0 + 2ω′ are separated by precisely N lines from each of the

families Fj , j = 1, 2. So β̃ must have at least 2N points in common with ℘−1(τr/s). Since

℘ ◦ β̃ maps [0, 1) injectively onto β, we conclude that β = ℘(β̃) has at least 2N points in

common with τr/s . If β = τr ′/s′ , then β̃ is a parameterization of the line segment [z0, w0],

and so β̃ meets ℘−1(τr/s) in precisely 2N points. This means that τr/s and τr ′/s′ have

exactly 2N points in common.

It follows that for all β, we have

2N ≤ #(℘−1(τr/s) ∩ β̃) = #(τr/s ∩ β),

and so 2N ≤ i(α, β) ≤ #(τr/s ∩ τr ′/s′) = 2N . Thus, we have equality here and the state-

ment follows.

(ii) This is a variant of the argument in statement (i) and we use the same notation.

Since β ∼ τr ′/s′ , the core arc ξ of β is isotopic to a core arc of τr ′/s′ . Now two core arcs

of a given essential Jordan curve in (P, V ) are isotopic relative to V if they have the same

endpoints (this was pointed out in the proof of Corollary A.9). It follows that ξ ∼ ξ ′
r ′/s′ ,

where ξ ′
r ′/s′ is one of the two geodesic core arcs of τr ′/s′ . In particular, ξ ′

r ′/s′ = ℘(�r ′/s′)

for a line �r ′/s′ ⊂ C that contains a point in Z2. Note that ξ ′
r ′/s′ possibly differs from the

geodesic arc ξr ′/s′ as in the statement (if ξ ′
r ′/s′ and ξr ′/s′ lie in different components of

P \ τr ′/s′).

If ξ̃ : I → C is a lift of ξ under ℘ in suitable orientation, and z1 := ξ̃ (0) ∈ Z2, w1 :=

ξ̃ (1) ∈ Z2, then it follows from Corollary A.9 that w1 − z1 = ω′ = s′ + ir ′. Now equation

(A.6) implies that there are exactly N = |n| = |rs′ − sr ′| lines in F1 ∪ F2 that separate z1
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and w1 (essentially, this follows from the fact that the set [0, n] ∩ {2j ± t0 : j ∈ Z}, where

t0 ∈ (0, 1), contains precisely N = |n| points).

Let ω̃′ := −p′ + iq ′, where p′, q ′ ∈ Z and p′r ′ + q ′s′ = 1. Then, by the discussion

before Lemma A.7, the map ℘ sends one of the segments [z1, w1] and [z1 + ω̃′, w1 + ω̃′]

homeomorphically onto ξr ′/s′ depending on whether ξ ′
r ′/s′ = ξr ′/s′ or ξ ′

r ′/s′ 	= ξr ′/s′ , respec-

tively. In either case, each segment meets exactly N lines in F1 ∪ F2.

Arguing as before, we see that

#(τr/s ∩ ξr ′/s′) = N ≤ #(℘−1(τr/s) ∩ ξ̃ ) = #(τr/s ∩ ξ).

This leads to N ≤ i(α, ξ) ≤ #(τr/s ∩ ξr ′/s′) = N . So we have equality here and the

statement follows.

(iii)–(v) These are special cases of statements (i) and (ii). For example,

a = ℘(R × {0}) = ℘(�0(0)) is a core arc of αh corresponding to slope r ′/s′ = 0/1 = 0.

Hence, by statement (ii), we have

i(α, a) = |r · 1 − s · 0| = |r| = #(τr/s ∩ ξ0) = #(τr/s ∩ a).

The other statements follow from similar considerations.
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