2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

First-Order Dynamic Optimization for Streaming Convex Costs

Mohammadreza Rostami, Hossein Moradian, and Solmaz S. Kia, Senior member, IEEE

Abstract— This paper proposes a set of novel optimization
algorithms for solving a class of convex optimization problems
with time-varying streaming cost functions. We develop an
approach to track the optimal solution with a bounded error.
Unlike prior work, our algorithm is executed only by using
the first-order derivatives of the cost function, which makes
it computationally efficient for optimization with time-varying
cost function. We compare our algorithms to the gradient
descent algorithm and show why gradient descent is not an
effective solution for optimization problems with time-varying
cost. Several examples, including solving a model predictive
control problem cast as a convex optimization problem with a
streaming time-varying cost function, demonstrate our results.

time-varying optimization, convex optimization, machine
learning, information stream

I. INTRODUCTION

In the expansive field of optimization and learning, there is an
emerging focus on problems where traditional optimization
techniques are not providing efficient solutions on time scales
that match the speed of data transmission due to the limi-
tations on computational and communication resources [1]—
[10]. Power grids, networked autonomous systems, real-time
data processing, learning methods, data-driven control sys-
tems, and microelectromechanical systems [11] are among
many applications that can stand to benefit from specialized
optimization algorithms for optimization problems with time-
varying cost. These algorithms are crucial in enabling such
applications to recalculate and adjust their optimal operat-
ing parameters as shifts in data inputs lead to changes in
their cost functions over time. This paper seeks to extend
the current understanding and development of optimization
algorithms capable of handling time-varying cost functions.

We consider a class of convex optimization programs where
the objective function f : R™ x R>g — R is time-varying.
More specifically, the optimization problem is given as

x*(t) = arg m]iRgl f(x,t), teRs. (1)
xeR™ -

See Fig. 1 for an illustration of the components of (1).
Suppose at any ¢t € R>(, optimization problem (1) is solvable
and its minimum value is finite, i.e., | f(x*(¢),t)| = f} < .
In what follows, for simplicity, we denote x*(¢) by x}. For
optimization problem (1),

Vif(x},t) =0, t € Rx>o, 2)

is a sufficient condition for x; being the optimal trajec-
tory [3].

This work was supported by NSF CAREER award ECCS 1653838.
The authors are with the Department of Mechanical and Aerospace

Fig. 1. A time-varying f(x,t) vs. x and ¢ (gray plot) and the
trajectory of f(x*(t),t) vs. x*(t) and ¢ (red curve).

A trivial way to solve (1) is to sample the cost at particular
times, ¢, € R>o, and solve the corresponding sequence of
optimization problems assuming f(x,t) = f(x(¢x)) for each
time interval ¢ € [ty, tx11). However, this implementation is
expected to result in steady-state tracking errors. This track-
ing error can be significant if the optimal solution is drifting
away from xj at a rapid pace at the next sampling time.

Recently, [12] and [13] have studied solving the time-varying
convex optimization problems from a contraction theory
perspective and has provided tracking error bounds between
any solution trajectory and the equilibrium trajectory for
continuous-time time-varying primal-dual dynamics. In re-
cent work [14], it is shown that for any contracting dynamics
dependent on parameters, the tracking error is uniformly
upper-bounded in terms of the contraction rate, the Lipschitz
constant in which the parameter is involved and the rate of
change of the parameter.

On the other hand, for differentiable costs, observing that
taking the derivative of (2) results in

_V;:i (X:a t)vxtf(xgv t)a

alternative results, such as those in [2], [3], [15], [16], have
proposed continuous-time algorithms aimed at converging to
trajectories that satisfy (3) asymptotically, beginning from
any initial condition. The literature reviewed so far employs
continuous-time dynamics to address the time-varying opti-
mization problem presented in (1). Inspired by the process
described in (3), several prediction-correction methods have
been introduced in [4], [5], [17], [18] within the discrete-
time framework. However, the tracking achieved by these
discrete-time algorithms is not exact.

Cx
Xy =

te Rzo. 3)

Although elegant, all the aforementioned algorithms suffer
from high computational complexity as the algorithms re-

Engineering, University of California Irvine, Irvine, CA 92697, : .) -
{mrostam2, hmoradia, solmaz}@uci.edu. quire second-order derivatives of the cost function, as well as
979-8-3503-8265-5/$31.00 ©2024 AACC 2194

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

computing the inverse of the Hessian, which is not efficient
for high-dimensional problems. Requiring to compute the
inverse of Hessian also limits the use of these algorithms
for non-convex optimization problems where the inverse
may not exist. The use of Hessian has also been proven
to be restrictive in the design of distributed optimization
algorithms inspired by these second-order algorithms. For
example, the algorithms in [3] and [19] require that Hessians
of all local objective functions be identical.

In this paper, we present a set of discrete-time optimization
algorithms that track the optimal solution of the optimiza-
tion problem (1) with a quantifiable error bound. Our key
contribution lies in designing algorithms that use only the
first-order derivatives of the cost function, thereby reducing
the computational cost in comparison to the Hessian-based
methods. Moreover, use of the first-order derivatives makes
our algorithms amenable to solve non-convex time-varying
optimization problems. Beside establishing the convergence
properties of our algorithms, we compare our algorithms
to the gradient descent algorithm and show why gradient
descent is not an effective solution for optimization problems
with time-varying cost. Due to space constraints, we have
omitted the proofs of formal assertions, but interested readers
can refer to [20] for these details.

II. PRELIMINARIES

Let the set of real numbers be R. For a vector x € R"
the Euclidean and infinite norms are, respectively, ||x| =
VxTx and ||x||oc =max |z;|;_,. The partial derivatives of a
function f(x,t) : R™ x R>g — R™ with respect to x € R”
and ¢t € R> are given by Vi f(x,t) (referred to hereafter
as ‘gradient’) and V.f(x,t). A differentiable function f :
R? — R is m-strongly convex (m € Rs) in R? if and only if
(z—x)"(Vf(z)—Vf(x))>m|z—x|? for Vx,z €R?, x#
z. For twice differentiable function f the m-strong convexity
is equivalent to V2f(x) = mI, ¥V x € RY. The gradient of
a differentiable function f : R? — R is globally Lipschitz
with constant M € Ry (hereafter referred to simply as M-
Lipschitz) if and only if

IVE(x) - VE(Y)I| < M [x—yl, ¥VxyeR%. ()

For twice differentiable functions, condition (4) is equivalent
to V2f(x) = MI, V x € R? [21]. A differentiable m-
strongly function with a globally M-Lipschitz gradient for
all x,y € R also satisfies [21]

VI y =) + Sy x| < f(y) - F()
<Vl —)+ 5y~ =P,

1 L1
VI < f(x) = f* < o=IIVI)I®, (5

where f* is the minimum value of f.

(5a)

A. Assumptions on the streaming cost

We pose some well-posedness conditions on the stream-
ing cost.

Assumption 1 (Well-posedness conditions). At any time
t € Ry and any finite x € R”, we have |f(x,t)| < oo.
Moreover, at any t € Rxo, optimization problem (1) is
solvable and its minimum value is finite, i.e., | f(x*(¢),t)| =
fr < o0.

The optimality condition (2) characterizes the solution of the
optimization problem (1). Under the following assumption,
the solution ¢ — x} is unique [22].

Assumption 2 (Conditions for the existence of a unique
solution). The cost function f(x,t) : R” x R>g — R
is twice continuously differentiable with respect to x and
continuously differentiable with respect to ¢ and globally
Lipschitz in t. Moreover, the cost function is m-strongly
convex and has M-Lipschitz gradient in x, i.e.,

ml, X Vxxf(x,t) S M1,, teRs.]
Beside Assumption 2, to establish our convergence, we place
some other conditions on the cost as stated in Assumption 3
below. Note that similar assumptions are also used in the
existing second-order time-varying optimization algorithms.

Assumption 3 (Smoothness of the cost function). The func-
tion f(x,%¢) : R” x R>¢p — R is continuously differentiable
and sufficiently smooth. Specifically, there exists a bound on
the derivative of f(x,t) as

IVxef(x,)] < Kz, Vif(x,t)| < Ki, |Vuf(x,t)] < Ks

for any x € R", t € R>q. O

By virtue of [23, Lemma 3.3], Assumption 3 leads to
cost function f(x,t) and its first derivatives V,f(x,t) and
Vxf(x,t) being globally Lipschitz in ¢ € R>o with respec-
tive constants K7, Ko and K3.

In what follows, we let f*(t) = f(x*(t),t), be the optimal
cost value at any ¢ € R>q.

Lemma II.1 (Bound on the cost difference of the optimizer).
Consider the optimization problem (1) under Assumptions 2
and 3. Then,

| (egn) = f7 ()] < (©6)
where) = 6(K + 8 Ka) + 522 (M8 1 9), with § = t),11 —

tr € Ry being the sampling timestep of the optimal cost
function across time. (]

III. OBJECTIVE STATEMENT

For a first-order solver for problem (1), some work such
as [24] investigated use of the conventional gradient de-
scent algorithm

X1 = Xk — & Vi [(Xk, thr1)- @)
Considering the first-order approximation of the cost at £ 1,

FXrt tir1) A F (Xis tor1) + Ve (X tog1) T (Xeg1 — X)),

(®)

2195

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

fix)

W Algorithm 1 Prediction Step
[l Gradient Descent Prediction Step

@) Vif(xetr) >0 ® Vef(eetr) <0

Fig. 2. An example case that demonstrates the role of the prediction
step (line 3) of Algorithm 1. As we can see in this example, for
both cases of V¢f(xk,tx) > 0 (plots in the left column) and
Vif(xk,tr) < 0 (plots in the right column) the statement of
Lemma IV.1 holds, i.e., fi (tkt1) < fo (thy1).

the gradient decent algorithm (7) certainly results in function
reduction at each t;11. On the other hand, considering the
first-order approximation across time from ¢ to x4,

F(Xhytir) =f(Xpy i) + Ve f (Xp, tr) |0 9)

where § = tp41 — tg, we see that the gradient descent
algorithm (7) is oblivious to V;f(xy,tx) " (txr1 — tx) and
how cost is changing across time. Iterative optimization algo-
rithms for unconstrained problems are driven by successive
descent objective. However, if V,f(xx,%,)" > 0, we have
f(Xg,tk+1) > f(xk,tx) and thus the function reduction at
ti+1 after taking the gradient descent algorithm (7) is not
the same as if f(xg,tx+1) = f(Xg,tx) (in first-order sense).
Thus, one can anticipate that the gradient descent algorithm
will result in poor tracking performance during periods of
time that V, f(x(t),t) > 0.

Let us re-write the gradient decent algorithm (7) as
(10a)
(10b)

X1 = Xk
Xkl = Xpyq — anf(x,:H,tkH).

We refer to x;_ 4188 predicted decision variable at time ¢
and to xi41 as the updated decision variable at t;,. We
expect that at each time ¢5,;, the updated decision variable
gets close to x*(tx41) by virtue of function descent. In the
subsequent sections, we set to design alternative algorithms
which consider the variation of the cost across time and
employ prediction rules that will result in a better tracking
performance than that of the gradient descent algorithm.

IV. FIRST-ORDER ALGORITHMS

In this section, we propose two classes of first-order algo-
rithms to solve optimization problem (1), using prediction

—-e- Gradient descent
Proposed Algorithm

Fig. 3. The difference between the trajectories of the proposed
Algorithm 1 and the gradient descent algorithm shown in time
interval ¢ € [1.2,2.1] for the time-varying cost shown in Fig. 1.

and update steps that take advantage of the first-order term
V.if(xk,tr) to improve convergence performance. Algo-
rithm 1 is our first proposed algorithm. The structure of
this algorithm consists of two steps: the prediction step
changes the local state based on the rate of change of the
cost function with respect to time. The subsequent update
step is a gradient descent step at freeze time fjy;. The
following Lemma reveals the advantage of the prediction step
of Algorithm 1 over the gradient descent algorithm (10a),
which lacks prediction oversight.

Lemma IV.1. Consider the gradient descent algorithm (10a)
and Algorithm 1. Let § = (41 — tx) be the same for both
algorithms. Let fg (tr4+1) and fi (tx41) be, respectively,
the function value of the gradient descent algorithm and
Algorithm 1 after the prediction step. Suppose x; for both
algorithms is the same. Then, for any ¢ € R>g, we have
f1 (tk+1) < fg (tr+1) in first-order approximate sense.

Proof: The first-order approximation of f(x; 1, tr+1)
is f(xpipter1) = f(Xnte) + Vf (k) (X, —
xg) + Vif(Xk, tr)(tk+1 — tg). For gradient descent algo-
rithm by substitution we obtain fy (tr41) ~ f(xk,tr) +
d Vi f(xg, tg). For Algorithm 1, for ||V f(xk, tr)| < €, we
have fo(tit1) = fi (1) = f(Xk,th) + 0 Vif (Xk, tr).-
For ||Vxf(xk,tx)]| > € on the other hand we have
i (k1) = f(Xeote) + Vf Xk te) (X — Xk) +
Vi f(xp,th) = f(Xhy ti)+6 (Ve f (xks te) = [V f (xks)),
confirming f; (tx+1) < fg (tx+1), and completing the proof.

See Fig. 3 for trajectories generated by the gradient descent
algorithm and Algorithm 1, which shows Algorithm 1 results

in a lower tracking error. Next, we present the convergence
analysis of Algorithm 1.

Theorem IV.1 (Convergence analysis of Algorithm 1). Let

Assumptions 2 and 3 hold. Then, Algorithm 1 converges to

the neighborhood of the optimum solution of (1) with the

following upper bound

(1—(1—2ram)*)

J&rt1s ter1) = [(1) < PR
(1—(1—2ram)*)

4Kk20%m?
+ (1 = 2kam)*(f(xo, to) — f*(t0)),

max(76”, u6)
(11)

2196

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 e—exact Time-Varying Optimization with
Vi f Xk, t)

. Imitialization xo € R™, €, € Ry, f(x0,t0) € R,

if ||fo(xk,tk)\| > € then

Vif(xp,t
b bl 7 £ (x, 1)

XI;+1 = X} —
else
Set X,:_H = Xk
end if
Update f(x;,,tk+1)
X1 = Xy — OV f (X1 thr1)-

e A R o e

Algorithm 2 e—exact Time-Varying Optimization with
V:if (Xk, tr) Approximation

Initialization x, € R", € € R+, f(x0,t0) € R,
if ||fo(Xk7tk)H > € then

Xt Xt
xieyy = — LRI G f(1)

Set x; . | =Xy
end if
Update f(xl;,_p tk—O—l)
Xkt1 = Xpyq — anf(x,;_l,tkH) .

AN AN S S

where 1/) = 5(K1 + Kg) 5 (IW(S) 6= tk+1 — tk,

T= 2?1 + 252K1 1KS + Kle, p = K1 + K3 and
k= (1—aM/2), provided that 0<a< g7 0

For proof see [20].

Remark IV.1 (Ultimate tracking bound of Algorithm 1). The
tracking bound of Algorithm 1 is given by (11). As k —
oo we have (1 — 2kam)* — 0 in (11). Thus, the effect of
initialization error f(xo,to) — f*(to) vanishing with time.
Moreover, the ultimate bound on f(Xg41,tx+1)— f*(tkt1)
as k — oo is 4521§2m I mj;‘gjxii;g‘”. Thus the optimal value of
€ corresponding to the lowest bound in (11) is obtained as the
solution of v62 = u6, which can be calculated numerically.

Algorithm 1 requires explicit knowledge of V.f(xg,tx)
which may not be available for costs constructed from
streaming data. For such problems we propose Algorithm 2,
which follows the same prediction-correction structure of
Algorithm 2 but uses an approximation for V, f(xg, tx). In
Algorithm 2, we approximate V. f(xg, tx) by

FOxh, tr) = f(Xn to—1)

bt —tp—1

Vif (xg, tk) = (12)

Higher-order differences can also be used to construct a bet-
ter approximation of f(xg, ¢x), but at the expense of higher
computation and storage costs. In both Algorithm 1 and
Algorithm 2, € € R+ is an arbitrary chosen parameter that,
as we show below, can be tuned to achieve a desired level
of tracking accuracy. Next, theorem explains the convergence
guarantee of Algorithm 2.

Theorem IV.2 (Convergence analysis of the Algorithm 2).
Let Assumptions 2 and 3 hold. Then, the Algorithm 2

log [bx = x|l
5
s

103 —— Algorithm 1
-7] — Gradient Descent

0 10 20 30 40 50 60 70 80 90 100
Sampling time tx

Fig. 4. Log error of the performance of Algorithm 1 versus gradient descent
algorithm with respect to the sampling time ¢j.

converges to the neighborhood of the optimum solution of 1
with the following upper bound

P lte) < (1 - (1 —2kam)k)

J(Xpg1,trgr) —

4k2a®m
1—(1—2kam)k
(T Zar?) max (782, ud)
+ (1~ 2mm)’“(f(><o,to> = [*(to)), (13)
where) = 6(K; + 5K3) (Afn‘s +2), 7y = K3+
2 2
26, | KM Kollots K3’+‘5fez 1=Ky 4 § Ky and
k= (1 — aM/2), provided that 0 < o < 51-. O

For proof see [20]. Based on Theorem IV.2, a similar state-
ment to Remark IV.1 can be made about the ultimate tracking
bound of Algorithm 2. Notice also that the tracking error of
Algorithm 2, as one can expect based one Algorithm 2’s
use of an estimate for V,f(x,tr), can be larger than
Algorithm 1’s because 4" > ~.

V. NUMERICAL EXAMPLE

In this section, we demonstrate the performance of Algo-
rithm 1 and Algorithm 2 using three different examples. In
the first example we assume that the time derivative of cost is
explicitly available. In the next two examples, which include
solving a Model Predictive Control (MPC) design as a time-
varying convex optimization problem and a learning problem
with streaming data, the explicit knowledge about the time
derivative of the cost is not available. Therefore, we solve
these problems using Algorithm 2.

A. A case of time-varying cost function whose time deriva-
tives are available explicitly

Consider the time-varying cost function f(x,¢) = (x1 +
—0.01)2 + (1 +e==M)22 + e~ (=g - sin(2t), where

0, ift<45 .
T= 45, ift>45 [Here, the purpose of the variable

T is to produce a jump within the function at the time instant
t = 45 to observer the response of the algorithm in relation to
abrupt changes in the underlying problem. Although, we can
find ¢ — x} explicitly in this problem, we use this problem
as a demonstration case.

As depicted in Fig. 4, initializing both gradient descent and
Algorithm 1 from xo = [0.1,1.2]", selecting o = 0.04,

2197

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

0 = 0.1 and € = 0.03, for ¢ < 45, Algorithm 1 demonstrates
the ability to attain an error level of 1073 at ¢, = 10.7,
whereas the gradient descent algorithm achieves the same
error threshold at ¢, = 24.7. In other words, the gradient
descent algorithm requires 140 more iterations to reach
the error level of 1073. Furthermore, for ¢t > 45, after
inducing a jump within the function at ¢t = 45, Algorithm 1
demonstrates the ability to reach an error level of 1072 at
tr = b4, whereas the gradient descent algorithm achieves
the same error threshold at ¢, = 71. In other words, the
gradient descent algorithm requires 170 more iterations to
reach the error level of 1073, This simulation demonstrates
that Algorithm 1 has a higher convergence rate than the gra-
dient descent algorithm outside the e error bound. However,
after both algorithms are in the € error bound and steady-
state tracking is achieved, as expected, Algorithm 1 behaves
similar to the gradient descent algorithm.

B. Model Predictive Control

MPC consists of solving repeated optimization problems
over some fixed moving horizon. These repeated optimiza-
tion problems can be viewed as an incidence of an opti-
mization problem with streaming/time-varying cost. Let us
demonstrate by designing an MPC controller for a unicycle
robot, where we want a point of interest h, [zj, yu]' =
[z 4+ bcos(f), y + bsin(h)]", on the robot that a camera
is mounted on. (x,y,60) is the pose vector of the robot.
The camera should follow a desired trajectory r(t) =
[re(t),ry(t)]T. This desired trajectory is not available a
priori and at each time ¢ it is constructed/adjusted from
observing the path using the robots camera system for some
forward horizon. The dynamics governing the motion of
& —bl sin(0 . .
22] = [y+bécosge)) = [4}]. Discretiz-

. . . . zp (k+1) _ xp (k)+ouy
ing this dynamics we obtain on(bt1) | = {yn(k)-%&uz}

Then, an MPC-based tracking controller can be obtained
from solving the following optimization problem at each
time step k, executing only controller u(k) and repeating
the process:

point A is given by [

. N HptHw—1 ‘ 9
Juin Ji(k) = > (re(k + 1) — zn(k +1))
1 H,—1)
3D, (mlk+i)?,
min Jy(k) =Y i = 0"y (k) — yp(k +0))?

us, €R10
1 —Hu—1 o
Dy (ki)

Here, H, and H, are the length of the prediction horizon
and the control horizon, respectively. Also, H,, may be used
to alter the control horizon but for the case of simplicity, we
put H,, = 0. Here, A is the weight factor which is assumed
to be constant over the prediction horizon. For our numerical
example we use the following values A = 0.1, H, = H,, =
10. Additionally, we initialize the robot from x(0) = —100
and y(0) = —100 and setting uy (i) = u2(i) = 1, Vi €
{0,1,...,9} when k = 0.

(14a)

(14b)

log [lug - ut" |
5

—— Gradient Descent
—— Algorithm 2

10° 10! 102 107
Time index

e
]
e
=] R
= 1wo¥
e
= 1| — Gradient Descent
—— Algorithm 2
10° ot o -
Time index
Fig. 5. Log error of the controller u; and ue with respect to time

under executing Algorithm 2 and gradient descent algorithm. Here
ul*, 1 € 1,2 is the optimal control value which given that the
costs are quadratic can be obtained analytically by assuming enough
computational power.

One of the main challenges with the MPC control is the
cost of solving the optimization problems of the form (14)
repeatedly with, for example, the gradient descent algorithm
which converges asymptotically at each time step. Viewing
the optimization problem (14) as a representation of a time-
dependent cost at the specific time ¢, we address the MPC
issue using Algorithm 2, with the values of a = 0.01, € =
0.1, and § = 0.1 configured for the sampling interval.Note
here that since we do not have explicit knowledge of the
time derivative of the cost, we cannot solve this problem
with Algorithm 1. The results are shown in Fig. 5 which
shows that Algorithm 2 achieves a better tracking error than
gradient descent algorithm. Meaning that we can take less
steps to get to a certain tracking error threshold than the
gradient descent algorithm, resulting in reducing computation
cost.

C. Learning for streaming data

As a final demonstration example, we analyze the perfor-
mance of Algorithm 2 in comparison to the gradient descent
and other first-order static algorithms for a learning problem.
This numerical example is modeled after the first numerical
example of [5]. This is an example in which the exact value
of Vif(xx,tx) is not available due to the online arrival of
the data and the lack of advanced knowledge about the cost.
Suppose that data points arrive sequentially at intervals of
7 > 0 where 7 can be selected as the inter-arrival time of
data. The goal is to find the optimal solution of the regression
problem at time ¢ € T based on data Z(t) = {z(7),7 €
W} where W; is a sliding window. The problem can be
formulated as

x*(t) = arg min f(x,Z(t)), t€ R,

€R

where f is the quadratic least square cost. Here, we con-
sider an example of a 50 dimensional time-varying least-

2198

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

Gradient Descent

Nesterov Acceleration ver 1
Nesterov Acceleration ver 2
Heavy-ball method
Conjugate gradient
Proposed-algorithm

o M-«WM

(=]
o

In(f(t)-f*(t)

-
S
&

400 600
Time index

0 200 800 1000

Fig. 6. The performance of different algorithms on tracking the optimal
objective over an example of a 50 dimensional time-varying least-squares
problem, defined using a sliding window of 50 data points, for 950 time
points. Two big jumps in the solution near time indices 250 and 550 are
by design. Nesterov ver. 1 does not use knowledge of strong convexity,
while ver. 2 does. The non-linear conjugate gradient exploits the quadratic
objective to have an exact line-search.

squares problem, defined using a sliding window of 50 data
points, for 950 time points. By design, two large jumps in
the solution near time indices 250 and 550 are generated.
Figure 6 shows that our proposed Algorithm 2 with ¢ =
0.01 outperforms all the known first-order algorithms for
static optimization that were simulated in [5], even the
accelerated algorithms. This can be attributed to the use of
implicit knowledge of V,.f in our algorithm, which gives
it an anticipatory mechanism about the changes of the cost
with time. Figure 6 is in the semi-logarithmic scale over
time. Interestingly, the gradient descent algorithm converges
faster than the well-known accelerated algorithms for the
time-varying optimization problem. In addition, the proposed
algorithm, as shown, outperforms all common optimization
algorithms in terms of convergence.

VI. CONCLUSION

In this paper, we proposed two algorithms for a class
of convex optimization problems where the cost is time-
varying. Our solutions can track the optimal trajectory of the
minimizer with bounded steady-state error. Our algorithms
are executed only by using the cost function’s first-order
derivatives, making them computationally efficient for opti-
mization with a time-varying cost function and amenable to
non-convex optimization problems. We argued why problems
with time-varying cost should not be solved by gradient
descent and how taking into account how the cost func-
tion varies with time can lead to first-order optimization
algorithms with lower tracking error. We demonstrated the
effectiveness of our proposed algorithms through several
examples including an MPC problem and a learning task with
streaming data. Future work will investigate the distributed
implementation of our proposed algorithms for in-network
problems where agents communicate according to a graph
topology.

[1]

[2

—

[3]

[5

=

[6

=

[7

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

2199
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on November 07,2024 at 17:26:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through
the alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 62, no. 5, pp. 1185-1197, 2013.

M. Fazlyab, S. Paternain, and A. Ribeiro, “Prediction-correction
interior-point method for time-varying convex optimization,” IEEE
Transactions on Automatic Control, vol. 63, no. 7, pp. 1973-1986,
2017.

S. Rahili and W. Ren, “Distributed continuous-time convex opti-
mization with time-varying cost functions,” IEEE Transactions on
Automatic Control, vol. 62, no. 4, pp. 1590-1605, 2017.

A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A
class of prediction-correction methods for time-varying convex opti-
mization,” IEEE Transactions on Signal Processing, vol. 64, no. 17,
pp. 45764591, 2016.

E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden, “Optimiza-
tion and learning with information streams: Time-varying algorithms
and applications,” IEEE Signal Processing Magazine, vol. 37, pp. 71—
83, 2020.

F. Malandrino, G. D. Giacomo, A. Karamzade, M. Levorato, and C. F.
Chiasserini, “Matching dnn compression and cooperative training with
resources and data availability,” in /[EEE INFOCOM 2023 - IEEE
Conference on Computer Communications, pp. 1-10, 2023.

A. Esteki and S. S. Kia, “Distributed optimal resource allocation with
time-varying quadratic cost functions and resources over switching
agents,” in European Control Conference, pp. 441-446, 2022.

M. Rostami and S. S. Kia, “Federated learning using variance reduced
stochastic gradient for probabilistically activated agents,” in 2023
American Control Conference (ACC), IEEE, 2023.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” PMLR, 2017.

Y. Ruan, X. Zhang, S. C. Liang, and C. Joe-Wong, “Towards flexible
device participation in federated learning,” PMLR, 2021.

D. Dadkhah and S. R. Moheimani, “Combining h and resonant control
to enable high-bandwidth measurements with a mems force sensor,”
Mechatronics, vol. 96, p. 103086, 2023.

P. Cisneros-Velarde, S. Jafarpour, and F. Bullo, “A contraction analysis
of primal-dual dynamics in distributed and time-varying implementa-
tions,” IEEE Transactions on Automatic Control, 2022.

D. H. Nguyen, L. V. Thanh, T. Konstantin, and S. Jean-Jacques, “Con-
traction and robustness of continuous time primal-dual dynamics,”
IEEE Control Systems Letters, 2018.

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo,
“Contracting dynamics for time-varying convex optimization,” arXiv
preprint arXiv:2305.15595, 2023.

E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 4, pp. 647-662, 2015.

Y. Ding, J. Lavaei, and M. Arcak, “Escaping spurious local minimum
trajectories in online time-varying nonconvex optimization,” American
Control Conference, pp. 454-461, 2021.

N. Bastianello, A. Simonetto, and R. Carli, “Primal and dual
prediction-correction methods for time-varying convex optimization,”
arXiv:2004.11709 Available: http://arxiv.org/abs/2004.11709, 2020.
N. Bastianello, “tvopt: A python framework for time-varying optimiza-
tion,” IEEE Int. Conf. on Decision and Control, 2021.

B. Huang, Y. Zou, Z. Meng, and W. Ren, “Distributed time-varying
convex optimization for a class of nonlinear multi-agent systems,”
IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 801-808,
2020.

M. Rostami, H. Moradian, and S. Kia, “First-order dynamic optimiza-
tion for streaming convex costs,” arXiv preprint arXiv:2310.07925,
2023.

Y. Nesterov, Lectures on convex optimization, vol. 137. Springer, 2018.
A. L. Dontchev and R. T. Rockafellar, Implicit functions and solution
mappings. 2009.

H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall,
3 ed., 2002.

A. Y. Popkov, “Gradient methods for nonstationary unconstrained
optimization problems,” Automation and Remote Control, vol. 66,
no. 6, pp. 883-891, 2005.

