2024 IEEE International Conference on Smart Computing (SMARTCOMP) | 979-8-3503-4994-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/SMARTCOMP61445.2024.00081

2024 IEEE International Conference on Smart Computing (SMARTCOMP)

DIME: Distributed Inference Model Estimation for
Minimizing Profiled Latency

Robert Viramontes
Department of Electrical and Computer Engineering
University of Wisconsin - Madison
Madison, WI
rviramontes @wisc.edu

Abstract—Distributed inference allows minimizing metrics
such as latency by offloading some computations from an edge
device. It is commonly formulated and solved as an Integer
Linear Program (ILP) for layer-wise partitioning of a Deep
Neural Network (DNN) to decide transition points from an edge
device to a hub and/or cloud devices. The formulation requires
parameters reflecting latencies to execute different bundles of
consecutive layers of DNN on each device. Profiling is the main
way to measure these bundle latencies accurately on a device.

In this work, we show a recent ILP of the layer-wise parti-
tioning (JointDNN) cannot in fact always generate an optimal
solution. As we show, this happens due to profiling behavior seen
in some devices. We propose DIME (Distributed Inference Model
Estimation) with novel modifications to accurately estimate the
latency of a bundle within the ILP formulation. It guarantees
generating the optimal solution regardless of the type of device
in the network. Additionally, DIME incorporates a new input
parameter within the ILP to control the tradeoff between solution
quality and the profiling effort. In our experiments we show
solving DIME always results in the optimal solution, sometimes
with significantly less profiling effort.

Index Terms—neural networks, distributed inference, opti-
mization, profiling, heterogeneous systems

I. INTRODUCTION

In recent years, there has been a rapid growth in applications
for Deep Neural Networks (DNNs) as they have shown adept
performance at a variety of tasks. As DNNs are utilized in
more applications, they are being deployed in a variety of
environments, including on edge devices which have a low
computational capability. One technique to balance latency re-
quirements of complex DNNs on non-performant edge devices
is to distribute the inference over multiple devices, factoring in
communication latencies between them. In the most common
distributed inference model, the DNN layers are partitioned
to decide a transition point from edge to faster devices such
as hub and cloud. A recent survey on distributed inference
highlights the need for improved partitioning algorithms that
can adapt to compute and communication resources [1].

A variety of techniques have been proposed for layer-wise
partitioning of a DNN to determine transition points while
optimizing for objectives such as latency or energy. In JALAD
[2], the profiled computation latency is fed as input to an

This material is based upon work supported by the National Science
Foundation under Grant No. 2006394.

Azadeh Davoodi
Department of Electrical and Computer Engineering
University of Wisconsin - Madison
Madison, WI
adavoodi @wisc.edu

integer linear program (ILP) which minimizes the total latency
of edge and cloud. JALAD compresses data transfers which
may result in accuracy loss. In ADDA [3], device profiling is
used with greedy search to generate multi-path DNNs. Only
the early-exiting portion of the DNN is executed on the edge.

The ILP proposed in [4] uses an analytic model to estimate
latencies while considering a weight pre-loading optimization
to overlap compute and weight memory transfers in the
inference schedule. Recently, JointDNN [5] utilizes device
latency profiles and formulates the edge-cloud partitioning
problem as an ILP, optimizing latency and energy for both
inference and training.

These ILP formulations rely on latency models of individual
layers or models of a bundle of consecutive layers to explore
the solution space to find the best transition points. It’s been
shown that profiles of individual layers are not sufficient to
estimate the latency of a bundle (i.e., as sum of individual
layers) [5]. In fact, JointDNN is one of the only works that
incorporates latency profiles of all possible layer bundles of a
DNN for each device as parameters fed into the ILP.

In this work, we first make the key observation that
despite collecting all possible latency profiles, JointDNN
is still susceptible to generating sub-optimal solutions. This
is due to the profiling behavior exhibited by some devices,
which can cause the ILP of JointDNN to incorrectly select
profiles used for latency estimation by its optimization vari-
ables. In particular, for devices whose smaller-bundle latencies
underestimate larger-bundle latencies, JointDNN incorrectly
assigning a larger-sized layer bundle to execute on a device
based on an underestimated latency of smaller-sized bundles,
when minimizing a distributed latency objective.

Our work is motivated by the above novel observations.
Specifically, using the above observations, we make the fol-
lowing contributions:

« We first generalize the formulation of JointDNN for
arbitrary number of devices which we refer to as the
‘base’ ILP. We then propose DIME, which incorporates
novel modifications to this base ILP and guarantees
correct estimation of latency of layer bundles within the
optimization formulation, regardless of device type.

« We additionally introduce an input parameter called
Maximum Bundle Size (MBS) to our formulation. It

2693-8340/24/$31.00 ©2024 IEEE 356
DOI 10.1109/SMARTCOMP61445.2024.00081
Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

controls the tradeoff between the device profiling effort
and quality of solution (i.e., distributed latency) in DIME.
Our simulation results conducted for a range of network
communication bandwidths show DIME always generates
the optimal solution, unlike JointDNN.
For some network bandwidths, DIME finds an optimal
solution with significantly lower profiling effort when
using a small MBS (e.g., 22 versus 132 device profiles).
In the remainder of the paper, in Section II-A we first
propose the ‘base’ ILP formulation. We then elaborate the
issue related to latency profiles of different devices in Sec-
tion II-B and finally propose the DIME additions to the base
in Section II-C. Simulation results are presented in Section III.

II. OUR APPROACH

Consider a distributed inference task to be sequential exe-
cution of the layers of a DNN across networked devices. The
problem has been formulated as an ILP which assigns each
layer to a device to be computed on. We focus on a distributed
inference latency objective, which is relevant, for example, in
the context of maximizing the user’s experience to receive the
results of an inference in a timely manner.

A. Base ILP Formulation

Let us denote d € Sp to be a device from set of DD devices
in the network, and ¢ € S be a layer of the set of L layers
of a DNN. Let the constant parameter ¢7 ; , denote the latency
to compute a bundle of layers i through j on device d. This
parameter should be computed by profiling on each device,
for all combinations of bundles with 1 <17 < 5 < L.

Denote t7; 4 to be the constant parameter reflecting the
network communication latency to send the output of layer ¢
from device d to compute the next layer on device d’. Assume
tf 4. = 0 when d = d'. In our experiments, these parameters
are estimated by dividing the total data size in bytes for a
given bandwidth (in bytes per second) from d to d’.

Next, three groups of binary variables are defined:

e x4 4: This variable encodes the layer-wise partitioning
solution. It is 1 when layer £ is assigned to device d,
0 otherwise.

Yi,j,a: This binary variable is 1 when a bundle of con-
secutive layers ¢ through j is assigned to device d.
When ¢ = j, the bundle includes only one layer. Having
Yi,j,d = 1 does not mean that consecutive layers i to j
are the largest bundle that is assigned to device d; layers
immediately before ¢ or after j may also be assigned to
device d.

ze,d,4:: This binary variable is 1 when layer £ is executed
on device d and layer £ + 1 is executed on device d’. It
decides when the network communication latency should
be added toward computing the distributed latency.

The base ILP is formulated using five groups of constraints.

Constraint (1), below, is written for each layer. It ensures
each layer is assigned to exactly one device:

D
Y wa=1 VLeS, (0

d=1

357

Next, Constraint (2) sums all unique y; ; ¢ bundle variables
which include layer ¢ in them (1 < i < ¢ < j < L) and sets
the x4 variable:

Vij | 1<i<e<j<L

Tpqd = Yi,j,d Vd € SD;VZ Sy 2)
This constraint is written for all combinations of devices
d € Sp and layers ¢ € Sp. It ensures that each layer
is associated with only one non-zero y; j 4 variable, if it is
assigned to device d.

The corresponding latency profile of layers 7 to j on device
d (ie. tf; ; parameter) would then be multiplied by v; ; q
toward computing the latency of execution on device d.

Next, constraint (3) shows how latency of execution on each
device and the overall compute latency across all devices (1)
is estimated:

D L L

7= "> 15,4 % Vija)

d=1 i=1 j=i

3

In Constraint (3) all possible layer bundles (i, 5) with (1 <
i < j < L) are listed for each device d. The y variable is
multiplied by the corresponding ¢ parameter reflecting the
corresponding compute latency to execute the bundle on that
device. The expression inside the parenthesis expresses the
total compute latency on device d.

Finally, to compute the communication latency, the two
constraints below are added:

Vel e SLfl;Vd 75 dl € SD
4)
Constraint (4) is written for all combinations of devices in Sp
and layers in Sp_q, where Sy _1 is the set of all the layers
except the last one. It sets z; 44 when layer ¢ executes on
device d and the outputs are sent to device d’. So zp 4.4 = 1
only when zy 4 = x¢41,¢# = 1. This constraint (consisting of
two inequalities) expresses a logical AND operation.
Using Constraint (4), and pre-known communication latency
parameters t7; ,, the total communication latency 7% is
calculated as:

0 < zpatxepr,a—220a0 <1

L-1

E dd/Xszd’

D D
= Z &)
d=1d'=1

Using all the presented constraints, the optimization ob-
jective is written as: min 7'° 4 T%. This expression
minimizes the distributed inference latency as the sum of all
communication and computation latency variables across all
assigned devices.

The above base ILP is a general form of the inference ILP
in JointDNN [5], which explicitly defines separate notations
for edge and cloud device types. In contrast, our base ILP is
written with fewer notations, incorporates an arbitrary set of
devices, and defines fewer groups of variables. We note that
[5] conducts experiments with asymmetric bandwidth between
devices (i.e. tﬁdd, # tﬁd,7d). Our formulation supports this,
though for simplicity we assume symmetric bandwidth.

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

V9e04- 8
& 6e-04- 2
>~3e04- El
20e+00-
il“ R —— R —
© 0.4- 5
g 03- o
[0.2- §
.g 0.1- 151
- 0.0- 1 1 1 1 1
6,(1*‘2’@1/ 6"1/ 15’613’@13’61*‘2’613’
RN IS S L SIS IS 2
B o BT S N D S

o RSN S S S B i

A (V22NN

Bundle Configuration

Fig. 1. Example showing inference latency of AlexNet when estimated as sum
of different profiled bundles for two different devices. A bundle configuration
of ‘1_2+3" would indicate the sum of profiled latency for a bundle of layers
(1,2) with the profiled latency of layer 3. The right-most bar (bundle of
1_2_3..._8) is the accurate latency profiling all layers as one bundle.

In the presented ‘base’ ILP, similar to all other ILP-based
partitioning works such as [2], [4], [5], we assume the devices
in the network are (a) aware of the mapping of layers to
devices and (b) have implemented a communication protocol
where the receiving intermediate results triggers computation
and forwarding results to the next device.

B. Impact of Device-Based Latency Profiles

The base ILP formulation requires latency parameters ¢7 ; ,
corresponding to a bundle of consecutive layers (from i to
J) to be specified by profiling execution on each device d.
Profiles should be collected for all unique combinations of ¢
and j with 1 << j < L.

It is possible for the base ILP to generate solutions based on
layer x; ¢ assignments that a bundle has its latency computed
using interior bundles of smaller sizes. For instance, two
different assignments Y124 = Y344 = 1 versus y; 44 = 1
both indicate layers 1 through 4 are executed on device d.
Therefore, ;4 = 1 in both cases for £ = 1,...,4. However,
the computation latency on d is estimated by the ILP as
tf,z,d"‘t:cs,z;,d in the former case, and as ti4,d in the latter. The
ILP actually picks the assignment which minimizes its objec-
tive the most. For example it may assign Y124 = Y344 = 1
and y14.4 =01 55 ; +15 4 4 <1744

To demonstrate this, Figuré 1 shows the latency of AlexNet
network [6] when estimated using different combinations of
layer bundles, for a representative subset of combinations.
This is done for two devices: the NVIDIA 2080TI GPU and
LibreComputer LePotato. In this example, the latencies are for
non-distributed case and computed assuming only one of the
two devices is used. We segment the DNN at the boundaries of
convolution and fully-connected layers because the latencies
of these layers dominate computation latency.

To compute the profile of each (i,j) bundle, we use the
PyTorch [7] Sequential model to create a feed-forward bundle
of layers i through j. We profile 20 runs of this bundle, and
take the average of the runs after discarding the top 10% and
bottom 10% of observations to eliminate potential outliers.
This is is done for all the experiments in the paper.

358

In Figure 1, we observe that for the LePotato edge-class
device, the sum of layers tends to significantly underestimate
the execution latency of the whole network (right-most bar).
The underestimation exists even when using larger interior
bundles. We also observe that for the 2080TI cloud-class
device, the sum often overestimates the latency of a bundle.
The causes of under- and over-estimation behavior are outside
the scope of this work, but our results support the claim in
JointDNN [5] that larger bundles are more accurate and add
that this is true in both under- and over-estimation cases.

Under the latency minimization scheme of the base
ILP, using the LePotato profiles would result in setting,
Y1,1,d:Y2,2,ds - - -, Y8,8,4 variables to 1 instead of ;54 even
though this selection significantly underestimates the true
latency captured by ¢ g ;.

C. From the Base ILP to DIME

To fix the discussed issue, we add the following constraint
to the base ILP which is written for each device:

L L S
Zzyi,j,dﬁ[iezi <] Vvde Sp!

i=1 j=i

(6)

In the above inequality, the left-hand-side is sum of the binary
variables y; ;4 on each device d for all layer combinations
1 <4 < j < L. This right-hand-side numerator is the number
of layers assigned to device d. The denominator is number of
layers L in the DNN. The expression on the right-hand-side
will evaluate to 1 if at least one layer of the DNN is assigned
to d and O otherwise. The inequality therefore requires the
sum of all y; ; 4 variables assigned to device d to be at most
1, if at least one layer is assigned to device d.

This forces the optimizer to set the y; ; 4 variable with the
smallest index for ¢ and largest index j, and the rest of the
Yi,j,4 variables to 0. In other words, the y; ; 4 that is set to 1
corresponds to the largest-sized bundle assigned to device d
which ensures the correct latency profile (t) is used for d.

Adding Constraint 6 fixes the issue identified by us which
happens when ‘underestimating’ devices are present in the
network. When ‘overestimating’ devices are present, the added
constraint will not cause an issue and will still enforce
selecting the correct latency parameter.

Constraint 6 guarantees the use of correct latency parame-
tersunder the assumption of single-entry point to a device. We
note, this assumption is also made in other prior works on ILP-
based partitioning of DNN [2], [4], [5]. This is an acceptable
assumption because often it is not practical to switch compute
back to a slow (edge) device after switching to a faster (cloud)
device when minimizing distributed inference latency.

Recall, the base ILP requires profiling each device d to
obtain the t7; ; latency parameters for all combinations of
1 < i < j < d which equals w x D. The expression
shows that the profiling effort quadratically grows with the

I Ceil is a non-linear operation that can be approximated in a solver by the
procedure in [8]

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

Maximum Bundle Size =1
Y224 =1

I
"y11d Y224 Y33d
Layer 2 :

Maximum Bundle Size = 2

|
| Y124=1 y33a=1 |
|
| | Layer 1 + Layer 2 Layer 3
| | Y11.d Y2.2d Y3.3.d
! or I y124 Y234
| Yi1d=1 Y234 =1 1
| Layer 1 Layer 2 + Layer 3 | !
| |

Maximum Bundle Size = 3
Y134 =1

Y11.d Y22.d Y33.d
Y1,2d Y23.d
Y1,3d

Layer 1 + Layer 2 + Layer 3

Fig. 2. Example showing the impact of incorporating an MBS parameter in
Constraint 7. For simplicity, we assume there is only one device available. The
example shows how the y; ; 4 variables (shown on the right) are assigned to
define layer bundles (shown on the left) for three MBS values. When MBS=3,
the ILP’s objective is accurately computed but has the most profiling effort.

number of layers in the DNN and linearly grows with the
number of different devices in a heterogeneous network.

We introduce a new parameter called Maximum Bundle
Size (MBS) to be incorporated as input to the ILP. It sets
the maximum number of consecutive layers which may be
assigned the same y; ;q variable. Specifically, only ¥; ;4
variables are defined in which ¢ < j < i+ MBS — 1. For
example, when MBS=1, we require j 7, indicating only
bundle of 1 layer may be used. This means, for a given MBS,
only a subset of y; ; ¢ variables may be defined compared to
the base ILP. MBS allows the user to define a tradeoff between
the device profiling effort and latency calculation accuracy.

To incorporate an MBS parameter, Constraint 6 may be
generalized and replaced by the one below:

L L L
Zzyinivd < [M] vd e Sp

MBS @

i=1 j=i

In the above constraint, the right-hand-side expression com-
putes an upper bound on the number of layer bundles that may
be assigned to device d to estimate its latency.

The case when there is no error in approximating Constraint
6 is when MBS=L (number of layers) which requires profiling
all devices for all combinations of bundles ¢ through j with
1 <¢ < j < L. In this case, Constraint 7 simplifies to 6.

The other extreme case is when MBS=1. This case has the
least profiling effort because only the y; ;¢ variables with
i = j are defined. In this case, the only option that can be
considered by the ILP is to select L bundles of size 1 layer.

Figure 2 shows a toy example to demonstrate the impact
of MBS for a neural network composed of 3 layers on one
device. The figure shows the different solutions possible for
MBS=1, MBS=2, and MBS=3. This demonstrates how the
bundle selection varies with MBS under our novel constraint,
impacting the latency calculation for the ILP. The profiling
effort in each case is equal to the number of y variables shown
on the right-side of the figure.

359

III. EXPERIMENTAL RESULTS

We present our results utilizing the DIME formulation and
compare with the base ILP presented in Section II-A. To
compare with JointDNN [5] we used the same two-device
setting (i.e., an edge and a cloud device). We utilize Gurobi
[9] to solve the ILP formulation. We also compare with
the optimal solution determined via exhaustive search of all
feasible layer assignments and using the correct device latency
profiles based on the generated solution.

We examine the results for two popular neural networks,
AlexNet and VGGL11, when varying the bandwidth of the
connection between devices. For the edge-cloud setup in our
experiments, we use the LePotato (as edge) and NVIDIA
2080TT (as cloud) devices. We additionally present results of
an experiment for VGG11 when adding NVIDIA Jetson Nano
as an intermediate hub device to the edge-cloud setup.

In our experiments, we also vary the input parameter
Maximum Bundle Size (MBS) from 1 to number of layers
(L). This demonstrates the the impact of MBS on trading off
solution quality with profiling effort.

Communication latencies (¢ ; ;) are estimated by dividing
the total data size in bytes by the bandwidth (BW) in bytes per
second, assuming symmetric bandwidth. They are integrated
as shown in Constraints (4) and (5). We vary the network
bandwidth over a range including 4G and WiFi, similar to the
values in [5] and specified in Tables I and II.

In all of our experiments, we consider an application where
the edge device collects data and requires the result of infer-
ence. For example, a smart camera that has to generate a local
alert based on the results of inference. One such system is a
real-time fire detection system [10], which requires the local
alerts to have low latency and high accuracy to allow rapid fire
response while minimizing false positives. We enforce these
requirements by inserting zero-compute input and output
pseudo-layers in the DNN and constraining the associated =
variable to be assigned to the edge device.

A. Results of AlexNet for Edge-Cloud Setting

We first present the results for AlexNet. This neural network
has five convolution and 3 fully-connected layers, for a total
of 8 possible transition points under our profiling approach.

We experiment with three approaches: (1) JointDNN [5];
(2) DIME (ours); (3) optimal. The approach (1) is implemented
using our base ILP given in Section II-A which simplifies to
[5] given that we are also using an edge-cloud setting. For
DIME, we add Constraint 7 to the base ILP and vary the
MBS parameter. For the Optimal case (3), we exhaustively
list all possible transitions from edge to cloud. We accurately
evaluate the latency for each combination (considering both
compute and communication) using the device latency profiles
that exactly match the bundle assigned to device. We then pick
the assignment with smallest overall distributed latency.

We show the results of our approach in Table I for different
bandwidths when MBS is varied from 1 to 8 (number of layers
in AlexNet), ommitting values of MBS with same results for
brevity. For each network bandwidth two columns are listed

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
RESULTS OF OPTIMIZATION FOR ALEXNET, SHOWING TRANSITION LAYER FROM EDGE TO CLOUD (TRANS.) AND DISTRIBUTED LATENCY (LAT.).

BW = 1E5 MBPS BW=7.3125E5 BW=1E6 BW=2.36E6
(4G Upload) (WiFi Upload)
Method MBS | Trans. Lat.csy/act ‘ Trans. Lat.csyact ‘ Trans. Lat.csyact ‘ Trans. Lat.csyact ‘ #Profiles
DIME 1 none 0.433/0.456 fcl 0.233 / 0.275 fcl 0.140 / 0.156 | conv2 0.116 / 0.116 16
4 none 0.482/0.456 fcl 0.250 / 0.275 fcl 0.156 / 0.156 | conv2 0.116 / 0.116 52
5 none 0.477 / 0.456 fcl 0.275/ 0.275 | conv3 0.184 / 0.184 | conv2 0.116 / 0.116 60
8 fc2 0.508 / 0.508 fcl 0.275/ 0.275 | conv3 0.184 / 0.184 | conv2 0.116 / 0.116 72
JointDNN none 0.433/0.456 fcl 0.233 7 0.275 fcl 0.140 / 0.156 | conv2 0.116 / 0.116 72
Optimal fc2 0.508 fcl 0.275 conv3 0.184 conv2 0.116 72

in the table: (1) layer name when transition from edge to
cloud happens; (2) latency in seconds. For layer name, we
indicate the transition point as the first layer executed on the
cloud device, where ‘none’ means the cloud is not utilized. For
latency, we report both estimated and actual latencies based on
the generated solution of each ILP. The estimated latency is the
value determined by the ILP objective expression; the actual
latency is the sum of the largest bundles to implement the
required transition points. By definition, ‘optimal’ and DIME
with MBS = L report exactly the ‘actual’ latency.

The number of latency profiles is reported in the last column
of the table. This value does not depend on BW so is only
listed once per row. The number of profiles is same as the
number of ¢ j,d parameters that should be measured on both
devices, and equals the number of y; ; 4 variables defined in
the ILP per device.

In the table, the bold entries indicate the cases when the
estimated or actual latency is the same as the latency for
the optimal solution under the given precision. We make the
following observations from the table:

o For the highest MBS(=8), our approach always generates
the same results as the optimal, across all bandwidths.
This is solely due to adding Constraint 6 to the base ILP.

o As MBS decreases, the estimated latency becomes more
erroneous as its gap with the actual latency grows. For
example in bandwidth BW=1E5 for MBS=1 the error
between the estimated and actual latencies is 0.456-
0.433=0.023 which is the highest error in this bandwidth.

o Interestingly, for some higher bandwidths, the same tran-
sition layer and latency as the optimal row may be
achieved for even smaller MBS. For instance, in the
highest bandwidth (WiFi Upload), MBS=1 generates the
same quality solution as the optimal approach.

o In the WiFi upload case, we achieve the same quality as
the optimal solution for MBS=1 but significantly lower
profiling effort (16 instead of 72 for two devices).

e JointDNN does not generate the optimal solution in two
of the four bandwidths, while requiring the maximum
number of profiles. For 4G, it coincidentally picks the
correct transition despite underestimating latency.

We validate that the additional constraint and profiling

360

approach in DIME always generates the optimal solution.

B. Results of VGGI1 for Edge-Cloud Setting

We also experimented with the VGG11 network [11] which
has 8 convolution layers and 3 fully-connected layers, for
a total of 11 possible transition points under our profiling
scheme. Table II shows the results for this network. For
brevity, we only show the results for odd values of MBS which
is sufficient to observe the trends for the VGG11 network.

The trends and conclusions are similar to the previous
experiments. In particular, we observe for the two highest
bandwidths that an MBS=1 provides the same solution quality
(in terms of transition layer and estimated latency) as in the
optimal, while having a significantly lower number of profiles
(22 for MBS=1 versus 132 in JointDNN and Optimal cases).
With higher bandwidths, cloud resources become more ac-
cessible and all three optimization schemes pick a cloud-only
(indicated by a conv1 transition) partition for the computation
of the DNN layers. This is due to the significantly-lower
computation latency of the cloud device compared to edge.

We clarify one counter-intuitive aspect of the results in
the table. For BW=1E5 and BW=1.375E5, it appears that
JointDNN generates a better solution under the estimated
latency. However, this is because it is subject to the estimation
error imposed by under-estimating devices. When evaluating
the actual latency from the correct bundles, it becomes clear
that it generates a worse solution.

Similar to AlexNet, our formulation guarantees selecting the
optimal solution when MBS is set to the number of layers
in the network, 11. JointDNN does not provide the same
guarantee, especially at lower bandwidths that rely more on
the edge device.

C. Results of VGGI11 for Edge-Hub-Cloud

We also consider an experiment with the same edge and
cloud devices but adding the NVIDIA Jetson Nano board as an
intermediate ‘hub’ device. The compute capability of the hub
device is somewhere between edge and cloud devices. Latency
profiles for all related bundles of layers are additionally
collected on the hub device before running this experiment.
The hub is added to the set of devices Sp and the relevant
parameters are included in the ILP.

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RESULTS OF OPTIMIZATION FOR VGG11, SHOWING TRANSITION LAYER FROM EDGE TO CLOUD (TRANS.) AND DISTRIBUTED LATENCY (LAT.).

BW = 1E5 MBPS BW=1.375e5 MBPS BW=7.3125E5 MBPS BW=1E6 MBPS
(3G Upload) (4G Upload)
Method MBS | Trans. Lat.csyact ‘ Trans. Lat.esyact ‘ Trans. Lat.csy/act ‘ Trans. Lat.csyact #Profiles
DIME 1 none 1.534/6.021 | none 1.534/4.379 | convl 0.823/0.823 | convl 0.602 / 0.602 22
3 fc3 2715/ 3.514 fc3 2.670 / 3.469 | convl 0.823 /0.823 | convl 0.602 / 0.602 60
5 none 2904 /6.021 | none 2904 /4379 | convl 0.823/0.823 | convl 0.602 / 0.602 90
7 fc2 3.185/ 3.451 fc2 3.140 / 3.406 | convl 0.823 / 0.823 | convl 0.602 / 0.602 112
9 none 3.180/6.021 | none 3.180/4.379 | convl 0.823 / 0.823 | convl 0.602 / 0.602 126
11 fc2 3.451/ 3.451 fc2 3.406 / 3.406 | convl 0.823 0.823 | convl 0.602 / 0.602 132
JointDNN none 1.534/6.021 | none 1.534/4.379 | convl 0.823/0.823 | convl 0.602 / 0.602 132
Optimal fc2 3.451 fc2 3.406 convl 0.823 convl 0.602 132
TABLE III can address schemes that include multiple devices such as a

RESULTS OF VGG11 FOR EDGE— HUB— CLOUD SETTING.

LAN BW=1.375E5 MBPS
Cloud BW=1E5 MBPS

Method \ Transition Latencyesyact
DIME (MBS=11) | fc2 — Hub 3.418 / 3.418
JointDNN none 1.534 / 3.533
Optimal fc2 — Hub 3.418 / 3.418

A ‘hub’ device adds a higher-compute device as a more
local resource. Communication from edge does not have to
traverse, for instance, the public internet to reach a distant
resource. We consider that edge and hub communicate via
a local area network (LAN) that has higher bandwidth than
either have to access the cloud over wide area network (WAN).

The solution for LAN bandwidth BW=1.375E5 and WAN
bandwidth BW=IES5 is shown in Table IIl. The Transition
column shows the layer when transition from edge to hub hap-
pens. We find that the introduction of the moderate-compute
hub device, even with only moderately increased LAN band-
width compared to WAN, allows reduction in latency without
relying on access to cloud resources. DIME generates the same
solution as in the optimal, while JointDNN assigns all layers
to the edge device. This is because the LePotato edge device
is an ‘underestimating device’, as explained in Section II-B,
which results in JointDNN underestimating the latency of the
edge device, and consequently assigning all layers to execute
on the edge device when minimizing global latency.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we examined a recent ILP for assigning the
layers of a DNN to be executed on heterogeneous devices in
a distributed environment, and found that it is prone to gen-
erating sub-optimal solutions depending on the characteristics
of devices present in the network. We specifically identified
‘underestimating devices’ to be the root-cause of the issue. We
then proposed DIME which incorporated novel modifications
to the base ILP to always guarantee the optimal solution is
found across all devices. We also show that our formulation
allows extension beyond simple edge-cloud paritioning, but

361

local hub device.

REFERENCES

[1] W.-Q. Ren, Y.-B. Qu, C. Dong, Y.-Q. Jing, H. Sun, Q.-H. Wu, and
S. Guo, “A survey on collaborative DNN inference for edge intelli-
gence,” Machine Intelligence Research, vol. 20, no. 3, pp. 370-395,
2023.

H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
Accuracy-And Latency-Aware Deep Structure Decoupling for Edge-
Cloud Execution,” in IEEE International Conference on Parallel and
Distributed Systems, 2018, pp. 671-678.

H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive Distributed
DNN Inference Acceleration in Edge Computing Environment,” in /[EEE
International Conference on Parallel and Distributed Systems, 2019, pp.
438-445.

R. Viramontes and A. Davoodi, “Neural network partitioning for fast
distributed inference,” in IEEE International Symposium on Quality
Electronic Design, 2023, pp. 1-7.

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
Efficient Training and Inference Engine for Intelligent Mobile Cloud
Computing Services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565-576, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25, 2012.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024-8035.

S. Horn, “Linear program with ceiling or floor functions
(how?),” https://support.gurobi.com/hc/en-us/community/posts/
36005449947 1-Linear- program-with-ceiling-or-floor- functions-HOW-
retrieved Sept. 16, 2023.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

S. Saponara, A. Elhanashi, and A. Gagliardi, “Real-time video
fire/smoke detection based on CNN in antifire surveillance systems,”
Journal of Real-Time Image Processing, vol. 18, pp. 889-900, 2021.
K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available: https:
/larxiv.org/abs/1409.1556

3

[t

[4]

[51

[7

—

(8]

9

—

[10]

[11]

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

