
DIME: Distributed Inference Model Estimation for

Minimizing Profiled Latency

Robert Viramontes

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Madison, WI

rviramontes@wisc.edu

Azadeh Davoodi

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Madison, WI

adavoodi@wisc.edu

Abstract—Distributed inference allows minimizing metrics
such as latency by offloading some computations from an edge
device. It is commonly formulated and solved as an Integer
Linear Program (ILP) for layer-wise partitioning of a Deep
Neural Network (DNN) to decide transition points from an edge
device to a hub and/or cloud devices. The formulation requires
parameters reflecting latencies to execute different bundles of
consecutive layers of DNN on each device. Profiling is the main
way to measure these bundle latencies accurately on a device.

In this work, we show a recent ILP of the layer-wise parti-
tioning (JointDNN) cannot in fact always generate an optimal
solution. As we show, this happens due to profiling behavior seen
in some devices. We propose DIME (Distributed Inference Model
Estimation) with novel modifications to accurately estimate the
latency of a bundle within the ILP formulation. It guarantees
generating the optimal solution regardless of the type of device
in the network. Additionally, DIME incorporates a new input
parameter within the ILP to control the tradeoff between solution
quality and the profiling effort. In our experiments we show
solving DIME always results in the optimal solution, sometimes
with significantly less profiling effort.

Index Terms—neural networks, distributed inference, opti-
mization, profiling, heterogeneous systems

I. INTRODUCTION

In recent years, there has been a rapid growth in applications

for Deep Neural Networks (DNNs) as they have shown adept

performance at a variety of tasks. As DNNs are utilized in

more applications, they are being deployed in a variety of

environments, including on edge devices which have a low

computational capability. One technique to balance latency re-

quirements of complex DNNs on non-performant edge devices

is to distribute the inference over multiple devices, factoring in

communication latencies between them. In the most common

distributed inference model, the DNN layers are partitioned

to decide a transition point from edge to faster devices such

as hub and cloud. A recent survey on distributed inference

highlights the need for improved partitioning algorithms that

can adapt to compute and communication resources [1].

A variety of techniques have been proposed for layer-wise

partitioning of a DNN to determine transition points while

optimizing for objectives such as latency or energy. In JALAD

[2], the profiled computation latency is fed as input to an

This material is based upon work supported by the National Science
Foundation under Grant No. 2006394.

integer linear program (ILP) which minimizes the total latency

of edge and cloud. JALAD compresses data transfers which

may result in accuracy loss. In ADDA [3], device profiling is

used with greedy search to generate multi-path DNNs. Only

the early-exiting portion of the DNN is executed on the edge.

The ILP proposed in [4] uses an analytic model to estimate

latencies while considering a weight pre-loading optimization

to overlap compute and weight memory transfers in the

inference schedule. Recently, JointDNN [5] utilizes device

latency profiles and formulates the edge-cloud partitioning

problem as an ILP, optimizing latency and energy for both

inference and training.

These ILP formulations rely on latency models of individual

layers or models of a bundle of consecutive layers to explore

the solution space to find the best transition points. It’s been

shown that profiles of individual layers are not sufficient to

estimate the latency of a bundle (i.e., as sum of individual

layers) [5]. In fact, JointDNN is one of the only works that

incorporates latency profiles of all possible layer bundles of a

DNN for each device as parameters fed into the ILP.

In this work, we first make the key observation that

despite collecting all possible latency profiles, JointDNN

is still susceptible to generating sub-optimal solutions. This

is due to the profiling behavior exhibited by some devices,

which can cause the ILP of JointDNN to incorrectly select

profiles used for latency estimation by its optimization vari-

ables. In particular, for devices whose smaller-bundle latencies

underestimate larger-bundle latencies, JointDNN incorrectly

assigning a larger-sized layer bundle to execute on a device

based on an underestimated latency of smaller-sized bundles,

when minimizing a distributed latency objective.

Our work is motivated by the above novel observations.

Specifically, using the above observations, we make the fol-

lowing contributions:

• We first generalize the formulation of JointDNN for

arbitrary number of devices which we refer to as the

‘base’ ILP. We then propose DIME, which incorporates

novel modifications to this base ILP and guarantees

correct estimation of latency of layer bundles within the

optimization formulation, regardless of device type.

• We additionally introduce an input parameter called

Maximum Bundle Size (MBS) to our formulation. It

356

2024 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/24/$31.00 ©2024 IEEE
DOI 10.1109/SMARTCOMP61445.2024.00081

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
(S

M
AR

TC
OM

P)
 |

 9
79

-8
-3

50
3-

49
94

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
M

AR
TC

OM
P6

14
45

.2
02

4.
00

08
1

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

controls the tradeoff between the device profiling effort

and quality of solution (i.e., distributed latency) in DIME.

• Our simulation results conducted for a range of network

communication bandwidths show DIME always generates

the optimal solution, unlike JointDNN.

• For some network bandwidths, DIME finds an optimal

solution with significantly lower profiling effort when

using a small MBS (e.g., 22 versus 132 device profiles).

In the remainder of the paper, in Section II-A we first

propose the ‘base’ ILP formulation. We then elaborate the

issue related to latency profiles of different devices in Sec-

tion II-B and finally propose the DIME additions to the base

in Section II-C. Simulation results are presented in Section III.

II. OUR APPROACH

Consider a distributed inference task to be sequential exe-

cution of the layers of a DNN across networked devices. The

problem has been formulated as an ILP which assigns each

layer to a device to be computed on. We focus on a distributed

inference latency objective, which is relevant, for example, in

the context of maximizing the user’s experience to receive the

results of an inference in a timely manner.

A. Base ILP Formulation

Let us denote d ∈ SD to be a device from set of D devices

in the network, and � ∈ SL be a layer of the set of L layers

of a DNN. Let the constant parameter tci,j,d denote the latency

to compute a bundle of layers i through j on device d. This

parameter should be computed by profiling on each device,

for all combinations of bundles with 1 ≤ i ≤ j ≤ L.

Denote txi,d,d′ to be the constant parameter reflecting the

network communication latency to send the output of layer i

from device d to compute the next layer on device d′. Assume

txi,d,d′ = 0 when d = d′. In our experiments, these parameters

are estimated by dividing the total data size in bytes for a

given bandwidth (in bytes per second) from d to d′.

Next, three groups of binary variables are defined:

• x�,d: This variable encodes the layer-wise partitioning

solution. It is 1 when layer � is assigned to device d,

0 otherwise.

• yi,j,d: This binary variable is 1 when a bundle of con-

secutive layers i through j is assigned to device d.

When i = j, the bundle includes only one layer. Having

yi,j,d = 1 does not mean that consecutive layers i to j

are the largest bundle that is assigned to device d; layers

immediately before i or after j may also be assigned to

device d.

• z�,d,d′ : This binary variable is 1 when layer � is executed

on device d and layer � + 1 is executed on device d′. It

decides when the network communication latency should

be added toward computing the distributed latency.

The base ILP is formulated using five groups of constraints.

Constraint (1), below, is written for each layer. It ensures

each layer is assigned to exactly one device:

D∑

d=1

x�,d = 1 ∀� ∈ SL (1)

Next, Constraint (2) sums all unique yi,j,d bundle variables

which include layer � in them (1 ≤ i ≤ � ≤ j ≤ L) and sets

the x�,d variable:

x�,d =
∑

∀i,j | 1≤i≤�≤j≤L

yi,j,d ∀d ∈ SD; ∀� ∈ SL (2)

This constraint is written for all combinations of devices

d ∈ SD and layers � ∈ SL. It ensures that each layer

is associated with only one non-zero yi,j,d variable, if it is

assigned to device d.

The corresponding latency profile of layers i to j on device

d (i.e., tci,j,d parameter) would then be multiplied by yi,j,d
toward computing the latency of execution on device d.

Next, constraint (3) shows how latency of execution on each

device and the overall compute latency across all devices (T c)

is estimated:

T c =
D∑

d=1

(
L∑

i=1

L∑

j=i

tci,j,d × yi,j,d) (3)

In Constraint (3) all possible layer bundles (i, j) with (1 ≤
i ≤ j ≤ L) are listed for each device d. The y variable is

multiplied by the corresponding tc parameter reflecting the

corresponding compute latency to execute the bundle on that

device. The expression inside the parenthesis expresses the

total compute latency on device d.

Finally, to compute the communication latency, the two

constraints below are added:

0 ≤ x�,d+x�+1,d′−2z�,d,d′ ≤ 1 ∀� ∈ SL−1; ∀d �= d′ ∈ SD

(4)

Constraint (4) is written for all combinations of devices in SD

and layers in SL−1, where SL−1 is the set of all the layers

except the last one. It sets z�,d,d′ when layer � executes on

device d and the outputs are sent to device d′. So z�,d,d′ = 1
only when x�,d = x�+1,d′ = 1. This constraint (consisting of

two inequalities) expresses a logical AND operation.

Using Constraint (4), and pre-known communication latency

parameters txi,d,d′ , the total communication latency T x is

calculated as:

T x =
D∑

d=1

D∑

d′=1

L−1∑

i=1

txi,d,d′ × zi,d,d′ (5)

Using all the presented constraints, the optimization ob-

jective is written as: min T c + T x. This expression

minimizes the distributed inference latency as the sum of all

communication and computation latency variables across all

assigned devices.

The above base ILP is a general form of the inference ILP

in JointDNN [5], which explicitly defines separate notations

for edge and cloud device types. In contrast, our base ILP is

written with fewer notations, incorporates an arbitrary set of

devices, and defines fewer groups of variables. We note that

[5] conducts experiments with asymmetric bandwidth between

devices (i.e. txi,d,d′ �= txi,d′,d). Our formulation supports this,

though for simplicity we assume symmetric bandwidth.

357

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example showing inference latency of AlexNet when estimated as sum
of different profiled bundles for two different devices. A bundle configuration
of ‘1 2+3’ would indicate the sum of profiled latency for a bundle of layers
(1,2) with the profiled latency of layer 3. The right-most bar (bundle of
1 2 3... 8) is the accurate latency profiling all layers as one bundle.

In the presented ‘base’ ILP, similar to all other ILP-based

partitioning works such as [2], [4], [5], we assume the devices

in the network are (a) aware of the mapping of layers to

devices and (b) have implemented a communication protocol

where the receiving intermediate results triggers computation

and forwarding results to the next device.

B. Impact of Device-Based Latency Profiles

The base ILP formulation requires latency parameters tci,j,d
corresponding to a bundle of consecutive layers (from i to

j) to be specified by profiling execution on each device d.

Profiles should be collected for all unique combinations of i

and j with 1 ≤ i ≤ j ≤ L.

It is possible for the base ILP to generate solutions based on

layer xl,d assignments that a bundle has its latency computed

using interior bundles of smaller sizes. For instance, two

different assignments y1,2,d = y3,4,d = 1 versus y1,4,d = 1
both indicate layers 1 through 4 are executed on device d.

Therefore, x�,d = 1 in both cases for � = 1, . . . , 4. However,

the computation latency on d is estimated by the ILP as

tc1,2,d+tc3,4,d in the former case, and as tc1,4,d in the latter. The

ILP actually picks the assignment which minimizes its objec-

tive the most. For example it may assign y1,2,d = y3,4,d = 1
and y1,4,d = 0 if tc1,2,d + tc3,4,d < tc1,4,d.

To demonstrate this, Figure 1 shows the latency of AlexNet

network [6] when estimated using different combinations of

layer bundles, for a representative subset of combinations.

This is done for two devices: the NVIDIA 2080TI GPU and

LibreComputer LePotato. In this example, the latencies are for

non-distributed case and computed assuming only one of the

two devices is used. We segment the DNN at the boundaries of

convolution and fully-connected layers because the latencies

of these layers dominate computation latency.

To compute the profile of each (i, j) bundle, we use the

PyTorch [7] Sequential model to create a feed-forward bundle

of layers i through j. We profile 20 runs of this bundle, and

take the average of the runs after discarding the top 10% and

bottom 10% of observations to eliminate potential outliers.

This is is done for all the experiments in the paper.

In Figure 1, we observe that for the LePotato edge-class

device, the sum of layers tends to significantly underestimate

the execution latency of the whole network (right-most bar).

The underestimation exists even when using larger interior

bundles. We also observe that for the 2080TI cloud-class

device, the sum often overestimates the latency of a bundle.

The causes of under- and over-estimation behavior are outside

the scope of this work, but our results support the claim in

JointDNN [5] that larger bundles are more accurate and add

that this is true in both under- and over-estimation cases.

Under the latency minimization scheme of the base

ILP, using the LePotato profiles would result in setting,

y1,1,d, y2,2,d, . . . , y8,8,d variables to 1 instead of y1,8,d even

though this selection significantly underestimates the true

latency captured by tc1,8,d.

C. From the Base ILP to DIME

To fix the discussed issue, we add the following constraint

to the base ILP which is written for each device:

L∑

i=1

L∑

j=i

yi,j,d ≤ �

∑L

�=1 x�,d

L
� ∀d ∈ SD

1 (6)

In the above inequality, the left-hand-side is sum of the binary

variables yi,j,d on each device d for all layer combinations

1 ≤ i ≤ j ≤ L. This right-hand-side numerator is the number

of layers assigned to device d. The denominator is number of

layers L in the DNN. The expression on the right-hand-side

will evaluate to 1 if at least one layer of the DNN is assigned

to d and 0 otherwise. The inequality therefore requires the

sum of all yi,j,d variables assigned to device d to be at most

1, if at least one layer is assigned to device d.

This forces the optimizer to set the yi,j,d variable with the

smallest index for i and largest index j, and the rest of the

yi,j,d variables to 0. In other words, the yi,j,d that is set to 1

corresponds to the largest-sized bundle assigned to device d

which ensures the correct latency profile (tc) is used for d.

Adding Constraint 6 fixes the issue identified by us which

happens when ‘underestimating’ devices are present in the

network. When ‘overestimating’ devices are present, the added

constraint will not cause an issue and will still enforce

selecting the correct latency parameter.

Constraint 6 guarantees the use of correct latency parame-

tersunder the assumption of single-entry point to a device. We

note, this assumption is also made in other prior works on ILP-

based partitioning of DNN [2], [4], [5]. This is an acceptable

assumption because often it is not practical to switch compute

back to a slow (edge) device after switching to a faster (cloud)

device when minimizing distributed inference latency.

Recall, the base ILP requires profiling each device d to

obtain the tci,j,d latency parameters for all combinations of

1 ≤ i ≤ j ≤ d which equals
L×(L+1)

2 × D. The expression

shows that the profiling effort quadratically grows with the

1Ceil is a non-linear operation that can be approximated in a solver by the
procedure in [8]

358

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

Layer 1 Layer 3Layer 2

Maximum Bundle Size = 1

Layer 1 + Layer 2

Layer 1 + Layer 2 + Layer 3

Maximum Bundle Size = 3

Maximum Bundle Size = 2

or

Layer 3

Layer 2 + Layer 3Layer 1

, , , ,, ,

, , , ,, ,

, ,

, ,, ,
, , = 1

, , = 1

, , = 1 , , = 1

, , = 1, , = 1

, , = 1

, , = 1

, , , ,, ,

, ,, ,

Fig. 2. Example showing the impact of incorporating an MBS parameter in
Constraint 7. For simplicity, we assume there is only one device available. The
example shows how the yi,j,d variables (shown on the right) are assigned to
define layer bundles (shown on the left) for three MBS values. When MBS=3,
the ILP’s objective is accurately computed but has the most profiling effort.

number of layers in the DNN and linearly grows with the

number of different devices in a heterogeneous network.

We introduce a new parameter called Maximum Bundle

Size (MBS) to be incorporated as input to the ILP. It sets

the maximum number of consecutive layers which may be

assigned the same yi,j,d variable. Specifically, only yi,j,d
variables are defined in which i ≤ j ≤ i + MBS − 1. For

example, when MBS=1, we require j = i, indicating only

bundle of 1 layer may be used. This means, for a given MBS,

only a subset of yi,j,d variables may be defined compared to

the base ILP. MBS allows the user to define a tradeoff between

the device profiling effort and latency calculation accuracy.

To incorporate an MBS parameter, Constraint 6 may be

generalized and replaced by the one below:

L∑

i=1

L∑

j=i

yi,j,d ≤ �

∑L

�=1 x�,d

MBS
� ∀d ∈ SD (7)

In the above constraint, the right-hand-side expression com-

putes an upper bound on the number of layer bundles that may

be assigned to device d to estimate its latency.

The case when there is no error in approximating Constraint

6 is when MBS=L (number of layers) which requires profiling

all devices for all combinations of bundles i through j with

1 ≤ i ≤ j ≤ L. In this case, Constraint 7 simplifies to 6.

The other extreme case is when MBS=1. This case has the

least profiling effort because only the yi,j,d variables with

i = j are defined. In this case, the only option that can be

considered by the ILP is to select L bundles of size 1 layer.

Figure 2 shows a toy example to demonstrate the impact

of MBS for a neural network composed of 3 layers on one

device. The figure shows the different solutions possible for

MBS=1, MBS=2, and MBS=3. This demonstrates how the

bundle selection varies with MBS under our novel constraint,

impacting the latency calculation for the ILP. The profiling

effort in each case is equal to the number of y variables shown

on the right-side of the figure.

III. EXPERIMENTAL RESULTS

We present our results utilizing the DIME formulation and

compare with the base ILP presented in Section II-A. To

compare with JointDNN [5] we used the same two-device

setting (i.e., an edge and a cloud device). We utilize Gurobi

[9] to solve the ILP formulation. We also compare with

the optimal solution determined via exhaustive search of all

feasible layer assignments and using the correct device latency

profiles based on the generated solution.

We examine the results for two popular neural networks,

AlexNet and VGG11, when varying the bandwidth of the

connection between devices. For the edge-cloud setup in our

experiments, we use the LePotato (as edge) and NVIDIA

2080TI (as cloud) devices. We additionally present results of

an experiment for VGG11 when adding NVIDIA Jetson Nano

as an intermediate hub device to the edge-cloud setup.

In our experiments, we also vary the input parameter

Maximum Bundle Size (MBS) from 1 to number of layers

(L). This demonstrates the the impact of MBS on trading off

solution quality with profiling effort.

Communication latencies (txi,d,d′) are estimated by dividing

the total data size in bytes by the bandwidth (BW) in bytes per

second, assuming symmetric bandwidth. They are integrated

as shown in Constraints (4) and (5). We vary the network

bandwidth over a range including 4G and WiFi, similar to the

values in [5] and specified in Tables I and II.

In all of our experiments, we consider an application where

the edge device collects data and requires the result of infer-

ence. For example, a smart camera that has to generate a local

alert based on the results of inference. One such system is a

real-time fire detection system [10], which requires the local

alerts to have low latency and high accuracy to allow rapid fire

response while minimizing false positives. We enforce these

requirements by inserting zero-compute input and output

pseudo-layers in the DNN and constraining the associated x

variable to be assigned to the edge device.

A. Results of AlexNet for Edge-Cloud Setting

We first present the results for AlexNet. This neural network

has five convolution and 3 fully-connected layers, for a total

of 8 possible transition points under our profiling approach.

We experiment with three approaches: (1) JointDNN [5];

(2) DIME (ours); (3) optimal. The approach (1) is implemented

using our base ILP given in Section II-A which simplifies to

[5] given that we are also using an edge-cloud setting. For

DIME, we add Constraint 7 to the base ILP and vary the

MBS parameter. For the Optimal case (3), we exhaustively

list all possible transitions from edge to cloud. We accurately

evaluate the latency for each combination (considering both

compute and communication) using the device latency profiles

that exactly match the bundle assigned to device. We then pick

the assignment with smallest overall distributed latency.

We show the results of our approach in Table I for different

bandwidths when MBS is varied from 1 to 8 (number of layers

in AlexNet), ommitting values of MBS with same results for

brevity. For each network bandwidth two columns are listed

359

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS OF OPTIMIZATION FOR ALEXNET, SHOWING TRANSITION LAYER FROM EDGE TO CLOUD (TRANS.) AND DISTRIBUTED LATENCY (LAT.).

BW = 1E5 MBPS BW=7.3125E5 BW=1E6 BW=2.36E6

(4G Upload) (WiFi Upload)

Method MBS Trans. Lat.est/act Trans. Lat.est/act Trans. Lat.est/act Trans. Lat.est/act #Profiles

DIME 1 none 0.433 / 0.456 fc1 0.233 / 0.275 fc1 0.140 / 0.156 conv2 0.116 / 0.116 16

4 none 0.482 / 0.456 fc1 0.250 / 0.275 fc1 0.156 / 0.156 conv2 0.116 / 0.116 52

5 none 0.477 / 0.456 fc1 0.275 / 0.275 conv3 0.184 / 0.184 conv2 0.116 / 0.116 60

8 fc2 0.508 / 0.508 fc1 0.275 / 0.275 conv3 0.184 / 0.184 conv2 0.116 / 0.116 72

JointDNN none 0.433 / 0.456 fc1 0.233 / 0.275 fc1 0.140 / 0.156 conv2 0.116 / 0.116 72

Optimal fc2 0.508 fc1 0.275 conv3 0.184 conv2 0.116 72

in the table: (1) layer name when transition from edge to

cloud happens; (2) latency in seconds. For layer name, we

indicate the transition point as the first layer executed on the

cloud device, where ‘none’ means the cloud is not utilized. For

latency, we report both estimated and actual latencies based on

the generated solution of each ILP. The estimated latency is the

value determined by the ILP objective expression; the actual

latency is the sum of the largest bundles to implement the

required transition points. By definition, ‘optimal’ and DIME

with MBS = L report exactly the ‘actual’ latency.

The number of latency profiles is reported in the last column

of the table. This value does not depend on BW so is only

listed once per row. The number of profiles is same as the

number of tci,j,d parameters that should be measured on both

devices, and equals the number of yi,j,d variables defined in

the ILP per device.

In the table, the bold entries indicate the cases when the

estimated or actual latency is the same as the latency for

the optimal solution under the given precision. We make the

following observations from the table:

• For the highest MBS(=8), our approach always generates

the same results as the optimal, across all bandwidths.

This is solely due to adding Constraint 6 to the base ILP.

• As MBS decreases, the estimated latency becomes more

erroneous as its gap with the actual latency grows. For

example in bandwidth BW=1E5 for MBS=1 the error

between the estimated and actual latencies is 0.456-

0.433=0.023 which is the highest error in this bandwidth.

• Interestingly, for some higher bandwidths, the same tran-

sition layer and latency as the optimal row may be

achieved for even smaller MBS. For instance, in the

highest bandwidth (WiFi Upload), MBS=1 generates the

same quality solution as the optimal approach.

• In the WiFi upload case, we achieve the same quality as

the optimal solution for MBS=1 but significantly lower

profiling effort (16 instead of 72 for two devices).

• JointDNN does not generate the optimal solution in two

of the four bandwidths, while requiring the maximum

number of profiles. For 4G, it coincidentally picks the

correct transition despite underestimating latency.

We validate that the additional constraint and profiling

approach in DIME always generates the optimal solution.

B. Results of VGG11 for Edge-Cloud Setting

We also experimented with the VGG11 network [11] which

has 8 convolution layers and 3 fully-connected layers, for

a total of 11 possible transition points under our profiling

scheme. Table II shows the results for this network. For

brevity, we only show the results for odd values of MBS which

is sufficient to observe the trends for the VGG11 network.

The trends and conclusions are similar to the previous

experiments. In particular, we observe for the two highest

bandwidths that an MBS=1 provides the same solution quality

(in terms of transition layer and estimated latency) as in the

optimal, while having a significantly lower number of profiles

(22 for MBS=1 versus 132 in JointDNN and Optimal cases).

With higher bandwidths, cloud resources become more ac-

cessible and all three optimization schemes pick a cloud-only

(indicated by a conv1 transition) partition for the computation

of the DNN layers. This is due to the significantly-lower

computation latency of the cloud device compared to edge.

We clarify one counter-intuitive aspect of the results in

the table. For BW=1E5 and BW=1.375E5, it appears that

JointDNN generates a better solution under the estimated

latency. However, this is because it is subject to the estimation

error imposed by under-estimating devices. When evaluating

the actual latency from the correct bundles, it becomes clear

that it generates a worse solution.

Similar to AlexNet, our formulation guarantees selecting the

optimal solution when MBS is set to the number of layers

in the network, 11. JointDNN does not provide the same

guarantee, especially at lower bandwidths that rely more on

the edge device.

C. Results of VGG11 for Edge-Hub-Cloud

We also consider an experiment with the same edge and

cloud devices but adding the NVIDIA Jetson Nano board as an

intermediate ‘hub’ device. The compute capability of the hub

device is somewhere between edge and cloud devices. Latency

profiles for all related bundles of layers are additionally

collected on the hub device before running this experiment.

The hub is added to the set of devices SD and the relevant

parameters are included in the ILP.

360

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RESULTS OF OPTIMIZATION FOR VGG11, SHOWING TRANSITION LAYER FROM EDGE TO CLOUD (TRANS.) AND DISTRIBUTED LATENCY (LAT.).

BW = 1E5 MBPS BW=1.375E5 MBPS BW=7.3125E5 MBPS BW=1E6 MBPS

(3G Upload) (4G Upload)

Method MBS Trans. Lat.est/act Trans. Lat.est/act Trans. Lat.est/act Trans. Lat.est/act #Profiles

DIME 1 none 1.534 / 6.021 none 1.534 / 4.379 conv1 0.823 / 0.823 conv1 0.602 / 0.602 22

3 fc3 2.715 / 3.514 fc3 2.670 / 3.469 conv1 0.823 / 0.823 conv1 0.602 / 0.602 60

5 none 2.904 / 6.021 none 2.904 / 4.379 conv1 0.823 / 0.823 conv1 0.602 / 0.602 90

7 fc2 3.185 / 3.451 fc2 3.140 / 3.406 conv1 0.823 / 0.823 conv1 0.602 / 0.602 112

9 none 3.180 / 6.021 none 3.180 / 4.379 conv1 0.823 / 0.823 conv1 0.602 / 0.602 126

11 fc2 3.451 / 3.451 fc2 3.406 / 3.406 conv1 0.823 0.823 conv1 0.602 / 0.602 132

JointDNN none 1.534 / 6.021 none 1.534 / 4.379 conv1 0.823 / 0.823 conv1 0.602 / 0.602 132

Optimal fc2 3.451 fc2 3.406 conv1 0.823 conv1 0.602 132

TABLE III
RESULTS OF VGG11 FOR EDGE→ HUB→ CLOUD SETTING.

LAN BW=1.375E5 MBPS
Cloud BW=1E5 MBPS

Method Transition Latencyest/act

DIME (MBS=11) fc2 → Hub 3.418 / 3.418
JointDNN none 1.534 / 3.533

Optimal fc2 → Hub 3.418 / 3.418

A ‘hub’ device adds a higher-compute device as a more

local resource. Communication from edge does not have to

traverse, for instance, the public internet to reach a distant

resource. We consider that edge and hub communicate via

a local area network (LAN) that has higher bandwidth than

either have to access the cloud over wide area network (WAN).

The solution for LAN bandwidth BW=1.375E5 and WAN

bandwidth BW=1E5 is shown in Table III. The Transition

column shows the layer when transition from edge to hub hap-

pens. We find that the introduction of the moderate-compute

hub device, even with only moderately increased LAN band-

width compared to WAN, allows reduction in latency without

relying on access to cloud resources. DIME generates the same

solution as in the optimal, while JointDNN assigns all layers

to the edge device. This is because the LePotato edge device

is an ‘underestimating device’, as explained in Section II-B,

which results in JointDNN underestimating the latency of the

edge device, and consequently assigning all layers to execute

on the edge device when minimizing global latency.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we examined a recent ILP for assigning the

layers of a DNN to be executed on heterogeneous devices in

a distributed environment, and found that it is prone to gen-

erating sub-optimal solutions depending on the characteristics

of devices present in the network. We specifically identified

‘underestimating devices’ to be the root-cause of the issue. We

then proposed DIME which incorporated novel modifications

to the base ILP to always guarantee the optimal solution is

found across all devices. We also show that our formulation

allows extension beyond simple edge-cloud paritioning, but

can address schemes that include multiple devices such as a

local hub device.

REFERENCES

[1] W.-Q. Ren, Y.-B. Qu, C. Dong, Y.-Q. Jing, H. Sun, Q.-H. Wu, and
S. Guo, “A survey on collaborative DNN inference for edge intelli-
gence,” Machine Intelligence Research, vol. 20, no. 3, pp. 370–395,
2023.

[2] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
Accuracy-And Latency-Aware Deep Structure Decoupling for Edge-
Cloud Execution,” in IEEE International Conference on Parallel and

Distributed Systems, 2018, pp. 671–678.
[3] H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive Distributed

DNN Inference Acceleration in Edge Computing Environment,” in IEEE

International Conference on Parallel and Distributed Systems, 2019, pp.
438–445.

[4] R. Viramontes and A. Davoodi, “Neural network partitioning for fast
distributed inference,” in IEEE International Symposium on Quality

Electronic Design, 2023, pp. 1–7.
[5] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An

Efficient Training and Inference Engine for Intelligent Mobile Cloud
Computing Services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565–576, 2021.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25, 2012.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information

Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[8] S. Horn, “Linear program with ceiling or floor functions
(how?),” https://support.gurobi.com/hc/en-us/community/posts/
360054499471-Linear-program-with-ceiling-or-floor-functions-HOW-
retrieved Sept. 16, 2023.

[9] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[10] S. Saponara, A. Elhanashi, and A. Gagliardi, “Real-time video
fire/smoke detection based on CNN in antifire surveillance systems,”
Journal of Real-Time Image Processing, vol. 18, pp. 889–900, 2021.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available: https:
//arxiv.org/abs/1409.1556

361

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 07,2024 at 17:33:54 UTC from IEEE Xplore. Restrictions apply.

