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Abstract

Vision-language models such as CLIP [27] learn a

generic text-image embedding from large-scale training

data. A vision-language model can be adapted to a new

classification task through few-shot prompt tuning. We find

that such a prompt tuning process is highly robust to la-

bel noises. This intrigues us to study the key reasons con-

tributing to the robustness of the prompt tuning paradigm.

We conducted extensive experiments to explore this prop-

erty and find the key factors are: 1) the fixed classname to-

kens provide a strong regularization to the optimization of

the model, reducing gradients induced by the noisy sam-

ples; 2) the powerful pre-trained image-text embedding

that is learned from diverse and generic web data provides

strong prior knowledge for image classification. Further,

we demonstrate that noisy zero-shot predictions from CLIP

can be used to tune its own prompt, significantly enhancing

prediction accuracy in the unsupervised setting. The code

is available at https://github.com/CEWu/PTNL.

1. Introduction

Large-scale vision-language models such as CLIP [27],

ALIGN [13], and CoCa [43] are transforming how we learn

and interact with visual representations. Since these models

learn to align the representations of a broad set of natural

images with their textual descriptions, they have shown an

exceptional ability to solve a wide range of tasks in a data-

efficient manner. For example, using the pre-trained text

encoder, one can obtain a set of class embeddings by en-

coding a canonical sentence such as “A photo of a <CLS>”

and use them to recognize objects without a labeled dataset.

While promising, Zhou et al. [50] showed that these human-

defined sentences (also known as class prompts) can be un-

stable, with seemingly equivalent descriptions leading to

*Work mostly done during an internship at ByteDance Inc.

(a) DTD

(b) UCF101

Figure 1: Comparison with transfer learning approaches on

two datasets with training labels that have incremental noisy

rates. ImageNet Finetuning is finetuning pre-trained model

on ImageNet. For the CLIP pre-trained model, Prompt Tun-

ing is much more robust to the Linear Probe manner. By

combining the generalized cross-entropy (GCE) [46], we

further improve the robustness of Prompt Tuning to noisy

labels. ResNet-50 is used for all approaches as their image

encoders.

different predictions. To address this issue, researchers have

focused on prompt tuning [50], where a learnable prompt

is learned from a small target dataset by back-propagation.
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Since only the prompt needs to be trained, this framework

is very data-efficient. As a result, prompt-tuning has gained

popularity for adapting vision-language models to down-

stream tasks like few-shot learning [50, 49], continual learn-

ing [38], and object segmentation [28].

While prompt tuning has proven effective when train-

ing on downstream tasks with accurately annotated datasets,

their robustness to noisy labels has been neglected. Since

the quality of annotations for many applications can be low,

learning with noisy labels is critical to solving real-world

problems. In this work, we demonstrate that prompt tuning

is robust to noisy labels, and investigate the mechanisms

that enable this robustness. We hypothesize that the joint

text and image embeddings of vision-language models can

provide a well defined structure to the classification space

(e.g., which classes are most similar and most distinct from

each other). This model-informed structure compensates

for the degradation of the structure present in the data due

to label noise. To verify this hypothesis, we conducted ex-

tensive experiments to study the impact of each component

of a prompt tuning task with noisy labeled data. Beyond

the robustness conferred by the structured label space, we

show that this robustness can be further enhanced when the

learnable prompts are trained using a robust loss function

that mitigates the impact of outliers. Our study has revealed

several interesting findings.

First, the classification performance obtained by tuning

the prompt through a pre-trained CLIP model is signifi-

cantly more robust to noisy labels than the traditional fine-

tuning or linear probing paradigms (see Figure 1). The ro-

bustness of prompt tuning is evident not only due to their

smaller performance degradation with higher noise rates,

but also due to its ability to diminish the gradients induced

by noisy samples. Second, while priming each class with

a shared learnable prompt is necessary for adaptation, en-

suring that the class name remains in the prompt strongly

regularizes the class embeddings and prevents overfitting

to the noisy labels. Finally, we demonstrate the benefits

of this robustness by showing that CLIP zero-shot (noisy)

predictions can be used to tune its own prompt, and sig-

nificantly enhance CLIP prediction accuracy. In fact, we

show that, instead of focusing on samples with confident

predictions (as proposed in prior unsupervised prompt tun-

ing approaches [12]), prompt tuning benefits more from an

increased diversity of training samples as it can tolerate the

noisier predictions associated with them.

The main contributions of our work are as follows:

• We demonstrate that prompt tuning for pre-trained

vision-language models (e.g., CLIP) is more robust

to noisy labels than traditional transfer learning ap-

proaches, such as model fine-tuning and linear probes.

• We further demonstrate that prompt tuning robustness

can be further enhanced through the use of a robust

training objective.

• We conduct an extensive analysis on why prompt tun-

ing is robust to noisy labels to discover which compo-

nents contribute the most to its robustness.

• Motivated by this property, we propose a simple yet ef-

fective method for unsupervised prompt tuning, show-

ing that randomly selected noisy pseudo labels can

be effectively used to enhance CLIP zero-shot perfor-

mance. The proposed robust prompt tuning outper-

formed prior work [12] on a variety of datasets, even

though noisier pseudo-labels are used for self-training.

2. Related Work

Prompt tuning for Vision-Language models. Over the

past few years, there has been huge progress in Vision-

Language Pre-Trained Models (VL-PTMs) [27, 13, 40, 43].

CLIP [27] is considered a representative model of VL-

PTMs. Unlike the conventional, finetuning paradigm, CLIP

applies prompt engineering to incorporate the category in-

formation in the text input such that its pre-trained model

can adapt to various image classification tasks without fur-

ther training. However, the design of a proper prompt

is challenging and requires heuristics. CoOp [50] intro-

duces learnable prompts optimized on target datasets to ad-

dress this problem. To further extend the generalization of

CoOp, CoCoOp [49] introduces a lightweight network to

add additional information from image inputs into learnable

prompts. CoOp has also faced criticism for disregarding the

diversity of visual representations. In contrast, ProDA [18]

tackles this issue by utilizing diverse prompts to capture the

distribution of varying visual representations.

In contrast to the supervised tuning methods above,

UPL [12] proposes a framework to perform prompt tuning

without labeled data. TPT [22] achieves zero-shot transfer

by dynamically adjusting prompts using only a single test

sample.

In addition to downstream tasks for image classification,

recent works have applied prompt tuning on CLIP to various

computer vision tasks such as object detection [28, 6], video

understanding [16, 14], and multi-label recognition [35].

These works reveal the further potential of prompt tuning.

Label noise-robust learning. Deep neural networks

(DNNs) have been well-studied for classification tasks

without label noises. However, if the training data con-

tains label noise, DNNs would easily overfit to the noisy

labels [44]. To overcome this issue, several works have

attempted to improve the noise robustness of DNNs by

approaches including robust losses that tolerate noisy la-

bels [8, 46, 37, 19], loss correction approaches that estimate

a transition matrix to correct the predictions [25, 11, 3, 30,

1, 20, 33, 42, 41], meta-learning frameworks that learn to
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correct the label noise in training examples [17, 31, 15, 32,

47, 48] and regularization techniques that are customized to

lower the negative impact of noise [45, 26, 10, 39].

In this work, we demonstrate that prompt tuning on CLIP

naturally holds powerful noise robustness. We explore the

key factors behind such robustness and show its application

on unsupervised prompt tuning.

3. Prompt Tuning

CLIP [27] can perform zero-shot transfer by prompt en-

gineering – the practice of designing text inputs for down-

stream tasks. Specifically, in the case of image classifica-

tion, a normalized image embedding fv is obtained by pass-

ing an image x through CLIP’s visual encoder, and a set of

normalized class embeddings {f ti }
K
i=1 by feeding template

prompts of the form “A photo of a <CLS>” into CLIP’s

text encoder. The class posterior is then estimated as

Pr(y = i|x) =
exp

(

sim(fv, f ti )/τ
)

∑K

j=1 exp
(

sim(fv, f tj )/τ
) , (1)

where τ is a temperature factor learned by CLIP and sim

denotes cosine similarity.

Prompt Tuning Although CLIP is capable of zero-shot

transfer, its performance is sensitive to designed text

prompts. To avoid the need for hand-crafted prompts and

improve transfer performance, CoOp [50] showed that text

prompts can be replaced with continuous soft prompts that

can be optimized on a target dataset. Specifically, the name

of a class c is first converted into a classname embedding

wc ∈ R
d and prepended with a sequence of M learnable

tokens pm ∈ R
d shared across all classes. The full prompt

Pc = [p1,p2, ...pM ,wc] for each class c is then processed

by CLIP’s text encoder to compute the corresponding text

embedding f tc , and the class posteriors Pr(y = i|x) are ob-

tained once again through Eq. 1. To adapt the prompt to

the target dataset, CoOp [50] optimizes the shared learn-

able tokens p1,p2, ...pM on a small labeled dataset D =
{(xi, ci)

N
i=1} to minimize the cross-entropy loss

LCE = −E(x,c)∈D [logPr(y = c|x)] . (2)

Robust Prompt Tuning In this work, we show that the

prompt tuning framework [50], describe above, displays

surprising robustness to noisy labels. However, this ro-

bustness can be further enhanced by optimizing the learn-

able prompts using the generalized cross-entropy (GCE)

loss [46], a robust generalization of cross-entropy loss. For-

mally, the GCE loss is defined as

LGCE = E(x,c)∈D

[

1− Pr(y = c|x)q

q

]

. (3)

As shown in [46], GCE is equivalent to the standard cross-

entropy loss of Eq. 2 when x → 0, and equivalent to the (ro-

bust) mean absolute error (MAE) loss ‖1− Pr(y = c|x)‖1
when q = 1. The hyper-parameter q can therefore con-

trol the tradeoff between the highly robust but less perform-

ing MAE loss and the less robust but highly performing CE

loss. While the optimal value for q could be adjusted to the

amount of noise by cross-validation, we found that q = 0.7
lead to overall good performance across several experimen-

tal settings.

4. Analysis of Prompt Tuning with Label Noise

Methods based on prompt tuning for CLIP [27] have

been shown to be effective in few-shot learning [50, 49].

However, these methods have been studied on datasets with

perfect labels. It remains unknown how prompt tuning per-

forms under label noise. We explore this practical training

setting and present our key findings.

4.1. Experimental Settings

Datasets. We conduct in-depth studies on a diverse set

of visual tasks, including generic object classification,

fine-grained recognition, action recognition, and texture

identification. We conduct our experimental analysis on

eight datasets, OxfordPets [24], Food101 [2], DTD [4],

UCF101 [34], Flowers102 [23], FGVCAircraf [21], Cal-

tech101 [7] and ImageNet [29]. Since one of the main bene-

fits of prompt tuning is its data efficiency [12], we focus our

studies on a 16-shot image classification problem, i.e. for

each dataset, we select 16 images per class as our training

set. To examine the effect of noise in prompt tuning, we ran-

domly perturb training labels with different levels of noise

rate (12.5%, 25%, and 50%). Unless otherwise specified,

noisy labels are drawn uniformly at random from other cat-

egories of the dataset. We report average results over four

runs with different training sets in all experiments.

Backbone. We adopt pre-trained CLIP models, namely us-

ing the 63M parameter text Transformer [36] as the text en-

coder, and either a ResNet-50 [9] or a ViT-B/32 [5] as the

visual encoder. Following CoOp [49], we use 16 learnable

tokens in each prompt shared across all categories.

Optimization. Models are trained with a batch size of 32

for 50 epochs, using stochastic gradient descent (SGD) with

momentum of 0.9 and an initial learning rate of 0.002, an-

nealed to zero with a cosine decay schedule.

4.2. Prompt Tuning Is Robust to Noisy Labels

The core observation of this paper is that prompt tuning

vision-language models, such as CLIP, is surprisingly ro-

bust to noisy labels. This can be observed by comparing

prompt tuning for CLIP with two traditional transfer learn-

ing approaches: 1) training a linear classifier on CLIP’s vi-

sual representations (denoted CLIP Linear Probe); and 2)
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(a) OxfordPets (b) Food101 (c) DTD (d) UCF101

Figure 2: Incorporating the generalized cross-entropy (GCE) [46] loss with Prompt Tuning and Linear Probe methods,

originally trained using cross-entropy, can enhance their noise robustness. At high noise rates, Prompt Tuning with GCE

outperforms other methods by a significant margin across four datasets.

Figure 3: Illustration of different structures for studying the effect of image and text encoders on prompt tuning and prompt

design. The blocks highlighted in red are to be trained, while those highlighted in gray are to be frozen.

fine-tuning the same visual backbone pre-trained on Ima-

geNet. The results on two datasets, DTD and UCF101, are

shown in Figure 1 (a) and (b), respectively. As can be seen,

although linear probes and fine-tuning achieve competitive

performance with perfectly labeled data (0% noise rate),

both procedures suffer from a significant accuracy drop with

higher noise rates of 25% and 50%. This result shows

that prompt tuning is naturally more resistant to noisy la-

bels than the alternatives. We show nevertheless that its ro-

bustness can be further enhanced by training the prompt us-

ing the robust generalized cross-entropy loss (denoted CLIP

Prompt Tuning (GCE) in Figure 1). As can be seen, when

combining Prompt Tuning and GCE, the model’s perfor-

mance remains highly competitive, even for noise rates as

high as 50%. Furthermore, we observe that this robustness

stems from the combination between Prompt Tuning and

GCE, and not from GCE alone. This can be seen in Fig-

ure 2, which depicts the noise robustness of Prompt Tun-

ing and Linear Probes both trained under the cross-entropy

and GCE losses on four datasets. While the robustness of

the linear probe also improves with a GCE loss, the perfor-

mance drop at high noise rates is significantly smaller when

learning through prompt tuning.

Now that we have established the noise robustness of

prompt tuning, the remainder of this Section is dedicated

to providing intuitions and experimental analysis to answer

the why question.

Question: Why is prompt tuning for CLIP-like

vision-language models more robust than tradi-

tional transfer learning against noisy labels?

4.3. Robustness Attribution

To answer this question, we begin by analyzing two

key components of CLIP in isolation, namely the generated

class embeddings and learnable prompts.

Pre-trained CLIP generates effective class embeddings.

We first analyse the impact of the class embeddings gener-

ated by the CLIP text encoder. To this end, in addition to

the class embeddings generated through prompt tuning, we

assess the noise robustness of three different models:
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Dataset Method
Noise rate

0 12.5 25 50

Classifier-R 74.82 64.10 55.96 36.63

Classifier-C 81.47 70.29 61.87 44.21

TEnc-FT 84.38 70.73 61.11 41.21
OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13

Classifier-R 63.80 54.66 46.23 28.97

Classifier-C 69.36 60.46 51.85 34.37

TEnc-FT 71.30 61.60 52.64 34.74
Food101

Prompt Tuning 76.99 73.63 71.07 64.30

Classifier-R 48.02 44.30 40.32 30.10

Classifier-C 63.83 57.14 50.36 34.86

TEnc-FT 63.61 55.47 48.21 33.12
DTD

Prompt Tuning 62.86 58.90 53.62 46.19

Classifier-R 67.16 58.33 50.34 31.07

Classifier-C 71.87 64.12 54.79 38.01

TEnc-FT 73.74 64.52 56.10 37.88
UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 1: Comparison of transfer performance at incremental

noise rates between different variants.

Classifier-R Trains a linear probe on the output of CLIP’s

pre-trained visual encoder. The class embeddings (i.e.,

the classifier weights) are initialized at random, and

learned without constrains. See Figure 3 (a).

Classifier-C Similar to Classifier-R, but the classifier

weights are initialized using the text embeddings f tc
obtained from CLIP’s pre-trained text encoder for the

handcrafted prompt. Note that Classifier-C only uses

the CLIP text encoder for initializing its weights. See

Figure 3 (b).

TEnc-FT Trains a CLIP classifier, by associating the im-

age embedding fv with the CLIP text embedding f t

of the correct class through the posterior of eq. (1).

In this case, the entire CLIP text encoder is fine-tuned

on an hand-crafted prompt of the form “A photo of a

<CLS>”. See Figure 3 (c).

Table 1 compares the various models on four datasets

under different levels of label noise. The linear classifier

with CLIP initialization (Classifier-C) outperformed ran-

dom initialization across all levels of noise. This shows that

CLIP class embeddings provide a strong initialization for

few-shot learning. Furthermore, although both Classifiers

degrade considerably with high noise ratios, the CLIP ini-

tialization is also more robust to noise. As for TEnc-FT, it

achieved competitive performance at zero noise rates, but

its accuracy also dropped significantly as the noise rate in-

creased. This highlights (unsurprisingly) that the highly ex-

pressive CLIP text encoder can easily overfit to the noisy

labels. Finally, Prompt Tuning outperformed all alternative

strategies across all noise rates. The advantage of prompt

tuning was especially large for high noise levels. These

Dataset Method
Noise rate

0 12.5 25 50

Full-Prompt-Tuning 85.39 74.00 68.66 50.50

CLS-Tuning 85.04 77.02 71.03 53.15OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13

Full-Prompt-Tuning 72.36 63.14 55.29 38.69

CLS-Tuning 72.07 63.91 56.97 41.73Food101

Prompt Tuning 76.99 73.63 71.07 64.30

Full-Prompt-Tuning 62.80 55.50 49.01 34.66

CLS-Tuning 62.78 56.15 48.46 35.43DTD

Prompt Tuning 62.86 58.90 53.62 46.19

Full-Prompt-Tuning 73.02 64.31 57.11 40.42

CLS-Tuning 72.73 65.64 58.91 44.55UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 2: Comparison of transfer performance at incremental

noise rates between different prompt designs.

observations confirm that (a) the text encoder is essential

for providing a strong but informative regularization of the

text embeddings to combat noisy inputs (Prompt Tuning v.s.

classifiers); and (b) the text encoder should be fixed to pre-

vent overfitting (Prompt Tuning v.s. TEnc-FT).

Effectiveness of prompt. The previous experiment showed

that the class embeddings generated by CLIP pre-trained

text encoder plays a critical role in noise robustness. Next,

we keep the text encoder fixed, and attempt to answer an-

other question: Which components of the prompt provide

noise robustness to prompt tuning?

We hypothesize that the classname token wc provides a

strong regularization to the model, since it is leveraged by

the text encoder to encode relationships between the differ-

ent visual concepts (e.g. how similar or different classes are

from each other). Respecting this structure could help the

model avoid fitting noisy data during training. To verify our

hypothesis, we assess the noise robustness of two additional

models:

Full Prompt Tuning Learns the classname token jointly

with the original learnable tokens (see Figure 3 (e)).

CLS Tuning Adopts a fixed template prompt “A photo of a

<CLS>” and optimizes only the classname token (see

Figure 3(f)).

Table 2 shows the analysis on four dataset for different

noise levels. Compared to prompt-tuning, which optimizes

only learnable tokens shared across all classes, both CLS-

Tuning and Full-Prompt-Tuning models struggle at high

noise rate. Even when the training data is clean, learning

the classname tokens produces worse performance on two

of the four datasets (OxfordPets and Food101). This anal-

ysis validates our assumption that the fixed classname to-

ken is indeed a critical regularization for the prompt tuning.

Learnable classname tokens can be fitted to the noisy train-
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(d) UCF101

Figure 4: We assess the ability of both methods to suppress noisy gradients by evaluating their noisy-to-clean gradient

norm ratio (noisy gradient rate). This ratio is determined by taking the L2 norm of gradients with respect to the learnable

parameters, which we compute by feeding 64 clean samples and 64 noisy samples to the model during each training epoch.

Specifically, we train the models on data with a 50% noise rate. Results on four datasets show that Prompt Tuning achieves

a lower noisy gradient rate compared to Linear Probe, indicating its superior ability to suppress noisy gradients.

ing data, perturbing the class embeddings and leading to

worse performance.

4.4. Prompt Tuning Suppresses Noisy Gradients

The previous section provided clear evidence of the ro-

bustness of the prompt tuning framework in comparison to

other alternatives. These findings suggest that, by learning

only shared prompt tokens, prompt tuning focuses better on

clean samples than noisy samples. In other words, prompt

tuning can suppress gradient updates from noisy samples,

while aggregating gradients from clean samples. To verify

this hypothesis, we measure the gradients with respect to

the learnable parameters of both CLIP prompt tuning and

linear probing using 50% noise rate. Specifically, we mea-

sure the ratio between the gradient norm induced by noisy

samples and that induced by clean samples. A ratio above

one indicates that noisy samples play a bigger role in the

optimization than clean samples.

Figure 4 shows the noisy-to-clean gradient norm ratio

as models are trained on four datasets. As can be seen,

prompt tuning displays significantly lower ratios than linear

probing. This indicates that noisy samples play a compar-

atively small role with prompt tuning compared to linear

probes. This property likely arises from the highly con-

strained prompt tuning optimization, which restricting the

model to fit the noisy labels.

4.5. Generalization Across Model Architectures

Previous sections have focused on four datasets (Oxford-

Pets, Food101, DTD, and UCF101) and a ResNet-50 image

encoder. We now show that these findings generalize across

model architectures and datasets.

Context length. We first assess the noise robustness of

prompt tuning with increasing numbers of learnable tokens.

We also evaluate a baseline without any learnable tokens

by directly feeding the classname into the model (denoted

as Ctx-0). Figure 5 shows that the optimal context lenght

(a) OxfordPets

(b) UCF101

Figure 5: Investigation on noise robustness of prompt tun-

ing accompanied by various context lengths. Ctx-x denotes

the model with x learnable tokens.

is dataset dependent, but all context lengths achieve su-

perior performance compared to traditional linear probing.

Ctx-0 outperforms some prompt tuning variants under large

noise rates at 50%, suggesting fixed prompts may be a good

choice when the labeling noise is too strong on the down-

stream task.

Image encoders. To validate whether the noise robustness

of prompt tuning is backbone-agnostic, we also assess CLIP
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Dataset Method
Noise rate

0 12.5 25 50

ImageNet
RN50-PT 62.83 61.98 60.60 57.97

ViT-B/32-PT 66.48 65.82 64.50 61.75

Caltech101
RN50-PT 90.65 82.51 78.70 70.13

ViT-B/32-PT 93.63 90.34 84.99 77.16

OxfordPets
RN50-PT 87.89 84.62 81.20 73.13

ViT-B/32-PT 89.10 86.59 83.65 75.50

Flowers102
RN50-PT 92.57 86.85 81.73 71.80

ViT-B/32-PT 93.26 87.90 85.34 72.83

Food101
RN50-PT 76.99 73.63 71.07 64.30

ViT-B/32-PT 80.16 77.60 76.06 68.77

FGVCAircraft
RN50-PT 27.13 25.07 23.34 19.05

ViT-B/32-PT 28.37 27.57 25.47 19.57

DTD
RN50-PT 62.86 58.90 53.62 46.19

ViT-B/32-PT 64.88 59.57 57.09 45.22

UCF101
RN50-PT 73.12 68.73 67.66 60.93

ViT-B/32-PT 78.12 75.97 72.83 65.75

Table 3: Noise robustness of prompt tuning (PT) with

ResNet50 or ViT-B/32 as the image encoder on eight

datasets.

Dataset Method Random Confusion

OxfordPets
Linear Probe 46.42±0.88 41.39±1.87

Prompt Tuning 73.13±3.76 66.55±2.02

Food101
Linear Probe 42.63±0.89 37.71±0.52

Prompt Tuning 64.30±2.58 63.93±1.45

DTD
Linear Probe 42.29±2.12 37.69±1.70

Prompt Tuning 46.19±2.12 45.76±1.23

UCF101
Linear Probe 54.05±1.19 50.90±1.45

Prompt Tuning 60.93±0.94 59.11±0.70

Table 4: The impact of random and confusion label noise

at a 50% noise rate on Linear Probing and Prompt Tuning

strategies.

with ViT-B/32 for prompt tuning (denoted ViT-B/32-PT).

Table 3 shows the comparison with RN50-PT. ViT-B/32-PT

outperforms RN50-PT under most settings. Moreover, both

methods do not suffer from a large performance drop and

maintain competitive accuracy at high noise rates.

4.6. Robustness to Correlated Label Noise

So far, we assumed white label noise (i.e., noisy labels

are uniformly drawn from the label space). However, la-

bel noise produced by either human annotators or machine-

generated pseudo labels often displays correlations between

similar visual concepts. For example, UPL [12] observed

that pre-trained CLIP prefers some classes over others dur-

ing zero-shot transfer. Inspired by this observation, we ex-

amine whether CLIP inherent preferences affect the per-

formance of prompt tuning when confronted with CLIP-

generated label noise.

Figure 6: Confusion matrix generated by averaging the

zero-shot performance over 100 runs using random prompt

tokens.

We begin by measuring the confusion matrix of CLIP

zero-shot predictions with randomly initialized learnable to-

kens on the OxfordPets and UCF101 datasets (see Figure

6). Next, we introduce a challenging type of label noise,

named Confusion noise, where each mislabeled sample is

labeled as the incorrect class that is most favored by zero-

shot CLIP. Finally, we examine the transfer performance of

prompt tuning with both random and confusion noise at a

50% noise rate. Table 4 presents the results on four datasets.

As can be seen, confusion noise presents a bigger challenge

to transfer learning, leading to larger degradation of classi-

fication accuracy at high noise ratios compared to random

noise. Such degradation is visible both for prompt tuning

and linear probes. However, among the two, prompt tuning

still achieves the best overall performance, providing fur-

ther evidence for its robustness even to more challenging

types of noise.

5. Application to Unsupervised Prompt Tuning

Prior work UPL [12] demonstrated that unsupervised

prompt tuning can outperform the transfer performance of

zero-shot transfer based on CLIP. However, UPL does not

fully utilize the noise robustness of prompt tuning.

Baseline UPL. UPL [12] proposed a framework to adapt

CLIP for downstream tasks without any labeled images.

An overview of the framework is shown in Figure 7. This

framework is divided into two phases. In phase 1, UPL

leverages pre-trained CLIP to generate pseudo labels for

unlabeled images. Then, in phase 2, a set of K pseudo-

labels are chosen to optimize the learnable tokens through

the typical prompt-tuning optimization process (described

in CoOp [50]). To increase the quality of training exam-

ples, UPL ranks all pseudo-labeled images based on their

confidence score (Eq. 1) and selects the K most confident

samples per class. Furthermore, inspired by prompt ensem-

bling in CLIP [27], UPL improved transfer performance by

ensembling multiple predictions generated by models with

different learnable prompts.

Robust UPL. In Section 4, we showed that prompt tuning
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Figure 7: The pipeline of unsupervised prompt tuning. It consists of two main phases: Pseudo labeling and Prompt tuning.

To begin, we generate pseudo labels for target datasets by utilizing CLIP with a template prompt for zero-shot transfer. Next,

we randomly select samples per class from the pseudo labels for subsequent training. Finally, we optimize the learnable

prompt representation using the selected pseudo-labeled samples.

can be robust to noisy labels. Furthermore, we showed that

prompt tuning robustness can be further strengthened us-

ing the generalized cross-entropy loss (GCE). Given these

observations, we propose to perform unsupervised prompt

tuning by 1) randomly sample training samples and 2) opti-

mizing the prompt with the robust GCE loss. Random sam-

pling has two effects. On the one hand, it increases the di-

versity of training samples which benefits learning. On the

other hand, it increases the amount of label noise. How-

ever, we expect the label noise to be tolerable by our robust

prompt tuning framework.

Experimental Settings. We experiment with the unsu-

pervised prompt tuning following the same training set-

ting of Section 4. Pseudo-labels are generated by CLIP

zero-transfer with ResNet50 image encoder. We follow the

prompt engineering used by CLIP. There are three types of

hand-crafted prompts, with more details listed in the sup-

plementary material. K is set to 16 in all experiments. Dur-

ing the inference stage, we employ the ensemble-average

approach following UPL [46] to generate predictions com-

bining the outputs of four distinct models. Each model has a

distinct learnable prompt that was initialized with a unique

random seed.

Experimental Results. We compared UPL [12] and the

proposed Robust UPL on a diverse set of visual tasks, in-

cluding generic object classification, fine-grained recogni-

tion, and texture identification. We also assessed Robust

UPL using both a cross-entropy (CE) and generalized cross-

entropy (GCE) losses. Table 5 shows that all three unsuper-

vised prompt tuning methods can improve transfer learning

over zero-shot predictions, at no additional labeling cost.

Among the three methods, Robust UPL trained under GCE

loss obtains the best performance on average. We highlight

once again that Robust UPL randomly samples pseudo la-

beled images for training, instead of using high-confidence

samples as in UPL. As a result, UPL training pseudo-labels

are less diverse, but have less noise. For example, the

pseudo-labels used to train UPL on Caltech were 93% cor-

Dataset 0-Shot UPL [12]
Robust UPL

CE GCE

ImageNet 58.18 60.22 61.11 62.14

Caltech101 86.29 90.10 87.14 88.07

OxfordPets 85.77 87.60 86.89 87.71

Flowers102 66.14 69.31 70.04 70.52

Food101 77.31 77.30 77.84 78.51

FGVCAircraft 17.28 15.93 16.35 16.29

DTD 42.32 37.47 44.80 46.69

UCF101 61.46 65.00 66.01 67.12

Table 5: Comparison between CLIP zero-shot classifica-

tion and three strategies for unsupervised prompt tuning:

UPL [12], and our robust UPL framework trained with

cross-entropy and generalized cross-entropy losses.

rect, while the pseudo-labels used to train Robust UPL were

only 83% correct. Nevertheless, these errors did not harm

final performance of Robust UPL; on the contrary, learn-

ing from a more diverse set, while being robust to the noise

enhanced prompt tuning.

6. Conclusion

In this paper, we provide a comprehensive study on the

robustness to label noise of prompt tuning large vision-

language models (namely, CLIP). Through a series of ex-

periments, we demonstrated that the noise robustness of

prompt tuning can be attributed to the structure imposed on

class embeddings by CLIP’s pre-trained text encoder. We

further demonstrate that prompt tuning can ease overfitting

to mislabeled samples by reducing the gradients induced

by label noise. We extensively experimented with different

model configurations such as backbones and context length,

obtaining consistent results and conclusions. Finally, in-

spired by our findings, we presented a new robust unsuper-

vised prompt tuning approach that favors diversity over cor-

rect predictions, to improve the transfer performance.
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