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Abstract

Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity
to sequester C is susceptible to climate change factors that alter the quantity and
quality of C inputs. To better understand forest soil C responses to altered C inputs,
we integrated three molecular composition published data sets of soil organic mat-
ter (SOM) and soil microbial communities for mineral soils after 20years of detrital
input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard
Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times
were estimated from radiocarbon measurements and compared with the molecular-
level data (based on nuclear magnetic resonance and specific analysis of plant- and
microbial-derived compounds) to better understand how ecosystem properties con-
trol soil C biogeochemistry and dynamics. Doubled aboveground litter additions did
not increase soil C for any of the forests studied likely due to long-term soil prim-
ing. The degree of SOM decomposition was higher for bacteria-dominated sites with
higher nitrogen (N) availability while lower for the N-poor coniferous forest. Litter
exclusions significantly decreased soil C, increased SOM decomposition state, and
led to the adaptation of the microbial communities to changes in available substrates.
Finally, although aboveground litter determined soil C dynamics and its molecular
composition in the coniferous forest (HJA), belowground litter appeared to be more
influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates
that inherent ecosystem properties regulate how soil C dynamics change with litter
manipulations at the molecular-level. Across the forests studied, 20years of litter ad-
ditions did not enhance soil C content, whereas litter reductions negatively impacted
soil C concentrations. These results indicate that soil C biogeochemistry at these tem-
perate forests is highly sensitive to changes in litter deposition, which are a product

of environmental change drivers.
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1 | INTRODUCTION

Forest ecosystems store as much as 40% of the global soil carbon
(C) stocks (Janzen, 2004; Mayer et al., 2020; Wei et al., 2014) over
4 billion hectares of the Earth's land surface (FAO & UNEP, 2020).
The future of these soil C reserves is threatened by many envi-
ronmental changes that impact the dynamic balance of the soil C
pool (Lal, 2005; Reichstein, 2007; Song et al., 2019), most of which
occur via altered plant C inputs to the soil. For example, elevated
atmospheric carbon dioxide (CO,) levels are often associated with
increases in plant biomass that generally occur at the expense of
reduced soil C stocks (Terrer et al., 2021). Elevated CO, conditions
can also impact plant C and nutrient allocation between plant shoots
and roots, thus changing the quantity and quality of the above- and
belowground litter inputs to the soil (Gifford et al., 2000; Pendall
et al., 2004). Similarly, other environmental factors such as increas-
ing temperatures (Kirschbaum, 2000; Smith et al.,, 2008; Zhao
et al.,, 2017), and higher nutrient availability (Matson et al., 1999;
Quinn Thomas et al., 2010; Yan et al., 2020) may alter plant produc-
tivity, plant litter decomposability and soil organic matter (SOM) de-
composition with long-lasting impacts on the soil C pool of forests.
Decreases in soil C with litter removal and increases with enhanced
litter inputs seem to be a common response of most ecosystems
across the globe (Feng et al., 2022; Xu et al., 2013, 2021). However,
temperate forests from the detrital input and removal treatment
(DIRT) network exhibit distinct responses to litter additions, show-
ing instead decreases in soil C even after 20years of doubled litter
additions (Lajtha et al., 2018). The lack of C accumulation at these
sites has been attributed to positive soil priming, referring to the mi-
crobial stimulation of SOM decomposition prompted by the fresh
litter additions (Kuzyakov et al., 2000; Lajtha et al., 2018; Pisani
et al.,, 2016; Wang et al., 2017). The conflicting results from DIRT
temperate forests demonstrate that the relationship between eco-
system productivity, plant litter inputs, and soil C accumulation is
not always linear nor easily predictable due to the many factors con-
trolling SOM dynamics. Xu et al. (2021) list the dominant tree species
and their mycorrhizal symbionts as well as soil type and N availability
as potential drivers of the responses of temperate forests to litter
additions. A recent metanalysis by Feng et al. (2022) suggested that
the relatively higher initial soil C status of these forests before litter
manipulations and the soil C saturation capacity along with compa-
rably lower litter input rates at DIRT sites drive the lack of soil C
increases with doubled litter inputs. Current global estimations by
Georgiou et al. (2022) confirm the relatively high C saturation and
low C accrual rates for these DIRT temperate forests in comparison
with other temperate forests (Figure 1c). Although C is not accumu-
lating in soil with doubled litter inputs in temperate DIRT forests,
the SOM molecular composition and soil microbial communities
might be responding to higher litter inputs. Similarly, decreases in
soil C with litter removals can have an impact on SOM molecular
composition and soil microbes in unique ways that are not captured
in routine soil C measurements. Accounting for the complex nature
of SOM can shed light on the mechanisms driving the observed

responses to litter manipulations in these forests as distinct compo-
nents of the SOM pool and soil microbial communities may respond
differently to global climate change factors, ecosystem properties,
and management (Feng & Simpson, 2011; Koégel-Knabner, 2017,
Simpson & Simpson, 2012).

The DIRT network has experimental sites spanning across climatic
conditions, forests, and soil types (Lajtha et al., 2018; Nadelhoffer
et al., 2004). Here, we focus on three forests with different vegeta-
tion composition for which SOM molecular-level data sets and soil
radiocarbon measurements in mineral surface soils (0-10 cm) after
20vyears of litter manipulation are available. Two temperate decidu-
ous forests, Bousson Forest (BF) in Pennsylvania and Harvard Forest
(HF) in Massachusetts, and H.J. Andrews Forest (HJA), a coniferous
temperate forest in Oregon (Figure 1b). Despite contrasting ecosys-
tem and soil properties (Figure 1c), soil C responses were similar with
double litter additions whereby soil C did not increase in comparison
with the control plots (CTs) while it decreased with litter removal
treatments (above-, belowground, or both) (Bowden et al., 2014;
Lajtha et al., 2014; Pierson et al., 2021). Across all sites, the exclu-
sion of aboveground C inputs led to slightly higher C losses, whereas
the removal of belowground C inputs did not have impacts on soil C,
which points toward a greater control of aboveground litter inputs
on soil C dynamics (Bowden et al., 2014; Lajtha et al., 2014; Pierson
et al., 2021) despite the general idea that root inputs are more per-
sistent in soil, thus having a greater contribution to stable soil C
(Angst et al., 2016; Litzow et al., 2006; Rasse et al., 2005; Spielvogel
et al., 2014). Other lines of evidence suggest that root-derived com-
pounds degrade in soil at rates similar to leaf-derived compounds
(cutin) (Angst et al., 2016) or that suberin can decompose faster than
cutin (Feng et al., 2008) and that the preferential use of root- versus
leaf- derived compounds can be site-specific (Crow et al., 2009).

Our objective with this synthesis is to assess changes in the
response of the molecular composition of SOM and soil microbial
communities to altered litter inputs across temperate forests in the
Northern hemisphere. These temperate forest sites exhibit a gra-
dient of N availability, atmospheric N deposition rates, and abo-
veground litter chemistry, with higher N availability at BF, followed
by HF and lastly, HJA (Figure 1c). This fertility gradient can influence
the responses of soil microbial community composition, the molec-
ular biogeochemistry of the SOM and their responses to litter ma-
nipulations. Despite the similarities in the response of soil C to litter
additions and removals after 20years of manipulations across sites,
we postulate that SOM components as well as soil microbial com-
munities will have unique responses to altered litter inputs that will
be partly determined by the availability of N at each site. Generally,
higher N availability is expected to favor bacterial growth over fungal
growth as bacteria—as r-strategists—can more rapidly degrade high
quality (low C:N) substrates (Feng et al., 2010; Hicks et al., 2021,
Leite et al.,2017; Rousk et al., 2011; Rousk & Frey, 2015; Wallenstein
et al., 2006). Thus, we expect that doubled high-quality (low C:N)
litter additions in sites with higher soil N availability and bacteria-
dominated microbial communities will lead to higher SOM decom-
position, soil microbial biomass, and more significant decreases in
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Sugar maple
(28%", C:N= 76") Northern
red oak
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MAP: 2080 mm year™'f
MAT: 9.4°Cf
Litterfall: 600 Kg C ha''year™'®
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Glacial till overlaying shale

Glacial till over bedrock.
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Organic horizon h
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% C saturation 87

(mineral soil)"

Granite gneiss and schist

9 24

4.8 4.5
0.21¢ 0.17¢
23.2¢ 31.39
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0.027°¢ 0.019f
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FIGURE 1 (a)Core experimental design of the detrital input and removal treatment network. Ecosystem (b) and soil properties (c) at the
Forest sites. MAP: mean annual precipitation, MAT: mean annual temperature, N: nitrogen. In (b), percentages in parentheses represent the

relative abundance of each species at each site and its litter C:N ratio,

whereas xC:N represents the weighted averages of leaf C:N of the

dominant tree species. Data from *Bowden et al. (2014), °Crow et al. (2009), “Fanin et al. (2020), YLajtha et al. (2014), ©UC Davis Soil Resource
Laboratory (2021), fPierson et al. (2021), 8Man et al. (2022), "BF 20 year harvest unpublished data, ‘Schwaner and Kelly (2019), '/Adams and
Angradi (1996) ¥Corrigan (2008) 'King et al. (2001) ™Parsons et al. (2004), "Stanek et al. (2020), °Perakis et al. (2012), PYano et al. (2005),
9Edmonds (1980), "Edmonds and Thomas (1995), *Acker et al. (2003), 'Vanderbilt et al. (2003), ¥ Georgiou et al. (2022).

concentrations of plant-derived compounds in soils in comparison
with fungal-dominated sites with lower N availability and doubled
low-quality (high C:N) litter inputs. Soil A¥™C values reflect the time
since C atoms were fixed by plants (Trumbore, 2009) and so, with
doubled fresh litter inputs, A¥C values might increase as fresh litter
accumulates in soil. However, congruent with the observed positive
soil priming at these sites (Lajtha et al., 2018), soil A*C values might

instead decrease with doubled litter inputs as fresh litter is rapidly
decomposed, a phenomenon that might be more marked in the high
N sites where litter C:N is lower and litter inputs are processed more
rapidly.

Litter exclusion treatments, on the other hand, would lead to
the accumulation of more processed and complex C compounds,
thus further increasing SOM decomposition state accompanied by
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decreases in cutin-, suberin-, and lignin-derived compounds as all
litter inputs are reduced, along with lower microbial biomass and
lower AYC values. Yet, the impact of litter removal inputs should
be stronger on high N availability sites as soil microbial communities
at these sites can be more dependent on the low C:N plant-derived
inputs than soil microbial communities from low N availability sites,
more adapted to low availability of preferred C sources and low-
nutrient substrates. Finally, although higher contributions to soil C
accumulation from roots versus aboveground litter are generally ex-
pected, the available evidence from these DIRT sites shows that be-
lowground litter reductions do not significantly alter soil C, whereas
aboveground litter reductions decreased soil C (Lajtha et al., 2018).
Therefore, this should be reflected in higher SOM decomposition
state, increase degradation of lignin-, cutin-, and suberin-derived
compounds and lower AYC values for aboveground litter removal
plots and not belowground litter removal plots across all sites.
However, Crow et al. (2009) concluded from the 10year DIRT anal-
ysis that root-derived C had greater contribution to stable C pools
in deciduous forests, such as BF, whereas leaf-derived C defined in
greater measure the stable C pools in coniferous forests, such as
HJA. With our unique SOM molecular-level multiproxy approach,
we aim to ascertain what other indicators point out to a preferential
persistence of root-derived C in deciduous forests, whereas leaf-
derived C persistence in coniferous forests.

2 | MATERIALS AND METHODS
2.1 | DIRT experimental design

The core DIRT experimental design includes the variation in above
and belowground inputs via: doubled aboveground litter additions
(DL), no aboveground litter (NL), no roots (NR) achieved by trench-
ing, and no C inputs (NI) (Figure 1a). CTs receive ambient detrital
inputs. Replicated plots (3 mx 3 m for BF and HF and 10 mx 15m for
HJA. N = 3) are located beneath the forest canopy. Aboveground lit-
teris excluded in NL plots with a mesh fabric, and the collected litter
is added to the DL plots. Root growth in NR plots is prevented by the
installation of inert barriers, while the NI treatment is a combination
of NL and NR plots (Nadelhoffer et al., 2004).

2.2 | Molecular composition of SOM determined
by targeted compound analysis and nuclear magnetic
resonance spectroscopy

Targeted analysis of numerous plant- and microbial-derived com-
pounds from BF, HF, and HJA DIRT experiments collected after
20years of experiment was compiled into one single database.
The detailed protocols and original data sets for these analyses
are published and discussed in detail in Pisani et al. (2016), Wang
et al. (2017) and Man et al. (2022). Briefly, soil cores were collected
from each experimental plot (two for BF and HF, and six for HJA)

and combined into a composite sample, freeze-dried, sieved to 2 mm,
and ground for sequential chemical extractions, microbial phospho-
lipid fatty acid (PLFA) analyses, and solid-state 13¢C nuclear magnetic
resonance (NMR) spectroscopy. For HF and HJA samples, sequential
chemical extractions and PLFA analyses were conducted for two an-
alytical replicates per composite sample and averaged for each plot
(n = 3). For BF, there were no analytical replicates, and all analyses
were performed on one composite sample per plot (n = 3). For all
sites, NMR analyses were performed on a single composite sample
prepared per treatment and CTs. Previous published articles and da-
tabases from all sites were consulted to obtain information about
the ecosystems and soil properties (Figure 1b,c).

Sequential chemical extractions included solvent extraction fol-
lowed by base hydrolysis and copper (Il) oxide (CuO) oxidation (Otto
et al., 2005; Otto & Simpson, 2006, 2007). Total solvent extract-
able compounds included microbial-derived short-chain aliphatic
and plant-derived, long-chain aliphatic compounds, total acyclic and
cyclic lipids as well as total sugars, total free lipids, and the plant-
derived steroid ratio calculated as degradation products over their
precursors with higher values indicating increased degradation (Otto
& Simpson, 2005) (Table S1). Variables from base hydrolysis included
leaf/needle-derived cutin, root-derived suberin, and microbial-
derived lipids (Cai et al., 2017; Jia et al., 2019) as well as the suberin to
cutin ratio, that increases with preferential degradation of cutin over
suberin (Bahri et al., 2006; Wang et al., 2018); the cutin degradation
ratio (wC,,/C,,) as the relative change of C,, w-hydroxy-alkanoic
acids to all hydrolysable C,, fatty acids, increasing with higher cutin
degradation (Goni & Hedges, 1990; Otto & Simpson, 2006); and the
mid-chain-substituted acids to total suberin and cutin ratio (Zmid/
Suberin + Cutin) that decreases with higher cutin and suberin degra-
dation (Otto & Simpson, 2006) (Table S2). Lignin-derived compounds
isolated from CuO oxidation include: vanillyls, syringyls, cinnamyls,
total sum of vanillyls, syringyls, and cinnamyls, and ratios such as
syringyls/vanillyls and cinnamyls/vanillyls that characterize the pre-
dominant botanical origin of lignin in soil. Finally, lignin oxidation
ratios: acid-to-aldehyde ratio for lignin-derived vanillyls [(Ad/Al),]
and syringyls [(Ad/Al)g] increase with higher lignin decomposition
(Hedges & Mann, 1979) (Table S3).

Microbial PLFAs were extracted using a modified Bligh-Dyer
method (Bligh & Dyer, 1959; Frostegard & Baath, 1996) and from
this analysis, we compiled information of the total microbial bio-
mass and key microbial groups including fungi, Actinobacteria,
Gram-positive, and Gram-negative bacteria. Microbial commu-
nity composition ratios were also compiled across all sites. These
ratios included the fungi-to-bacteria ratio; and the Gram-negative
to Gram-positive and Actinobacteria ratio. The Gram-negative to
Gram-positive bacteria ratio is used as an indicator of C availabil-
ity in soils (Fanin et al., 2019). Here, we added Actinobacteria and
Gram-positive bacteria in the denominator as these microbial groups
are known to preferentially access complex forms of C in soil (Deng
et al.,, 2015; Ghai et al., 2014; Su et al., 2020). Finally, we also in-
cluded the microbial stress ratio, a measurement of microbial stress,
calculated as cyclopropane PLFA to its monoenoic precursor since
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higher cyclopropane PLFA is produced with substrate limitations or
other stressors such as changes in temperature or moisture (Bossio
& Scow, 1998). In this study, we compare stress ratios with ambient
conditions (CTs) and anticipate that a higher microbial stress ratio is
indicative of preferred substrate C availability (Table S4) or changes
in community composition and structure (Frostegard et al., 2011).

Finally, NMR spectroscopy variables correspond to four main
chemical shift regions: alkyl C (0-50ppm), O-alkyl C (50-110ppm),
aromatic and phenolic C (110-165ppm), and carboxyl and carbonyl
C (165-215ppm). The ratio of alkyl/O-alkyl C was calculated as a
measurement of the SOM decomposition state, increasing with
higher SOM degradation since O-alkyl C components are preferen-
tially degraded over alkyl C components (Baldock & Preston, 1995).
A second ratio was calculated with alkyl C +aromatic and phenolic C
over O-alkyl C+carboxylic and carbonyl C as a complementary mea-
surement of SOM decomposition. The resistance to decomposition
ratio also increases with higher utilization of preferred substrates
such as cellulose (O-alkyl) and carbonyl and carboxyl C versus less
preferred substrates such as plant-derived lipids (alkyl C) and lignin
(aromatic and phenolic C) (Ostertag et al., 2008). For consistency, all
data and ratios were revised from raw data to obtain a homogenous
database for the purposes of this study. All variables, except those
from NMR analysis, are expressed in pg/g dry soil.

2.3 | Soil radiocarbon analysis and estimation of
SOM turnover times

Bulk SOM radiocarbon data were obtained and estimated C turno-
ver time calculated to examine changes in SOM dynamics. Fraction
modern C (F**C) was determined on composite samples of combined
field replicates per treatment and forest site (n = 15) using a 3MV
tandem accelerator mass spectrometer by the A.E. Lalonde AMS
Laboratory in Ottawa, Ontario. F**C was calculated based on Reimer
et al. (2013) as the ratio of the sample *C/*2C ratio to the stand-
ard *C/*2C ratio (Oxalic acid, Ox-1) measured concurrently with
our samples. A*C values were calculated by correcting this ratio by
the radiocarbon decay of the standard up to the year of sample col-
lection: 2011 (BF), 2010 (HF) and 2017 (HJA) (Schuur et al., 2016).
The “C/*2C ratios of both samples and standards were background-
corrected, and the result further corrected for spectrometer and
preparation fractionation using AMS measured 3C/*2C ratio and
normalized to §'°C (PDB) following Crann et al. (2017). To determine
carbon turnover times (in years, equal to the inverse of the turnover
rate, k), we assumed a steady state system and used the following

equation from Torn et al. (2009):

CexFeo=IxFl  +C i X (L-k=)xFciy (1)

where C, and C,_, are organic carbon contents of the soil sampled
in year t and 1year before t-1. | is plant-derived carbon input during
the sampling year, F’Ct is the corrected measured radiocarbon of each

sample by radiocarbon decay (**C/1000+ 1), F..: is the atmospheric

tm,t

oo, RORE

F14C values from 1950 to the year of sampling and 4 is the radioactive
decay constant of c =1.210x10™ year'i. For a steady-state reser-
voir (C, = C,_,), k equals I divided by the inventory of carbon at year
t (I/C,) then Equation (2) is derived from Equation (1):

Fe, = kxF]

atm,t

+(L—k=DxFL,, 2)

Based on Equation (2) a numerical model was constructed in
MATLAB 2015 (MathWorks, Inc.) to calculate the optimal k to fit
the measured F*C values of the soil samples. For this, atmospheric
F¥C values (F;tm,t) of the Northern Hemisphere were retrieved from
the literature (Hammer & Levin, 2017; Hua et al., 2013; ICOS, 2019;
Levin et al., 2013; Levin & Kromer, 2004) considering 1year time lag
from the soil sampling at each site, based on the assumption that
most C inputs to the soil come from the decomposition of litter in
the previous year. In addition, the atmospheric F4C values used
were an average of measurements from summer months (May, June,
July, August) for each year. The optimal k value to calculate the most
likely turnover time was then selected as the value representing
the smallest difference between the corrected F'**C values and the
measured F'**C in soil. Samples with A*C above 20%. yielded two
possible turnover times (Table 1) and both values are reported, but
for our interpretations, longer turnover times were used. Finally,
error values (as standard deviation) were calculated using a Monte
Carlo simulation (200 runs) of the corrected F*C. The assumption
of a steady-state system used to model the radiocarbon turnover
times at these DIRT sites needs to be interpreted with caution as
litter manipulations alter the assumed steady state of the system.
However, we use this here as an exploratory tool to compare the rel-
ative change of the turnover times across treatments as previously
done by Crow et al. (2009) for two of these DIRT sites.

2.4 | Statistical analyses

All statistical analyses were performed in R version 3.6.0 (R Core
Team, 2019) unless otherwise stated. Analytical replicates, when
available, were averaged per plot (field replicate) within each site
(n = 3). We tested the impact of the DIRT treatments within each
site and the impact of both treatment and site on all variables. For
each case, two models were built: a simple linear effect model (using
the package “stats,” base R) and a linear mixed effect model where
plot was added as a random effect (using the package “Ime4”; Bates
et al., 2021). Using the Akaike Information Criterion, the second
model in which plot was included as a random effect, was deemed
more appropriate in all cases to test the impact of treatment or treat-
ment and site on the assessed variables. We performed a one-way
and two-way analyses of variance (ANOVA) to test the impact of
treatment within each site and the impact of treatment and site
across the complete database using the ANOVA function from the
“car” package (Fox et al., 2021) with Kenward-Roger degrees of free-
dom followed by multiple mean comparisons of all treatments using
the Tukey test with the Bonferroni correction with the “glht” func-
tion from the “multcomp” package (Hothorn et al., 2021). Finally, as
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TABLE 1 Summary of soil C content, radiocarbon data, and turnover time estimates from mineral soil (0-10 cm) from the Bousson Forest
(BF), Harvard Forest (HF), and H.J. Andrews Forest (HJA) for the control (CT) and litter manipulation treatments: double litter (DL), no litter

(NL), no roots (NR), and no inputs (NI)

BF HF HJA

Turnover Turnover Turnover
Treatment %Ct AYC (%) (years) %Ct AYC (%0) (years) %C AYC (%) (years)
CT 6.0+0.6 -8.77 +2.58 378 £41 7.2+0.7 38.53+£2.94 195+8 50+0.8 35.52 +2.85 199 +8°
DL 5.7 +0.6 -14.69 +2.68 407 +25 6.9 +0.2 47.44 +3.02 172 +6° 49 +1.0 20.83 +2.64 245 +9¢
NL 5007 -22.67 £2.70 453 £15 58+0.8 16.22 +2.82 265 +10 4.7 £0.5 28.62 +2.75 218 +9¢
NR 57+0.8 -14.66 +2.55 411 +25 6.8 +0.8 19.52 +2.95 254 +10 51+0.5 8.00 +2.62 295 +11
NI 39+0.6 -66.03 £2.70 763 +48 6.2+0.5 27.36 £2.98 227 £10 41+03 -5.08 +2.61 357 £12

Note: Turnover times were estimated using a limited steady-state model and are not intended to represent absolute turnover times but used to
compare relative turnover shifts due to litter additions or exclusion relative to ambient conditions. Alternate turnover times were generated for
samples with AYC above 40%o for HF: 23+ 1; and above 20%o for HJA: b7+ 1,%4+1, 46+ 1. Errors for turnover years are standard deviation, for all

other variables, error expressed as standard error.

T9%C values taken from Wang et al. (2017) for BF, Pisani et al. (2016) for HF and Man et al. (2022).

a broader approach to capture differences between the treatments
against the control within each site, we performed a Dunnett's test
in paired comparisons using the “DunnettTest” function form the

“DescTools” package (Signorell et al., 2021).

3 | RESULTS

3.1 | Long-term litter addition (double litter)

The lack of net increases in soil C after 20years of DIRT at any of
the three forests (Table 1) has been proposed as evidence for soil
priming prompted by the doubled litter inputs and supported by ob-
servations of increased soil respiration in DL plots for all sites (Lajtha
et al., 2018). Here, we also detected higher SOM decomposition
state and higher SOM resistance to decomposition in DL plots from
the NMR analysis across all sites (Figure 2a,b). Higher values of these
ratios in DL plots further supports the idea of a positive soil priming
by doubled litter inputs as fresh litter is accelerating soil microbial
decomposition of preferred C components while more complex C
substrates are accumulated. Aligned with this, increases in microbial
biomass and microbial-derived lipids alongside decreases in cutin-,
suberin- and lignin-derived compounds and lower AYC values and
longer turnover times in DL plots would collectively support the use
of older, previously stabilized SOM, as unequivocal evidence of posi-
tive soil priming. We were also expecting these trends to be more
significant for bacterial-dominated sites with higher N availability
(BF and HF). However, only BF was dominated by bacteria, whereas
the microbial community at HF was dominated by fungi instead
(Figure 3c¢) likely due to the acidic soil conditions at HF that generally
favor fungal growth (Silva-Sanchez et al., 2019) and act as an environ-
mental filter facilitating fungal growth rather than bacterial growth.
Increases in microbial biomass (Figure 3a) and microbial-derived
lipids (Figure 4c) with DL were only detected in fungal dominated
sites (HF and HJA). Moreover, increases in lignin oxidation for DL

plots were observed at BF and HF (Figure 5a), whereas lignin oxida-
tion decreased instead with doubled litter for HJA (Figure 5a). Cutin
concentrations increased with DL only at HF (Table S2) while suberin
concentrations were unaltered by doubled litter additions across all
sites (Table S2). Finally, lower A*C values and longer turnover times
in DL plots were detected at BF and HJA but not at HF, were higher
AYC values and shorter turnover times in DL plots were observed
instead (Table 1).

3.2 | Long-term above- and belowground
litter exclusion

As expected, litter removal treatments (NR, NL, and NI) led to in-
creased SOM decomposition, particularly for NI plots, which had
more than 25% higher decomposition ratio than CTs across all sites
(Figure 2a). A higher degradation ratio (more than 25% increase) was
also detected in NL and NR plots at HF (Figure 2a). As expected, the
exclusion of fresh litter inputs (above-, belowground, or both) led
to the accumulation of more processed and complex C compounds
o and thus, higher SOM resistance to decomposition was also de-
tected in litter removal treatments for all sites (Figure 2b). In par-
allel, lower A¥C values and longer calculated turnover times were
observed for all litter exclusion treatments in comparison with CTs
across all sites (Table 1). The persistence of older SOM is tradition-
ally associated with higher C substrate complexity, which is congru-
ent with the higher SOM decomposition state and SOM resistance
to decomposition (Figure 2a,b). A growing body of evidence also
suggests that longer radiocarbon turnover times do not necessarily
imply longer environmental persistence but instead relates to higher
microbial processing of preferred C substrates (Gleixner, 2013;
Kleber et al., 2011; Trumbore, 2009). Increases in alkyl C are likely
associated not only with accumulation of complex C substrates like
plant waxes, cutin, and suberin but also with newly synthesized C
compounds that result from microbial processing of SOM (Baldock
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FIGURE 2 (a)Soil organic matter (SOM) decomposition state ratio (alkyl/O-alkyl carbon), (b) SOM resistance to decomposition ratio

(alkyl +aromatic and phenolic)/(O-alkyl + carboxyl and carbonyl carbon), and (c) associated data from solid-state *3*C nuclear magnetic
resonance spectroscopy for the mineral soil (0-10 cm) from the Bousson Forest (BF), Harvard Forest (HF), and H.J. Andrews Forest (HJA) for
the control (CT) and litter manipulation treatments: double litter (DL), no litter (NL), no roots (NR), and no inputs (NI). Gray numbers in italics
represent less than a 10% difference compared with the control, whereas numbers in black represent more than a 10% difference compared
with the control and 4 denotes more than 25% compared with the control. Arrows pointing upward represent increases in comparison with
the control, whereas arrows pointing downward represent decreases versus the control. As decomposition increases, higher use of preferred
C and the accumulation of more persistent forms of SOM also increases. Therefore, higher SOM decomposition state is related to a higher

resistance to decomposition.

1992; Kogel-Knabner et al., 1991; Marin-Spiotta et al., 2008).
Therefore, our observation of higher SOM decomposition and thus

et al,

higher resistance to decomposition (Figure 2a,b) along with longer
radiocarbon turnover times at litter reduction plots may also indicate
enhanced microbial processing of more available complex C sources
via an adaptation to substrate limitations that facilitate sustain mi-
crobial metabolic activity. This also agrees with relatively higher
microbial-derived lipids in litter reduction plots at both HF and HJA
(Figure 4b), which is a proxy for microbially processed SOM residues
(see section discussing these microbial-derived lipids in more detail).

The way each forest adapted to low C availability in litter ex-
clusion plots differed according to the N status and the dominant
microbial community at each site. We were expecting decreases
in SOM compounds (i.e. lignin, cutin and suberin) as well as nega-
tive impacts on microbial biomass and would be stronger where N
availability was higher. Indeed, we found that soil microbial biomass
decreased in litter exclusion plots at the bacterial-dominated site
(BF), whereas it increased at fungal-dominated sites (HF and HJA).
Higher dependence of bacteria on labile C inputs (Butler et al., 2003;

Chen et al., 2016; de Boer et al., 2005) was likely driving these

decreases in soil microbial biomass, particularly at NR and NI treat-
ments (Figure 3a), where the exclusion of readily decomposable Cin
leaf litter evidenced by significant decreases in solvent extractable
short-chain aliphatic lipids and simple sugars (Table S1). Microbial
community composition shifted at this site toward microbial groups
with higher capacity to process complex C such as Gram-positive
and Actinobacteria (Figure 3c) (Deng et al., 2015; Ghai et al., 2014;
Su et al., 2020). These compositional changes facilitated the degra-
dation of more complex C substrates, such as lignin, which presented
higher oxidation state in litter removal plots (Figure 5a), consistent
with lower aromatic+ phenolic C from NMR analysis (Figure 2c).
Similar to BF, litter exclusion treatments at the fungal-dominated
HF site led to decreases in fast-cycling C components (Table S1) and
altered microbial community composition with increases in Gram-
positive and Actinobacteria abundance as previously detected at this
forest as a microbial adaptation strategy to reduced preferred C sub-
strates, consequence of soil warming treatments (Melillo et al., 2017).
Yet, soil microbial biomass tended to increase here rather than de-
crease (Figure 3a), and microbial community composition shifted to
higher fungal abundance (higher fungi/bacteria ratio; Figure 3c) and
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FIGURE 3 (a)Microbial biomass measured via phospholipid fatty acid (PLFA) profiling (ug PLFA/g dry soil), (b) microbial stress ratio and
(c) microbial community composition as the ratio of Gram negative (Gram =)/ Gram positive (Gram +) and Actinobacteria on the y-axis and
fungi-to-bacteria ratio. From mineral soil (0-10 cm) from the Bousson Forest (BF), Harvard Forest (HF), and H.J. Andrews Forest (HJA) for
the control (CT) and litter manipulation treatments: double litter (DL), no litter (NL), no roots (NR), and no inputs (NI). For (c), significant
differences between treatments and control (Dunett's test) on the y-axis shown in gray and significant differences on the x-axis shown in
black. Significance levels: <.1 (o), <.05 (*), .01 (**). For (b), different letters show significant differences p <.05 from Tukey's test, no letters

mean no significant differences.

higher cutin degradation was observed instead of higher lignin de-
composition (Figure 5a,b). At the HF site, overall higher cutin avail-
ability in comparison with the other sites (Table S2) points to the
preferential use of this OM source by the fungal-dominated com-
munity. Selective preservation of cutin can occur in substrates with
high lignin contents (Angst et al., 2016) and lower relative abundance
of extractable lignin phenols relative to cutin at HF in comparison
with BF (mean + SE: extractable lignin/cutin_HF = 82.75 + 10.30; ex-
tractable lignin/cutin_BF = 36.66+4.75) could have also facilitated
the preferential use of cutin at HF, whereas enhancing its protection
from degradation at BF.

Litter exclusion treatments at the coniferous low N-availability
forest (HJA) significantly increased microbial biomass (Figure 3a)
and decreased cutin and lignin oxidation (Figure 5b). Substrate lim-
itations at this site did not lead to changes in microbial community
composition. Rather, the increases in microbial biomass of this fungi-
dominated community were likely allowing for a more extended
nutrient scavenging area of the fungal communities; thus increas-
ing fungal growth and enhancing substrate exploration (Paustian &
Schnirer, 1987) without the need to invest energy in degradation of
available complex substrates such as cutin and lignin. Higher invest-
ment in hyphal length growth and fungal biomass production in litter
removal plots at this site is also congruent with the lower efficiency

of fungi to decompose lignin from coniferous needles than that in
broadleaf dominated litter (Osono, 2007).

3.3 | Aboveground versus belowground controls of
soil C accumulation

At the studied deciduous forests (BF and HF), we observed higher
relative use of preferred C substrates over persistent C in NR plots
rather than in NL plots as evidenced by the higher SOM decom-
position state and higher SOM resistance to decomposition in NL
(Figure 2a). Aboveground litter exclusion (NL) in these forests did
not lead to significant decreases in leaf-derived cutin (Table S2), even
though cutin degradation significantly increased in NL plots in both
forests compared with the control (Figure 4b). Root-derived suberin
was, however, significantly higher in NR plots for both BF and HF
(Table S2), a sign pointing towards preferential preservation of root-
derived C in these forests. Finally, lignin oxidation increased in NR
plots rather than in NL plots at BF and HF, although this was not
significant for HF (Figure 5a). Microbial biomass and the microbial
stress ratio were not impacted in NL plots at either deciduous forest
(Figure 3a), but significant decreases in microbial biomass accompa-
nied by higher microbial stress ratio were detected in NR plots at BF
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FIGURE 4 (a) Suberin and cutin ratio; (b) cutin degradation ratio
(bars, C,,/C,,), and cutin and suberin degradation ratio (circles,
TMid/suberin+cutin) and (c) microbial hydrolysable-derived lipids
(ng/g soil) from mineral soil (0-10 cm) from the Bousson Forest
(BF), Harvard Forest (HF), and H.J. Andrews Forest (HJA) for the
control (CT) and litter manipulation treatments: double litter (DL),
no litter (NL), no roots (NR), and no inputs (NI). Different letters
show significant differences p <.05 from Tukey's test, no letters
mean no significant differences. For (b), significant differences
across treatments and control for cutin degradation ratio (mCM/
C,4) in black and for the cutin and suberin degradation ratio (XMid/
suberin +cutin) in gray.

(Figure 3a). Combined, this evidence suggests that belowground C
inputs have indeed a greater impact on SOM dynamics than above-
ground C inputs at the studied deciduous forests. At the conifer-
ous HJA forest, we detected higher SOM decomposition state in
NL plots than NR plots (Figure 2a), accompanied by a significant
decrease in short-chain aliphatic lipids (Table S1), lower leaf-derived
cutin (Table S2), and lower microbial-derived lipids (Figure 4b,c). On
the other hand, root exclusion (NR) at HJA did not alter the con-
centration of root-derived suberin (Table S2) and only led to higher
SOM resistance to decomposition (Figure 2b). This was congruent
with the observed lower lignin decomposition (Figure 5a) and higher
aromatic and phenolic C in NR plots at HJA (Figure 2c). The A*C val-
ues and corresponding turnover times (Table 1) indicate a shift in soil
C biogeochemical patterns. For BF and HF, litter exclusion resulted
in longer turnover times compared with the control. HJA exhibited
longer turnover times with NR and NI only but not with NL.

oo, ROTRES

3.4 | Microbial-derived lipids: a DIRT perspective
on microbial inputs to SOM formation

The quantity and quality of fresh plant litter inputs to soil is
hypothesized to determine the substrate use of microbes and
thus the quantity and chemical nature of the resulting mi-
crobial products (Microbial Efficiency-Matrix Stabilization—
MEMS framework) (Cotrufo et al., 2013). Short-chain (C,,-C,,)
branched alkanoic acids (iso, anteiso) (Cai et al., 2017; Otto &
Simpson, 2006) as well as short chain (C,,-C,4) B-hydroxyalkanoic
acids (Allard, 2006; Zelles, 1999) are lipids not commonly found
in plants that have been useful as indicators of SOM decomposi-
tion and microbial inputs to the SOM pool (Cai et al., 2017; Jia
et al., 2019). These lipids are generally extracted via an acidic or
alkaline hydrolysis (Cai et al., 2017; Otto & Simpson, 2006) and
although the relevance and source of these microbial-derived
lipids is still cryptic, they have been found to respond to warm-
ing (Jia et al., 2019) and to be related with the organic C to N
ratio of SOM rather than with soil mineralogical properties (Cai
et al., 2017). The observed trends for these microbial-derived
lipids in the studied forests agrees with recent proposed frame-
works of stable SOM formation and its dependency on plant
litter inputs chemistry and distinct microbial substrate use of
contrasting microbial communities (Cotrufo et al., 2013). We de-
tected overall higher quantities of these microbial-derived lipids
at the broadleaf deciduous forests with low C:N litter (BF and
HF), whereas HJA, the coniferous forest with high C:N litter, had
the lowest amount of microbial-derived compounds (Figure 4c).
Higher SOM decomposition state was concurrently observed at
BF and HF, whereas HJA had the lowest SOM decomposition
state (Figure 2a). Thus, the quantity of these microbial-derived
lipids might be closely related with the C:N ratio of the plant in-
puts and could potentially be a by-product of microbial-mediated
SOM decomposition and/or microbial biomass turnover. Another
trend we observed is that the response of these microbial-
derived lipids in DIRT varied depending on the dominant micro-
bial community, regardless of the C:N ratio of the litter input.
Although microbial-derived lipids in the bacteria-dominated site
(BF) were generally unresponsive to doubled low C:N litter ad-
ditions and reductions of above and belowground inputs (NL,
NR, NI); fungal-dominated sites, particularly HJA did respond to
DIRT treatments (Figure 4c), despite the different C:N ratios of
the litter inputs. At the HF site, microbial-derived lipids tended
to increase in DL and NR plots in comparison with the control,
whereas at HJA, these lipids significantly increased in DL plots
and NR but decreased in NL and NI plots (Figure 4c). Finally, the
lack of responses of these lipids to DL in the bacterial-dominated
deciduous forest (BF) could potentially be related to a generally
lower substrate use efficiency of bacteria in comparison with
that of fungi (Malik et al., 2016; Six et al., 2006) and the lower
C:N litter inputs at this site that combined, led to a rapid and
higher SOM decomposition state with minimal production of mi-
crobially derived compounds.
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4 | DISCUSSION

With doubled litter inputs, sustained soil priming varied with forest
N availability and soil microbial biomass and community composi-
tion. Although not all variables responded as expected to doubled
litter inputs, the observed trends are consistent with the proposed
long-term soil priming mechanism as the main reason for the lack
of soil C accumulation at these sites with 20years of annual DL.
Instead, other lines of evidence from the collected molecular char-
acterization of SOM from these sites can support the proposed soil
priming although the driving mechanisms for this priming might dif-
fer in accordance with the N availability and the dominant microbial
community at each site. For BF, doubled low C:N litter inputs may
initially promote C mineralization of the plant material but as easily
available C decreases, soil priming slows down and accumulation of
processed, less preferred SOM is facilitated (Chao et al., 2019; Chen
et al., 2014; Tian et al., 2019). The positive soil priming occurring at
BF was, thus, likely the product of a stoichiometric balance between
the low C:N litter at the site and the biomass C:N of fast-growing r-
strategist microbes such as bacteria, which dominated the microbial
community at BF (Figure 3c). Microbes, namely r-strategists mainly
rely on easily available C (Butler et al., 2003; Chen et al., 2016) and
the preferential use of more labile C components is supported by
significant decreases in fast-cycling C compounds such as total
sugars, short-chain aliphatic lipids and acyclic lipids as well as plant-
derived long-chain aliphatic lipids for DL plots at BF (Table S1). As
this easily accessible C is depleted, lignin is used as an alternate en-
ergy source as indicated by the marginally higher lignin oxidation
ratio [(Ad/Al)s, v; Figure 5a). Also, Gram-positive and Actinobacteria

abundance in DL plots increased, facilitating the decomposition of
more complex C substrates (Figure 3c). This stoichiometric decom-
position theory may also explain the lack of increases in microbial
biomass and microbial-derived lipids in DL plots at BF as pulses of
microbial activity and growth after added doubled litter inputs might
rapidly decrease and may have not been captured at the time of sam-
pling (Wang et al., 2017) but were reported after 13years of DIRT
(Brant et al., 2006). Lack of more significant impacts on microbial
biomass and microbial-derived lipids in the doubled litter treatment
at BF could be also related with the rapid leaching of dissolved or-
ganic C from freshly dropped aboveground litter and its export out
of the system or stabilization in mineral particles (Guggenberger
& Kaiser, 2003; Hensgens et al., 2020; Neff & Asner, 2001), a flux
of easily available C that is particularly relevant in high-N systems
(Smemo et al., 2006).

Similarly, soil priming at HF was likely governed by the stoichio-
metric balance between doubled low C:N litter inputs that gener-
ated an immediate priming effect (Fanin et al., 2020) that combined
with fungal-dominated communities at HF (Figure 3c) led to efficient
decomposition of high-quality litter inputs. Although fungi are gen-
erally considered K-strategists with slower growth rates and pref-
erential use of more complex C substrates (Chao et al., 2019; Chen
et al., 2014; Fanin et al., 2020), fungal communities at HF challenge
this notion as detrital fungal-dominated food webs at this site were
found to associate with the use of easily available C substrates (Rousk
& Frey, 2015). Therefore, doubled litter inputs at this forest, increased
the relative abundance of fungi over bacteria (higher fungi/bacteria
ratio) (Figure 3c) and tended to increase the microbial-derived lipids
(Figure 4c) without significantly altering lignin oxidation (Figure 5a)
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or suberin concentrations (Table S2). Instead, cutin concentration in-
creased (Table S2) and its degradation decreased (Figure 4b). HF had
the highest litterfall rate across all sites (Figure 1b) and so, doubling lit-
ter inputs promoted microbial growth at this site and slightly increased
SOM degradation state (Figure 2a) to a certain point where the nu-
trient and energy requirements of the soil microbial community were
met followed by the accumulation of the litter surplus as evidenced
by the higher A'C values and shorter C turnover times at HF in DL
plots. At HJA, soil priming is rather determined by active N mining by
fungal-dominated microbial communities (Figure 3c) more adapted to
process complex organic sources and with a typical K-selected strat-
egy Thus, doubled low-quality (high C:N) litter inputs at HJA increased
the relative abundance of fungi over bacteria (higher fungi/bacteria
ratio) (Figure 3c), the microbial-derived lipids (Figure 4c) and more sig-
nificantly increased the total microbial biomass (Figure 3a).

Across sites, litter exclusion led to the adaptation of microbial
communities to preferred C-substrate limitations. As hypothesized,
the negative impacts on microbial biomass were mostly detected

N: Nitrogen
C: Carbon

Soil N availability

DECIDUOUS FORESTS

ST e L

at the bacteria-dominated high N-availability broadleaf forest (BF)
while increases in soil microbial biomass were instead detected in
mid and low N-availability fungal-dominated sites (HF and HJA).
Contrary to our hypothesis, SOM components (i.e., cutin, suberin,
and lignin) did not decrease at all sites but instead, specific shifts
in microbial community composition at each site drove targeted
decreases of preferred C substrates. At BF, higher Gram-positive
and Actinobacteria abundance facilitated higher lignin degradation,
whereas at HF, higher fungal abundance led to higher cutin degra-
dation. Finally, at the fungal-dominated low N-availability site (HJA)
increases in microbial biomass might have served as a mechanism for
extended resource scavenging without further degradation of avail-
able complex C substrates. Taken together, these results suggest
that reduction of litter inputs may ultimately reduce soil C storage,
not only via decreases in C inputs into the soil C pool but also via
changes in the composition and abundance of soil microbial commu-
nities to either decompose complex C substrates or to explore new
sites in soil to find their preferred nutrient and energy sources.

CONIFEROUS FOREST

H.J. ANDREWS FOREST
(HJA)

Soil C availability

No increases in soil C due to positive soil priming with different

Double litter
(DL)

Bacteria-dominated
r-strategy

Stoichiometric priming

mechanisms acting depending on soil N levels:

N mining

Fungi-dominated
r-strategy

Fungi-dominated

Further decreases soil C via microbial adaptation
to substrate limitation:

Litter removal ¥ Microbial biomass
(No |n|&uts-NI,
L, NR)

4 Lignin oxidation

4 Fungi/bacteria ratio
g
4 Cutin degradation

4 Gram (+) and Actinobacteria
relative abundance

Microbial biomass
Lignin oxidation
Cutin degradation

|
———

Above- and belowground controls on soil C varied according to the chemical
characteristics of plant litter per site:

No litter
(NL) vs.
No roots
(NR) . .
Persistence of root derived-C

Low C:N leaf litter rapidly decomposed

— Leaf litter C:N

Persistence of leaf derived-C
Low C:N root litter rapidly decomposed

FIGURE 6 Summary of molecular composition of soil organic matter (SOM) and associated mechanisms defining the distinct responses of
soil C across sites and treatments. SOM compositional data from Figures 2-5 are summarized in different groupings to better conceptualize
relationships with mechanisms that control site-specific responses to long-term changes in litter quality and quantity.
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We found that belowground litter controls soil C accumulation
in deciduous forests, whereas aboveground litter is more influen-
tial in coniferous forests. Given that aboveground litter reductions
(NL) led to more significant decreases in soil C across these DIRT
forests than belowground litter reduction (NR) (Lajtha et al., 2018),
we were expecting to detect higher SOM degradation, increased
degradation of lignin, cutin and suberin and lower AC values for
litter removal (NL) plots and not NR plots across all sites. However,
these expectations were only partially met in specific cases with
the SOM molecular composition of each site responding differently
and more in agreement with the observations by Crow et al. (2009)
where the authors postulate a greater control of belowground litter
in deciduous forests and aboveground litter being more influential
for soil C accumulation at coniferous forest. Higher control of be-
lowground litter in deciduous forests is supported here mainly by
the lack of impacts in leaf-derived cutin for NL plots, whereas root-
derived suberin was significantly higher in NR plots for both BF and
HF. At the coniferous forest (HJA), higher control of aboveground
litter on SOM dynamics is supported by the fact that leaf litter ex-
clusions led to more significant changes in the SOM biogeochemis-
try than root exclusions. These trends were also observed by Crow
et al. (2009) and confirmed here, and are likely explained by the
contrasting chemistry of above and belowground inputs from conif-
erous and deciduous forests. For coniferous forests, aboveground
litter tends to have higher C:N ratio in comparison with root litter,
with fine roots being a major input of N in these systems (Chen
et al., 2002; Yano et al., 2005) and having a faster decomposition
than aboveground litter (Sulzman et al., 2005), whereas leaf litter
decomposes slower with needle-derived compounds persisting in
soil. For deciduous forests the opposite is true, given the higher
C:N ratios of root litter in comparison with leaf litter, root litter
decomposes slower than leaf litter in these forests (Kyaschenko
et al.,, 2019; Sulzman et al., 2005) with leaf-derived compounds
thereby persisting in soil.

The measured AC values and the estimated turnover times
for litter exclusion did not agree with the observed trends in SOM
decomposition. For coniferous forests, where aboveground litter
seems more consequential for soil C accumulation, we were ex-
pecting to detect lower AYC values, and longer C turnover times
in NL plots as the lack of aboveground C inputs would accelerate
SOM decomposition. Instead, we observed higher AYC values, and
shorter C turnover times in NL plots at HJA (Table 1). For decidu-
ous forests, where roots were influencing soil C accumulation, we
were expecting lower AC values, and longer C turnover times with
belowground litter removal (NR) but instead, we observed higher
AYC values, and shorter C turnover times in NR plots at both BF
and HF (Table S1). These seemingly contradictory trends are poten-
tially explained by the production rates of above- and belowground
litter in coniferous and deciduous forests. Coniferous forests have
higher relative root production compared with aboveground litter-
fall, whereas deciduous forests have higher litterfall relative to total
and fine root production (Anderson-Teixeira et al., 2021). Thus, the
continued C inputs from roots in NL plots at HJA and of leaf litter in

NR plots at BF and HF are driving the observed trends in the radio-

carbon data and estimated turnover times.

5 | CONCLUSIONS

Our cross-site, comprehensive molecular-level comparison dem-
onstrates that soil C responses to altered litter input quantity and
quality as a proxy for shifts in ecosystem productivity with envi-
ronmental change are contingent on site-specific ecosystem prop-
erties and respond uniquely to overall ecosystem N availability.
Sustained annual doubled litter additions over 20years of DIRT,
either continuous (i.e., HJA) or seasonal (i.e., BF and HF), are un-
likely to increase SOM in mature temperate coniferous and decid-
uous forests. The lack of increases in soil C suggests a long-term
and sustained positive soil priming, yet the mechanisms for this
priming might vary across sites, with a positive soil priming occur-
ring at the N-rich, bacteria-dominated (BF), and fungal-dominated
site (HF), characterized by a stoichiometric decomposition of the
low C:N leaf litter. In contrast, the observed positive soil priming
at the N-poor fungal-dominated site (HJA) may be determined by
active N mining of available organic substrates. As expected, litter
exclusion, either above- or belowground, led to even lower soil
C across all sites with soil microbial communities adapting to the
substrate limitation further degrading SOM in response to lower
preferred C inputs. Finally, while root exclusion (NR) seemed more
influential for soil C dynamics in both temperate broadleaf decidu-
ous forests, litter exclusion (NL) altered soil C processes in the
coniferous forest. Collectively, our results demonstrate that dif-
ferent mechanisms defined by inherent ecosystem properties are
important determinants of altered soil C dynamics with litter ma-
nipulations. These mechanisms are conceptualized in Figure 6 and
highlight the important drivers of these molecular-level biogeo-
chemical processes. It is important to emphasize that the observed
changes in the molecular biogeochemistry of the SOM for both
litter additions and reductions ultimately had a negative impact on
the capacity of these temperate forests to sequester C. Thus, cli-
mate change, environmental alteration, or management decisions
that increase, reduce or alter C input sources have the potential
to reduce soil C and increase SOM decomposition via different
mechanisms determined by the inherent ecosystem properties
of specific forest ecosystems. This outcome agrees with recent
metanalyses (Feng et al., 2022; Xu et al., 2021) showing that the
C sequestration potential of different ecosystems with increased
litter inputs depends on factors such as the rate of the litter in-
puts as well as the initial soil C stocks. For these mature secondary
temperate forests with already relatively high C stocks, increases
in aboveground litter inputs will not lead to enhanced soil C stocks
and instead, they might promote SOM decomposition, whereas
the impacts of litter input reductions will further decrease soil C
stocks. Our molecular-level synthesis also emphasizes the crucial
role of microbial communities in SOM dynamics and how micro-

bial community composition in combination with litter chemical
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properties and site-specific conditions can strongly determine
the fate of soil C inputs. Consequently, forest management and
climate change mitigation that enhances soil C sequestration and
preservation of existing soil C stocks requires more refined meas-
ures based on dominant soil microbial groups and ecosystem prop-
erties to meet expected soil C enhancement goals or a point near

soil C saturation in temperate forests.
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