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A B S T R A C T   

While river water temperatures are a strong control on instream processes and aquatic ecosystems, monitoring 
networks for river water temperatures are often sparse. Despite recent advancements in water temperature 
modeling strategies, current models struggle to provide real-time and reach-specific predictions across broad 
spatial domains. We developed a physically-based water temperature model coupled to the National Water 
Model (NWM) to assess the potential for water temperature prediction to be incorporated into the NWM at the 
continental scale. Using model forcings and outputs from the NWM v2.1 retrospective, we evaluated the ability of 
four model configurations of increasing complexity to simulate hourly water temperatures in the forested 
headwaters of H.J. Andrews Experimental Forest, Oregon, USA during a six-week summer period. Our modeling 
framework, representing a first effort at pairing water temperature simulation with predictions from the NWM, 
suggests that the NWM can be leveraged to give insight into other water quality variables.   

1. Introduction 

River water temperature is often referred to as a ‘master’ water 
quality variable, as a wide range of chemical and biological processes 
are closely linked to in-stream thermal regimes (Caissie, 2006; Hannah 
and Garner, 2015; Ouellet et al., 2020). The temperature of rivers con
trols algal and bacterial growth rates, dissolved oxygen content, solute 
processing, and the integrity of ecosystems (Havens and Paerl, 2015; 
Isaak et al., 2012). Water temperatures are of particular economic in
terest to management agencies, as the viability of salmonid fisheries and 
the efficiency of river-side power plants are both threatened by warmer 
rivers (Ficke et al., 2007; Förster and Lilliestam, 2010). With future 
climate change expected to give rise to heightened river water temper
atures (Caldwell et al., 2015; van Vliet et al., 2013; Wanders et al., 
2019), it is critical to better understand, observe, and predict reach-scale 
water temperate dynamics at continental to global scales. 

In comparison to records of discharge, observations of river water 
temperature are sparse, particularly outside of the world’s major river 
basins (Wanders et al., 2019). Without knowledge of river thermal re
gimes in unmonitored basins, it is exceedingly challenging to manage 
the threats warmer rivers pose to aquatic fauna and the productivity of 
fisheries (Ficke et al., 2007). Models of water temperature offer unique 

insight into the spatial and temporal dynamics of river thermal regimes, 
both within individual basins and at a global-scale, helping to bridge 
gaps between gages in a sparse temperature monitoring network. A wide 
range of modeling strategies are commonly applied to water tempera
ture prediction and can generally be grouped into statistical and 
physically-based models (Caissie, 2006; Dugdale et al., 2017). The ap
plications of statistical and physically-based water temperature models 
are extensively reviewed in Benyahya et al. (2007) and Dugdale et al. 
(2017), respectively. 

Physically-based (or ‘mechanistic’) models are particularly well 
suited to water temperature prediction (Dugdale et al., 2017) and 
function by calculating energy fluxes at the air-water and 
water-streambed interfaces and transporting mass and stored thermal 
energy downstream (Caissie, 2006). Despite these advantages, 
physically-based models require site-specific data (e.g., discharge, 
groundwater inflow, radiation flux) in order to resolve land surface and 
hydrologic processes (Dugdale et al., 2017). The need for high-quality 
input data can make physically-based models difficult to apply to un
monitored catchments, where knowledge of hydrologic behavior is often 
uncertain. 

Coupled temperature-hydrological models (van Beek et al., 2012; 
van Vliet et al., 2012; Wanders et al., 2019) (hereby referred to as 
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‘coupled models’), which concurrently simulate both hydrological and 
thermal river processes, are an effective tool for overcoming limitations 
related to a lack of observational data (Dugdale et al., 2017). By 
leveraging calibrated hydrologic predictions, coupled models can 
accurately simulate water temperatures in unmonitored basins at 
adaptable spatial and temporal resolutions (Sun et al., 2015). Coupled 
models are well-suited to simulating thermal dynamics in settings where 
advective heat fluxes are influential, such as headwater reaches. Along 
these reaches, the ability of coupled models to divide inflows into 
multiple source water components (e.g., surface runoff, groundwater 
inflow) is crucial for properly estimating hydrologic heat fluxes (Dug
dale et al., 2017). 

Recent advances in continental-scale hydrologic modeling have 
introduced newfound prediction capabilities at unprecedented spatial 
and temporal scales (Lin et al., 2019; Salas et al., 2018). This progress 
presents new opportunities for expanding the extent and accuracy of 
river temperature predictions through the development of coupled 
hydrologic-temperature models. One such broad-scale hydrologic model 
with potential for coupling to a water temperature model is the National 
Water Model (NWM). The NWM is a hydrologic model developed by the 
National Oceanic and Atmospheric Administration (NOAA), the Na
tional Weather Service (NWS), and the Office of Water Prediction (OWP) 
that forecasts hourly streamflow at 2.7 million river reaches in the 
conterminous US (CONUS) (Lahmers et al., 2021; NOAA, 2016). The 
NWM simulates components of the terrestrial water cycle, including 
land surface water and energy fluxes, soil moisture, subsurface flow, and 
channel routing, using a particular configuration of the NCAR-supported 
Weather Research and Forecasting Model hydrological modeling system 
(WRF-Hydro; Gochis et al., 2021) and the Noah Multi-Parameterization 
land surface model (Noah-MP; Niu et al., 2011). As the model provides 
high resolution (1 km) predictions of land surface and hydrologic states 
over a range of forecast lead times (NOAA, 2023), the framework of the 
NWM is well suited to be coupled to a continental-scale water temper
ature model. 

Despite the ability of the NWM to accurately represent hydrological 
processes in catchments across the US, application of the modeling 
framework to river water temperatures remains unexplored. A coupled 
NWM-water temperature model could resolve thermal dynamics at 
reach scales relevant to watershed management along all conterminous 
US catchments and allow for forward-looking temperature forecasts. 
Using data derived from the NWM and other publicly available sources, 
we sought to develop a proof-of-concept water temperature model in a 
single test basin over several weeks of summer baseflow conditions to 
determine if the NWM framework is suitable for temperature prediction. 
Though we only considered temperature modeling in a single basin, our 
intention is that the strategies we have developed for the modeling 
framework are transferable to broader spatial scales and potentially, 
with modifications, to other water quality variables. In this study, we 
aimed to (1) assess if forcings and outputs from the National Water 
Model can be leveraged to accurately simulate hourly river water tem
peratures in a forested headwater catchment during summer, when 
water temperatures are of greatest concern for aquatic species, and (2) 
evaluate how model configurations of increasing complexity represent 
thermal processes influencing water temperatures. 

2. Methods 

2.1. Study site: H.J. Andrews Experimental Forest 

We selected the H.J. Andrews Experimental Forest (H.J. Andrews), a 
64 km2 forested headwater catchment located in the western Cascade 
Mountains, Oregon, USA, to serve as a test basin for this study. H.J. 
Andrews has been subject to continuous and extensive hydrologic 
monitoring since 1948 (Johnson et al., 2021), providing insight into 
hyporheic exchange processes (Becker et al., 2023; Ward et al., 2012, 
Ward et al., 2019a, 2019b; Wondzell et al., 2009), river corridor 

connectivity (McGuire and McDonnell, 2010; Ward et al., 2018a), and 
water temperature dynamics (Johnson, 2004). The breadth of past hy
drologic research at the site, coupled with the availability of historical 
observations, make H.J. Andrews an ideal catchment to explore the 
performance of a water temperature model. 

The H.J. Andrews watershed is drained by several streams, including 
McRae Creek, Mack Creek, and Lookout Creek, the latter of which drains 
downstream to the Blue River Reservoir (Fig. 1). While considered a 
fifth-order catchment by most field studies (Ward et al., 2019a,b), H.J. 
Andrews is represented as a third-order basin by the NWM (and NHD), 
which often does not resolve small headwater reaches. H.J. Andrews is 
characterized by high relief topography, with elevations ranging from 
410 to 1630 m above sea level, and is primarily forested by Douglas fir 
trees (Ward et al., 2019a,b). Annual precipitation at this site is strongly 
seasonal and varies between 1900 and 2900 mm, with most falling in 
winter months between November and April (Jennings and Jones, 
2015). Flows at the basin outlet (Lookout Creek) typically reach a 
maximum in December or January, and a minimum in September 
(Jennings and Jones, 2015). H.J. Andrews’ streams are home to a di
versity of aquatic species, including cutthroat trout and coastal giant 
salamanders (Kaylor et al., 2019). The watershed is generally unim
pacted by anthropogenic disturbances, with the exception of experi
mental logging in select catchments. 

While H.J. Andrews contains a number of water temperature gaging 
stations, only two gages coincided with reaches represented by the 
National Water Model. These gages, providing records of water tem
perature and discharge (Gregory and Johnson, 2019), are located on the 
upper reaches of Mack Creek (GSMACK; drainage area: 580 ha) and the 
lower reaches of Lookout Creek (GSLOOK; USGS 14161500; drainage 
area: 6242) near the basin outlet (Fig. 1). We took GSMACK to represent 
headwater behavior (hereby referred to as ‘headwater’) and GSLOOK to 
represent higher order stream behavior (hereby referred to as ‘outlet’) in 
the basin. 

2.2. Model data 

2.2.1. National water model retrospective v2.1 
The NWM retrospective is a backwards-looking long-duration model 

run forced with observational meteorological data. While the NWM 
retrospective analyses are typically used to evaluate model performance 
(Dyer et al., 2022; Salas et al., 2018; Wan et al., 2022), the historical 
continuity of their predictions makes them useful in the testing and 
development of models coupled to the NWM. In this study, we used data 
from the 42-yr NWM retrospective version 2.1 (v2.1) (February 1979 to 

Fig. 1. Location of water temperature gages (‘Headwater’: GSMACK, ‘Outlet’: 
GSLOOK) with the H.J. Andrews Experimental Forest watershed in relation to 
channels identified by the National Water Model. 
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December 2020), a run of NWM version 2.1 forced by near-surface 
meteorological conditions from the Analysis of Record for Calibration 
(AORC) dataset (NOAA, 2021a,b). The v2.1 retrospective configuration 
uses version 5.2.0 of WRF-Hydro (Gochis et al., 2021) and does not 
assimilate observed discharge data from stream gages. 

The AORC supplies gridded atmospheric forcing data to WRF-Hydro. 
This forcing data includes hourly records of precipitation, air tempera
ture, specific humidity, air pressure, downward shortwave radiation 
flux, downward longwave radiation flux, and u- and v-components of 
wind speed (NOAA, 2021a). These near surface conditions are used by 
the Noah-MP land surface model to simulate vertical energy and water 
fluxes at a 1-km spatial resolution (Gochis et al., 2021). Vertical mois
ture fluxes through the land surface are then passed to subsurface 
routing modules, which influence the lateral flow of water across the 
model’s surface, soil, and saturated domains. Using a 250-m grid, 
WRF-Hydro routes subsurface flow through a 2-m thick soil column and 
an unconfined groundwater aquifer, approximating hydraulic gradients 
using a D8 steepest descent method (Gochis et al., 2021; Lahmers et al., 
2019). When the subsurface storage of a grid cell is exceeded, excess 
water is routed to channels as overland surface runoff using a diffusive 
wave approach (Julien et al., 1995; Lahmers et al., 2019; Rojas et al., 
1997). The location and extent of NWM channels are derived from Na
tional Hydrography Dataset (NHD) Plus Version 2 (NHDPlusV2) river 
reaches (McKay et al., 2012; Salas et al., 2018). These channels can 
receive inflows either from surface runoff or from groundwater 
recharge, represented by empirically-tuned discharge from a conceptual 
exponential groundwater bucket (Gochis et al., 2021). Downstream flow 
is transported through trapezoidal NWM channels using 
Muskingum-Cunge routing (Gochis et al., 2021; Lahmers et al., 2019). 
Parameters related to channel geometry are empirically derived using 
relationships to each reach segment’s drainage area (Gochis et al., 
2021). These computations are then integrated to deliver hourly values 
of streamflow, stream velocity, surface water runoff, and groundwater 
bucket inflow at each reach segment. 

We retrieved NWM retrospective v2.1 forcing and output data from a 
publicly available AWS repository (accessible at: https://registry. 
opendata.aws/nwm-archive/) and extracted hourly values of relevant 
variables at stream segments within the H.J. Andrews study basin. The 
sources and respective applications of NWM data used in this study are 
presented in Fig. 2. These inputs can be divided into three categories: 
meteorological forcing data, hydrological model outputs, and channel 
geometry parameters (Fig. 2). From the meteorological forcing data, we 
extracted incoming shortwave radiation, incoming longwave radiation, 
air temperature, specific humidity, air pressure, and wind speed. Grid
ded meteorological forcings were assigned to vector stream reaches 
based on the centroid location of each reach. From the hydrological 
model outputs, we retrieved discharge, stream velocity, flux from the 
groundwater bucket, and runoff from terrain routing (surface runoff) 
corresponding to each model reach segment. We also retrieved channel 

geometry parameters, including location, reach length, width, side slope 
angle, and stream order, from the NWM Routelink dataset (accessible at: 
https://www.nohrsc.noaa.gov/pub/staff/keicher/NWM_live/NWM_par 
ameters/NWM_parameter_files.tar.gz). 

2.3. Modeling approach 

2.3.1. Model resolution 
We simulated hourly water temperatures throughout the H.J. 

Andrews stream network during a six-week period of low flow from July 
1 to August 15, 2019. We selected this time period because it was the 
most recent period where observed water temperatures in the basin and 
predictions from the NWM Retrospective v2.1 overlapped. We sub
divided channels identified by the NWM into a series of 1-km long reach 
segments, beginning at the channel head of each tributary. Water tem
perature predictions were made at 46 model nodes, located at the 
beginning and end of each of these segments. Additional model nodes 
were added at the location of the two observed water temperature gages 
so as to not introduce error via spatial interpolation when assessing 
model performance against observations. 

2.3.2. Computation of water temperatures 
We adapted a semi-Lagrangian model formulation following Years

ley (2009), also implemented in the DHSVM-RBM water temperature 
model, to develop a Python script that simulates water temperatures 
using primarily NWM forcings. Semi-Lagrangian approaches are widely 
used in the field of numerical weather prediction (Husain and Girard, 
2017) and have also been applied extensively to water temperature 
modeling (Lee et al., 2020; Yan et al., 2021; Yearsley, 2009, 2012). This 
frame of reference combines aspects of Eulerian and Lagrangian ap
proaches, coupling a fixed model grid with longitudinal particle tracking 
to gain efficiency over a strictly Eulerian method (Yearsley, 2009). 
Semi-Lagrangian models are numerically stable across broad ranges of 
space and time steps, facilitating simulations at time steps considerably 
longer than possible under models limited by the Courant condition 
(Yearsley, 2009). 

In this semi-Lagrangian approach, unknown temperatures at a future 
time step were determined by applying reverse particle tracking to 
simulate the longitudinal paths of water parcels originating from model 
nodes where water temperatures are simulated (Yearsley, 2009). From a 
given node at time t + Δt, where Δt is equal to the computational time 
step, the upstream Lagrangian coordinate (ξ) at time t was equal to 
(Yearsley, 2009): 

ξ = xo –
∫ t+Δt

t
u dt (1)  

where. 

u = longitudinal velocity field of traversed river reaches, m s−1 

Fig. 2. Primary heat fluxes represented in the water temperature model. Model data sources fall into four broad categories: NWM gridded forcings, NWM model 
outputs, NWM channel route link files, and external data unconstrained by the NWM. The color and shape of symbology indicates how each variable contributes to 
calculated heat fluxes in the model. 
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t = model time step, s 
Δt = computational time step of the model, s 
x0 = starting position of the water parcel along the reach, m 

As the origin location of each water parcel did not always coincide 
with a model node, we used second-order Lagrangian polynomials to 
interpolate the temperature at the origin point at time t using known 
water temperatures from surrounding nodes (Yearsley, 2009). 

Once the starting water temperature at the origin point was known, 
the particle was tracked as it traveled back downstream to the starting 
model node. As the water parcel passed downstream from time t to t +
Δt, the location of a water parcel along its trajectory (xj) was tracked by 
(Yearsley, 2009): 

xj = ξ +
∑j

j0

u(j′)Δ(j′) (2)   

where: 
ξ = upstream location of the water parcel at time t, m 
u(j’) = flow velocity in the jth model segment at time t, m s−1 

Δ(j’) = time taken to traverse the jth model segment, s 
j = index of model segment, unitless 

The length of time Δ(j’) to traverse the jth model segment was equal 
to (Yearsley, 2009): 

Δ(j’) =
xj′ − xj

u(t, j′)
(3)  

where. 

xj’ = locatliion of the downstream boundary of the j’th node, m 
xj = location of the water parcel along its trajectory, m 
u(t,j’) = flow velocity along the j’th model segment at time t, m s−1 

As water parcels traversed model segments downstream, radiative 
and hydrologic heat inputs were calculated and integrated over time to 
update the water temperature at each model node until the water parcel 
reached its final location at time t + Δdt. The calculated water temper
ature was then inserted at the unknown node and the cycle repeated, 
either at the next time step or for the next node in the sequence. 
Following an approach based on Yearsley (2009), water temperatures 
were updated at the downstream end of the jth model segment at time t 
+ Δ(j’) by integrating radiative and hydrologic energy fluxes along each 
model segment: 

T
(
t + Δ(j′), xj′

)
= T

(
t, xj′

)
+ Δ(j′)

[
H

(
t, xj′

)

ρCpD
(
t, xj′

) + Φ
(
t, xj′

)
]

(4)  

where. 

T(t,xj’) = known water temperature at the current time step, ◦C 
T (t + Δ(j’),xj’) = unknown water temperature at the future time step, 
◦C 
Δ(j’) = time taken for the water parcel to traverse the jth model 
segment, s 
H(t,xj’) = thermal energy flux across the air-water interface, W m−2 

ρ = density of water, kg m−3 

Cp = specific heat capacity of water, J kg−1 ◦C−1 

D(t,xj’) = water depth, m 
Φ(t,xj’) = effective advected heat flux from hydrologic inflows, 
including groundwater and tributaries, ◦C s−1 

If a water parcel traversed more than one model segment during a 
computational time step, the above formula was computed at the end of 
each segment crossed. 

To calculate how radiative and hydrologic forcings result in changes 
in water temperatures, the cross-sectional area, depth, width, and the 
volume of each reach must be known. For each reach, the NWM Rou
telink file supplied the reach length, channel side slope, bottom width, 
and top width to define a trapezoidal channel geometry (Gochis et al., 
2021). As our model simulated water temperatures during summer low 
flow conditions, we only considered flows through the primary channel 
and disregarded overbank flow into the floodplain. A further description 
of our derivation of cross-sectional area, water depth, and reach volume 
is presented in Supporting Information. 

2.3.3. Heat transfer equations 
The total thermal energy flux across the air-water interface (H) 

summarizes the radiative and atmospheric forcings to water parcels as 
they traverse model reaches. These energy fluxes include incoming 
shortwave radiation, net longwave radiation, sensible heat exchange, 
and latent heat exchange. The total thermal energy flux across the air- 
water interface was calculated by: 

H = HSW + HLW + HSH + HLH (5)  

where. 

HSW = shortwave radiation flux, W m−2 

HLW = net longwave radiation flux, W m−2 

HSH = sensible heat exchange flux, W m−2 

HLH = latent heat exchange flux, W m−2 

Full equations for the calculation of each of these heat balance 
components, including the integration of riparian vegetative shading, is 
described in Supporting Information. We did not include bed conduction 
in the net energy balance, as streambed temperatures would be difficult 
to quantify when expanding the model to broader scales. The bed con
duction flux is generally small compared to other heat fluxes, though it 
can an influential process along headwater reaches (Benyahya et al., 
2012; Caissie et al., 2014; Johnson, 2004). 

2.3.4. Hydrologic heat fluxes 
In addition to the radiative and atmospheric heat fluxes to the water 

column, hydrologic inflows, including groundwater inflow, surface 
water runoff, and tributary inflow, contribute heat to the stream based 
on the relative temperature difference between the stream and inflows. 
We aggregated the relative effects of these three inflows to generate a 
single advective heat flux to each model reach over time. The total hy
drologic inflow rate was calculated by: 

QI = QS + QT + QGW (6)  

where. 

QI = total inflow rate, m3 s−1 

QS = surface water runoff rate, m3 s−1 

QT = tributary inflow rate, m3 s−1 

QGW = groundwater inflow rate, m3 s−1 

Once the total inflow rate and individual inflow components were 
known, the effective temperature of the inflows was calculated by a 
flow-weighted arithmetic mean (Glose et al., 2017): 

TI =
QSTS

QI
+

QT TT

QI
+

QGW TGW

QI
(7)  

where. 

TI = effective temperature of inflows,◦C 
TS = temperature of surface water runoff,◦C 
TT = temperature of tributary inflow,◦C 
TGW = temperature of groundwater inflow,◦C 
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QI = total inflow rate, m3 s−1 

QS = surface water runoff rate, m3 s−1 

QT = tributary inflow rate, m3 s−1 

QGW = groundwater inflow rate, m3 s−1 

The advective heat flux to the stream was then derived by computing 
the difference between the aggregate inflow temperature and current 
water column temperature, scaled by the proportion of lateral inflow to 
total channel volume. The effective advective flux was calculated by 
(Glose, 2013): 

Φ =
QL

V
(TL − T) (8)  

where. 

Φ = effective advective heat flux, ◦C s−1 

QL = total lateral inflow rate, m3 s−1 

V = model reach volume, m3 

TL = effective temperature of lateral inflows, ◦C 
T = channel water temperature, ◦C 

2.3.5. Estimation of unknown inflow temperatures 
In Equation (7), the water temperature of each inflow component 

(groundwater inflow, surface water runoff, and tributary inflow) was 
unknown. Following Wanders et al. (2019), we set the temperature of 
surface water runoff as 1.5 ◦C less than the current air temperature 
(though we note that this parameter was not expected to be influential 
given the lack of surface runoff that occurred during our simulation 
period). Simulated tributary temperatures were implicitly treated as 
lateral inflow to the model reach where the tributary joined the main
stem river. 

Groundwater temperatures are particularly influential to modeled 
water temperatures, but are often unknown for the purposes of water 
temperature modeling. Our proposed approach relied on the assumption 
that the net water temperature of groundwater inflow must be bounded 
by the temperature of deep groundwater (approximated by annual mean 
air temperature) and the ground surface temperature (approximated by 
continuous air temperature). The ground surface temperature can be 
coarsely estimated by a smoothed mean air temperature, reflecting 
correlative links between patterns in solar radiation, air temperature, 
and ground surface temperature. By scaling the magnitude of variability 
of a smoothed daily air temperature signal between the bounds of deep 
groundwater and the ground surface temperature, we estimated the 
effective inflow temperature of groundwater inflow. At each model time 
step and model reach segment, we calculated the groundwater inflow 
temperature (TGW) by: 

TGW = CAT−GW ∗ (ATD − AT) + AT (9)  

where. 

CAT-GW = Air temperature–groundwater temperature coefficient, 
varying from 0 to 1, unitless 
ATD = Mean daily air temperature smoothed over a variable duration 
moving window, ◦C 
AT = Mean annual air temperature, ◦C 

The smoothed daily air temperature, ATD, for a given time t was 
calculated by: 

ATD,t =
1
W

∗
∑t

n=t−W−1
ATn (10)  

where: 
W = air temperature moving window duration, days. 
ATn = daily mean air temperature on day n, ◦C. 

By tuning CAT-GW between 0 and 1, we simulated effective sourcing of 
inflows from temporally-invariant deep groundwater (value closer to 0) 
or from more variable shallow groundwater (value closer to 1) (Fig. 3). 
We derived mean annual air temperatures along the network using 4 km 
gridded PRISM means over a 4-year period from 2016 to 2019 (PRISM 
Climate Group, Oregon State University, 2022). Daily air temperatures 
were retrieved from NWM forcings at each model reach and smoothed to 
a mean value using a backward-looking moving window, tuned to vary 
between a duration of 2 and 14 days. This moving window simulated the 
unknown response time of shallow groundwater to radiative forcings 
(reflected by air temperature). We used the calculated groundwater 
inflow temperature time series at each model node to supply boundary 
conditions to the model, both to set the first time-step temperature along 
the entire network and the time-varying temperature of streamflow 
initiation at all reach heads during the study period. 

2.3.6. Approximating the thermal effects of hyporheic exchange 
To conceptually represent the thermal effect of hyporheic exchange 

in our model, we used a simplified approach that stores water temper
atures from previous time steps and returns them at a later, lagged time 
at a rate proportional to a tuned fraction of discharge. The hyporheic 
return flow temperature (Thyp) at time t along a given reach calculated 
by: 

Thyp,t =
1

Hlag
∗

∑t−1

n=t−Hlag

Tn (11)  

where. 

Thyp,t = hyporheic return flow temperature at time t, ◦C 
Hlag = hyporheic lag duration, hours 
Tn = simulated water temperature at previous time n, ◦C 

In a similar manner to the computation of advective heat transfer due 
to groundwater inflow, the effective hyporheic heat flux was calculated 
by:  

Φhyp =
Hfrac ∗ Q

V
(
Thyp − Tt

)
(12) 

Where. 

Φhyp = effective advective heat flux, ◦C s−1 

Hfrac = fraction of streamflow returned to channel as hyporheic flow, 
varying between 0 and 1, unitless 
Q = discharge, m3 s−1 

V = model reach volume, m3 

Thyp = hyporheic return flow temperature,◦C 
T = channel water temperature,◦C 

We tuned the hyporheic lag duration parameter between 2 and 24 h, 
simulating a range of hyporheic flow path velocities. Although hypo
rheic flow paths often have residence times longer than 24 h, the vari
ability in the mean temperature of simulated streamflow 
(approximating hyporheic return temperature) over periods longer than 
24 h is negligible. As such, we limited the lag duration to a maximum of 
24 h to conserve computational runtime. The hyporheic flow fraction 
coefficient represented the amount of water returned to the stream at a 
given point in time and space as a proportion of discharge (e.g., an Hfrac 
value of 0.4 equates to 40% of discharge returned to the stream as 
hyporheic flow). We allowed this fraction to vary independently by 
stream order (first, second, and third order reaches), as we generally 
expect stream order and hyporheic flow to demonstrate a negative 
relationship. As stream order increases and stream slope decreases 
down-valley, the effects of hyporheic flow relative to other channel 
processes tends to decrease (Boano et al., 2014; Wondzell, 2011). 
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2.3.7. Estimating riparian shading in the absence of on-site observations 
Riparian shading is a crucial variable in water temperature 

modeling, as it controls the proportion of radiation that reaches the 
water’s surface. However, the NWM does not constrain shading of 
channels by streambank vegetations. In the absence of model data and 
on-site observations, we derived riparian shading values along the river 
network using an empirical formula (Vegetation-shading index; VSI) 
presented by Kalny et al. (2017) that relates vegetation height, vegeta
tion buffer width, and vegetations density to riparian shading. VSI has 
been shown to accurately characterize riparian shading in the absence of 
on-site observations, with estimated values displaying correlations of up 
to 0.9 with shading values derived from hemispherical photos (Kalny 
et al., 2017). VSI is calculated by: 

VSI =

(
hr

hmax
+

w
wmax

+
d

dmax

)

÷ 3 (13)  

where. 

VSI = vegetation-shading index, varying between 0 and 1, unitless 
hr = relative vegetation height, % 
hmax = maximum vegetation height, equal to 100% 
w = vegetation buffer width, m 
wmax = maximum vegetation buffer width affecting water tempera
ture, m, assumed to equal 50 m 
d = vegetation density, % 
dmax = maximum vegetation density, equal to 100% 

Given the dense and contiguous forest cover adjacent to river reaches 
in the H.J. Andrew’s watershed, we assumed that the vegetation buffer 
width was equal to the maximum 50 m width value for all reach seg
ments. Relative vegetation height (hr) was calculated by scaling vege
tation height by river width using the equation (Kalny et al., 2017): 

hr =
hv∗100
rw∗1.62

(14)  

ifhr ≥ 100, hr= 100 

where. 

hr = relative vegetation height, % 
hv = vegetation height, m 
rw = river width, m 

We modified the original relative vegetation height formula pre
sented by Kalny et al. (2017) by multiplying the river width term by 1.62 
to account for differences in latitude between our study site and the site 
where the above formula was derived. The 1.62 scalar value indicates 

that due to the mean solar angle between 10 a.m. and 2 p.m. (maximum 
solar incidence) at H.J. Andrews during our study period (July 2019), a 
tree would cast a shadow roughly 1.62 times its length (Kalny et al., 
2017). 

In the absence of in-situ observations of canopy cover, we retrieved 
values of existing vegetation height and forest canopy cover from 30-m 
resolution gridded US LANDFIRE datasets (LANDFIRE, 2020a,b). We 
then calculated mean values of canopy variables along reach segments 
using 50 m buffers perpendicular to the centerline of stream, excluding 
water pixels from calculated means. To account for differences in 
shading due to the geographic aspect of each reach segment, we calcu
lated canopy values using buffers on only the right bank for 
eastward-flowing segments (45◦–135◦), only the left bank for 
westward-flowing segments (225◦–315◦), and both banks for 
northward-flowing (45◦–315◦) and southward-flowing segments 
(135◦–225◦) (Kalny et al., 2017). In tuning scenarios where riparian 
shading exceeded 100% along a reach, its value was set to equal 100%. 

2.3.8. Assessing model performance 
Model performance was evaluated during distinct calibration and 

validation periods. Model calibration was performed during the first 
four weeks of the selected time period (July 1 to July 31). The model was 
then reinitialized and run during a two-week model validation period 
(August 1 to August 15). We assessed the error of model simulations by 
comparing predictions to observed temperatures at two gages (‘head
water’: Mack Creek, ‘outlet’: Lookout Creek) within the basin during the 
calibration and validation periods. In the calculation of error metrics, we 
removed the first 48 h of simulated temperatures in both the calibration 
and validation periods to account for model spin-up. While this spin-up 
time is shorter than that of other hydrologic models, we found it suffi
cient, as the boundary condition temperatures rapidly equilibrated with 
radiative forcings downstream after a single diel cycle. 

At each gauge, we calculated a suite of error metrics that capture a 
range of modes of variability, including RMSE, daily maxima error 
(DMax), daily minima error (DMin). RMSE was calculated using the full 
hourly time series of prediction. DMax and DMin were calculated as the 
mean difference between predicted and observed daily maxima and 
minima during each 24-h period. By using multiple error metrics in 
tandem to evaluate model performance, we gained additional insight 
into how the model resolved radiative and hydrologic processes. Daily 
maxima error, which described how the model represents peak tem
peratures, is an indicator of the model’s ability to accurately simulate 
radiative heat fluxes that typically dominate net heat transfer during 
daytime hours. Daily minima error, which quantified how the model 
captures nighttime and early morning temperatures, is closely linked to 
hydrologic heat fluxes that become more influential in the absence of 
solar radiation. 

Fig. 3. Estimated groundwater inflow temperatures for (a) water year 2019 and (b) July 2019 study period at the headwaters of Mack Creek for a range of CAT-GW 
(air temperature scaling coefficient) values. Values of CAT-GW closer to 0 represent relatively deeper sourcing depths. While values of CAT-GW closer to 1 represent 
relatively shallower sourcing depths. 
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2.4. Sequential evaluation of model configurations 

Using a flexible model development framework (Fenicia et al., 2011; 
Hrachowitz et al., 2014), we tested the ability of 4 model formulations of 
increasing complexity and representation of physical processes to 
simulate water temperatures in our test basin. In general, we sought to 
develop model configurations that were parsimonious, representing 
physical behavior using the simplest formulation (or degrees of 
freedom) possible to avoid overparameterization and retain computa
tional efficiency (Hrachowitz et al., 2014; Jakeman et al., 2006). With 
this in mind, we attempted to design modeling strategies such that they 
had sufficient complexity to produce accurate predictions, while 
matching the availability (or uncertainty) of model inputs (Wagener 
et al., 2001). 

Models M1, M2, M3, and M4 each progressively incorporated addi
tional degrees of freedom, tuning a broader suite of parameters that 
reflect uncertainty in hydrologic and thermal processes (Table 1). M1, 
the simplest configuration, only tuned parameters related to ground
water inflow temperatures and riparian shading. This formulation 
excluded hyporheic flow and used NWM estimates for rates of ground
water flow. M2 built on the M1 configuration, tuning the NWM esti
mates for the rate of groundwater inflow along the network and again 
excluding hyporheic flow. M3 built on the M1 configuration, adding a 
conceptual representation of hyporheic exchange (see Section 2.3.6). 
M4 combined the complexity of M2 and M3, tuning parameters related 
to groundwater inflow temperatures, groundwater inflow rate, riparian 
shading, and hyporheic exchange. Our model configurations (M1, M2, 
M3, M4) were not intended to resolve every physical process controlling 
water temperatures and instead sought to balance gains in performance 
against computational cost and uncertainty. 

We calibrated each model configuration using 5000 uniform Monte 
Carlo samples of parameters (Table 2), totaling 20,000 model runs 
across all configurations. Parameters descriptions and their sampled 
plausible ranges are shown in Table 2. We intentionally defined wide 
parameter ranges to more fully explore all possible model outcomes. 
These parameters can be grouped into two categories: those that are 
tuned for the full network, and those that are tuned independently by 
stream order. We assumed that the full network parameters (air tem
perature moving window duration, riparian shading coefficient, and 
hyporheic lag duration) represent processes or sources of model error 
that are likely uniform throughout the basin. Parameters tuned by 
stream order (C1

AT-GW, C2
AT-GW, C3

AT-GW, GW1, GW2, GW3, H1
frac, H2

frac, and 
H3

frac) were assumed to represent processes that scale in relation to 
relative stream size. As the basin contains reaches up to third order, each 
of these variables was tuned independently across three degrees of 
freedom (first-, second-, and third-order reaches). The riparian shading 
coefficient (Rshade) and groundwater inflow rate coefficients (GW1, GW2, 
GW3) were unitless coefficients used to tune existing estimates of ri
parian shading and groundwater inflow, reflecting our uncertainty in 
the characterization of these processes. The coefficients used in the 
tuning of groundwater inflow temperatures (C1

AT-GW, C2
AT-GW, C3

AT-GW, W) 
and hyporheic flow (Hlag, H1

frac, H2
frac, H3

frac) were used in equations 
described in sections 2.3.5 and 2.3.6, respectively. 

From 5000 model calibration runs of each configuration (M1, M2, 

M3, M4), we selected the top 1% of runs (50 runs) sorted by RMSEw to 
represent peak potential model performance. RMSEw is a weighted error 
metric, calculated as the weighted average of headwater RMSE (25% 
weight) and outlet RMSE (75% weight). These runs are highlighted 
amongst all calibration model runs in Fig. 4. We prioritized runs with 
low RMSE values at the outlet because we expect that model error will 
decrease down-network as radiative forcings, which tend to be better- 
characterized than hydrologic forcings in water temperature models, 
become more influential. Therefore, we assumed that prediction quality 
at the outlet is relatively more valuable than at headwater reaches. 

The parameter sets of the top 1% of calibration runs ranked by 
RMSEw were further evaluated during a two-week validation period 
(Fig. 4). By assessing model performance using only the top 1% of 
calibrated parameter combinations ranked by RMSEw (inferred to 
represent feasible solutions), we aimed to compare the potential per
formance of each model formulation when well-calibrated, discarding 
model runs where randomly sampled parameters did not reflect the 
physical reality of the basin. 

3. Results 

3.1. Calibrated and validated models 

3.1.1. M1: variable groundwater inflow temperatures 
M1 was the simplest of all model configurations tested, allowing 

variability only in parameters related to the temperature of groundwater 
inflow (C1

AT-GW, C2
AT-GW, C3

AT-GW, W) and riparian shading (Rshade) 
(Table 1). The model configuration struggled to reproduce the magni
tude and variability of observed temperature time series at both the 
headwater and outlet gages (Figs. 5–7). The 1st percentile of calibration 
runs of M1 ranked by RMSEw had a mean RMSE of 1.41 ◦C at the 
headwater gage and a mean RMSE of 1.20 ◦C at the outlet, the worst of 
any model configuration (Fig. 5). The performance of M1 decreased for 
validation runs, where the top calibrated parameter sets produced a 
mean headwater RMSE of 2.70 ◦C and a mean outlet RMSE of 2.47 ◦C. 
This set of best calibrated runs overestimated peak temperatures in the 
headwater reach, with a daily maxima error of 3.70 ◦C during the 
validation period (Figs. 5 and 6). Despite this strong positive bias in 
headwater reaches, M1 outlet predictions had a negative bias during 
validation, underestimating daily minima by −1.04 ◦C (Figs. 5 and 7). 
The best M1 validation run ranked by RMSEw had a headwater RMSE of 

Table 1 
Water temperature model formulations, tuned parameters, and number of 
parameters.  

Model Tuned Parameters Number of 
Parameters 

M1 C1
AT-GW, C2

AT-GW, C3
AT-GW, W, Rshade 5 

M2 C1
AT-GW, C2

AT-GW, C3
AT-GW, W, Rshade, GW1, GW2, GW3 8 

M3 C1
AT-GW, C2

AT-GW, C3
AT-GW, W, Rshade, Hlag, H1

frac, H2
frac, 

H3
frac 

9 

M4 C1
AT-GW, C2

AT-GW, C3
AT-GW, W, Rshade, GW1, GW2, GW3, 

Hlag, H1
frac, H2

frac, H3
frac 

12  

Table 2 
Parameter definitions and tuning ranges for models M1-M4.  

Notation Parameter Units Calibration 
Range 

Model 

C1
AT-GW AT-GW coefficient (first- 

order) 
Unitless 0–1 M1, M2, 

M3, M4 
C2

AT-GW AT-GW coefficient (second- 
order) 

Unitless 0–1 M1, M2, 
M3, M4 

C3
AT-GW AT-GW coefficient (third- 

order) 
Unitless 0–1 M1, M2, 

M3, M4 
W Air temperature moving 

window duration 
Days 2–14 M1, M2, 

M3, M4 
Rshade Riparian shading 

coefficient 
Unitless 0.5–2 M1, M2, 

M3, M4 
GW1 Groundwater inflow rate 

coefficient (first-order) 
Unitless 0.5–2 M2, M4 

GW2 Groundwater inflow rate 
coefficient (second-order) 

Unitless 0.5–2 M2, M4 

GW3 Groundwater inflow rate 
coefficient (third-order) 

Unitless 0.5–2 M2, M4 

Hlag Hyporheic lag duration Hours 2–24 M3, M4 
H1

frac Hyporheic flow fraction 
(first-order) 

Unitless 0–1 M3, M4 

H2
frac Hyporheic flow fraction 

(second-order) 
Unitless 0–1 M3, M4 

H3
frac Hyporheic flow fraction 

(third-order) 
Unitless 0–1 M3, M4  

J. Wade et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 171 (2024) 105866

8

1.48 ◦C and an outlet RMSE of 1.41 ◦C. In several validation runs of M1, 
modeled temperatures spiked to implausibly high levels (>30 ◦C; Figs. 6 
and 7). These temperature spikes coincided with periods when relatively 
humidity values approached 100%. 

3.1.2. M2: variable groundwater inflow rate 
In addition to the variables tuned in M1 (CAT-GW, W), M2 added three 

further degrees of freedom, tuning the rate of groundwater inflow in 
first-, second-, and third-order streams (GW1, GW2, GW3) (Table 1). M2 
showed an improvement over validation M1 runs, with mean RMSE 
values of 2.12 ◦C and 1.84 ◦C at the headwater and outlet gages, 
respectively (Fig. 5). However, much like M1, M2 struggled to reproduce 
diurnal temperature cycles throughout the stream network (Figs. 6 and 
7). In the headwater reach, M2’s lower mean error was largely driven by 
a narrowing of the diurnal cycle and a shift of predicted daily minima to 
cooler temperatures (Figs. 5 and 6). Headwater maxima error during 
validation was reduced to 2.78 ◦C while daily minima error was reduced 
to 0.20 ◦C. Improvements in model performance at the outlet were 
linked to a more accurate simulation of minima temperature magnitude, 
though M2 showed little improvement over M1 in predicting daily 
maxima (Figs. 5 and 7). The negative bias in outlet predictions observed 
for M1 also persisted for M2 (Fig. 7). The best validation run for M2 had 
a headwater RMSE of 1.00 ◦C and an outlet RMSE of 0.85 ◦C. M2 also 
experienced similar implausible temperature spikes during validation as 
observed in M1, again coinciding with periods of high relative humidity. 

3.1.3. M3: conceptual hyporheic zone 
M3 introduced considerable complexity to the M1 configuration, 

adding a conceptual hyporheic zone tuned by hyporheic lag time (Hlag) 
and hyporheic flow fraction (H1

frac, H2
frac, H3

frac) parameters (Table 1). M3 
resulted in a considerable improvement in performance in comparison 
to both M1 and M2, with the top 1% of calibrated parameter sets pro
ducing mean validation RMSE values of 1.29 ◦C and 0.97 ◦C in the 

headwaters and outlet, respectively (Figs. 5–7). The M3 configuration 
greatly reduced the positive headwater bias observed in previous model 
configurations, reducing daily headwater maxima error to 1.44 ◦C 
during validation and more accurately representing the observed 
magnitude of diurnal variability (Figs. 5 and 6). We also observed im
provements in predicting daily minimum temperatures at the outlet, 
where validation minima error improved to 0.28 ◦C (Fig. 5). Across 5000 
model runs, M3’s best run ranked by validation RMSEw had a headwater 
RMSE of 0.80 ◦C and an outlet RMSE of 0.76 ◦C. 

3.1.4. M4: variable groundwater inflow rate and conceptual hyporheic zone 
M4 was the most complex configuration tested, combining aspects 

from both M2 and M3 to tune hyporheic flow parameters (Hlag, H1
frac, 

H2
frac, H3

frac) and groundwater inflow parameters (GW1, GW2, GW3) 
(Table 1). Despite increased complexity and additional degrees of 
freedom, M4 did not show a marked improvement in performance over 
M3, providing only marginal decreases in RMSE (Fig. 5). Predicted 
water temperature envelopes from M3 and M4 at the headwater and 
outlet were difficult to distinguish visually (Figs. 6 and 7). M4 had the 
lowest mean validation RMSE value amongst all model configurations at 
the headwater gage (1.10 ◦C). The configuration’s validation RMSE at 
the outlet gage (1.04 ◦C) was comparable to that of M3 (Fig. 5). Head
water daily maxima and minima prediction error for M4 were low 
compared to other model configurations during validation, with values 
of 1.12 ◦C and −0.29 ◦C respectively (Fig. 5). The best performing M4 
run had a headwater RMSE of 0.70 ◦C and an outlet RMSE of 0.59 ◦C 
over the validation period. 

3.2. Optimal calibrated parameters 

Mean optimal parameter values across the top 1% of calibrated 
model runs gave additional insight into differences in performance be
tween model configurations (Table 3). Coefficients controlling the 

Fig. 4. Simulated water temperature prediction RMSE (◦C) at headwater (Mack Creek) and outlet (Lookout Creek) gages. For the calibration (Cal.) of each model 
configuration, the top 1% of runs, ranked by RMSEw (weighted headwater (25%) and outlet (75%) RMSE), are highlighted as colored points amongst all calibration 
runs (represented by gray points). The validation (Val.) performance of the top 1% of calibrated parameter sets is represented by colored triangles. 
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temperature of groundwater inflow for first-, second-, and third-order 
streams (C1

AT-GW, C2
AT-GW, C3

AT-GW) were tuned for all model configura
tions. First-order coefficients (C1

AT-GW) were calibrated to lower values 
than second- and third-order coefficients for all configurations, reflect
ing cooler inflow temperatures in upland areas of the catchment. M1 and 
M2, models without hyporheic flow, had optimal CAT-GW values that 
were considerably higher than M3 and M4, models that did represent 
hyporheic flow. W, representing the number of days of mean air tem
peratures that were incorporated into estimates of groundwater tem
peratures, was consistently tuned to a value between 7 and 8 days for all 
model configurations. We also tuned Rshade, a coefficient used to adjust 
the degree riparian shading along the network, for all model versions, 
reflecting uncertainty in our estimates of riparian cover derived from 
gridded datasets. In M1 and M2, Rshade was tuned to 0.999 and 1.042 

respectively, suggesting little bias in estimated riparian shading values. 
However, M3 and M4 had notably lower optimal Rshade values of 0.690 
and 0.699, respectively. 

We tuned coefficients used to adjust the rate of groundwater inflow 
for first-, second-, and third- order streams (GW1, GW2, GW3) for con
figurations M2 and M4. In both model configurations, optimal co
efficients ranged from 1.141 to 1.433, representing increased 
groundwater inflow along all reaches in the stream network relative to 
NWM values. There was no clear relationship between optimal GW 
values and stream order for M2 and M4. Coefficients describing pro
cesses governing flow through a conceptual hyporheic zone, including 
hyporheic lag duration (Hlag) and hyporheic flow fraction (H1

frac, H2
frac, 

H3
frac), were calibrated for M3 and M4. Hyporheic zone parameters were 

tuned to relatively similar values between the two configurations. In M3 
and M4, the mean optimal hyporheic lag duration, controlling the time 
delay before hyporheic flow is returned to the channel, was equal to 
11.380 and 11.740 h, respectively. Hyporheic flow fraction, describing 
the proportion of streamflow that is routed into the conceptual hypo
rheic zone, had a strong negative relationship with stream order for both 
tested model configurations. For both M3 and M4, first-order reaches 
had the highest proportion of hyporheic flow, with coefficients of 0.666 
and 0.682, respectively. Optimal hyporheic flow fractions then 
sequentially decreased for second- and third- order reaches. 

4. Discussion 

4.1. Evaluating performance of water temperature model configurations 

The quality of predictions made by certain configurations of our 
model confirm that water temperatures can be successfully simulated 
using inputs derived from a continental-scale hydrologic model (in this 
case, the NWM). Of the four configurations tested, two (M3 and M4) 
produced calibrated simulations with validation RMSEs near or below 
1.0 ◦C at both the headwater and outlet reaches. These prediction errors 
are well below the 2.0 ◦C RMSE threshold estimated by Yearsley (2012) 
as an acceptable measure of performance for water temperature 
modeling and compare well to other studies using similar modeling 
strategies (Sun et al., 2015; Yan et al., 2021; Yearsley, 2012; Yearsley 
et al., 2019). The ability of select configurations of our model to 
adequately predict water temperatures in H.J. Andrews, a complex 
forested headwater catchment, is promising for the incorporation of 
water temperature modeling into the NWM framework. 

Each of the model configurations we explored in this study repre
sents a unique hypothesis for our understanding of how radiative and 
hydrologic processes combine to influence river thermal regimes. As 
expected, the addition of degrees of freedom to configurations pro
gressively improved model performance amongst most error metrics, 
though this relationship was not strictly linear (Figs. 5–7). The strongest 
contrast in model performance existed between configurations that 
represented the thermal effects of hyporheic exchange (M3, M4) and 
those that only tuned parameters related to groundwater inflow rate and 
temperature (M1, M2). M3 and M4 demonstrated clear advantages over 
M1 and M2 in all error metrics excluding headwater daily maxima, 
suggesting that the influence of hyporheic flow on temperatures in this 
basin is too large to disregard. As a high-relief mountain headwater 
catchment, it is unsurprising that hyporheic exchange is an influential 
thermal process in H.J. Andrews, and its role in hydrologic function in 
the region has been thoroughly documented (Becker et al., 2023; Herzog 
et al., 2019; Schmadel et al., 2017; Ward et al., 2017). 

Notably, the addition of parameters controlling the rate of ground
water inflow to configurations M2 and M4 resulted in improvements in 
model error, but to differing degrees (Table 1). When we added inflow 
tuning parameters to M2, we observed a reduction in error across most 
metrics over the previous model version (M1) (Fig. 5). By contrast, the 
addition of these calibrated parameters to M4 did not result in consid
erable improvement over M3 (Fig. 5). We hypothesize that the 

Fig. 5. Performance of four model configurations at the headwater (Mack 
Creek) and outlet (Lookout Creek) gages, evaluated across three metrics of 
model error (RMSE: root mean square error; DMax: daily maxima error; DMin: 
daily minima error). Paired boxplots show error metrics during calibration 
(left) and validation (right) periods for each configuration. Error metrics 
calculated using parameter sets from the top 1% of calibration runs, ranked by 
RMSEw (weighted headwater (25%) and outlet (75%) RMSE). 
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difference in the marginal reductions in error between M2 and M4 is 
likely attributable to the presence of other tuned hydrologic parameters 
(hyporheic exchange) in the M4 configuration. In M2, tuning to 
groundwater inflow represented the only pathway for the model to ac
count for uncertain hydrologic processes, including hyporheic ex
change. This flexibility gave M2 a greater advantage over M1. When the 
model included hyporheic exchange, as it did in M3 and M4, it appeared 
less crucial to tune groundwater inflow rate. Although the groundwater 
inflow parameters were tuned to route additional inflow into the 
channel (Table 3), the magnitude of these increases did not exceed 144% 
of NWM inflows. This suggests that the NWM’s estimated groundwater 
contributions, at least in this basin, are roughly of the correct magnitude 
to accurately simulate thermal processes. 

All configurations of the model struggled to simultaneously generate 
accurate predictions at both the headwater and outlet gages to varying 
degrees. While model predictions were often capable of providing ac
curate predictions at the headwater gage (Fig. 4), many of these runs 
translated into poor outcomes at the outlet. For example, despite over
estimating temperatures at the headwater, both M1 and M2 predicted 
outlet temperatures that were colder than observed (Figs. 5–7). We 
highlight two possible explanations for the model’s inability to fit both 
the headwater and the outlet concurrently. First, because we tuned 
several parameters independently by stream order (Table 2), random 

variations in parameter values for second- and third-order reaches only 
influenced predictions at the outlet and not at the headwater. This could 
be alleviated by narrowing calibrated parameter ranges or by enforcing 
a constrained sampling strategy informed by process-based knowledge 
(e.g., hyporheic flow fraction in second- and third-order reaches must be 
tuned to be less than that of first-order reaches), as has been imple
mented in hydrological modeling studies (e.g., Hrachowitz et al., 2014). 
Tradeoffs in fitting the headwater and outlet could also be caused by a 
mischaracterization of heat fluxes along the network. This was most 
evident in configurations M1 and M2, where unrealistically warm 
headwaters were required to achieve the reasonable predictions at the 
outlet (Figs. 6 and 7). This effect was partially - though not entirely - 
alleviated by the inclusion of a conceptual hyporheic zone in M3 and M4 
(Figs. 6 and 7), indicating that model configurations presented here may 
not fully capture all relevant heat fluxes in the system. 

As we note in Section 3.1.1 and 3.1.2, a large proportion of M1 and 
M2 runs generated temperature spikes that exceeded plausible stream 
temperatures ranges typically observed at this site. These temperature 
spikes consistently coincided with periods of high relative humidity. 
Through further investigation of modeled heat fluxes, we found that the 
spikes were linked to high rates of sensible heat transfer into the stream, 
likely driven by our calculation of sensible heat using the Bowen Ratio 
(see Supporting Information Eq. 17 and 18). As Bowen’s ratio is scaled 

Fig. 6. Observed headwater temperatures (black) and 5/95th confidence envelope of water temperature predictions at the headwater gage across model configu
rations M1, M2, M3, and M4 for the top 50 calibration runs (1st percentile), ranked by weighted headwater and outlet RMSE (RMSEw). Predictions displayed during a 
four-week calibration period and a two-week validation period, separated by a 48-h spin-up period for validation. 
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by a relative humidity-dependent term (Bowen, 1926; Boyd and Kasper, 
2003), high relative humidity values approaching 100% could lead to 
erroneous sensible heat fluxes, which we observe here. We attempted to 
alleviate these sensible heat errors by capping relative humidity at 97% 
in our model, but this only eliminated temperature spikes in some runs 
of M1 and M2. Alternative approaches to estimate sensible heat ex
change during periods of high relative humidity are likely needed in 

catchments experiencing high humidity to remedy these errors. 
Of the four configurations tested, the M3 and M4 configurations best 

approximated water temperature behavior in the H.J. Andrews catch
ment during this specific time period. However, this does not necessarily 
give insight into the efficacy of our modeling frameworks in other lo
cations or at broader scales. Thermal regimes and their controlling 
processes are remarkably diverse, both within single catchments and 
across the North American continent (Fullerton et al., 2015; Maheu 
et al., 2016). As such, the optimal model configuration in one basin may 
not translate to a neighboring catchment or to a different geographic 
region. This potential heterogeneity in model performance presents 
challenges in extending water temperature modeling from individual 
catchments to the continental US. 

4.2. Strategies for constraining uncertain inputs 

Despite the wealth of hydrologic data provided by NWM runs, 
several key inputs required to force our water temperature model were 
uncertain or altogether unknown. These included but are not limited to 
parameters governing the water temperature of groundwater inflows, 
headwater initiation water temperatures, riparian shading of channels, 
and hyporheic exchange. If water temperatures are to be accurately 
predicted, particularly in a physically-based modeling framework, 

Fig. 7. Observed outlet temperatures (black) and 5/95th confidence envelope of water temperature predictions at the outlet gage across model configurations M1, 
M2, M3, and M4 for the top 50 calibration runs (1st percentile), ranked by weighted headwater and outlet RMSE (RMSEw). Predictions displayed during a four-week 
calibration period and a two-week validation period, separated by a 48-h spin-up period for validation. 

Table 3 
Optimal mean parameter values for the top 50 calibration runs of each model 
(M1-M4), ranked by RMSEw.  

Parameter M1 M2 M3 M4 

C1
AT-GW 0.633 0.563 0.261 0.269 

C2
AT-GW 0.828 0.837 0.487 0.554 

C3
AT-GW 0.640 0.745 0.525 0.589 

W 7.200 7.220 7.880 7.420 
Rshade 0.999 1.042 0.690 0.699 
GW1 – 1.141 – 1.262 
GW2 – 1.433 – 1.325 
GW3 – 1.339 – 1.279 
Hlag – – 11.380 11.740 
H1

frac – – 0.666 0.682 
H2

frac – – 0.478 0.469 
H3

frac – – 0.175 0.142  
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approaches must be developed to estimate these parameters at a high 
spatial resolution (1 km) and at nationwide scales. Leveraging publicly 
available data external to the NWM and Monte Carlo calibration, we 
designed strategies to overcome data limitations that both enabled us to 
fit temperature behavior in the study catchment and that we envisioned 
could be easily scalable to broader modeling domains. We explore the 
viability of our proposed strategies to estimate groundwater tempera
tures and hyporheic exchange. 

4.2.1. Estimating groundwater temperatures key to accurate water 
temperature predictions 

The heat flux associated with groundwater inflow, although often 
smaller in magnitude than fluxes at the air-water interface, can be a 
strong control on the water temperature of streams (Caissie, 2006; 
Caissie and Luce, 2017; Kurylyk et al., 2016). Groundwater inflow is 
particularly influential to water temperatures in forested headwater 
streams, as the magnitude of other radiative and turbulent heat fluxes 
are diminished (Caissie and Luce, 2017; Ouellet et al., 2020). In reaches 
where flows are primarily sourced from relatively cold groundwater, 
water temperatures are cooler and typically have narrower diel ranges 
(Hannah and Garner, 2015). Rigorous on-site monitoring is required to 
determine the rate and temperature of groundwater inflow to channels 
(Caissie and Luce, 2017), making advective fluxes challenging to 
quantify at a broader spatial extent. As such, the temperature of 
groundwater fluxes to streams represents a substantial source of un
certainty in physically-based models. 

In water temperature models, the temperature of groundwater 
inflow is generally set to the mean annual air temperature, mimicking 
the temperature of deep groundwater (Kurylyk et al., 2016; MacDonald 
et al., 2014). Perhaps counterintuitively, the temperatures of ground
water and inflows to streams are not always equivalent. The tempera
ture of subsurface inflow when it enters a stream, whether sourced by 
shallow flow paths, warmed through bed conduction, or mixed with 
hyporheic waters, is often warmer than that of deep groundwater in 
summer and cooler in winter (Kurylyk et al., 2016; Leach and Moore, 
2014). Advected inflow temperatures are also more temporally variable 
than that of deep groundwater and are loosely coupled to daily mean air 
temperatures (Leach and Moore, 2014). Past modeling studies have 
attempted to account for the time-varying nature of inflow temperatures 
using non-linear regression (Mohseni et al., 1998) to predict inflow 
temperatures from smoothed air temperatures (van Vliet et al., 2012; 
Yearsley, 2012). 

As groundwater temperature in our modeling approach was critical 
not only for forcing subsurface fluxes but also for setting the upstream 
boundary condition, our approach to estimating groundwater temper
atures (Section 2.3.5) was intended to incorporate both variable sourc
ing depth and a lagged relationship between inflow temperature and air 
temperature (Fig. 3). Under the assumption that the sourcing depth of 
inflow may vary down-network, we allowed the coefficient governing 
the effective source depth of inflows (CAT-GW) to independently vary by 
stream order. The performance of our calibrated approach can be 
roughly assessed by evaluating the error in headwater daily minima 
temperatures (DMin), as diurnal minima are closely coupled to the tem
perature of inflows. By this metric, our approach was successful when 
well-calibrated, with all configurations producing headwater DMin 
values under 0.75 ◦C during the validation period (Fig. 5). However, it 
remains challenging to disentangle the true effectiveness of our 
groundwater temperature approach from other potentially mis
characterized or absent streambed processes, including bed conduction 
and hyporheic flow. For example, groundwater inflow temperatures 
were consistently tuned warmer for models without hyporheic flow 
processes to fit behavior at the outlet (M1/M2) (Table 3). This suggests 
that for the simplified model configurations, groundwater inflow tem
peratures may be tuned to compensate for missing thermal processes, 
resulting in poor performance in certain regions of the stream network. 

Given the degree of heterogeneity across all US catchments, our 

calibration for groundwater inflow temperature parameters may be 
cumbersome to apply to a continental-scale domain. The successes we 
observed in reproducing water temperatures using a tuned groundwater 
temperature approach are specific only to the study catchment during a 
period of low flow, and do not necessarily indicate transferability to 
other basins or time periods. By randomly tuning inflow temperature 
parameters, we sought to demonstrate that our model was capable of 
simulating water temperature behavior given well-calibrated parame
ters. This contrasts with a typical approach to modeling physical pro
cesses across broad spatial domains, where focus is instead placed on 
achieving acceptable mean model performance with uncertain param
eter estimates. Expanding our water temperature model beyond the test 
basin would require a more complex approach to accurately simulate the 
broad diversity of subsurface flow dynamics across catchments and 
climates. Simulated groundwater temperatures at the continental scale 
would need to be temporally and spatially variable, reflecting site, basin, 
and regional controls on water temperature processes (Benz et al., 2022; 
Hannah and Garner, 2015). This approach would also need to incor
porate the influence of seasonal snowpack on groundwater tempera
tures. Spatial statistical models or machine learning techniques could be 
an efficient and effective tool to predict variability in groundwater 
temperatures across the US, generating both upstream boundary con
ditions and inflow temperatures to drive a physically-based model 
(Dugdale et al., 2017). 

4.2.2. Is a conceptual hyporheic zone needed? 
Hyporheic flow, characterized by flow paths that originate in the 

stream, travel through the subsurface, and eventually return to the 
stream, is an important process controlling the magnitude and timing of 
water temperature variability (Arrigoni et al., 2008; Boano et al., 2014; 
Hannah et al., 2009). Particularly in high relief headwaters like those of 
H.J. Andrews, a considerable portion of streamflow can pass through the 
hyporheic zone, returning flows with temperatures that are lagged and 
buffered compared to instream waters (Arrigoni et al., 2008; Schmadel 
et al., 2017; Ward et al., 2016; Wondzell, 2011). In some cases, hypo
rheic advective heat fluxes may comprise 25% of total net radiation in 
headwater streams (Moore et al., 2005). Although hyporheic flow can be 
an influential thermal process, many broad-scale hydrologic models, 
including the NWM, do not include hyporheic processes in their repre
sentation of river networks. Similarly, water temperature models also 
often neglect heat fluxes related to hyporheic exchange (Kurylyk et al., 
2016). 

Hyporheic flow and its associated effects on water temperatures are 
remarkably difficult to characterize, even when employing field obser
vations and flow tracing techniques. In the absence of field measure
ments, our approach (outlined in Section 2.3.6) was intended to be 
conceptual rather than to give insight into true hyporheic behavior at 
this or any other study site. Our strategy for approximating hyporheic 
exchange did not represent physical mass transfer within the model and 
treated flow paths as point features, returning flow to the stream at the 
same point it originated. This simplification ignores the complex, 3D 
nature of hyporheic flow cells that can travel a considerable distances 
down-valley (Tonina and Buffington, 2009). For this reason, the cali
brated hyporheic flow fraction values and time lags used in our model 
(Table 3) should not be taken as explicit estimations of hyporheic flow 
processes at H.J. Andrews. We also note that while our approach did 
tune hyporheic lag time, we opted not to include parameters that would 
damp the temperatures of hyporheic return flows so as to minimize the 
risk of overparameterization. The exclusion of hyporheic damping, a 
recognized thermal process related to groundwater-surface water ex
change (Briggs et al., 2018; Caissie et al., 2014; Caissie and Luce, 2017), 
could limit the peak potential performance of tested model 
configurations. 

The contrast in model performance between configurations that 
included hyporheic processes (M3 and M4) and those that did not (M1 
and M2) suggests that incorporating, or at least mimicking, hyporheic 
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exchange is critical to simulating water temperatures in the study basin 
(Figs. 5–7). This finding was expected, given the multitude of studies 
describing the influence of hyporheic exchange on hydrological pro
cesses in H.J. Andrews (Becker et al., 2023; Kasahara and Wondzell, 
2003; Schmadel et al., 2017; Ward et al., 2018b, 2019). The gains in 
performance we observed when including hyporheic processes were 
primarily linked to an improved estimation of daily minimum water 
temperatures (M3 and M4; Fig. 5). This likely indicates that our repre
sentation of hyporheic flow, which returned warmer daytime waters 
roughly 12 h later (Table 3), served to address missing nighttime 
streambed fluxes. The influence of hyporheic flow in our model was 
tuned to decrease with increasing stream order (Table 3), matching our 
understanding of how hyporheic exchange evolves down-network 
(Ward et al., 2019a,b). We note that because our model configurations 
did not resolve bed conduction heat fluxes, parameters associated with 
hyporheic exchange may be simultaneously accounting for the effects of 
both hyporheic flow and bed conduction. If bed conduction remains 
absent from future model configurations, it may be beneficial to instead 
tune a single time-varying conceptual term that integrates all lagged 
streambed heat fluxes. 

Our results indicate that in H.J. Andrews, and likely other basins in 
similar settings, the inclusion of hyporheic flow processes can improve 
predictions of hourly water temperatures throughout the stream 
network. However, incorporating the thermal effects of hyporheic flow 
into a water temperature model at the continental scale of the NWM may 
pose challenges. Hyporheic flow dynamics are patchy and site-specific, 
varying considerably within stream networks, between physiographic 
regions, and across different flow conditions (Wondzell, 2011). Clearly, 
it is not feasible to simulate hyporheic flow paths for all US river reaches, 
particularly given the absence of field observations along many rivers. 
Nevertheless, flexible modeling strategies could be designed to incor
porate hyporheic processes only where they are the most influential to 
water temperatures. In such a framework, hyporheic flow could be 
tuned to improve water temperature predictions only in select regions 
and along low-order streams where hyporheic advective fluxes have the 
strongest influence on hourly water temperatures. Higher-order streams 
could then be represented by conceptually simpler modeling frame
works, improving computational efficiency. 

4.3. Challenges and opportunities in expanding from the catchment to 
continental scale 

Our study details the development and implementation of a water 
temperature model for a single catchment during a summer period. 
Expanding this model to the continental scale will require further model 
calibration and validation for catchments in different climates and hy
drologic settings. At present, the processes included in the model are 
most relevant for summer periods. It is therefore unlikely that the model 
will perform well in catchments at high latitudes during winter periods. 
Further work would be needed to incorporate additional hydrologic and 
heat exchange processes that will likely vary across catchments and 
throughout the year. At present, we also caution that the model includes 
processes that have not yet been tested, such as the incorporation of 
surface water inflow and associated water temperatures of this inflow, 
and reserve such testing for future work. 

Ultimately, we found that our ability to test this model in different 
catchments was limited by the availability of water temperature ob
servations concentrated within a single catchment. This need is what led 
us to select the location of the case study presented here. Watershed- 
scale water temperature monitoring occurs infrequently, and such 
data is often shared in disparate repositories, if shared at all. In contrast, 
monitoring by the USGS aims to cover a breadth of watersheds and 
rivers, though expanded river temperature monitoring networks in the 
Delaware River Basin show promise for assessing water temperature 
models. Our hope in making this model publicly available is that other 
river temperature modelers will apply it in their watersheds, 

incorporating their process-based understanding into their assessment 
of model fidelity, leading to future improvements in the model frame
work. While such benchmarking and community building is common in 
the watershed modeling space, it is rarer in water quality modeling. 
Future improvements in water quality modeling would certainly benefit 
from a community-based approach to assessing the ability of models to 
simulate water temperature (as well as other constituents), to evaluate 
to what extent our understanding of the hydrology informs this 
modeling, and to shape improvements in the model framework. 

Though our study focused on developing modeling capabilities in a 
single catchment, our primary motivation was to evaluate the capacity 
for water temperature prediction to be coupled to the NWM at broader 
scales. In many ways, the NWM offers a framework for river networks 
and detailed information on hydrologic fluxes and meteorological inputs 
that make it an ideal foundation for a temperature model. For compar
ison, other gridded water temperature models (e.g., DHSVM-RBM) 
require the modeler to gather meteorological observations at weather 
stations (that must be interpolated in some way across the study 
domain), define a river network (based on a digital elevation model), 
and estimate or tune key hydrologic fluxes. While there are certainly 
benefits to using the NWM as a framework for building a water tem
perature model, we see several major challenges facing the application 
NWM to the simulation of water temperatures. These generally stem 
from the NWM’s simplified representation of hydrological processes and 
represent areas of needed future study. 

Foremost, the predictions made by our NWM-based water tempera
ture model are ultimately limited by the accuracy and uncertainty of 
NWM simulations. Beyond discharge, the target variable for NWM 
calibration (Gochis et al., 2019), our physically-based temperature 
model is also reliant on several NWM states and parameters, including 
channel dimensions, groundwater inflow, surface runoff, and stream 
velocity. Despite the NWM’s demonstrated ability to produce reasonable 
predictions of discharge, particularly in large river basins (Boyd and 
Kasper, 2003; Hansen et al., 2019; Salas et al., 2018), it can in some 
cases struggle to reproduce variability in other model states (e.g., soil 
moisture, snowpack; Garousi-Nejad and Tarboton, 2022; Wan et al., 
2022). As these model states are not explicit targets for calibration in the 
NWM, their mischaracterization could propagate error into predicted 
water temperatures. 

The NWM’s representation of river network extent, derived from 
NHD Plus flow paths (McKay et al., 2012; Salas et al., 2018), is another 
potential source of uncertainty to water temperature modeling. 
Although the NHD provides exceptional spatial coverage of river net
works across the US, it has been shown to systematically underestimate 
the true extent of river density (Elmore et al., 2013). In the H.J. Andrews 
catchment, the NWM models streamflow along only 34.5 km of river 
length. By contrast, Ward et al. (2019a,b) estimated the total river 
length in H.J. Andrews was 242 km using on-site lidar assessments and 
flow accumulation modeling. The omission of numerous headwater 
reaches by the NWM could have implications for the prediction of water 
temperatures in low stream order catchments. The amount of time water 
is exposed to radiation at the surface, which is influenced by the location 
of channel initiation, is a strong control on water temperature magni
tude and variability (Yearsley, 2012). Due to this uncertainty, head
water temperatures may be difficult to accurately simulate in 
catchments where the true location of streamflow initiation is 
mischaracterized. 

Despite these limitations, the unique framework of the NWM pre
sents promising opportunities for the prediction of water temperatures 
at broad scales. While our model is coupled with NWM version 2.1, 
NOAA is set to introduce the Next Generation Water Resources Modeling 
Framework (NextGen) in the coming years, with exciting implications 
for water temperature prediction. Based on the understanding that 
certain model configurations may perform better in specific catchments, 
the flexible and interoperable NextGen framework will enable domains 
to be simulated using model conceptualizations that best match the 
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dominant hydrologic controls in a particular region (NOAA, 2021b). By 
leveraging the NextGen framework, the same principle could be applied 
to tailor water temperature model configurations to specific catchments 
or regions. For example, in forested headwater catchments, a more 
parameterized model configuration could be used to resolve complex 
hyporheic heat fluxes. In contrast, water temperature predictions in 
large high order streams could be made using comparatively simpler and 
more efficient models. The potential flexibility offered by the NextGen 
framework could bring about profound advances in prediction quality, 
resolution, and extent across the US. 

5. Conclusion 

In this study, we developed and evaluated the capabilities of 
physically-based high resolution water temperature model driven by 
forcings and outputs from the National Water Model (NWM). Through 
the sequential calibration and validation of four model configurations of 
increasing complexity, we demonstrated that the inclusion of heat fluxes 
at the streambed interface (e.g., hyporheic flow) is critical for simulating 
hourly water temperatures in a forested headwater catchment. The 
performance of the best-fitting model configuration was comparable to 
or better than other physically-based water temperature models, sug
gesting that the NWM can be an effective foundation for water tem
perature prediction. It is equally worth noting that our simulations were 
performed for a low flow period during summer, given the relevance of 
such periods to ecological management. Model performance during 
other periods of the year should be investigated to fine-tune process 
representation and to further generalize the model framework. 

While this work focuses on model development in a single catch
ment, the expansion of NWM-based water temperature modeling to 
broader spatial domains would improve understanding and manage
ment of the complex mosaic of US river thermal regimes. Hourly water 
temperature forecasts along all US river reaches could provide action
able information that would inform the management of fisheries and 
other sensitive aquatic ecosystems. Such a model would present a clear 
improvement over the patchwork of water temperature monitoring 
stations currently active across the continent. With the introduction of 
the NextGen NWM framework on the horizon, we recommend the 
continued development, exploration, and evaluation of NWM-coupled 
water temperature models to expand predictions from single catch
ments to all US watersheds. 
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