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Abstract

Remote sensing can provide continuous spatiotemporal information about

vegetation to inform wildlife habitat estimates, but these methods are often

limited in availability or lack adequate resolution to capture the three-

dimensional vegetative details critical for understanding habitat. The Global

Ecosystem Dynamics Investigation (GEDI) is a spaceborne light detection and

ranging system (LiDAR) that has revolutionized the availability of high-quality

three-dimensional vegetation measurements of the Earth’s temperate and

tropical forests. To date, wildlife-related applications of GEDI data or

GEDI-fusion products have been limited to estimate species habitat use, distri-

bution, and diversity. Here, our goal was to expand the use of GEDI-based

applications to wildlife demography by evaluating if GEDI data fusions could

aid in characterizing demographic parameters of wildlife. We leveraged a

recently published dataset of GEDI-fusion forest structures and capture–
mark–recapture data to estimate the density and survival of two small mam-

mal species, Humboldt’s flying squirrel (Glaucomys oregonensis) and

Townsend’s chipmunk (Neotamias townsendii), from three studies in western

Oregon spanning 2014–2021. We used capture histories in Huggins robust

design models to estimate apparent annual survival and density as a derived

parameter. We found strong support that both flying squirrel and chipmunk

density were associated with GEDI-fusion forest structures of foliage height

diversity and plant area volume density in the 5–10 m strata for flying squirrels

and proportionately higher plant area volume density in the 0–20 m strata for

chipmunks, as well as other spatiotemporal factors such as elevation. We

found weak support that apparent annual survival was associated with GEDI-

fusion forest structures for flying squirrels but not for chipmunks. We demon-

strate further utility of these methods by creating spatially explicit density

maps of both species that could aid management and conservation policies.

Our work represents a novel application of GEDI data to evaluate wildlife

demography and produce continuous spatially explicit density predictions for

these species. We conclude that aspects of small mammal demography can be

explained by forest structure as characterized via GEDI data fusions.
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INTRODUCTION

Ecologists have long recognized that vegetation structure
plays a critical role in wildlife habitat and biodiversity
(e.g., MacArthur & MacArthur, 1961). The configuration
and composition of vegetation have been shown to
strongly influence aspects of habitat such as forage quality,
diversity, and availability (Cook et al., 2016; Johnson
et al., 2001), predation avoidance (Moriarty et al., 2016),
foraging efficiency (Andruskiw et al., 2008), thermoregula-
tion (Alston et al., 2020), intraguild interactions (Finke &
Denno, 2002), and reproductive success (Kosterman
et al., 2018). Embedded within these relationships is the
spatial scale at which animals interact with vegetation
and how these species–habitat associations change with
scale (McGarigal et al., 2016) ranging from the microsite
(e.g., localized canopy cover or cavity characteristics)
to the landscape (e.g., patch size and orientation;
Johnson, 1980; Turner et al., 2001). Thus, comprehen-
sive assessments of how different species relate to hori-
zontal and vertical vegetative structures across a range
of spatial scales and ecosystems are critical to inform
data-driven conservation and management strategies.

Remote sensing can provide spatiotemporal informa-
tion about vegetation that aids in defining habitat, but data
describing vertical structure are often difficult to obtain
despite studies that suggest it is an important or essential
habitat feature for some species (Fuller et al., 2004; Jaime-
Gonz�alez et al., 2017). The Global Ecosystem Dynamics
Investigation (GEDI) aims to revolutionize the availability
of high-quality three-dimensional vegetation measure-
ments of the Earth’s temperate and tropical forests across
unprecedented, near-global scales (Dubayah et al., 2020).
GEDI is a spaceborne light detection and ranging system
(LiDAR) that offers widely spaced, moderate-scale full
waveform LiDAR footprints (25 m). In this regard, GEDI
provides great promise for measuring habitat components
but lacks spatially continuous metrics that better represent
the biological processes influential to habitat (Gaillard
et al., 2010) or that can be more readily incorporated into
conservation and management planning. A recently
published dataset used GEDI footprints as a vertical and
horizontal sampling source to develop continuous data-
fusion products characterizing GEDI metrics at 30-m reso-
lution (hereafter GEDI-fusion products; Vogeler
et al., 2023) and prior efforts have demonstrated value
in using these GEDI-fusion products to understand

species–habitat relationships (Elliott et al., 2024; Smith
et al., 2022; Vogeler et al., 2023).

A primary objective of the GEDI mission is to deter-
mine how forest structure affects habitat quality and
biodiversity (Dubayah et al., 2020). To date, applications
of GEDI to address this objective have been focused
primarily on modeling species distributions (Burns
et al., 2020; Elliott et al., 2024; Killion et al., 2023; Smith
et al., 2022) which relate species occurrence (i.e., presence
or presence–absence) to environmental conditions to
estimate realized distributions (Elith & Leathwick, 2009;
McLoughlin et al., 2010). Spatial variation in the occur-
rence of species is thought to reflect habitat quality
through the selection of habitat that maximizes fitness
benefits (Fretwell & Lucas, 1969). However, occurrence
provides a less robust measure to distinguish between
habitats of high and low quality as compared to variation
in population demographics (Johnson, 2007). Demo-
graphic parameters (e.g., survival, recruitment, density)
are the highest standard in understanding habitat quality
because they differentiate between where populations
thrive or merely persist (Pulliam, 2000). Despite these
benefits, there have been no attempts to link direct GEDI
measurements or GEDI-fusion products to wildlife demo-
graphic parameters to identify more meaningful habitat
quality metrics.

Vertical structure has been shown to be crucial to
birds (e.g., MacArthur & MacArthur, 1961) and other
arboreal species (e.g., Froidevaux et al., 2016; Gubert
et al., 2023; Linnell et al., 2017) but these attributes also
significantly impact terrestrial small-bodied mammals
(Jaime-Gonz�alez et al., 2017; Sullivan et al., 2000).
Small mammals relate to structural habitat variables
such as the age, structure, and heterogeneity of forest
stands, understory vegetation, and microsite features
like coarse woody debris or snags (Carey, 1995; Ecke
et al., 2002; Fuller et al., 2004; Schooler & Zald, 2019;
Sullivan et al., 2000). Traditional airborne LiDAR
can effectively characterize some of these structural
features and be used to link forest structure to
small mammal habitat use, diversity, and abundance
(Hatten, 2014; Jaime-Gonz�alez et al., 2017; Linnell
et al., 2017; Nelson et al., 2005; Schooler & Zald, 2019).
Thus, small mammals are ideal subjects to evaluate
GEDI-fusion products on wildlife demography because
these populations are sensitive to forest structure and
can be monitored with capture–mark–recapture techniques
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to obtain demographic parameters. If small mammal
demography is associated with forest structures measured
by GEDI data, then managers can leverage GEDI’s broad
coverage to apply species–habitat associations estimated
from small-scale studies to whole management units or
ecosystems by projecting these species–habitat associations
to unsampled landscapes. Further, spatially explicit
maps that link demographic parameters to GEDI-
derived forest structures can be used in predictive
frameworks to guide management decisions by show-
ing how changes in vegetation affect demography with
unprecedented resolution.

In the Pacific Northwest, USA, the effects of forest
structure on small mammal populations have been an
important area of research since the early 1990s to under-
stand the impacts of forest management practices and
inform conservation planning for imperiled species. Two
of the most well-studied species are Humboldt’s flying
squirrel (Glaucomys oregonensis) and Townsend’s chipmunks
(Neotamias townsendii; hereafter GLOR and NETO) because
they are ecologically important (Carey et al., 1992; Forsman
et al., 2004), relatively abundant, and habitat structure has
been suggested to drive population density patterns
(Carey, 1995; Wilson, 2010). GLOR was recently distin-
guished from Glaucomys sabrinus (Arbogast et al., 2017),
and high densities are linked with characteristics typical
of, but not limited to, old forest characteristics such as
multi-layering (i.e., variance in stem density) and high
canopy cover (Holloway & Smith, 2011; Rosenberg &
Anthony, 1992; Weldy, Epps, et al., 2019; Wilson, 2010).
Predation (i.e., survival) mediated through forest struc-
ture has been hypothesized to limit GLOR populations
(Wilson, 2010; Wilson & Forsman, 2013). NETO habitat
preferences are flexible but still associated with forest
structures like large diameter trees, canopy cover,
elevation, and well-developed understories, particu-
larly berry-producing shrubs (Carey, 1995; Weldy,
Epps, et al., 2019). High NETO densities are found
in old-growth forests (Hayes et al., 1995) and
regenerating early seral forests that retain structure
(Sultaire et al., 2021). Lower NETO densities have
been found in second-growth forests (Rosenberg &
Anthony, 1993) and clearcuts without retained structure
(Sultaire et al., 2021).

This study investigates the associations among GEDI-
fusion products depicting horizontal and vertical forest
structure and the density and survival of two small
mammal species, Humboldt’s flying squirrel (G. oregonensis)
and Townsend’s chipmunks (N. townsendii). Here our
objectives were as follows: (1) estimate apparent annual
survival and its association with forest structure, (2) estimate
site-level annual density of each species, (3) optimize the
environmental variables to their most predictive spatial

scale with respect to density, (4) assess the importance of
these scaled variables to density associations, and (5) extrap-
olate our density predictions to unsampled localities. We
hypothesized that GEDI-fusion products would explain
spatial variation in apparent annual survival and density
estimation for GLOR, as this species is strongly
influenced by forest structures. We hypothesized that
NETO would be more weakly associated with forest
structure compared to GLOR because they are consid-
ered more habitat generalists but are still associated
with some forest structural components.

METHODS

Study areas

We used previously collected data from three previous
study areas in western Oregon, USA: the H. J. Andrews
Experimental Forest (hereafter, HJA), the Siuslaw National
Forest (hereafter, SIU), and the Umpqua National Forest
(hereafter, UMP; Figure 1). Conditions varied at each site
according to their study design and intent. The HJA is a
late-successional research forest on the western slope of the
Cascade Mountains. Sites located in the HJA were stratified
by canopy openness and elevation from 683 to 1244 m.
Forest conditions were dominated by large (>81 cm dbh)
Douglas-fir (Pseudotsuga menziesii), western hemlock
(Tsuga heterophylla), and Pacific silver fir (Abies amabilis;
Cissel et al., 1999; Schulze & Lienkaemper, 2015). SIU and
UMP sites were stratified by young—managed and
old-growth—unmanaged stands distributed across the
Siuslaw National Forest in the Coast Range and within
the Tiller district of the Umpqua National Forest in the
Cascades, respectively (Figure 1). These sites were
dominated by Douglas-fir and western hemlock, but
elevations differed between 264–596 m on SIU sites and
735–1321 m on UMP sites. The weather for all study
areas was typically hot and dry May–September and cool
and wet October–April. Average annual precipitation
varies from 2068–2386 mm on HJA, to 2064–3223 mm on
SIU sites, and 1025–1319 mm on UMP sites (PRISM
Climate Group, Oregon State University, https://prism.
oregonstate.edu, data created 4 February 2014,
accessed 9 January 2024). Precipitation occurs primar-
ily during winter with rain at low elevations (<1000 m)
and snow at high elevations (>1000 m).

Environmental data

We considered 14 a priori covariates (Table 1) that reflect
animal–environment relationships previously described
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in the literature and additional hypotheses about the
species. For topographic features, we used a digital eleva-
tion model developed from the Shuttle Radar Topography
Mission (SRTM; Farr et al., 2007) downloaded from
Google Earth Engine (Gorelick et al., 2017). From this,
we were able to obtain elevation and compute slope,
aspect, and topographic position index (mTPI; Guisan
et al., 1999) using Google Earth Engine. Other abiotic
factors considered were annual precipitation of each
trapping year (PPT), annual mean minimum tempera-
ture (TMin), and mean maximum temperature (TMax)
to index climate variability. PPT, TMin, and TMax were
obtained for each trapping year from the PRISM climate
group (PRISM Climate Group, Oregon State University,
https://prism.oregonstate.edu, data created 4 February
2014, accessed 9 September 2022).

We used GEDI-fusion products of forest structure that
were originally published in Vogeler et al. (2023);
full details on the generation, validations, and additional
descriptions of each covariate can be found therein. Briefly,
GEDI-fusion products were modeled using random forest
machine learning frameworks leveraging a variety of
continuous remote sensing data predictors (i.e., Landsat,
Sentinel-1, topographic features, climate, and forest distur-
bance) to produce continuous maps of forest structure at
30-m resolutions. We included seven of these GEDI-fusion

covariates in our analyses because they characterize
features we hypothesized would be important to GLOR,
NETO, or both (Figure 2; Table 1). Canopy cover
(COVER) is a representation of vegetative cover and an
estimate of the amount of light that penetrates the
canopy to the forest floor. Foliage height diversity
(FHD) characterizes how vegetation is distributed verti-
cally throughout the canopy and can be thought of as a
measure of vertical heterogeneity or multilayering. The
plant area volume density metrics describe the proportion
of the vegetation within each pixel that is either; (1) above
40 m (PAVD_40) which is used as an old-growth indicator,
(2) above or below 20 m (PAVD_20) which can be used to
describe dense vegetation’s orientation in the canopy, and
(3) between 5 and 10 m (PAVD_5_10) which is the lowest
strata available and used as our best representation of
a shrub/understory layer. The relative height indices
describe the maximum height (RH98) and midpoint
(in meters) where there are comparable amounts of
vegetation above and below (RH50; Figure 2).

Animal data

We used capture–mark–recapture live-trapping data that
was collected as part of previous studies that followed

F I GURE 1 Study area and trapping grid locations from western Oregon, USA. There were nine trapping grids at the H. J. Andrews

Experimental Forest (HJA), eight on the Siuslaw National Forest (SIU), and three on the Umpqua National Forest (UMP).
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similar methodologies (see Trapping design below) but
differed in some ways (Weldy, Epps, et al., 2019; Weldy,
Wilson, et al., 2019; Weldy et al., 2020; and others). Sites
at the HJA were designed to understand how small
mammal dynamics varied within late-successional forests,
while sites at SIU and UMP were intended to understand
how small mammal dynamics varied between old forests
(i.e., unmanaged) and young—managed stands. Thus,
HJA sites are clustered within a late-successional reserve
and stratified by factors important to old-growth charac-
teristics (i.e., openness and elevation), while SIU and
UMP sites are widely dispersed and stratified by manage-
ment history. Collectively, these sites represent samples
from a range of forest conditions typical of temperate
Pacific Northwest forests. We leverage data from these
study areas collected between 2014 and 2021 to estimate
the density and survival of GLOR and NETO. The HJA
contained nine sites that were trapped from 2014 to

2018, three of which were also trapped in 2019 and
2021. The SIU and UMP were trapped from 2014 to 2016
and consisted of eight sites and three sites. In total,
these data represent 84 site-years for density and sur-
vival estimates.

Trapping design

Each study area used similar designs; for full design and
details see (Carey, 1991; Weldy et al., 2020; Weldy,
Wilson, et al., 2019). Briefly, at each site, 64 trap stations
were arranged in an 8 × 8 array (7.84 ha) with slope
corrected 40 m distance between traps. At each trap sta-
tion, two Tomahawk Model 201 live traps (Tomahawk
Live Trap, WI, USA) were placed within 5 m of the trap
station center (n = 128 traps per site). Sites were trapped
for three consecutive weeks between September and early

TAB L E 1 Density covariates, sources, and optimized spatial scales for Glaucomys oregonensis (GLOR) and Neotamias

townsendii (NETO).

Covariate

Optimized scale in ha

Source DescriptionGLOR NETO

Elev 136.89 (1170 m2) 10.89 (330 m2) SRTM Elevation in m

mTPI 10.89 (330 m2) 10.89 (330 m2) SRTM Topographic position index—
distinguishes ridge from valley by
subtracting local elevation from 1.2 km
neighborhood mean elevation

Slope 136.89 (1170 m2) 136.89 (1170 m2) SRTM Slope

Aspect 15.21 (390 m2) 75.69 (870 m2) SRTM Aspect

PPT 4 km2 4 km2 PRISM Annual precipitation

TMIN 4 km2 4 km2 PRISM Annual mean minimum temperature

TMAX 4 km2 4 km2 PRISM Annual mean maximum temperature

Cover 20.25 (450 m2) 10.89 (330 m2) GEDI Percent canopy cover—the amount of
light able to penetrate the canopy to the
forest floor

FHD 32.49 (570 m2) 15.21 (390 m2) GEDI Foliage height diversity—Shannon–
Weiner index of height diversity within a
pixel, multilayered canopies

PAVD_5_10 15.21 (390 m2) 136.89 (1170 m2) GEDI Plant area volume density within 5–10 m,
our best approximation for shrubs

PAVD_20 56.25 (750 m2) 136.89 (1170 m2) GEDI Plant area volume density above 20 m

PAVD_40 136.89 (1170 m2) 10.89 (330 m2) GEDI Plant area volume density above 40 m,
indicator of old-growth conditions

RH50 56.25 (750 m2) 15.21 (390 m2) GEDI Relative height at the 50th percentile of
the return

RH98 20.25 (450 m2) 15.21 (390 m2) GEDI Relative height at the 98th percentile of
the return

Note: Covariates were obtained from the Shuttle Radar Topography Mission (SRTM), PRISM Climate Group (PRISM), or the Global Ecosystem Dynamics
Investigation (GEDI).
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December where each week was comprised of four
consecutive trap nights (i.e., a total of 12 trapping nights
per site per year). At the HJA sites, NETO was trapped
for only two consecutive weeks due to high recapture
rates (i.e., 8 nights) and GLOR was trapped for 3 weeks
in 2014–2016 and 2 weeks in 2017–2021. Traps were
baited, checked, and reset once per day. Individuals were
tagged with unique ear tags and reproductive condition,
species, sex, and body weight (in grams) were recorded.
Trapping protocols were consistent with the American
Society of Mammalogists guidelines (Sikes & Animal
Care and Use Committee of the American Society of
Mammalogists, 2016) and conducted under the appro-
priate permits (USDA Forest Service Starkey IACUC
number 92-F-0004 and Oregon State University’s ACUP
number 4191, 2011–2013; number 4590, 2014–2016).

Capture analysis

We used individual capture histories and Huggins robust
design models (Kendall et al., 1995, 1997) to estimate
apparent annual survival (φ), recapture probability (c),
initial capture probability (p), immigration (γ0), emigra-
tion (γ00), and density (N) as a derived parameter. The
robust design leverages both primary occasions (in years)

and secondary sampling occasions (trapping session) to
estimate parameters. Capture and recapture probabilities
are estimated from within secondary occasions using the
Huggins component (Huggins, 1989, 1991). Apparent
annual survival (henceforth, survival), temporary immi-
gration, and emigration are estimated between primary
occasions using the Cormack–Jolly–Seber component
(Cormack, 1964; Jolly, 1965; Seber, 1965). We used
the Huggins robust design model to ensure that our den-
sity estimates were consistent with previous studies
(e.g., Weldy, Epps, et al., 2019), to account for the poten-
tial effects of emigration on survival (Weldy et al., 2022),
and to provide inference on whether survival was associ-
ated with forest structure.

To estimate density and determine whether survival
was associated with forest structure we considered
several model specifications. We fit a series of model
structures for parameters γ0, γ00, p, and c, using
covariates representing the most likely sources of varia-
tion (Weldy, Wilson, et al., 2019; Appendix S1:
Table S1) and considered these to be nuisance parame-
ters because they are important to produce accurate
estimates but we did not wish to draw inference from
them. We included model specifications that allowed for
trapping behavioral effects and different immigration/
emigration movement patterns (no movement, random

F I GURE 2 Conceptual figure describing how vegetation is measured by the Global Ecosystem Dynamics Investigation (GEDI) and how

the GEDI-fusion variables relate to vegetation structure. COVER, canopy cover; FHD, foliage height diversity; PAVD_5_10, plant area

volume density between 5 and 10 m; PAVD_20, plant area volume density above or below 20 m; PAVD_40 = plant area volume density

above 40 m; RH50, relative height of 50% of vegetation; RH98, relative height of 98% of vegetation. See Table 1 for additional covariate

descriptions. Image credits: Satellite by Brent R. Barry; Tsuga heterophyla by Ian Burt (original) and T. Michael Keesey (vectorization)

available under a CC BY 3.0 license (https://creativecommons.org/licenses/by/3.0/) with no modifications made to the image for this work

except for color; Pseudotsuga is free of known restrictions; Ficus sycomorus is in the public domain.
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movement, Markovian movement, and movement that var-
ied by trapping grid or study area). We modeled each
parameter sequentially (starting with γ0 and γ00, then p, c,
and finally φ) and used the most supported parameteriza-
tions while holding unmodeled parameters at a near-global
model (Appendix S1: Table S1). We selected the best-
supported model for each parameter using Akaike informa-
tion criterion, corrected for small sample sizes (AICc;
Burnham & Anderson, 2002). A null intercept-only model
was included to evaluate model performance relative to
models parameterized by covariates. We considered the
model with the lowest AICc and models within two AICc

units as competitive (Burnham & Anderson, 2002).
Finally, we tested φ’s association with forest structure
using univariate or bivariate GEDI-fusion variables
(Table 1), a GEDI-fusion variable and a source of variation
(e.g., FHD and year), or two sources of variation
(e.g., study area and year). GEDI variables represented
the mean value calculated from a focal window of
330 × 330 m (10.89 ha; see Environmental data for more
details) with the trapping grid centroid at the center. This
focal window was chosen to reflect conditions of the trap-
ping grid, 7.84 ha, and a buffer to account for tagged indi-
viduals that used space outside of the grid. We limited
models to no more than two covariates for each parameter
due to small sample sizes and to avoid overfitting. All
models were implemented in RMark (Laake, 2013) using
program R (R Core Team, 2023).

Scale optimization

In our second phase of modeling, we optimized the
spatial scale for each covariate following McGarigal et al.
(2016). We considered model covariates at multiple
spatial scales using analytical tests to determine the
strongest correlated response, where each spatial scale
was the mean covariate value of an n × n window of
pixels centered on the geometric centroid of each trap-
ping grid. Our finest resolution was an 11 × 11 window
of 30 m pixels (10.89 ha) and we increased each spatial
scale by odd values (e.g., 11 × 11, 13 × 13, 15 × 15, etc.),
ensuring the grid centroid was centered, to a maximum
of 39 × 39 window size (136.89 ha), resulting in 15 spatial
scales. We assumed our finest scale would represent the
local characteristics of each trapping grid, while our
broadest scale would reflect conditions influencing the
larger population dynamics.

We optimized the spatial scale for each covariate from
univariate generalized linear mixed models with negative
binomial error distributions and a log link. The
negative binomial was chosen after dispersion values of
models fit with Poisson error distributions indicated

overdispersion greater than 1.10. We specified our model
as follows:

log yð Þ¼ a+ βXij + βStudy + γSite+ γYearStudy, ð1Þ

where our response variable y was the density estimated
for each year a trapping grid was sampled and Xij

represented the mean values of covariate i at scale j.
Study is a fixed effect of HJA, SIU, and UMP. Each
trapping grid, Site, was treated as a normally distributed
random effect (Gillies et al., 2006; Shirk et al., 2014) and
we allowed unmodeled annual temporal variation to vary
by study area using a normally distributed random effect,
YearStudy. We determined the scale with the most pre-
dictive power by the lowest AIC score (Shirk et al., 2014;
Tweedy et al., 2019; Wasserman et al., 2010). The spatial
scale of PPT, TMin, and TMax was fixed at 4 km2 from
PRISM, and as such we did not conduct scale optimiza-
tion for these variables.

We used the LandTrendR (Landsat Detection of
Trends in Disturbance and Recovery) algorithm (Kennedy
et al., 2010) on Google Earth Engine (Kennedy et al., 2018)
to ensure accurate representations of site conditions at
each spatial scale by screening for disturbance when ani-
mal data and environmental data were not temporally
aligned. We verified that no major disturbances had
occurred within our study areas and at spatial scales
considered despite several large wildfires and timber
harvests that occurred nearby.

Density and habitat

We used the density estimates, N, from our most
supported robust design parameterizations as our response
variable. We developed a set of 16 multivariate generalized
linear mixed models with negative binomial error distribu-
tions to account for overdispersion (Bolker et al., 2009;
Zuur et al., 2009). Each model represented a hypothesis
we considered reasonable for predicting density from
remotely sensed variables. These a priori hypotheses used
only covariates at their optimized scale and were devel-
oped consistent with the literature. For example, some
models used only GEDI-fusion products or only abiotic
variables, while others used combinations of GEDI and
abiotic variables to best represent plausible biological
hypotheses regarding the drivers of density (Appendix S1:
Table S2). All models included three or less environmental
covariates to avoid overfitting. Model specifications were
similar to Equation (1) but we modified βXij to be vector
of covariates i at their optimized scale, j. To avoid
problems associated with multicollinearity between
selected scales and covariates in our models, we

ECOLOGICAL APPLICATIONS 7 of 16
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computed Pearson’s correlation coefficients. Covariates
with a Pearson’s correlation value of jrj≥ 0.7 were not
included in the same model. All covariates were stan-
dardized to have a mean of 0 and SD of 1. We assess the
importance of each covariate by magnitude and direction
of its effect size and CI. We used bootstrapping (n= 5000)
to estimate the variance of fixed and random effects using
the merTools package (Knowles & Frederick, 2019)
included in Appendix S1.

We again evaluated candidate models using AICc

and considered competitive models within ΔAICc ≤ 2
(Burnham & Anderson, 2002). We were unable to average
models due to high collinearity between covariates in
different models (Cade, 2015). To ensure that our results
were robust to uncertainty in our density estimation, we
reran the top models with annual site densities at their
upper and lower 95% CI’s, and have provided those
materials in the Appendix S1. We assessed model fit by
checking each model for overdispersion by dividing the
sum of the squared Pearson residuals by the residual
df. Values close to 1 suggest data without overdispersion
(Bolker et al., 2009; Zuur et al., 2009). In addition, we
calculated both the conditional R2 and marginal R2 to
assess the model fit and compare the variance explained
by random effects versus fixed effects (Nakagawa &
Schielzeth, 2013). We used the lme4 package (Bates
et al., 2014) in program R for all models.

To extrapolate predictions about unsampled areas,
we applied the fixed coefficients from the top model
for each species to the GEDI-fusion and topographic
rasters to calculate a spatially explicit index of den-
sity for each species. We considered this an index
because these values do not account for temporal
variation and thus are not predictions of population
size at a given time. Rather, these predictions use the
spatial drivers identified from our models to describe
general patterns of density. We capped the effect of
elevation at 1800 m, the approximate tree line for
this region.

RESULTS

Our dataset included 1276 individual GLOR across all
years and study areas. At the nine HJA sites, 976 individ-
uals were captured from 2014 to 2021. At the eight SIU
sites, 201 individuals were captured from 2014 to 2016,
and on the three UMP sites, 99 individuals were cap-
tured from 2014 to 2016. From the same period and
sites, 4088 individual NETOs were captured, including
2882 from the HJA, 820 from the SIU, and 386 from
UMP sites. Trap nights totaled 64,512 for GLOR and
51,456 for NETO.

The final specifications for nuisance parameters
(γ0, γ00, p, and c) of both species are included in
Appendix S1: Tables S3–S6, respectively. GLOR daily
recapture probabilities varied widely from 0.07 (95% CI
[0.05–0.10]) to 0.39 (95% CI [0.35–0.42]) but generally
decreased within each trapping session and tended to
peak on day 5 (Appendix S1: Figure S1). The probability
of initial capture for GLOR ranged from 0.03 (95% CI
[0.01–0.05]) to 0.28 (95% CI [0.25–0.30]) and tended to
be highest on HJA sites, lowest on SIU sites, and inter-
mediate on UMP sites (Appendix S1: Figure S2). For
NETO, daily recapture probabilities ranged from 0.24
(95% CI [0.21–0.28]) to 0.78 (95% CI [0.75–0.81]) and
were generally higher on HJA sites than UMP or SIU
sites despite the reduced trapping period (8 and 12 days,
respectively; Appendix S1: Figure S1). Capture proba-
bilities followed a similar pattern to recapture rates and
tended to be higher on HJA sites than UMP or SIU
sites, ranging from 0.04 (95% CI [0.01–0.24]) to 0.43
(95% CI [0.37–0.50]). Temporary immigration (γ0) and
emigration (γ00) varied highly between sites for NETO
(Appendix S1: Table S7).

The top-ranking GLOR survival model contained year
and study area (Appendix S1: Table S8). Survival estimates
from this model varied from 0.26 (95% CI [0.18–0.36]) in
2018 at HJA to 0.54 (95% CI [0.34–0.73]) in 2015 at SIU
(Figure 3; Appendix S1: Table S9). All competitive GLOR
survival models contained either year alone (ΔAICc = 0.19)
or year and a GED-fusion covariate (year + COVER:
ΔAICc = 0.18, year + FHD: ΔAICc = 1.48, year +
PAVD_5_10: ΔAICc = 1.62, year + RH50: ΔAICc = 1.98;
Appendix S1: Table S8). From these competitive models,
the effect of forest structure was generally consistent with
our hypotheses suggesting dense vegetation increased
survival; however, the effect sizes were small and CI’s
overlapped zero (Figure 3). Survival for NETO was gener-
ally lower than GLOR but similarly was best explained by
year and study area (Appendix S1: Table S8). Estimates
from this model ranged from 0.19 (95% CI [0.12–0.28]) in
2015 at UMP to 0.47 (95% CI [0.32–0.64] in 2014 at SIU;
Figure 3; Appendix S1: Table S9). NETO survival models
that contained a GEDI-fusion covariate were not competi-
tive (ΔAICc = 4.7; Appendix S1: Table S8) but were the
best-ranking models following study area and year.

We report the mean (SD), min, and max annual site
density from each study area, while the full site- and
year-specific estimates can be found in Appendix S1:
Figure S3. From the top-ranking GLOR survival model,
annual densities ranged from 1.43 to 9.59/ha and a mean
of 4.0/ha (1.58) at HJA. Annual site densities averaged
3.54/ha (2.52) and ranged from 0 to 8.63/ha on SIU sites.
UMP sites averaged 3.45/ha (1.49) with a minimum of
0.99/ha and a maximum of 6.16/ha. NETO densities
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varied widely between sites and study area, from a
minimum of 2.74/ha to a maximum of 18.8/ha on HJA
sites averaging 9.44/ha (3.89), 0.69/ha to 15.7/ha on SIU
sites averaging 5.75/ha (4.84), and 3.91/ha to 13.5/ha on
UMP sites averaging 7.86/ha (6.51).

Following our scale optimization procedure, we
identified the most correlated spatial scale for each covar-
iate (Table 1). Generally, the effect size, statistical signifi-
cance, and AICc values trended either up or down as the
spatial extent grew larger (Appendix S1: Figure S4). The
effect of some variables switched from positive to nega-
tive at small to large scales, suggesting scale-mediated
effects.

Here we report only competitive density models
but include all results in the supporting information
(Appendix S1: Table S10). Variables are presented as
variable (spatial scale, β ± SE, p value). For GLOR we
found the best-supported density model incorporated
topographic position index (mTPI, 10.89 ha, β = −0.15
± 0.09, p = 0.10), foliage height diversity (FHD, 26.01 ha,
β = 0.44 ± 0.11, p < 0.00), and plant area volume density
between 5 and 10 m (PAVD_5_10, 15.21 ha, β = 0.26
± 0.10, p < 0.01; Figure 4). The influence of random
effects (Site and YearStudy) was relatively small
(var = 0.11, SD = 0.33, and var = 0.017, SD = 0.13, respec-
tively) except for Sites in the SIU (Appendix S1: Figure S5).
One model was competitive (ΔAICc = 1.86) and contained
similar covariates as the top model (FHD, 26.01 ha,

β = 0.54 ± 0.19, p < 0.01; PAVD_5_10, 15.21 ha, β = 0.34
± 0.13, p < 0.01) but also canopy cover (COVER, 15.21 ha,
β = −0.17 ± 0.19, p = 0.39). Models that included GEDI-
fusion products outperformed those with only abiotic
factors. Exemplifying this trend, a model that included
only foliage height diversity as a univariate predictor
ranked as the third best model (Appendix S1: Table S10).
Most models without a GEDI-fusion covariate failed to
outperform the NULL (Appendix S1: Table S10). The effect
of study area followed the same trend where all study
areas had variable but consistently positive coefficients.
Tests of overdispersion indicated a good model fit for the
whole model set with values between 0.81 and 0.86. For
the top-ranking model, the conditional and marginal R2

values were 0.73 and 0.43, respectively, indicating good
total model fit and variance explained by fixed effects.
Running the top-ranking model at the upper and lower
95% CIs of GLOR density estimates did not substantially
alter results (Appendix S1: Figure S5).

The top-ranking NETO density model included
elevation (Elev, 10.89 ha, β = 0.48 ± 0.11, p < 0.00), plant
area volume density above 20 m (PAVD_20, 136.89 ha,
β = −0.35 ± 0.14, p = 0.01), and foliage height diversity
(FHD, 15.21 ha, β = 0.27 ± 0.09, p < 0.01; Figure 4).
There were no competitive models within ΔAICc < 2.
The study area had a significant effect (p < 0.01) where
HJA was the reference, SIU positive, and UMP negative.
The influence of the Site random effect was small

0.2

0.4

0.6

2014 2015 2016 2017 2018 2019

Year

Study

HJA

SIU

UMP

Species

GLOR

NETO

A) Apparent Annual Survival

Cover

FHD

PAVD_5_10

RH50

−0.1 0.0 0.1 0.2 0.3

Effect Size

B) GEDI effects

F I GURE 3 Survival estimates and effects of forest structure with 95% CI’s. (A) shows survival estimates from each study area (HJA,

H. J. Andrews Experimental Forest; SIU, Siuslaw National Forest; UMP, Umpqua National Forest) per year for each species (GLOR,

Glaucomys oregonensis; NETO, Neotamias townsendii). (B) depicts the Global Ecosystem Dynamics Investigation (GEDI) covariates (Cover,

canopy cover; FHD, foliage height diversity; RH50, relative height of 50% of vegetation; PAVD_5_10, plant area volume density between

5 and 10 m) from competitive survival models. There were no competitive Neotamias townsendii models that contained GEDI covariates.

Note that there were no competitive survival models for Neotamias townsendii that contained GEDI covariates.
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F I GURE 4 Marginal effect plots on density from the top models for Neotamias townsendii (right column) and Glaucomys oregonensis

(left column). The title of each panel refers to the covariate and the optimized spatial scale used in each species’ density model. The x-axis

within each panel describes the variable and markings on the x-axis correspond to observed values at trapping grids. Covariate descriptions

are as follows: Elevation, elevation; FHD, foliage height diversity; mTPI, topographic position index; PAVD_5_10, plant area volume density

between 5 and 10 m; PAVD_20, plant area volume density above or below 20 m. See Table 1 for covariate descriptions. Image credits:

Glaucomys volans and Tamias striatus images (sourced from PhyloPic) are by Chloé Schmidt and available under a CC BY 3.0 license, with

no modifications made to the images for this work.
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(var = 0.13, SD = 0.11), as was the influence of the
YearStudy random effect, though the latter had a larger
SD (var = 0.07, SD = 0.26) indicating greater temporal
variation than was found for GLOR (Appendix S1:
Figure S6). The conditional R2 for this model was 0.61
and the marginal R2 was 0.40. Overdispersion tests for
the whole model set indicated a good fit with values
between 0.73 and 0.87. This model was more sensitive
than GLOR to upper and lower 95% density estimates
(Appendix S1: Figure S6).

Using the top models for GLOR and NETO, we projected
our density estimates to the area surrounding the H. J.

Andrews Experimental and the Hebo District of the Siuslaw
National Forest (Figure 5). Predicted densities (per hectare)
of GLOR and NETO were generally higher surrounding the
HJA than within the Hebo District (Figure 5).

DISCUSSION

The vertical and horizontal characteristics of vegeta-
tion are critical for managing and conserving wildlife
species because these features are linked to much of
the multidimensional space that comprises habitat

F I GURE 5 Projected density (in hectares) using the top model coefficients for Glaucomys oregonensis (left column) and Neotamias

townsendii (right column). (A, B) are of the H. J. Andrews Experimental Forest. (D, E) are the Hebo District of the Siuslaw National Forest.

(C, F) are reference images of each location from Google 2024. Image credits: Glaucomys volans and Tamias striatus images (sourced from

PhyloPic) are by Chloé Schmidt and available under a CC BY 3.0 license, with no modifications made to the images for this work.
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(Hall et al., 1997). Here, we present a novel approach
to associate GEDI metrics, in the form of GEDI-fusion
products, with wildlife demographic parameters. In
doing so, we demonstrate the benefits of using demog-
raphy to infer habitat quality, the importance of widely
available datasets describing continuous forest struc-
ture for assessing these species’ densities, and potential
applications of GEDI for wildlife monitoring, conserva-
tion, and policy.

Robust demographic measures of habitat quality,
such as survival and density, are rarely obtained directly
because of logistical and financial constraints. A common
alternative approach is to use species distributions gener-
ated from occurrence data with corresponding environ-
mental data (McLoughlin et al., 2010), both of which are
often easily obtained. These methods regularly form
the backbone of conservation and management strategies
despite the poor capacity to predict abundance, population
mean fitness, and genetic diversity (Lee-Yaw et al., 2021).
We leverage a new data set to test measures of habitat
(i.e., GEDI-fusion products) by assessing whether they
were predictive of key population parameters: density and
survival. We found strong support that vertical aspects of
the canopy were associated with the density of GLOR and
NETO but in contrast to our hypotheses, weak support
(i.e., competitive models ΔAICc < 2) that survival related
to GEDI-fusion products of forest structure for GLOR.
Further, both species were present at all sites suggesting
more coarse habitat indices leveraging occurrence data
may have failed to identify the species–habitat relation-
ships we did. Because survival was similar between sites,
but density varied by orders of magnitude between sites,
density appears to be a more useful metric in this instance
for evaluating habitat quality. We acknowledge that caution
should be taken while interpreting variation in density as
differences in habitat quality (Robertson & Hutto, 2006;
Van Horne, 1983), and that temporal cycling may obscure
trends (Weldy, Epps, et al., 2019). Nevertheless, density is
broadly representative of the carrying capacity of habitats
because there must be adequate resources to support a
population of a given size.

Our results confirm but also differ from aspects of our
hypotheses while advancing the understanding of the
ecology of these species. Both species displayed similar
relationships to GEDI-fusion products of forest structure
where density was strongly associated with these features,
but survival was either weakly or not associated with
forest structure, and the strength of these relationships did
not vary by species as strongly as we hypothesized. The
association of GLOR density to forest structure is consis-
tent with Wilson (2010) who suggested that dense mid-
story and overstory vegetation mediates predation pressure
to facilitate higher densities, however, we identified weak

support that forest structure was directly related to
survival itself. Less is known about the life history of
NETO but they demonstrate flexible habitat preferences
and characteristics of an r-selected species (Weldy
et al., 2020). We contribute to this by identifying a
strong elevational effect and suggest dense protective
cover close to the ground (<20 m) and foliage height
diversity are important. These findings differ from previ-
ous studies that found associations with coarse woody
debris (Sultaire et al., 2021; Waldien, 2006) and canopy
cover (Weldy, Epps, et al., 2019). For both species, our
findings differ from previous studies by examining the
influence of spatial scale beyond the trapping grid to
demonstrate the influence of both relatively localized
(10.89 ha) and relatively large (136.89 ha) effects of veg-
etation. Importantly, vegetation treatments are one of
the few tools available to improve habitat conditions
and our insights provide guidance on treatments to
create conditions at certain localities (i.e., lower slopes
and higher elevations) to improve habitat.

While we were able to identify statistically significant
and meaningful relationships in our models, they repre-
sent oversimplifications of the processes that drive the
spatiotemporal demographic patterns of these species.
Notably, our density estimates were highly variable
through time, especially for NETO, which suggests that
more long-term studies like the H. J. Andrews Experi-
mental Forest are needed to understand population
dynamics. Specifically, additional primary occasions
(trapping years) would likely have helped to improve the
precision of density, survival, and other nuisance param-
eters (γ0, γ00, p, and c) at Siuslaw and Umpqua sites
(Schaub et al., 2004). Further, animal data that were
specifically designed and collected to test the effects of
remotely sensed forest structure on demography may
yield stronger results rather than the studies we leveraged
here. In addition, we may have failed to uncover a strong
association between survival and GEDI-fusion products
of forest structure because the survival of subclasses
(e.g., male, female, young of year, etc.) vary more than
the population as a whole, and survival has been shown
to vary for GLOR based on age (Weldy et al., 2022).
Alternatively, the resolution of the animal data (all indi-
viduals within a trapping grid) and environmental data
(10.89 ha) may have been too coarse to understand these
survival trends. Nevertheless, our analysis yielded reasonable
performance given the complex nature of demography and
the use of relatively few covariates.

The GEDI mission has generated considerable excite-
ment by providing spatially extensive three-dimensional
forest structure data. The use of full waveform, large foot-
print LiDAR systems such as GEDI is rare in wildlife
studies (Acebes et al., 2021) and metrics obtained from
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these systems are unfamiliar to most ecologists. We have
demonstrated that full waveform metrics capture aspects
of forest structure that wildlife responds to and should be
more readily integrated into wildlife applications. GEDI-
derived foliage height diversity has shown promise across
a range of studies (Smith et al., 2022; Vogeler et al., 2023)
including terrestrial or semi-arboreal mammals (this
study, Smith et al., 2022). Indeed, foliage height diver-
sity as a univariate predictor for GLOR density was the
third best model. Several covariates that we anticipated
being significant to GLOR density such as canopy cover
and extent of old-growth forest were some of the best
univariate predictors in the scale optimization process,
but density models that included them were not highly
supported. Their effects may have been washed out due
to high collinearity with other predictors such as foliage
height diversity, which may simultaneously capture
aspects of both horizontal and vertical structure. Thus,
while the use of these full-waveform LiDAR variables
shows promise, there remains nuance in interpreting
them for wildlife.

We have also shown that despite GEDI’s relatively
large footprint (25 m) and the subsequent resolution of
the GEDI-fusion products (30 m), they can be effec-
tively applied to animals that operate at small spatial
scales. Others have demonstrated this for birds
(Burns et al., 2020; Vogeler et al., 2023) but it also
appears true for small-bodied mammals such as
snowshoe hare (Lepus americanus; Smith
et al., 2022), red squirrels (Tamiasciurus hudsonicus;
Smith et al., 2022) and the species in this study.
These findings suggest that future applications of
GEDI data, or GEDI-fusion products can effectively
be applied to a wide variety of taxa with varying body
size and space use tendencies.

Explicit maps of forest structure, such as the GEDI-
fusion products, have important implications for data-
driven wildlife monitoring, conservation, and policy
applications. Forest structure can be a controversial
topic that cuts across scientific, social, and political
arenas (e.g., the Northwest Forest Plan; Spies et al., 2019).
Thus, accurate and widely available maps of structure
can be used to ensure that discussions over long-term
management plans are empirically grounded (Exec.
Order No. 14072, 2022). We have shown that explicit
maps of forest structure can be taken one step further by
combining GEDI data with capture–mark–recapture
data to create spatially explicit maps of realized wildlife
density. Maps generated from density–habitat structure
relationships can be used to predict how forest structure
or changes in forest structure alter the density of
species. Those insights can address the needs of man-
agers who often manage their land in terms of stand

structure to balance wildlife and socioeconomic needs
(Kline et al., 2016). Further, realized density–habitat
structure relationships can also be mapped across land-
scapes and through time (Davies & Asner, 2014; Eitel
et al., 2016) to monitor changes in population size or
incorporate density predictions into other studies
(e.g., predator–prey relationships, species translocation
efforts, etc.). We have demonstrated that it is possible to
create such density maps, and this represents an impor-
tant step to advance wildlife management while provid-
ing a direction for future research.

GEDI is a significant expansion in the availability
of high-quality three-dimensional vegetation data but
remains relatively underutilized for wildlife applica-
tions. Thus, our work is influential because we demon-
strate that GEDI-derived data can effectively be used to
predict animal density, a more meaningful habitat met-
ric than previous uses of GEDI data in wildlife studies.
The public availability of GEDI data, including the
GEDI-fusion products, enables the framework presented
here to be potentially replicated at the near global
extent of GEDI coverage. Therefore, we suggest future
applications of GEDI be used to assess how forest
structure and changes in forest structure drive the
density and assemblage of communities at spatial
scales previously unattainable. Critical to these efforts
will be the rich coverage of GEDI and continuous
nature of the GEDI-fusion products developed from
these reference data.
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