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ARTICLE INFO ABSTRACT

Editor: Xinbin Feng Mercury (Hg) is one of the toxic metals of global and environmental concern, with aquatic Hg cycling being
central in determining the production of highly toxic methylmercury and the air-water Hg exchange influencing

Keywords: the long-range intercontinental atmospheric Hg transport. Both inorganic and organic forms of Hg can be bound

Mercury by suspended particles, including inorganic minerals (in particular metal oxides/sulfides) and particulate organic

Suspended particles
Photoreaction
Biogeochemical cycling
Reactive oxygen species

matter. Photochemical transformation is a critical process in surface water, and the role of suspended particles in
Hg redox photoreactions has increasingly emerged, albeit in limited studies in comparison to extensive studies on
aqueous (homogeneous) photoreactions of Hg. The lack of understanding of what roles suspended particles play
might result in inaccurate estimation of how Hg species transform and/or cycle in the environment. In view of
this gap, this paper critically reviews and synthesizes information on the studies conducted on different natural
surface waters with respect to the potential roles of suspended particles on Hg photo-redox reactions. It robustly
discusses the various possible pathways and/or mechanisms of particle-mediated Hg (II) reduction, in enhancing
or lowering the production of dissolved gaseous mercury. These processes include photo hole-electron pair
formation and reactive oxygen species generation from particle excitation and their involvement in Hg photo-
reduction, in addition to the light attenuation effect of particles. This paper highlights the necessity of future
studies exploiting these particles-mediated Hg photoreactions pathways and the implications of including these
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heterogeneous photoreactions (together with particulate elemental Hg species) on the air-water Hg exchange

estimation.

1. Introduction

Natural water bodies are populated with particles, conveniently
known as suspended particulate matter (SPM) or otherwise referred to as
aquatic particles, generally characterized as being greater, in size, than
0.45 pm (Hart, 1982). Suspended particles can be separated into biotic
and abiotic categories. Biotic suspended particles refer to bacteria and
phytoplankton (aquatic plants) while abiotic includes both inorganic
and organic particulates (Tipping, 1981). In terms of composition,
aquatic particles consist mainly of silica and clay substrates covered
with oxides of metals and organic matter. Particulate organic matter
(POM) is formed due to fragmentation of some chemically refractory
polymeric compounds obtainable from plants. For example, POM con-
sists of proteins, lipids, carbohydrate, chlorophyll, which are acid-
unhydrolyzable fibres (Coban-Yildiz et al., 2000; Cotrufo et al., 2013).
Comparatively, with respect to bed sediments, suspended particles in
shallow lakes and fluvial systems exhibit similar characteristics.

Suspended particles often act as carriers/ligands, allowing other
metals or molecules to bind on their surfaces, creating complexes with
new physicochemical properties. The presence of these particles, and
their subsequent complexes impact the overall properties of the aquatic
system as well. Suspended particles, in the form of suspended inorganic
particulate minerals (lithogenic and authigenic) and POM, have been
found to be effective at scavenging and transporting metal ions in ma-
rine environment (Lamborg et al., 2016). Fe and Mn (hydro)oxide are
common examples of authigenic minerals whereby metal ions are
scavenged (Rosati et al., 2018). Moreover, organic particulate com-
plexes, binds and/or interacts with metals, among other molecules, in a
series of chemical processes.

Suspended particles are often inherently light-sensitive (Zafiriou
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et al., 1984). Coined photochemistry, the study of chemical reactions
that result from irradiation with light, has since revealed that these
suspended particles react under light, typically visible and UV radiation
from the sun (Turro and Lamola, 1977; Wang et al., 2020). Under illu-
mination, the suspended particles behave frequently in a semi-
conducting fashion, and there is an induced charge separation that ul-
timately initiates photo-redox reactions (Vinodgopal and Kamat, 1992).
These particles can serve as catalysts in the photolysis of other com-
pounds within the interface; among these particles are often oxides of
metal(loids) (Zhang, 2006). These properties make suspended particles
an essential area of study, as they are crucial in understanding the
complex mechanisms in which metals within the aquatic interface
transform.

Of all metals, mercury (Hg) is of a global concern due to its high
toxicity, especially for methylmercury (MeHg), and long-range atmo-
spheric transport tendency of elemental Hg (Hg® with an estimated
atmospheric residence time of 0.8 years to 1.7 years (Ariya et al., 2015).
Its uniqueness is also embedded in its ability to exist in liquid state at
room temperature, amalgamation with other metals, and inherent
ability to exist as monomer in the vapor state. A large number of studies
have been conducted on the homogeneous photoreactions of Hg in
aquatic environment while few reported the impacts of suspended par-
ticles on Hg photoreactions, without exploring the possible mechanisms
involved and assessing the environmental implication of these reactions
(Gonzalez-Raymat et al., 2017). Fig. 1 shows the various pathways
through which suspended particles can play roles in aquatic environ-
ment using Hg as an example.

Despite previous reviews on Hg in aquatic ecosystems, such as
aqueous photoreactions of Hg (Luo et al., 2020), unique properties and
fate of Hg® (Gonzalez-Raymat et al., 2017), factors influencing Hg
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Fig. 1. Conceptual diagram illustrating the interaction of suspended particles with mercury species.
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methylation (Ullrich et al., 2001), and Hg transport and fate models
(Zhu et al., 2018), a review on the emerging role of SPM in Hg photo-
reactions is absent. The lack of understanding of the roles suspended
particles play could lead to inaccurate estimation of the extent of Hg(II)
reduction, Hg® oxidation, air-water exchange of Hg® and the bioavail-
ability of Hg(II) for methylation in aquatic environment. Further, an in-
depth understanding of mechanism of transformation and/or cycling of
Hg species in the environment is germane in order to accurately provide
data on biogeochemical cycling of Hg species. Sequel to this, the primary
aim of this review is to understand the roles played by suspended par-
ticles in the photoreactions of Hg species under the influence of sunlight
and to explore the possible mechanisms of particle-mediated photo-
chemical reactions, in order to understand the air-water gaseous
elemental Hg exchange and the overall contribution of particles in the
cycling of Hg species.

2. Aquatic photochemistry
2.1. A brief overview of aquatic photochemistry

Photons are regarded as energy source that drives photochemical
processes (Chowdhury et al., 2014). These processes include photolysis,
photodegradation, photocatalysis, and photo-redox reactions, and other
means - which can occur directly and indirectly. Direct photochemical
processes occur when the compound in question directly absorbs energy
from photon, thereby undergoing a chemical reaction (Zeng and Arnold,
2013). Photolysis and photodegradation describes the dissociation of a
molecule or compound when irradiated with natural or artificial pho-
tons of energy greater than the chemical bonding in the molecule or
compound (Arnold and McNeill, 2007; Luo et al., 2020; Zhang, 2006).
During photocatalysis, photon-absorbing specie(s), otherwise known as
photosensitizer or photocatalyst, absorbs the photon energy to become
electronically excited via photo-induced bandgap excitation to photo-
generate hole, electron and/or reactive oxygen species (ROS) required
for photo-redox reactions (Chen et al., 2023; He et al., 2021; Serpone
et al., 1987). Typical instances of direct photochemical processes are
photolysis and/or photodegradation of mercuric hydroxide to produce
elemental mercury and water (Nriagu, 1994). However, most photo-
chemical reactions proceed through indirect pathways, such as in pho-
tocatalysis, where photosensitizers other than the compounds of interest
are excited by the absorption of photons, producing reactive in-
termediates that then transform the molecule of interest (Lam et al.,
2003). Some photosensitizers in natural waters comprise of dissolved
organic matter (DOM), nitrate, nitrite, carbonate, and iron ions, among
other metal ions, organic compounds as well as natural oxide minerals
(Lam et al., 2003; Luo et al., 2020; Vost et al., 2011). The most common
reactive intermediates involved in indirect photochemical processes are
free radicals and ROS such as oxygen free radicals, peroxyl radicals,
hydroxyl radicals, nitrate radicals, carbonate radicals and singlet oxygen
transients (Lam et al., 2003; Zhang, 2006). ROS especially drives a large
portion of indirect photooxidative reactions.

2.2. Heterogeneous photochemistry

Photoactive suspended particles in water are often photosensitizers
with a tendency to ultimately produce ROS (Mayer et al., 2006). Sus-
pended particles could exist as potential reactive species involved in
indirect photochemical processes, and these heterogeneous photo-
chemical reactions generally occur on surfaces exposed to (photolytic)
solar irradiation (Vahatalo, 2009). Some oxides and sulfides of metals
(loids), which are usually major components of suspended particles, can
produce ROS by acting as photosensitizers or photocatalysts (Rani et al.,
2022). A list of reactions showing photo-induced production of ROS via
hematite, as a model semi-conducting material, is given as follows
(Felizzetti et al., 1990):
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& — Fe,05 + huv—ox — Fey 05 (hyy, ecy) W
0;+e¢,—0; 2)
0, +H"->HO, @)
HO, +HO,—-H,0, + 0, @
HO, + O; -HO; + 0, ®)
HO; + H"—H,0, ©
H,0, +¢,,—~OH+ ~OH 7
H,0, + O; -»"OH+ OH + O, ®)
H,0; + hv—2'0H ©

When irradiated, the photoactive metal oxides or metalloids produce
photo-holes and photo-electrons that interact with surface trapped
water to produce different ROS. A few examples of particles that can act
as photocatalysts or photosensitizers are clay, minerals, zinc oxide as
zincite, titanium dioxide as titania, iron oxides, etc. A number of metal
chalcogenides and oxides can be found in natural aquatic environment
with semi-conducting properties, which can be activated via solar irra-
diation (Pelizzetti and Calza, 2002). Some minerals or oxides which
occur naturally in aquatic environment possess characteristic semi-
conducting features, as presented in Table 1.

However, in a circumstance whereby non-semiconducting sus-
pended particles become coated with organic matters (OM), the OM may
act as light trapping part of the coated particle whereby various chem-
ical reactions, leading to formation of ROS, can take place. These formed
radicals then react with chemical substances that are within the prox-
imity of the irradiated OM-coated particles and ultimately transforming
the chemical substances of interest (Appiani and McNeill, 2015; Pham
et al., 2020). For instance, based on previous studies (Appiani and
McNeill, 2015; Carlos et al., 2012; Hu et al., 2022; Lee et al., 2023; Pham
et al., 2020), the interactions of light with organic matter coated parti-
cles can be likely expressed as:

OM — coated particle -+ 70— [OM — coated particle] " + €y (10)

Studies on photochemical reactions related to OM-coated particles
and even POM are limited, despite extensive studies on DOM photo-
chemistry. Based on these previous studies, we speculate that the irra-
diation of a coated substrate may photoactivate the particle and induces
photo(catalytic) degradation of the OM to CO; and water, but these
reactions could depend on the thickness of the coating (Fig. 2). When
organic matter layer on photoactive particles is thin, it is more likely
that sunlight penetrates, photoactivates and generates charge carriers
(Fig. 2a), unlike a thickly coated photoactive particles that ultimately
results in photo-dissolution of the OM on the particles (Fig. 2b) (Geller,

Table 1

Bandgap energies (Eg) for some naturally occurring metal oxide/chalcogenide
semiconductors (Felizzetti et al., 1990). Reproduced with permission from
(Felizzetti et al., 1990). Copyright (1990) Elsevier.

Semi- Bandgap (eV)  Wavelength of light equivalent to bandgap (nm)
conductor

a-Fe;03 2.3 530

TiO, 3.0-3.3 376-413

$-MnO, 0.26 4770

ZnO 3.3 376

PbO, 1.7 729

BaTiO3 33 376

Cds 2.4 517

p-HgS 0.54 2300
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Fig. 2. Hypothetical outcomes of irradiation of OM-coated (semiconducting) particles for (a) thinly-coated and (b) thickly-coated particles.

1985; Hu et al., 2021; Lee et al., 2019; Mayer et al., 2006, 2012).
Moreover, it is important to mention that the energy of irradiation must
be greater than or equal to E, of the photoactive particles to be capable
of generating e~ and h™ pairs.

The photo-generated ROS can contribute to heavy metal cycling in
the aquatic environment. Hydroxyl radical is one of the most reactive of
ROS (Parrino et al., 2020). In aquatic environment, hydroxyl radical has

M™ 4+ H,0,—»M®™* + OH™ + OH (slow) a1

M™ 4 -OH-M"D* + OH" (fast) 12)

For reduction of copper (II) and iron (III), the following mechanism
was proposed (Barb et al., 1949):

a concentration of 10~7 M (Moffett and Zika, 1987) in surface seawater H,0,=H" + HO; (fast) 13)
and it is capable of initiating reduction and/or oxidation of metals. 1
Hydrogen peroxide is another reactive intermediate closely related to M™% 4 HO, =M™ + HO; (slow) a4
hydroxyl radical generation and can also be involved in metal redox N ~
reactions. Examples of reactions of hydrogen peroxide with iron (Fe) and HO, < H™ +0; (fast) s
copper (Cu) by acting as either oxidant or reductant are generalized . ~ .
(with M denoting metals) below (Barb et al., 1949; Haber et al., 1934; M + 0y >M™" + O (fast) (16)
Pham et al., 2013; Tacu et al., 2021). These mechanisms have been
suggested for different types of aqueous chemical and biochemical sys-
tems and are perhaps effective in seawater and other natural waters
(Moffett and Zika, 1987).
For oxidation:
— Homogeneous photoreduction ey
1 ) pathways ( 2/
. . Reactive oxygen species or radicals
Reactive intermediate pathway pathway
| |
= m
Dissolved organic matter Dissolved organic matter
e.g. Phenyl ketones, aromatic hv
aldehydes, benzoquinones l
& ™ [OH; 0 Oy |
&
&
& 3poM" L—J
&/ DOM + Hg(ll)
Hg(ll) species l hv Hg(ll) [species
"% \ [DOM + Hg(In]*
Hg(0)
Hg(0)

Fig. 3. Homogeneous photoreduction pathways for Hg(II).
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3. Aquatic photochemistry of mercury
3.1. Homogeneous photoreactions of Hg in aquatic environments

Most previous studies on Hg photochemical transformation con-
cerned homogeneous Hg photoreactions in the dissolved phase, where
DOM seemed to play a major role. The interaction of DOM with Hg(II)
occurs in various ways, thereby influencing the bioavailability, trans-
port, and transformation of Hg(II). In its role as transforming agent,
researchers have suggested ROS (Wen et al., 2023; Yang et al., 2023) and
photochemically excited reactive intermediates from DOM (Nriagu,
1994) as two important mechanisms for the photoreduction of Hg(II) to
Hg®. Fig. 3 shows the mechanisms and/or pathways of homogeneous
photoreduction of Hg(II).

DOM can be photochemically excited and then, loses its energy by
reducing Hg(I) to Hg. In the excitation process, photons of light
energetically induce the excitation of DOM to excited state (DOM*),
which is capable of transferring this energy to nearby species like Hg(II)
and then return to ground state (DOM) (Ravichandran, 2004). The
excited energetic donor atom in the DOM transfers its energy to Hg(II) to
induce reduction to Hg®. The chromogenic nature and solar radiation
interaction pattern of proteins, flavins, humic acids, and other organic
compounds (as DOM components) in natural water has made this
mechanism a suitable pathway for Hg(II) conversion to Hgo. On the
other hand, these chromogenic DOM may form complex with Hg(II) in
natural water. As soon as the complex is irradiated, it becomes excited
and later loses its energy by internal transfer of electron to Hg(II) to form
Hg®. The photo-induced reduction by excited DOM* intermediate and/
or excited complex formed can be depicted by the following equations:
DOM—{DOM}" % {DOM* + ¢ }" + Hg!

complexed

—-DOM" + Hg’ a7

DOM + Hg** % {DOM — Hg?*} ' »DOM" + Hg’ 1s)

The complexation between DOM and Hg, which is usually strong,
may affect photochemical reactions of Hg. A stronger complexation
between Hg and DOM could hinder an efficient Hg(II) photoreduction
when Hg(II) binds to the thiol functional group on DOM (Jiang et al.,
2015; Luo et al., 2020). The following reactions provides information on
how functional groups might influence the complexation stability con-
stant and photoreduction of Hg(II) (Jiang et al., 2015; Skyllberg, 2008).

2SH™ +Hg*" =Hg(SH);,,, Log K =37.7 (19)
20H" +Hg* =Hg(OH)j,, Log K =222 (20)
OH +SH™ +Hg’* =HOHgSH?,, Log K = 30.3 1

Moreover, ROS have been suggested to be involved in other path-
ways for effective photoreduction of Hg(Il) to Hg® (He et al., 2014;
Nazhat and Asmus, 1973). For instance, the formation of organic free
radicals during photolysis may be responsible for photoreduction of Hg
(ID) (He et al., 2012). Hydrogen peroxide and superoxide anion, which
can be formed from the sunlight-involved transformations of DOM in
natural waters (Schroeder et al., 1991), are suitable example of ROS for
Hg(Il) photoreduction (Leenheer, 1994). Similarly, the presence of
organic acids like formate, acetate and oxalate in natural waters can
photochemically form hydroperoxyl (HO,) radicals (Barth et al., 1990;
Pehkonen and Lin, 1998), which can reduce Hg(Il) via a two-step
mechanistic reduction pathway involving unstable Hg(I) (Pehkonen
and Lin, 1998). Other photosensitive intermediates, such as carboxyl
radical anion produced from photolysis of Fe(Ill)-organic complexes,
may also promote photoreduction of Hg(I) (Ababneh et al., 2006).

Science of the Total Environment 931 (2024) 172845
3.2. Suspended particle-involved photoreactions of Hg species

The tendency of Hg species partitioning on particles in aquatic en-
vironments has long been known, as both inorganic and organic forms of
Hg(II) compounds can be bound by suspended particles, including
inorganic minerals and POM (Nriagu, 1994; Stein et al., 1996). The
importance of inorganic minerals and organic matter in determining
particulate Hg speciation can vary, depending heavily on the nature of
the solid particles and the chemical speciation of Hg, among many other
factors (Ullrich et al., 2001). The formation of particulate Hg(II) for
inorganic minerals, particularly metal (hydr)oxides, may occur through
the complexation of hydroxylated Hg species with hydroxyls on the
mineral surfaces (=S-OH) (Jung et al., 2015; Walcarius et al., 1999). The
organic matter fraction of suspended particles can form OM-bound
particulate Hg through Hg complexation with various S-, O-, and N-
containing functional groups (Skyllberg, 2008; Skyllberg et al., 2006;
Skyllberg and Drott, 2010). As a result, particles serve as a vehicle that is
responsible for the transport of Hg in natural aquatic systems (Jedruch
et al., 2017; Turritto et al., 2018) as well as reaction medium for Hg
transformation.

Although previous studies have extensively investigated aqueous
phase Hg photochemical reactions, particles-involved Hg photochemical
transformation has received limited attention, despite the prevalence of
particle-bound Hg species. There are a few studies attempted to examine
the role of SPM photoreduction of Hg(II) through the comparison be-
tween filtered and unfiltered natural water samples, mainly considering
the light attenuation effect of SPM. These studies have reported con-
flicting results of enhancing or inhibitory effect of SPM on Hg® genera-
tion, with enhanced, decreased or non-significantly changed Hg°®
production in filtered lake water samples (Beucher et al., 2002; Garcia
etal., 2005a; Whalin et al., 2007). It is important to note that the reports
of previous studies on magnitude of Hg® production by comparing
filtered and unfiltered water lacked information and/or data on partic-
ulate Hg® (Beucher et al., 2002; Garcia et al., 2005b; O’Driscoll et al.,
2018; Washburn et al., 2019). Hgcould be bound by SPM to form
potentially non-purgeable particulate Hg®, and thus the quantification of
Hg'in the bulk liquid phase alone will present an inaccurate estimation
of Hg® generated. A high fraction of particulate Hg?, after photoreduc-
tion experiment, was found on SPM through thermal desorption (Wang
etal., 2015, 2023). The controversies in the effect of filtration on Hg(II)
reduction and the presence of particulate Hg® that was often not quan-
tified and included in the data interpretation of Hg(II) photoreduction
suggest that SPM may play roles beyond merely attenuating light in
photochemical reactions of Hg species. The possible pathways for par-
ticles to mediate Hg photochemical transformation are shown in Fig. 4
and discussed below. Fig. 4 shows the conceptual diagram detailing the
various possible photoreactions particle-bound Hg undergoes in natural
waters. These pathways include 1) particle-bound Hg as an intact Hg
species could become excited on absorption of light and then release Hg®
through the electron transfer between particulate and Hg; 2) the particle
itself could be photoexcited and generate electron-hole pairs inducing
Hg redox reactions; and 3) ROS could be produced on the particle sur-
face upon light irradiation and mediate Hg redox reactions.

3.2.1. Photoreactions of Hg species in relation to Hg adsorption on SPM
Depending on SPM composition and type, the adsorption of Hg onto
SPM may vary which subsequently influences Hg photochemistry. POM
is an efficient candidate for Hg adsorption and pronounced photo-
reactivity (Helms et al., 2014; Southwell et al., 2010) and can result in
a range of effects on photoreduction of Hg(II) (Ravichandran, 2004).
POM can absorb in the UV and visible region of the spectrum, depending
on their composition and other factors (Appiani and McNeill, 2015;
Mayer et al., 2006). Metal-ligand complexes are often formed during Hg
(II) adsorption onto POM (Ravichandran, 2004; Soto Cardenas et al.,
2018). The strength of the bond depends on the hard-soft acid base
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Fig. 4. Conceptual diagram detailing the various photoreactions SPM bound Hg (SPM—Hg) undergoes in natural waters.

theory. It is opined that POM-Hg bonds typically have energies consis-
tent to the 200-800 nm and that the transfer of energy within the POM-
Hg complex during irradiation can lead to photo-redox reactions
(Billing, 1997; Schiebel et al., 2015), as it was observed that Hg(II)
species bound to POM could release Hg® during photo-excitation (Hu
et al., 2020; Pham et al., 2020).

For suspended inorganic particles, the sorption of Hg(II) will takes
place via either physisorption or chemisorption (Eq. (22)), which can be
differentiated using standard free energy of (ad)sorption. For instance, A
Gads > —20kJ/mol,  AG,gs < —40kJ/mol, and —20 > AGyy > —
40 kJ/mol are usually used to indicate physisorption, chemisorption and
mixed adsorption, correspondingly (Chen et al., 2022). Physisorption
involves weaker bond and Hg may be more easily dissociated by the use
of lower energy — presumptively as Hg(II) species, in the presence of
light (Archer and Blum, 2018; Xia et al., 2019). Photoreaction of
chemisorbed Hg on particles may depend on the energy of the light to
cleave the oxygen/sulfur-Hg bond to release Hg® through the potential
pathways below that we reason could occur (Egs. (23)-(24) and Fig. 4).
In any of the proposed pathways, each exhibits different relationships
with surrounding variables.

2FeO(OH) + Hg?* -2FeOOHg + 2H* (22)
FeOOHg 2 2FeOOHg" (23)
2FeOOHg" —2Fe0 + O, + 2Hg’ 24)

3.2.2. Photo-induced electron-hole pairs and Hg redox reactions
Semiconducting minerals and oxides (a-FepO3, f-MnOy, ZnO, PbOy,

CdS, M-sulfides (M, metal), etc) are often present in aquatic environ-
ment (Litter et al., 1991). Upon exposure to light of equal or greater
energy than the bandgap, photoholes and photoelectrons may be
generated (Eq. (25)) (Litter et al., 1991; Mills and Le Hunte, 1997;
Nriagu, 1994; Zhang, 2006). The minerals (metal sulfide, metal oxide or
mixture) and the irradiated form are expressed as M,Y, and
M,Y, (electron™ ........ hole™), respectively. M, and Y, represent metal
and oxygen or sulfur atom(s) while e and hj; are photoelectrons and
photoholes generated on surfaces of the semiconducting minerals/ox-
ides, respectively.

MYy +hv( > E,)—M,Y, (electron” ...hole™)—egy + hiy (25)

The photoelectron generated often has potential of +0.5 eV to —1.5
eV with sufficient energy to reduce Hg(II) (Eq. (26)) while the holes
created in the valence band (VB) with +1.0 to 3.5 eV is strongly
oxidizing (Eq. (27)), possibly inducing redox reactions of Hg as shown in
Egs. (26)-(27) and Fig. 5. For reduction of Hg(II) to Hg?, it is most likely
to occur when Hg(II) binds to the surface of the photo-activated particles
as the diffused photoelectrons are more likely to react with abundant
dissolved molecular oxygen than to reduce aqueous Hg(II) in bulk nat-
ural water, since electron lack selectivity in its reaction with other
chemical species (Nriagu, 1994). Egs. (28) and (29) depict photoreac-
tions of titanium dioxide-sorbed Hg, as an example of mineral-Hg
complex (Nriagu, 1994):

ey +Hg* —Hg’ (26)

2hy, +He"—Hg*" 27)
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Fig. 5. Possible Hg redox reactions on particle surface induced by photoelec-
tron and photo-hole.

TiO, + Hg** —[TiO, — Hg]*" (28)

[TiO, — Hg[*" 2 [Ti0, 2eg,...2h3, — Hg]* —[Ti0,...2h{] +He’  (29)

Furthermore, where charge recombination is feasible, irradiated
semiconducting minerals will be inefficient at carrying out photoreac-
tions of Hg species. Kinetic and thermodynamic factors play roles in
circumventing the unwanted recombination reactions of electron-hole
pairs. Thermodynamically, separation of photo-generated carriers oc-
curs when the Fermi levels of semi-conducting particle and the neigh-
boring water are in thermodynamic equilibrium, causing semi-
conductor interfacial band bending and potential difference gradient
(Gerischer, 1979; Langford and Carey, 1987). In the electrical field
induced by the band bending, photoelectrons usually travel in opposite
path from holes (Stumm, 1992). Kinetically, this depends on the rate of
either thermal reaction or photoreaction. Although, the main factors are
the extent of overlap of the distribution of energy levels of solute species
as well as the degree of exergonicity of the interfacial electron transfer
(Gerischer, 1979).

3.2.3. Particle-induced ROS and Hg redox reactions

It is also feasible to have some ROS generated via the reaction of the
ecp and hy, with water by redox reaction or interfacial electron transfer
(Kisch, 2013; Nosaka and Nosaka, 2017). This photo-catalyzed transfer
of electron mechanism may involve the removal of electron from the
valence band to the conduction band of naturally occurring transition or
non-transitional metal oxides and transfer it to Oy with corresponding
generation of superoxide anion radical, O; . 10, also has enough single-
electron redox potential to compete with Oy in accepting the photo-
generated electron to produce superoxide radical, O; (Buettner,
1993). Generally, the primary conditions under which superoxide anion
radical is generated are direct-surface oxygen electron transfer, photo-
induced electron transfer, the decomposition of hydrogen peroxide
and surface intermolecular electron transfer (Georgiou et al., 2015). The
photo-generated superoxide anion radical may be adsorbed on the

Science of the Total Environment 931 (2024) 172845

surface of minerals where it could saturate their positively charged sites
(Georgiou et al., 2015).

ROS, such as hydroperoxyl radical, has been found to play a major
role in reduction of Hg(II) in water (Pehkonen and Lin, 1998; Vaughan
and Blough, 1998; Zepp et al., 1987). The following series of reactions
would be feasible in natural water environment owing to reduction of
Hg(1I) by ROS that would be formed:

Hg** +20; —Hg" + 20, (30)
Hg** +HO,—»Hg" +0, +H* (31)
Hg' +HO,—»Hg’ + 0, + H" (32)

3.2.4. Light attenuation effects of SPM affecting Hg photoreactions

An indirect way for SPM to play a role in Hg photochemistry lies with
the effects on the quality and intensity of solar radiation (Costa, 2000)
due to light absorption or scattering by particles (Castelle et al., 2009;
Qureshi et al., 2010; Vost et al., 2011). Previous studies usually used the
comparison between filtered and unfiltered samples to examine this
light attenuating effect of SPM on photoreduction of Hg(II). It was noted
that the Hg® production plateau was 30 % higher for filtered lake water
samples (Garcia et al., 2005a), consistent with many other findings that
lakes with greater SPM had lower rates of Hg® formation (Tseng et al.,
2004), and thereby suggesting the radiation reducing effect of SPM. The
similar effect was also reported for coastal shelf sites where lower Hg
reduction rate constants were observed with higher total suspended
solids (TSSs) (Whalin et al., 2007). The authors ascribed this reduction
rate to high levels of TSSs in the water which reduced solar penetration.
On the contrary, it was reported that filtration of water obtained from
French Guyana had no impact on Hg(II) photoreduction in the presence
of light, but decreased the formation of Hg® in the absence of light
(Beucher et al., 2002).

Castelle and coworkers reported that a high level of SPM might be
established as a significant factor affecting the Hg® generation in surface
water by preventing penetration of light (Castelle et al., 2009). Light is
needed for development of phytoplankton and thus, a reduced light
penetration might lead to decreased development of phytoplankton that
may be required in the biotic Hg reduction (Mason et al., 2012). The role
of colloids and microbes on kinetics of gross photooxidation and
photoreduction of Hg was investigated (Qureshi et al., 2010). It was
found that neither colloids nor microbes noticeably impacted the
oxidation and/or reduction kinetics as the pseudo-first order rate con-
stants for gross reduction in filtered samples were similar to or slightly
more than the rate constants for Hg reduction in unfiltered water sam-
ples (Mason et al., 1995; Strode et al., 2007). However, it was noted that
abiotic Hg reduction is more than biotic reduction close to the surface of
the ocean and it was ascribed to decreased penetration of light within
the ocean column.

3.2.5. Methodological aspects in particles-involved Hg photochemistry
Using conventional filtration methods, a few studies have included
experimental design to account for the role of SPM during Hg photo-
chemistry experiments (Amyot et al., 1997, 2000; Lopez-Munoz et al.,
2011; Luo et al., 2020; Mann et al., 2015; O’Driscoll et al., 2018; Wang
et al., 2015). The filtration can enable the observation of the effects of
SPM on Hg photoreactions when compared to unfiltered water samples,
and in some cases amending the SPM concentrations in the ambient
water by using the filtered particles could facilitate this observation
(Wang et al., 2023). The filtration-separated particles could be analyzed
for particulate Hg species, although there remain technical and experi-
mental challenges in determining Hg(IT) and/Hg® on the particles (Du
et al., 2023; Mann et al., 2015; Wang et al., 2023). Since Hg0 can be
present in both purgeable and particle-bound (potentially non-
purgeable) forms, with the former being used as a proxy of total Hg®
in most previous studies due to the difficulties in determining the latter,



P.O. Oladoye et al.

it is necessary to measure particulate Hg® as well. Thermal desorption
analysis at different temperatures has been shown to be able to differ-
entiate Hg0 and Hg(II) bound to particles (Liu et al., 2006)(Hojdova
et al., 2009; Wang et al., 2015, 2023; Windmller et al., 1996), but it
might not be an accurate quantitative method due to the potential
overlap in the Hg(II) and Hg releasing temperatures.

Although filtration is useful for observing the effects of SPM on Hg
photochemistry, it provides limited information on how SPM is involved
in Hg photochemical reactions. To examine the exact role of SPM in Hg
photoreactions, methods used in studies related to photocatalytic
reduction of Hg(Il) using synthetic catalysts (e.g., TiO3) and photore-
action dynamics of other contaminants on oxide mineral surfaces could
be useful. A hole scavenger (e.g., formic acid) is often used in Hg(II)
photocatalytic reduction studies, since Hg(II) is presumably reduced by
photoelectron in the system, and the enhanced Hg(Il) reduction after
hole scavenging could validate the role of electron (Wang et al., 2004).
Instrumental monitoring of electron—hole charge carriers and ROS
using molecular spectroscopies such as electron paramagnetic resonance
spectroscopy and infrared spectroscopy and addition of individual ROS
scavengers (e.g., isopropanol for -OH and histidine for '0,) may help
illustrate the reaction pathways (Schneider et al., 2014). It should be
noted that these studies are often conducted under controlled conditions
(e.g., low temperature) by using synthetic catalysts (sometimes well-
defined single crystals), and the techniques used there may have
limited applicability to studying natural aquatic particles.

4. Concluding remarks

Overall, the roles of suspended particles on Hg cycling are critical in
process and at the same time somewhat complex. As indicated by the
various mechanistic pathways of aquatic Hg(II) photoreduction, it is
evident that heterogeneous photoreductions, and not only homogenous
photoreductions, contribute to aquatic photochemistry of Hg species.
Both inorganic minerals and organic or OM-coated particles could pro-
vide a consistent source of reactive intermediates following photoexci-
tation and photolysis, which may be able to mediate Hg photooxidation
and photoreduction pathways. For particle bound Hg, irradiation could
result in the formation of Hg® via photo hole-electron pair formation or
internal transfer of electron. These plausible pathways imply that, in
addition to playing a role of light attenuation, suspended particles have
the capability of facilitating the reduction of Hg(Il) in water, which
warrants future studies.

Moreover, as a matter of emphasis, it is germane to consider par-
ticulate Hg® when studying the cycling of Hg species in aquatic envi-
ronment, sequel to the various heterogeneous pathways highlighted in
this paper. The absence of inclusion of particulate Hg® might affect the
accuracy of magnitude of Hg® reported to have been produced from a
typical Hg(II) photoreduction study. In addition, the presence of errors
in the estimation of Hg® will have pronounced effect on the modelling of
biogeochemical cycling data as inaccurately estimated Hg® will give rise
to inaccurate model input data. Thus, considerations of the mechanistic
pathways of photoreduction of aquatic Hg(II) highlighted in this article
is important to obtain accurate data on Hg® production and Hg cycling in
aquatic environment, in particular relevant to atmospheric-water sur-
face Hg exchange.
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