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Abstract—In recent decades, blackouts have shown an in-
creasing prevalence of power outages due to extreme weather
events such as hurricanes. Precisely assessing the spatiotemporal
outages in distribution networks, the most vulnerable part of
power systems, is critical to enhancing power system resilience.
The Sequential Monte Carlo (SMC) simulation method is widely
used for spatiotemporal risk analysis of power systems during
extreme weather hazards. However, it is found here that the
SMC method can lead to large errors as it repeatedly samples
the failure probability from the time-invariant fragility functions
of system components in time-series analysis, particularly over-
estimating damages under evolving hazards with high-frequency
sampling. To address this issue, a novel hazard resistance-based
spatiotemporal risk analysis (HRSRA) method is proposed. This
method converts the failure probability of a component into
a hazard resistance and uses it as a time-invariant value in
time-series analysis. The proposed HRSRA provides an adap-
tive framework for incorporating high-spatiotemporal-resolution
meteorology models into power outage simulations. By leveraging
the geographic information system data of the power system and
a physics-based hurricane wind field model, the superiority of the
proposed method is validated using real-world time-series power
outage data from Puerto Rico, including data collected during
Hurricane Fiona in 2022.

Index Terms—distribution network, hazard resistance, hurri-
cane, power outages, Puerto Rico, risk analysis, spatiotemporal.

I. INTRODUCTION

S one of the most critical infrastructures of modern

societies, power systems have been designed to supply
electricity under normal and abnormal circumstances, e.g.,
system contingencies [1], [2]. However, recent years have
witnessed increasing numbers of catastrophic outages in power
systems under extreme weather events [3]. For instance, both
Hurricane Fiona in 2022 and Hurricane Maria in 2017 brought
down the Puerto Rico power grid, resulting in complete
blackouts [4], [S]. Reports indicate that over 80% of major
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power outage events in the U.S. between 2000 and 2021 were
weather-related. According to the North American Electric
Reliability Corporation [6], the number of power outages
caused by extreme weather events is on the rise; annual
weather-related power outages have increased by about 78%
in this decade compared to the last decade [7].

Compared to transmission networks, distribution networks,
which have lower infrastructure resistance, are more Ssus-
ceptible to extreme weather events such as hurricanes. The
Puerto Rico power utility reported that more than half of
its distribution feeders were damaged during Hurricane Fiona
in September 2022 [8]. Analyzing the spatiotemporal power
outages in distribution networks during extreme weather events
is critical for fault detection and localization [9]. Accurately
forecasting outages in distribution networks is also beneficial
for capturing supply-demand imbalances in power system
dispatch and emergency control, ensuring system stability.
Moreover, by understanding these outages’ spatiotemporal
patterns, system operators can more accurately predict fu-
ture outages under intensifying extreme weather events in a
changing climate. This understanding will further assist power
utilities in designing climate-resilient networks [10].

To investigate weather-associated spatiotemporal outages of
power systems, the Sequential Monte Carlo (SMC) simulation
method has been extensively adopted in existing studies [11]-
[17]. Compared to the Markov method, which is more suitable
for small-scale systems with lower computational burden in
analyzing stationary random processes such as common cause
failures in power system reliability analysis [18], [19], the
SMC simulation method serves as a powerful tool for risk
assessment, capable of handling complex systems with nu-
merous components. The SMC method determines the failure
probability of each component at every time interval based on
the fragility as a function of weather intensity [11]. Subse-
quently, the operational status of the component is sampled
by generating a uniform random number that is compared to
the failure probability at each time interval.

However, it is noteworthy that most existing infrastructure
fragility functions describe the probability of failure given the
hazard intensity due to the uncertainty in component resistance
[20], [21]. Applied to model power outages during persistent,
temporally evolving hazards such as hurricanes, the SMC
simulation method implies that component resistance changes
over time by sampling the fragility at each time interval during
a temporal simulation. Thus, a component considered resilient
in the current sampling interval may suddenly become vulner-
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able in the next, even when encountering a similar or smaller
hazard. When integrated with high-resolution spatiotemporal
hazard models, the SMC method generates simulation results
with what can be termed the ‘failure probability curse’:
a contradiction between sampling frequency and simulation
precision. High-frequency sampling increases the likelihood of
each component falling into a failure state due to the temporal
accumulation of failure probabilities, leading to an overestima-
tion of power outages. Even if the failure probability is scaled
by dividing it by the number of time intervals to reduce the
failure probability [12], [22], the issue of sampling frequency
remains unsolved since time intervals are determined by the
arbitrarily chosen simulation duration. Moreover, due to the
lack of comparison with real-world spatiotemporal power
outage cases and the absence of applying high-resolution
meteorology models for hazard simulations, this issue has not
been prominently highlighted.

To address this issue, we develop a high-precision spa-
tiotemporal outage simulation method that is adaptive to the
hazard simulation resolution. We propose a novel spatiotempo-
ral risk analysis framework that accounts for the uncertainty of
time-invariant hazard resistance. Unlike the SMC simulation
method that applies the failure probability in time series analy-
sis, the proposed method considers the hazard resistance to be
an inherent characteristic of a component and time-invariant
throughout the time-series analysis. The hazard resistance is
derived by converting it from the failure probability.

Based on the proposed risk assessment method, this paper
performs real-world case studies that are traced back to the
power outages in Puerto Rico during Hurricanes Fiona in
2022 and Maria in 2017. The contributions of this paper are
summarized as follows.

(1) This paper provides an interdisciplinary study that
intersects models and datasets from the fields of power systems
and meteorology. The high-resolution geographic information
system (GIS) data of the Puerto Rico distribution network with
a feeder-level load profile is collected and introduced in this
paper. For the hazard simulation, a physics-based hurricane
wind model for generating the spatiotemporal wind field is
incorporated.

(2) A novel hazard resistance-based spatiotemporal risk
analysis (HRSRA) method for time-series distribution network
outages is introduced. By converting the failure probability
into the hazard resistance of each component, our proposed
risk analysis framework addresses the challenges posed by
the ‘failure probability curse’ and is adaptive to varying
resolutions of hazard simulation.

(3) We validate the superiority of the spatiotemporal sim-
ulation results from the proposed HRSRA against the SMC
simulation method using observed outage data from Puerto
Rico, recorded by the local power utility.

This paper is organized as follows. Following the intro-
duction, Section II introduces the proposed methods and
datasets used for quantifying the spatiotemporal distribution
network outages during hurricanes. In Section III, the proposed
methods are validated by the real-world case study. Section IV
concludes this paper.
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Fig. 1. Overview of the proposed framework for quantifying spatiotemporal
power outage in distribution networks during hurricane events.

II. METHODS AND DATASETS

An overview of the proposed methods and the datasets used
is shown in Fig. 1. We use a physics-based spatiotemporal
tropical cyclone wind field model to simulate the hurricane
hazard. The hazard simulation is applied to a high-resolution
distribution network model of Puerto Rico using GIS data and
feeder-level power flow datasets. Based on the meteorology
and power system models, we develop a hazard resistance-
based risk analysis framework that is used to quantify the
spatiotemporal power outage during non-stationary extreme
weather events. Instead of sampling the failure probability
over time, we establish a time-invariant resistance distribution
for the power system infrastructure. Under high-resolution
time-varying hazard simulations, this risk analysis framework
enables a more accurate estimation of distribution network
outages.

A. Puerto Rico Distribution Network

1) High-Resolution GIS Distribution Network: High-
resolution GIS data of the Puerto Rico distribution network
infrastructure was obtained from the Puerto Rico Electric
Power Authority (PREPA) through Puerto Rico Innovation
and Technology Service [23]. The Puerto Rico distribution
network is characterized by four voltage levels (4 kV, 7 kV,
8 kV, and 13 kV). This high-resolution GIS data includes the
topology of the Puerto Rico distribution network, coordinates
of substations, and coordinates of distribution poles.

Load demand profile datasets of all 296 substations with 956
operational distribution feeders updated in 2022 were sourced
from PREPA and LUMA Energy, the local system operator
and power utility of the Puerto Rico power grid serving a total
population of 3.2 million [8]. The total peak load demand of
Puerto Rico is 2751 MW.

Fig. 2 depicts the example of an 8kV substation named
Luquillo, located on the northeast coast of Puerto Rico. The
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figure displays GIS information for its three distribution feed-
ers, with each feeder highlighted in white. The detailed feeder-
level GIS information of Puerto Rico distribution networks
enables the high-resolution spatiotemporal comprehensive risk
analysis of the networks’ performance during hurricane events.

Substation: Luquillo (8kV)

=

Fig. 2. High-resolution geographic information system data of the Puerto
Rico distribution network: An illustration of the Luquillo Substation at 8 kV
with three distribution feeders, each highlighted in white at the bottom.

2) Power Outage Data: Spatiotemporal customer outage
data of the Puerto Rico power grid during Hurricane Fiona on
September 18, 2022, was recorded every 10 minutes by LUMA
Energy [24]. The power outage datasets were categorized into
seven distinct regions: Ponce, Mayaguez, Arecibo, Bayamon,
Carolina, Caguas, and San Juan, as shown in Fig. 3(a), which
are consistent with PREPA’s operational divisions.

Although a catastrophic blackout (from over 50% of cus-
tomers with electricity directly to 0%) happened in the Puerto
Rico power grid at approximately 18:00 UTC on September
18, 2022, during Hurricane Fiona, we note that the power
outage in the early stage of this event is due to distribution
network failures rather than transmission network failures.
Therefore, to focus on the behavior of the distribution net-
work, we chose the spatiotemporal power outage data in the
time interval between 0:00 UTC (before the occurrence of
damage) and 16:00 UTC, September 18, 2022, as a basis
to validate our proposed method. The power outage data
related to corresponding regions is shown in Fig. 3(b). As
most distribution networks of power grids operate on radial
topologies, as illustrated in Fig. 4, each substation consists of
several distribution feeders that deliver electricity to end users.
Damage to distribution poles or lines due to extreme wind
events within a distribution feeder will trigger the overcurrent
relay protection of the circuit breaker or the fuse cut-out due
to short-circuit conditions, resulting in the whole feeder losing
power [25], [26]. Compared to outages at the substation level,
outages at the distribution feeder level are more representative
of distribution network faults and commonly simulated in the
existing research [15], [27]. Therefore, in this paper, power
outages are analyzed at the feeder level to compare with the
real-world outage data.
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Fig. 3. Seven regions of the Puerto Rico power grid and their corresponding
percentage of customers with electricity. (a) Puerto Rico power grid opera-
tional divisions. (b) Regional and total power outage data during Hurricane
Fiona on September 18, 2022.
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Fig. 4. Diagram of a distribution network.

B. Tropical Cyclone Wind Field Simulation

There are several methods that are commonly employed
to simulate tropical cyclone (TC) winds. The full-physics
numerical models, such as the Weather Research and Forecast
(WRF) model [28], calculate TC winds by solving the primi-
tive equations that govern the atmospheric dynamic and ther-
modynamic processes. While these methods are recognized for
their accuracy in hazard forecasting, they might not provide the
most accurate estimation for hindcasting of historical storms,
and their computational intensity makes them less suitable
for high-resolution spatiotemporal risk assessment tasks. To
efficiently evaluate the wind hazards in power system risk
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Fig. 5. Comparison of uncertainties considered in the Sequential Monte Carlo (SMC) method (Left) and in the proposed HRSRA (Right). Both methods are
based on the same fragility function. SMC samples the system state based on a fragility function with uncertainty in the time-varying failure probability. We
redefine the uncertainty into the time-invariant hazard resistance distribution of all components.

analysis, simplified TC wind profile models (e.g., the Holland
model [29]) driven by observed TC characteristics are used to
simulate wind fields of TCs in state-of-the-art power systems
research [12]-[14], [17], [30]. However, given the combined
effects of a hurricane’s rotation and translation, its actual wind
field exhibits significant asymmetry. Using symmetric models
can lead to large inaccuracies in high-resolution spatiotemporal
power outage assessment as they ignore the asymmetric winds
related to the environment airflow (in the same direction as TC
motion) that TCs are embedded in, and thus they can lead to
overestimates (underestimates) of the wind speed on the left
(right) side of TC motion in the Northern Hemisphere [31].

In this study, we employ a physics-based wind profile model
[32] that considers both the TC inner core and outer radii
dynamics to simulate the wind profile. Then by combining
the TC wind profile with the environmental background wind
estimated from TC translation speed according to [31], the
high-resolution asymmetric wind fields for a hurricane can
be generated efficiently. The accuracy of this physics-based
model has also been validated and utilized for simulating
TC-related hazards such as wind, rainfall, and storm surges
in risk analysis [33], [34]. To simulate the wind field of
Hurricane Fiona, we use historical TC track data (Hurricane
Fiona in 2022) obtained from the International Best Track
Archive for Climate Stewardship (IBTrACS) at the National
Center for Environmental Information of the National Oceanic
and Atmospheric Administration (NOAA) [35]. This dataset
provides a time series of TC locations, maximum sustained
winds, and radius of maximum winds.

The spatiotemporal TC model generates a 1-minute sus-
tained wind field. However, due to the compounded effects
of wind turbulence and sustained wind, the resulting impact
on infrastructure is substantially magnified. Consequently,
infrastructure fragility analysis is widely conducted under
the conditions of 3-second gust wind [36], [37]. Therefore,
we convert the sustained wind into a gust wind field by
multiplying it by a 3-second gust factor. Here, the 3-second
gust wind factor G+ for 1-minute sustained wind is chosen to
be 1.49 according to [36].

C. Hazard-Resistance Spatiotemporal Risk Analysis Method

Instead of using the SMC method, we propose a novel
HRSRA method for time-series analysis of distribution net-
work outages during the wind intensity evolution process.
The uncertainty considered in the SMC method comes from
the time-varying failure probabilities of each component.
However, the proposed HRSRA method considers that the
uncertainty of power outage simulation lies in the probability
distribution of the distribution feeders’ hazard (wind) resis-
tances.

For given distribution feeder sets Zy in the distribution
network G, fragility functions are used to represent the rela-
tionship between component failure probability and hazard in-
tensity. In particular, the material strength properties of power
system components against natural hazards are widely recog-
nized to have a lognormal distribution [11], [20]. Therefore,
the fragility function for the distribution feeder is characterized
as the lognormal cumulative distribution function (CDF), and
the failure probability of a distribution feeder under a certain
hazard intensity is determined by

P(s =0jw) = [; (lnw—)\)} (1)
where s refers to the damage state of the distribution feeder,
and here s = 0 indicates the component is damaged; [ is the
logarithm of scale; A\ is the logarithm of location; ¢ denotes
the CDF of normal distribution.

As shown in Fig. 5, in the SMC method, the time-varying
failure probability of component ¢ € Zy, that is, f;(t) =
P(s; = O|w;(t)) is calculated based on Equation (1) combined
with the current wind intensity at every time step ¢ € 7.
Then, a uniformly distributed random number r;(¢) ~ U(0, 1)
is generated at every time step ¢t € 7 for sampling the failure
status as follows:

SMC (1) —
st = {
i€ZpteT
where s7MC(¢) is 0 if the distribution feeder experiences an
outage at time step ¢ € 7 or earlier, and 1 otherwise.

0,7i(t) < fi(t) or s7MC(t—1) =0
1, else 2)
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As mentioned in the Introduction, when the SMC method
is applied to time-series power outage simulations during
evolving hazards such as hurricanes, it encounters the ‘failure
probability curse’, meaning that higher sampling resolutions
can lead to a greater overestimation of component failures.
Here, we provide a theoretical analysis of this issue. It can be
observed from Equation (2) that the status of the component
is examined at every time step during this time series analysis.
For a sampling period T' with a sampling interval of AT, the
SMC method samples the failure status n times based on the
failure probability obtained from the fragility function, where
n = T/AT. Given that each sampling event is an independent
probabilistic occurrence for a component ¢ € Zy, the obtained
failure probability up to time 7" is 1 — []7_, (1 — fi(tx)).
When applying the SMC method to a spatiotemporal risk
analysis, a higher sampling frequency, which implies a great
number of sampling times n, tends to result in a higher failure
probability. Therefore, there is a contradiction between the
high-resolution hazard simulation and the accuracy of the
SMC-based spatiotemporal risk analysis.

To avoid the failure probability curse of the SMC method,
the proposed HRSRA converts the failure probability distribu-
tion to the hazard resistance distribution. As illustrated in Fig.
5, reflecting the original meaning of the fragility function, we
define the hazard resistance for distribution feeder 7 € Z; to be
RY indicating failure s; = 0 when the wind intensity exceeds
RY. This hazard resistance is time-invariant but varies over
the distribution feeders, according to the fragility function.
Given that the probability of a component’s hazard resistance
being less than a hazard intensity is equivalent to its failure
probability under the hazard intensity, that is, the CDF of R}
is Frw (w) = P(RY < w) = P(s = O|w), one can generate
samples of R}V using the inverse transformation method and
Equation (1), as

RY = Fpu (1)
=exp(A+3-071(ry)),i €Iy

where ®~1(-) is the inverse of the standard normal CDF
and r; ~ U(0,1) is a sample from the standard uniform
distribution. By using the above hazard resistance function,
the sample space of failure probability is mapped into the
sample space of hazard resistance. In every outage simulation
using the proposed HRSRA method, a distribution feeder is
assigned a hazard resistance that remains constant throughout
the time-series analysis. Therefore, the proposed HRSRA
method avoids the overestimation of failure probability caused
by high-frequency sampling in the SMC method by using the
time-invariant resistance function rather than the time-varying
failure probability from fragility functions.

Specifically, in Appendix A, we provide a theoretical proof
demonstrating the equivalence of the inverse transformation
from failure probability to the above-defined hazard resistance.

Algorithm 1 summarizes the procedures of the proposed
HRSRA method for the distribution network outage simula-
tion. For a given distribution network G with a set of distri-
bution feeders Z¢. In this Algorithm, we execute the hazard
resistance sampling for all distribution feeders prior to the
time-series simulation. The hazard resistance of a distribution

3)

Algorithm 1 Distribution Network Outage Simulation with
Hazard-Resistance Uncertainty
1: Data Input: Number of simulations N, distribution net-
work G, sets of distribution feeder Zy, simulation time
period 7T, hurricane track data;
: for j=1to N do
: Initialize counter, distribution feeder status s;(0) =
1,Vi € Z, system failure status py,; ; = 0, and system
demand loss L,,s = 0;
4:  Generate a random number r; ~ U(0,1) for the i-th
feeder;
5:  Calculate hazard resistance of each distribution feeder
by RY = exp(Ry + Bu® 1 (ri)), Vi € Iy;
for t € T do
Generate boundary-layer spatiotemporal wind field of
hurricane W®X¥Xt : (g, 4, t),t € T

[SSI )

8: Transfer the sustained wind field to 3-second gust
wind field wg (o, ¥, t) = G, - w(d, ¥, t);
9: for i € 7y do
10 Calculate the 3-second gust wind speed
wea (i, Wi, t) at location (¢;, ;) at time ¢;
11: if RY < wg(¢i,1i,t) or s;(t — 1) =0 then
12: The i-th feeder fails, record s;(t) = 0;
13: Calculate system 1oss Ly s(t) = Lgys(t)+L;(1);
14: else
15: Record s;(t) = 1, Lgys(t) = Lgys(t);
16: end if
17: end for
18: Calculate system failure status at time ¢ : pail,; () =

Lays(t)/ Ziezf Li(t);
19: end for
20: end for

21: return Ppy = [Pt 1s - - > Prait N -

feeder is time-invariant during the time-series analysis. At
simulation time ¢ € 7T, the wind speed for distribution i,
that is, w(¢;, 14, t) is calculated at location (¢;,;) based
the generated hurricane wind field and the GIS datasets of
distribution feeders. Then, we assign the following binary
status to indicate the operation condition of the distribution
feeder ¢ during the evolving hazard, which is described as the
following equation:

si(t) = si(t = 1) - Ly (g ycrw i €Lpt €T (4)

where s;(t) is a binary variable with values 1 or 0 denoting
the functional or the malfunction of the distribution feeder,
respectively; I denotes an indicator function that is 1 if current
gust wind wg(¢i,¥;,t) < RYY , and 0 otherwise. If the
distribution feeder malfunctions, the load demand L;(t) will
be included in the total system loss L, (t) at simulation time

teT.

III. VALIDATION

In this section, the distribution network outages of Puerto
Rico during Hurricane Fiona in 2022 and, to a lesser ex-
tent, Hurricane Maria in 2017 are retraced. The wind field
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simulation of Hurricanes is generated using the wind profile
model driven by observed tracks. The proposed spatiotemporal
risk analysis framework for distribution network outages is
validated using the actual outage records obtained during
this catastrophic event. The results yielded by this proposed
method are then compared with those generated by the SMC
method, which serves to further validate its effectiveness and
accuracy.
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as the hurricane approaches and intensifies. The asymmetric
wind fields demonstrate a heightened wind hazard on the right
side of the storm’s track due to the counterclockwise rotation
of the storm and the environmental wind aligned with its
northwestward movement.
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Fig. 7. Spatiotemporal wind field simulation of Hurricane Fiona in 2022.

A. Hazard Simulation

On September 18, 2022, Hurricane Fiona made landfall in
southwest Puerto Rico and caused a catastrophic blackout that
affected more than three million residents. Fig. 6 shows the
track and max sustained wind speed of Hurricane Fiona in
2022, as provided by the IBTrACS dataset [35]. The max sus-
tained wind speed reached over 40 m/s. To simulate the high-
resolution spatiotemporal distribution outage, the IBTrACS
track data is interpolated into 10-minute intervals, and the wind
field is generated for every 10 minutes during the hurricane
event. The generated spatiotemporal wind fields of Hurricane
Fiona at selected times are shown in Fig. 7.

It can be observed from Fig. 7 that the boundary-layer
wind speed within the Puerto Rico region demonstrated a
gradual increase from 04:00 UTC to 16:00 UTC to over 40 m/s

Fig. 8. Load demand distribution of the Puerto Rico power grid.

B. Distribution Network Outage Simulation and Comparison

The GIS information and distribution feeder datasets of the
Puerto Rico distribution network are introduced in Section II.
A. By aggregating the demand of distribution feeders under
the same substation, the load distribution across the Puerto
Rico power grid at the substation level is visualized in Fig.
8. This figure underscores the significant spatial variations
in the grid’s demand profile. The real-world spatiotemporal
outage datasets were categorized into seven regions by the
local power utility, as shown in Fig. 3. Considering the distinct
regional variations in both load and network structure, we
apply region-specific lognormal fragility functions for the
distribution network outage simulation. The fragility functions
are calibrated based on the simulated wind fields and power
outage rates from the observation during Hurricane Fiona.
To show the superiority of the proposed method, the same
fragility functions are applied to both the HRSRA and the
SMC methods for spatiotemporal risk analysis. The detailed
parameters of the fragility functions are provided in Appendix
B.

We perform 10000 simulation runs of the spatiotempo-
ral distribution outage based on both the proposed HRSRA
method and the SMC method. All 956 distribution feeders
of the Puerto Rico distribution network are included. The
simulation period is between 0:00 UTC to 16:00 UTC on
September 18, 2022, with every 10-minute simulation time
step. The observed and simulated time-series power outages
are shown in Fig. 9. The red curve shows the actual observed
outage. The blue and orange curves show the time-series mean
values of the 10000 simulation runs based on the HRSRA and
the SMC method, respectively, with a 1% to 99% quantile
range shown by the shaded area.

It can be observed from Fig. 9 that the HRSRA-based
simulation results precisely align with observed outages with
the 1% to 99% quantile area of the HRSRA results covering
the observation. However, the widely used SMC method ex-
hibits inferior performance compared to the proposed HRSRA
method. The significant discrepancy between the SMC result
and the actual observed data is due to the SMC’s time-varying
failure probability being highly sensitive to the sampling
frequency. The high-frequency sampling, particularly at a 10-
minute resolution, of the time-varying failure probability leads
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to numerous feeder outages at an early stage, which results
in substantial deviations from the actual observed outage
data. In contrast, the proposed HRSRA method addresses
this issue by transferring the uncertainty to the time-invariant
hazard resistance of each component that is determined prior
to each spatiotemporal outage simulation. Higher-resolution
(10-minute resolution) simulations of the proposed HRSRA
method present a better performance than the lower-resolution
simulations.
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precision of simulation results with actual observed data at
different temporal resolutions, the following average root mean
square error (RMSE) is defined:

N T
1

RMSE = E T g (Prai(t) *pfaiz,i(t))z

i=1

t=1

/N (5

where Prqq and pyqq s denote the actual observed and the i-th
simulated time-series outages, respectively.

TABLE I
COMPARISON OF THE AVERAGE RM SE OVER 10000 SIMULATION RUNS
BASED ON THE HRSRA AND THE SMC UNDER DIFFERENT TEMPORAL

RESOLUTIONS.
) RMSE
Methods 10-min 1-hour 2-hour
resolution resolution resolution
HRSRA 1.7757 1.8935 3.3209
SMC 37.9325 16.1785 11.7423

S S P PSSP ES S
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Fig. 9. Observed and simulations of total distribution network outages during
Hurricane Fiona on September 18, 2022. The curves for 10-minute HRSRA
and 1-hour HRSRA illustrate the simulations based on the HRSRA method
under 10-minute and 1-hour resolution, respectively. Similar to the SMC
method.

The regional spatiotemporal outage of simulation results
based on the proposed HRSRA and SMC methods under a 10-
minute sampling resolution with a 1% to 99% quantile range
are compared with the regional observed outages in Fig. 10.
The regional comparison also validates the superiority of the
proposed method. The SMC method overestimated the feeder
outage in all regions.

Ponce Mayaguez
100 : . . : : : 3 100 . - . : . :
‘\ —— onsened —\
~——Observed ——HRSRA
50 |——HRSRA i 50 Uncertainty of HRSRA
Uncertainty of HRSRA sme
Uncertainty of SMC
o Uncertainty of SMC o
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
S .
~ Caguas Arecibo
2 100 ] 100
‘S N N B . P~ — ——
= —— Observed —— Observed
o 50 ——HRSRA 4 50 ——HRSRA
<9 Uncertainty of HRSRA | Uncertainty of HRSRA
[ sMc | sMc
£ o Uncertainty of SMC_| | N | | o Uncertainty of SMC h " —
S 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
2
g Bayamon Carolina
5 100 ] 100 =
2
a —oObserved | — Observed
O g l[—HRsRA 1 50 [|[——HRSRA
5 Uncertainty of HRSRA Uncertainty of HRSRA!
sMc sMc
g o Uncertainty of SMC ) Uncertainty of SMC
g 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
[0}
% SanJuan
$ — ]
—— Observed 1
50 [[—HRSRA
Uncertainty of HRSRA
smc
B Uncertainty of SMC
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
Time (UTC)

Fig. 10. Regional spatiotemporal outage comparison between observed and
simulations based on the HRSRA and SMC methods.

Intuitively, an increase in the temporal resolution of simu-
lation should improve the accuracy of a spatiotemporal risk
analysis method for power system outages. To compare the

Then, the average RM SE of 10000 simulation runs based
on the proposed and SMC methods are evaluated under
different temporal resolutions such as 10-min, 1-hour, and
2-hour intervals, as shown in Table I. It can be seen from
this table that with the improvement of hazard temporal
resolution (from 2-hour to 10-minute resolutions), the average
RMSE of the proposed method decreases from 3.3209 to
1.7757 and exhibits significantly higher accuracy than the
SMC results under all temporal resolutions. In addition, we can
also observe the dilemma of the SMC, that is the contradiction
between the simulation’s temporal resolution and the accuracy
of the result. The high temporal resolution simulation, i.e.,
that with high sampling frequency, suffers from the ‘failure
probability curse’ due to increased cumulative failure prob-
ability caused by excessive sampling frequency. When the
sampling interval is reduced from 2 hours to 10 minutes, the
RMSE compared to the actual observed time-series outage
data significantly increases. Conversely, although increasing
the sampling interval to a lower resolution such as a 4-
hour resolution can reduce the RMSE, the simulation under
such a long simulation interval cannot provide the meaningful
high-resolution temporal simulation needed to help system
operators accurately estimate system status on a real-time
operation timescale. However, the proposed HRSRA avoids
this issue by converting the time-varying failure probability to
the time-invariant hazard resistance of each distribution feeder
in the distribution network.

C. Additional Analysis for Hurricane Maria

To further investigate the performance of the proposed
method in other extreme events, we consider another
widespread power outage event in Puerto Rico during Hur-
ricane Maria in 2017 as an example. Hurricane Maria, a more
intense hurricane (Category 5) compared to Hurricane Fiona,
made landfall in Puerto Rico on September 20, 2017, with
maximum sustained wind speeds exceeding 70 m/s [38]. The
spatiotemporal wind fields of Hurricane Maria generated by
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the same method for Hurricane Fiona at selected times are
shown in Fig. 11.

Fig. 12 compares 10000 simulations of total distribution
network outages during Hurricane Maria generated by HRSRA
and SMC under a 10-minute sampling resolution. Although
comprehensive outage data like those for Hurricane Fiona
is not available, PREPA (the power utility in Puerto Rico
in 2017) reported an outage affecting approximately 56.3%
of total customers around 8:00 am UTC without providing
further updates [38]. Based on the limited data, and despite
minor differences in the grid between 2017 and 2022, the
proposed HRSRA provided estimates very close to the actual
observation. It is evident that the SMC method significantly
overestimated the failure rate, with around 80% of customers
experiencing outages around 8:00 am UTC.
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Fig. 11. Spatiotemporal wind field simulation of Hurricane Maria in 2017.

100 - —— HRSRA

Uncertainty of HRSRA
SMC
Uncertainty of SMC

80 Observed outage
60
40

20

Percentage of customers with electricity (%)

O P O O PO O D
S L PSSP SLSS
SHFI FFFEFEF{E S

Time (UTC)

P P TP
S LSS S
NN G IICING

Fig. 12. Observed and simulations of total distribution network outages during
Hurricane Maria on September 20, 2017.

IV. CONCLUSION

Concerning distribution network outages during extreme
weather events, this paper has presented a novel risk anal-
ysis framework for spatiotemporal power outage simulation
during such persistent and temporally evolving hazards. In
contrast to the current widely used Sequential Monte Carlo
(SMC) simulation method, which samples failure probability
over time for each component, our proposed risk analysis
method avoids the overestimation of power outage by apply-
ing the time-invariant hazard resistance of each component.

By integrating a physics-based high-spatiotemporal-resolution
hurricane wind field model and the geographic information
system data of the real-world power system, the proposed
spatiotemporal risk analysis method has been used to trace
back the Puerto Rico power outages during Hurricane Fiona
in 2022 and Hurricane Maria in 2017. The results from the
proposed method capture the observations well. The com-
parison with the SMC results also validates the superiority
of the proposed method under different temporal resolutions.
The proposed method attains better performance at higher
temporal resolutions, which indicates the simulation results
are independent of sampling frequency. Thus, the proposed
method offers promising application prospects under refined
hazard simulations with higher spatiotemporal resolutions. It
can be further utilized by power utilities and grid operators to
accurately quantify the risk of real-time distribution network
losses with the support of weather forecasting data.

V. APPENDIX A

The fragility function in Equation (1) represents the proba-
bility that a component will remain in a specific damage state
s = 0 given a certain hazard intensity w. For wind hazards, the
fragility function can be expressed as Fyy (w) = P( w),
where W is the random variable representing wind speed. Let
r be a sampling random variable that is uniformly distributed
with » ~ U(0,1). For any given v in [0, 1], it follows from
the properties of the uniform distribution that: P(r < u) = w.
Then, one can derive

P(r < Fy(w)) = Fw (w) (6)
Since the cumulative distribution function is non-decreasing,
by the properties of inverse functions, we have

P (Fy'(r) <w) = Fi(w) (7

As the failure probability of a component under a hazard
intensity is equivalent to the probability of the component’s
hazard resistance being less than the hazard intensity, we have
P = (s = Olw) = P(R" < w), where R" is the random
variable of hazard resistance. Then, Equation (7) follows that:

P(Fy'(r) <w) =P(RY <w) (8)

Thus, R" has the distribution of Fy;,' (r) with r ~ U(0, 1).

For any component 4, its hazard resistance R}" can be sampled

from ;' (r) by ar; ~ U(0,1). Let F}gvlv denote the CDF of

RWY. Since P = (s = 0|lw) = P(RY < w), Fyy(w) can be
also represented by Frw (w). as shown in Equation (3).

VI. APPENDIX B

The parameters 8 and A of the fragility functions for the
seven regions of the lognormal CDF are calibrated by the
simulated winds in mph and power outage rates in percentage
during Hurricane Fiona from the Puerto Rico local power
utility, as shown in Table II. We note that the same fragility
functions are applied to the distribution network outage sim-
ulations based on both the proposed HRSRA and the SMC
methods.
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TABLE 11
THE PARAMETERS OF THE FRAGILITY FUNCTIONS IN THE SEVEN REGIONS
OF PUERTO RICO.

Region A 8
Ponce 4.7084 0.4379
Mayaguez 4.4057 0.2061
Caguas 4.1715 0.2217
Arecibo 5.0150 0.8574
Bayamon 4.4308 0.3012
Carolina 4.2666 0.2947
San Juan 4.4443 0.4226
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