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Recent advancements in multi-mode
Gottesman-Kitaev-Preskill (GKP) codes
have shown great promise in enhancing the
protection of both discrete and analog quan-
tum information. This broadened range of
protection brings opportunities beyond quan-
tum computing to benefit quantum sensing
by safeguarding squeezing—the essential re-
source in many quantum metrology protocols.
However, the potential for quantum sensing to
benefit quantum error correction has been less
explored. In this work, we provide a unique
example where techniques from quantum
sensing can be applied to improve multi-
mode GKP codes. Inspired by distributed
quantum sensing, we propose the distributed
two-mode squeezing (dtms) GKP codes that
offer benefits in error correction with min-
imal active encoding operations. Indeed,
the proposed codes rely on a single (active)
two-mode squeezing element and an array
of beamsplitters that effectively distributes
continuous-variable correlations to many GKP
ancillae, similar to continuous-variable dis-
tributed quantum sensing. Despite this simple
construction, the code distance achievable
with dtms-GKP qubit codes is comparable to
previous results obtained through brute-force
numerical search [PRX Quantum 4, 040334
(2023)]. Moreover, these codes enable analog
noise suppression beyond that of the best-
known two-mode codes [Phys. Rev. Lett.
125, 080503 (2020)] without requiring an
additional squeezer. We also provide a simple
two-stage decoder for the proposed codes,
which appears near-optimal for the case of
two modes and permits analytical evaluation.
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1 Introduction
Quantum error correction is essential for robust

quantum information processing, as quantum effects
such as entanglement and coherence are otherwise sus-
ceptible to ubiquitous environmental noise. Bosonic
codes [1–5] are among the first codes that have led to
experiments with extended coherent storage of quan-
tum information beyond break-even [6, 7]. Exploiting
the infinite dimensional Hilbert space of oscillators,
bosonic codes are hardware efficient and promise hope
to fault-tolerant quantum computing. In particular,
recent progress in codes based on Gottesman-Kitaev-
Preskill (GKP) states provides a versatile platform
that safeguards discrete-variable information by en-
coding qubits into oscillators [8–10] and continuous-
variable information through oscillators-to-oscillators
(O2O) encodings [11–13], as summarized in a recent
review [5].

The broadened scope of quantum information pro-
tection not only supports fault-tolerant quantum com-
puting but also extends the utility of GKP codes to
enhance various quantum sensing protocols by pro-
tecting metrological resources such as squeezing and
entanglement [14, 15]. On the other hand, it is an
open question how quantum sensing techniques can
help with quantum error correction, considering that
measurement in quantum sensing is often destructive
since only classical information, such as unknown pa-
rameters, is of interest. We approach this question by
considering practical resource constraints involved in
bosonic codes. Indeed, for bosonic quantum sensing,
where infinite dimensional Hilbert space is concerned,
advantages are always analyzed with constraints so
that the problem becomes regularized.

The major resources required to engineer multi-
mode GKP codes [5, 16–21] involve the capability of
generating standard single-mode square-lattice GKP
states and applying inline quantum operations on
them, a combination that ensures universal engi-
neering of such codes. While the engineering of a
single-mode square lattice GKP state is challenging,
it can be done offline and recent experiments have
shown promise in microwaves [7, 22, 23], trapped
ions [24, 25], and optics domains [26]. Moreover,
single-mode square lattice GKP states have been cho-
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sen in various works [11, 13, 20, 27, 28] as the stan-
dardized non-Gaussian resource [29, 30] that is nec-
essary for universal, fault-tolerant quantum informa-
tion processing [31–33]. On the other hand, inline
quantum operations—specifically active components
such as single-mode squeezing and two-mode squeez-
ing operations—can be challenging to implement with
high efficiency. For this reason, efforts are devoted to
designing universal quantum processors with only in-
line passive Gaussian operations acting on off-line pre-
pared GKP states and squeezed vacuum states [34].

In this work, we tackle the resource-efficient multi-
mode GKP code design problem, focusing on mini-
mizing the number of active inline Gaussian opera-
tions. Inspired by oscillators-to-oscillators codes [11]
and continuous-variable distributed quantum sens-
ing [35, 36], we propose the distributed two-mode
squeezing (dtms) GKP codes—applicable to both qu-
dits and oscillators—that employ only a single active
element (a two-mode squeezer) and beamsplitters.
The codes function by uniformly distributing squeez-
ing to all modes and utilizing the resulting continuous-
variable correlations to improve error correction, anal-
ogous to distributed quantum sensing. See Fig. 1 for
an illustrative schematic.

In terms of code distance, our proposed dtms-GKP
qubit codes achieve comparable performance to the
codes identified (via brute-force numerical search) in
Ref. [19], while offering a significantly simplified con-
struction. For analog error correction (i.e., O2O
codes), the dtms-GKP codes provide additional en-
hancement beyond the quadratic error suppression
found in Ref. [11], without introducing additional
inline squeezing elements. To illustrate with con-
crete examples, we identify a dtms-GKP code that
encodes two qubits into three modes and surpasses
square and hexagonal GKP qubit encodings. For a
single qubit encoded into four modes, we find a dtms-
GKP code that outperforms the conventional [[4,1,2]]
qubit code [37–39] concatenated with a local GKP
code [40]. This superior performance is achieved us-
ing two beamsplitters and a single two-mode squeez-
ing operation of approximately 7dB. We also provide
simple two-stage linear decoders, which appear near-
optimal for the case of two modes, and evaluate per-
formance analytically. These compact codes are par-
ticularly well-suited for applications in quantum re-
peaters [12, 40–44] and quantum sensor networks [14].

2 High-Level Overview
We provide a high-level overview of the key concep-

tual elements, main results, and contextual relevance
of our paper. Technical machinery, derivations, and
quantitative analyses can be found in the main body
of the paper, with some details given in the appen-
dices. First, we provide the background needed to
understand the open problem that we solve. Next,

we provide a detailed summary of the main results.

2.1 Multi-mode GKP codes: Qudits-to-
oscillators and oscillators-to-oscillators

Our work concerns bosonic codes that utilize GKP
states to encode finite dimensional systems (e.g., a qu-
dit with d levels) into the infinite-dimensional Hilbert
space of the oscillators [8]. This encoding is achieved
via lattice-like structures in phase space, resembling
quadrature amplitude modulation codes in classical
optical communication [45]. GKP codes have re-
cently gained prominence in practical bosonic quan-
tum information processing [2–5], offering a poten-
tial path to optical fault-tolerant quantum computa-
tion [27, 28, 34] and long-distance quantum commu-
nication [12, 40–44].

The logical computational basis for a square-grid
GKP qudit, expressed in the position eigenstates of
the oscillator, is

|j; d⟩ :=
∑
n∈Z

|
√

2π/d(dn − j)⟩q̂ , (1)

where j = 0, 1, . . . , d − 1 denotes the d levels, n sums
over all integers Z in the ideal case and |·⟩q̂ denotes the
position eigenstate. These discrete basis states span a
d-dimensional subspace (code space) C of the infinite-
dimensional bosonic Hilbert space of the oscillator. A
generic GKP code word |Ψ⟩ ∈ C can be expanded in
the computational basis in the usual way. In phase
space, the GKP state above represents a square lat-
tice.

Pauli X and Z operations on a GKP qudit corre-
spond to linear translations in phase space,

X̂ = exp
(

i

√
2π

d
p̂

)
and Ẑ = exp

(
−i

√
2π

d
q̂

)
,

(2)
where p̂ and q̂ are the momentum and position
quadrature operators. Similar to conventional two-
level systems, the generalized Pauli X and Z opera-
tions for d-level systems induce jumps and phase flips
on the computational basis states, i.e.

X̂ |j; d⟩ = |(j + 1)mod d; d⟩ (3)
and Ẑ |j; d⟩ = ei2πj/d |j; d⟩ . (4)

An interesting state is the canonical GKP state,
|GKP⟩ := |0; 1⟩, with only a single state in the family
as d = 1. By itself, the canonical GKP state cannot
encode quantum information. However, it is a use-
ful ancillary resource in multi-mode GKP qudit codes
and, furthermore, facilitates analog quantum quan-
tum error correction [11].

Two types of GKP codes—multi-mode qu-
dit codes [5, 16–21] and oscillators-to-oscillators
codes [11, 13, 20]—have been recently proposed to fur-
ther enhance error correction capabilities. Our work
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(k = 1) dtms encoding, Ûenc = Ûdtms

Figure 1: Combining ideas from analog and discrete quantum information. (a) Encoding oscillators or qudits into many
oscillators. k data oscillators (e.g., multi-partite entangled state) or k data qudits (e.g., GKP square qubits, d = 2) are
encoded into a system of N > k oscillators via Ûenc. (b) Distributed quantum sensing. A multi-partite entangled state
is prepared by generating and subsequently distributing a bright squeezed beam (i.e., a squeezed coherent state) to many
modes. Inputs are separable probes, either vacuum or coherent states (

⊗
k

|αk⟩). This setup offers quantum enhanced sensing
of global parameters [35], such as an average amplitude or phase. (c) Distributed two-mode squeezing (dtms) GKP codes
introduced in this paper. Schematic of the dtms-GKP encoder for k = 1, inspired by oscillator codes and distributed quantum
sensing. The unitary Gaussian encoder Ûdtms comprises a single two-mode squeezer of gain G and a staircase of beamsplitters
with transmissivities ηj and phases ϕj . The block of K = N − 1 oscillators consists of canonical (d = 1) square GKP ancillae.

applies to both types of codes and, thus, we introduce
both codes below.

We begin with multi-mode qudit codes. The GKP
state referred to in Eq. (1) corresponds to a single-
mode encoding. To generate a multi-mode qudit code,
we start with a collection of k GKP qudits, one for
each bosonic mode. The t-th mode encodes a qudit
of dt levels. We can then employ a block of N − k
canonical GKP (d = 1) ancillae to encode the k qudits
into N modes by coupling all the subsystems through
a multi-mode Gaussian unitary, Ûenc, viz.

|j1, · · · , jk⟩k→N = Ûenc

[(
k⊗

t=1
|jt; dt⟩

)
⊗ |GKP⟩⊗(N−k)

]
,

(5)

where the subscript k → N denotes the number of
modes in the encoding. See Fig. 1(a) for an illustra-
tion.

Now we introduce the oscillators-to-oscillators
GKP codes. To protect an analog quantum state,
such as a bright squeezed beam or a two-mode
squeezed vacuum state, we follow a similar approach
to the qudit case. However, in this instance, the k
data modes harbor a multi-mode continuous-variable
state |φ⟩k, e.g., a multi-partite entangled state that
is beneficial for quantum sensing [36]. It has been
known for quite some time that Gaussian states and
Gaussian operations (i.e., squeezers, beamsplitters,

and phase shifts) alone cannot protect an arbitrary
oscillator state [31–33]. However, the utilization of
canonical GKP ancillae in the code, owing to their
non-Gaussian character, bypasses these no-go limita-
tions [11]. In Ref. [13], a general multi-mode encoding
was considered as

|φ⟩k→N = Ûenc

(
|φ⟩k ⊗ |GKP⟩⊗(N−k)

)
. (6)

In both multi-mode qudit codes and oscillators-to-
oscillators codes, the code design involves choosing
the number of modes N to encode k data modes, and
more importantly the choice of a unitary Gaussian en-
coder Ûenc. To achieve the best performance, generic
code optimizations were explored in Ref. [13] for O2O
codes and Ref. [19] for multi-mode qubit codes. How-
ever, the results heavily rely on numerical optimiza-
tion and the resource constraints are not taken into
consideration in these works, leading to code designs
that are potentially challenging to realize. Indeed, the
unitary Gaussian encoder Ûenc can be generic, mean-
ing that it could, in principle, require many inline ac-
tive elements sandwiched between multi-port interfer-
ometers. Inline active operations, such as single- and
two-mode squeezing, are in general challenging to im-
plement. In the optical domain, such inline squeezing
elements require a high nonlinearity while maintain-
ing a high quantum efficiency. In the microwave do-
main, inline squeezing will require the precise control
of a sequence of quantum gates [23] in a cavity-QED
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system. On the one hand, we want to reduce the num-
ber of squeezing elements as much as possible. On the
other hand, it is known that some amount of squeezing
is necessary for good code performance using unitary
Gaussian encoders [13, 18, 46]. Thus, a trade-off ex-
ists to limit the amount of squeezing (or number of
squeezers) without sacrificing too much in code per-
formance. In light of these practical considerations,
in this work, we consider minimal code constructions
of Ûenc to simplify and facilitate experimental imple-
mentation.

2.2 Main contributions
We introduce a family of codes—applicable to both

qudits and oscillators—that employ only a single ac-
tive element (a two-mode squeezer) and a multi-
port interferometer. The code operates by first es-
tablishing correlations between the noises of the k
data modes (k GKP qudits or a k-mode continuous-
variable oscillator state) and the N − k canonical
GKP ancillae through two-mode squeezing interac-
tions. Subsequently, the correlated noises are uni-
formly distributed among all ancillary modes through
the interferometer.1 For the k = 1 case, the unitary
encoder is

Û (k=1)
enc =

(
ÛSG

⊗ ÎN−2

)(
Î1 ⊗ ÛB

)
=: Ûdtms, (7)

where ÛB represents the multi-port interferometer,
ÎM is the identity operation on M modes, and ÛSG

represents two-mode squeezing parameterized by the
gain G. The inverse process is used in decoding,
Ûdec = Û−1

enc. See Fig. 1(c) for a high-level circuit
schematic. We note that the decoding operation has
the structure of first applying a two-mode squeezing
and then applying a beamsplitter to distribute the
two-mode squeezing to multiple modes. Such a struc-
ture resembles that in a distributed quantum sensing
protocol [36] (see Fig. 1(b)), except that, in the orig-
inal sensing protocol, only single-mode squeezing is
considered.

Intuitively, the success of the code originates from
the strategic splitting and distribution of the locally
amplified noises (amplified by the two-mode squeezing
device) across the larger block of ancillary modes. The
distribution process allows higher levels of squeez-
ing and, consequently, enhanced performance with in-
creasing number of modes. Due to the physical in-
terpretation of the process, we call these codes dis-
tributed two-mode squeezing (dtms) GKP codes, de-
noting the encoder as Ûdtms := Ûenc, as indicated in
Eq. (7). We will often call the codes dtms codes for
simplicity, as it is clear that all instances refer to GKP
codes.

1This technically represents a decoding perspective (asso-
ciated with Ûdec = Û−1

enc) following the noise process, which is
valuable for illustrative purposes.

Code # of modes # of act. compo.
dtms N 1

“Generic” GKP N O(N)
Repetition [19] N O(N)
Tesseract [17] 2 1

Square-[[4, 2, 2]] 4 5

Table 1: Assorted codes vs. number of active gates (e.g.,
squeezers, SUM gates) in the encoder required to construct
the code starting from square-GKP states. For example,
repetition-type codes demand O(N) SUM gates (analog
CNOTs [8]) for encoding.

These dtms-GKP codes, despite their apparent sim-
plicity, exhibit impressive performance, therefore by-
passing the need for many active elements in creat-
ing effective multi-mode bosonic codes; refer to Ta-
ble 1 and below for further discussion. For instance,
when encoding a single qubit into four modes, we dis-
cover a four-mode dtms-GKP code that outperforms a
conventional [[4,1,2]] GKP-qubit code. Additionally,
this dtms-GKP code requires only ≲ 7dB of squeez-
ing. Another notable example is the simplest dtms
qubit code involving 1 data qubit coupled to 1 canon-
ical GKP state via two-mode squeezing (N = 2 and
k = 1). Interestingly, in this scenario, we find that the
resulting dtms qubit code is akin to the recently dis-
covered Tesseract qubit code [17]. When encoding two
logical qubits with a single two-mode squeezing oper-
ation, we find a three-mode code (N = 3 and k = 2)
that is better than the square code and a four-mode
code (N = 4 and k = 2) that matches the standard
[[4, 2, 2]] code in terms of code distance. Notably, our
dtms code (N = 4, k = 2) only requires a single ac-
tive Gaussian gate, while a direct concatenation with
a [[4, 2, 2]] qubit code will require five active Gaussian
gates through a standard quantum circuit construc-
tion using CNOT gates [47]. Note that an analog
version of the CNOT is the so-called SUM gate [8],
which is an active two-mode (Gaussian) gate [48, 49].
More broadly, any “generic” GKP stabilizer code on N
modes can, in principle, be constructed by applying
some N -mode Gaussian unitary on N square GKP
states (see Appendix A for the theory of GKP codes).
By a standard analog gate decomposition [50], such a
construction requires at least N single-mode squeez-
ers. Contrariwise, the dtms codes proposed herein
calls for a single two-mode squeezer for N modes. A
specific approach of constructing an N -mode code is
to adopt concatenation to obtain repetition codes, as
detailed in Ref [19]. There the same ∼ N number of
active components such as the SUM gate is required.

We also introduce a simple linear decoder that
facilitates analytical calculations for oscillators-to-
oscillators codes as well as code distances and error
rates for dtms qudit codes. Notably, the proposed

Accepted in Quantum 2024-09-14, click title to verify. Published under CC-BY 4.0. 4



decoder demonstrates near-optimal performance for
the Tesseract-like qubit code mentioned previously.
In terms of code distance, our proposed qubit codes
achieve comparable performance to the codes identi-
fied (through a generic numerical search) in Ref. [19],
while offering a significantly simplified construction
using basic elements (a single squeezer and beamsplit-
ters). We illustrate this with numerical calculations
of code distance for N ≤ 5 modes.

Concerning oscillators-to-oscillators codes and as-
suming additive noise with standard deviation σ,
our codes enable analog noise suppression viz.
σ2 → σ4/(N − 1). This indicates noise reduction be-
yond that of Ref. [11] without introducing additional
inline squeezing elements.

The dtms codes introduced here are inspired by dis-
coveries in continuous-variable quantum information
processing, such as oscillators-to-oscillators codes [11,
13, 51], which utilize two-mode squeezing to safeguard
analog oscillator states, and the distributed quantum
sensing paradigm [35, 36], which demonstrates the
utility of a single distributed continuous-variable re-
source (e.g., squeezing) for enhanced quantum sensing
(See Fig. 1). Two-mode squeezing, in particular, plays
a crucial role in other continuous-variable quantum
information processing tasks, such as entanglement-
assisted classical communication [52–54], continuous-
variable teleportation [55] and quantum-dense metrol-
ogy [56]. Our findings further elucidate the value
of two-mode squeezing and distributed quantum re-
sources in both discrete and analog quantum error
correction.

On a practical note, our analyses have broad appli-
cability to GKP codes in itinerant-mode setups, such
as optical quantum information processors. Notable
examples include fault-tolerant quantum computing
architectures based on optical GKP states [28, 57–59]
and quantum repeaters [12, 40–44].

3 Preliminaries
In this section, we establish notation and standard

quantities used throughout the paper. We work in
natural physical units (ℏ = 1). We use boldface to
indicate finite-dimensional vectors (e.g., ξ ∈ R2N ) and
matrices, and quantum operators are denoted by hat
on the top. Vectors are in column form.

A system of N quantum harmonic oscillators
(modes) can be described by the position and mo-
mentum operators x̂ := (q̂1, p̂1, ..., q̂N , p̂N )⊤, which
have a continuous spectrum over the phase space R2N .
The canonical commutation relations between the 2N
position and momentum operators can be written in
compact notation as

[x̂, x̂⊤] = iΩÎ with Ω =
N⊕

i=1

(
0 1

−1 0

)
. (8)

A Gaussian unitary operation [60] ÛS,d acts on the
quantum bosonic system as

Û†
S,dx̂ÛS,d = Sx̂ + d, (9)

where S is a 2N × 2N real matrix and d ∈ R2N .
The transformation must preserve the commutation
relations [Eq. (8)], implying that SΩS⊤ = Ω. Any
matrix S satisfying this condition is said to be a sym-
plectic matrix and represents an element of the (2N -
dimensional, real) symplectic group Sp(2N,R).

A special class of Gaussian transformations are
(symplectic) orthogonal transformations, B ∈
Sp(2N,R) ∩ O(2N,R), where O(2N,R) is the orthog-
onal group. Practically, any symplectic orthogonal
transformation B corresponds to a multi-port inter-
ferometer. They are regarded as passive Gaussian uni-
taries as they preserve the mean occupation number.

The two-mode symplectic operations (correspond-
ing to Gaussian unitaries) relevant to our paper are
the canonical two-mode squeezing (TMS) operation,
SG, and a variable beamsplitter, Bm,n. The TMS
operation can be represented by a symplectic matrix

SG =
( √

GI2
√

G − 1Z√
G − 1Z

√
GI2

)
, (10)

where Z is the Pauli Z matrix and Ik is the identity
matrix of dimension k. For the variable beamsplitter,
let indices m, n represent the interaction between the
m-th and n-th mode. Related to two-mode squeezing,
a single-mode squeezing can be represented by a 2×2
symplectic matrix

S
(1)
G =

(√
G 0
0 1/

√
G

)
. (11)

The matrix Bm,n of a variable beamsplitter, with
transmissivity cos2 θ and phase ϕ, is given by

Bm,n(θ, ϕ) =
(

cos θR(ϕ) − sin θR(ϕ)
sin θI2 cos θI2

)
. (12)

where R(ϕ) is a single-mode phase rotation repre-
sented by

R(ϕ) =
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
. (13)

We let B50:50 := B(π/4, 0) denote a 50:50 beamsplit-
ter. Operationally, a variable beamsplitter can be
constructed from a Mach-Zehnder interferometer uti-
lizing 50:50 beamsplitters and two variable phase
shifts (θ, ϕ). Moreover, a general multi-port interfer-
ometer, represented by an N -mode orthogonal trans-
formation, B, can be constructed from an array of
variable beamsplitters [61].

For completeness, we introduce the SUM gate,
though we do not explicitly make use of such in this
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paper. The unitary SUM gate is given as ÛSUM =
e−iq̂1p̂2 . A symplectic matrix representation is,

SUM =
(
I2 −Πp

Πq I2

)
, (14)

where Πq = diag(1, 0) and Πp = diag(0, 1) are pro-
jections onto the q and p subspaces, respectively. The
SUM gate is analog to the CNOT gate for GKP
states [8, 48] and is useful for, e.g., ancilla-assisted
syndrome measurements and handling discrete vari-
able codes, such as repetition codes. Observe that the
SUM gate is an active gate since SUM ·SUM⊤ ̸= I4.

We now explain the noise model relevant to bosonic
error correction—the quantum random displacement
error channel for a N -mode bosonic system,

ΦP (ρ̂) =
ˆ
R2N

d2Ne P (e)D̂(e)ρ̂D̂†(e), (15)

where P (e) is the probability density function (PDF)
of random displacement e. The displacement opera-
tor is

D̂(d) = e−id⊤Ωx̂ (16)

which, following Eq. (9), is a Gaussian unitary with
D̂(d) = UI,d and therefore induces displacement x̂ →
x̂ + d. Displacements satisfy the relation

D̂(z)D̂(y) = eiz⊤ΩyD̂(y)D̂(z). (17)

In this paper, we consider random Gaussian noise
e ∼ N (0,V ) with zero mean and covariance V . In
which case the channel PDF is a multivariate Gaus-
sian distribution,

g[V ](e) := 1
(2π)N

√
detV

exp
(

−1
2e

⊤V −1e

)
, (18)

and we let ΦV denote the channel. For indepen-
dent and identically distributed (iid) additive Gaus-
sian noise (AGN) with standard deviation σ, the co-
variance matrix is V = σ2I2N , and we write the
AGN channel simply as Φσ. This is a commonly
used, albeit oversimplified, noise model for GKP codes
(cf. Refs. [11, 13]). We note that other relevant
noise mechanisms, such as photon loss, can be de-
graded to AGN by a local operation, such as pre-
amplification with a quantum limited amplifier [10],
though this is not generally optimal for error correc-
tion purposes [62].

For a general additive noise channel ΦP on N
modes, we define the output variance (per mode per
quadrature),

σ2
out := 1

2N

ˆ
R2N

d2Ne P (e)e⊤e. (19)

For an AGN with covariance V , σ2
out = Tr{V }/(2N).

With the relevant Gaussian components intro-
duced, we now move on to non-Gaussian states. An

N -mode GKP state |Ψ⟩ represents a 2N dimensional
(symplectically integral) lattice L in phase space [8].
The lattice can be generated by a set of basis vectors
{mj}, such that m⊤

j Ωmk ∈ Z (symplectic integral
condition). We package the generators into a genera-
tor matrix M = (m1, . . . ,m2N ). The generators de-
termine the stabilizers of the code via Ŝj = D̂(ℓmj),
where we have set ℓ =

√
2π for the fundamental lat-

tice spacing of GKP states. A GKP code state |Ψ⟩ is
a +1 eigenstate of all the stabilizers.

A [[N, k]] GKP code, which encodes k qudits into
N modes, can be operationally constructed by cou-
pling a set of k independent GKP qudits to N − k
canonical (d = 1) GKP states through a zero-mean
Gaussian unitary Ûenc = ÛS,0, where S is a symplec-
tic matrix. The initial generator matrix is Min =(⊕k

j=1
√

djI2

)
⊕I2(N−k). After encoding, the multi-

mode code can be represented by the new generator,

Mk→N = SMin. (20)

which is in one-to-one correspondence with the quan-
tum state in Eq. (5). See Appendix A for a more de-
tailed introduction to the theory of multi-mode GKP
codes.

Pauli X and Z operations acting on the initial qu-
dits correspond to displacements along the first 2k
columns vectors (m̄in,1, m̄in,2, . . . , m̄in,2k) of the dual
matrix, M in = M−1

in , such that X̂in,1 = D̂(ℓm̄in,1),
Ẑin,1 = D̂(ℓm̄in,2) etc. This is consistent with
Eq. (2). The dual matrix after encoding is Mk→N =
SM−1

in , such that X̂k→N,1 = D̂(ℓSm̄in,1), Ẑk→N,1 =
D̂(ℓSm̄in,2) etc.

These Pauli operations are valid logical operations
on GKP code states. However, they are not guaran-
teed to be minimal-weight Paulis. In other words, a
Pauli displacement m̄J , such that Ĵ = D̂(ℓm̄J) de-
scribes some logical Pauli J , may not be the small-
est possible displacement needed to enact the logical
operation. Minimal-weight Paulis are important from
an error correction perspective as such determines the
smallest displacement required to cause a logical er-
ror. This leads us to introduce the GKP Pauli dis-
tance [17–19] for the logical Pauli J ,

DJ := ℓ × min
a∈Z2N

∥m̄J − Ma∥. (21)

For a square qudit, DX = DZ = ℓ/
√

d. The GKP
code distance D is then defined as the smallest Pauli
distance,

D := min
J

DJ . (22)

GKP states are highly effective at estimating small
displacements [8, 63]. If a displacement error e hap-
pens on an encoded GKP state |Ψ⟩, we measure the
stabilizers Ŝj to extract information about e from the
error syndrome,

s(e) := M⊤Ωe mod ℓ, (23)
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where the modulo operation acts element-wise. If de-
sirable, we can perform syndrome-informed counter
displacements to correct the error. If the error is small
enough, then the error can be corrected with high
probability. The syndromes can also be employed
to estimate displacements on other modes coupled
to the GKP state, such as in oscillators-to-oscillators
codes [11, 13].

We take a simple approach to estimating error dis-
placements that (i) is linear in s and (ii) does not
leverage explicit knowledge of the error magnitude
(e.g., |e| ∼ σ) in the estimation. More sophisticated
strategies can be found in Refs. [13, 18, 19, 21, 64, 65].
The generic setting is as follows. Consider two (possi-
bly correlated) random displacements e1 and e2. Sup-
pose e2 occurs on a GKP state, thus permitting stabi-
lizer measurements to extract syndromes s(e2). The
objective is to concoct a good estimator, ẽ1, for e1
based on the syndromes and knowledge about corre-
lations. For simplicity, we employ linear estimation,

ẽ1 := Fs(e2), (24)

where F is some (possibly rectangular) matrix that is
independent of s and σ.

In the context of recent experimental developments,
engineering of single-mode GKP states have been
achieved in both microwave and optical domains as
well as with trapped ions. In microwave cavity-QED
systems, GKP states are generated via coupling a
transmon qubit to the cavity modes in a carefully
controlled manner [23]. In the optical frequency do-
main, an itinerant GKP state can be created in a
probabilistic, though heralded, fashion with Gaus-
sian boson sampling devices [48, 66–69]; see Ref. [26]
for a proof-of-concept demonstration, albeit far from
the quality level to enable break-even error correc-
tion. Trapped ion implementations resemble control
schemes in cavity-QED mentioned above. However,
here, an internal spin state of the ion is used to con-
trol its motional degrees of freedom [24, 25]. To de-
velop multi-mode GKP codes, one can envisage start-
ing with standardized “factories” that produce single-
mode square-GKP qudits through local bosonic con-
trol schemes or heralded methods. Equipped with
universal Gaussian operations, one can then, in prin-
ciple, entangle these factory qudits to create an arbi-
trary multi-mode GKP code [per Eq. (20)].

4 Distributed Two-Mode Squeezing
Codes

In this section, we formally introduce the dtms-
GKP codes, including examples of single-qudit,
oscillators-to-oscillators, and two-qubit codes. Using
the generator matrix of the dtms-GKP qubit codes,
we also present numerical results for the code dis-
tance.

4.1 Setups and code definitions
We have presented our unitary Gaussian encoder

for the dtms code, Ûdtms in Eq. (7), which applies
to both qudit-to-oscillators codes and oscillators-to-
oscillators codes. For the majority of this paper, we
focus on encoding a single data mode (k = 1) into N
modes, where N − 1 modes consist of canonical GKP
anillae. The dtms encoder Ûdtms [see also Eq. (7) and
Fig. 1(c)] can be represented by a symplectic matrix,

Sdtms =
(
SG ⊕ I2(N−2)

)
(I2 ⊕ B) . (25)

The encoder consists of (1) a two-mode squeezer,
SG, with tunable gain G that couples the lone data
mode to a single ancilla, and (2) a configurable multi-
port interferometer, B, that mixes the ancillary GKP
modes. For iid noise, we find it sufficient to fur-
ther reduce the multi-port interferometer B to a cas-
caded staircase of beamsplitters with transmission
probabilities (from top to bottom) η1 = 1/(N − 1),
η2 = 1/(N − 2), . . . , ηN−2 = 1/2, and a single-phase,
ϕ, [see Fig. 1(c) and Appendix B.1]

B =


R(ϕ)√
N−1
... B′

R(ϕ)√
N−1

 (26)

where R(ϕ) is a 2 × 2 rotation matrix [Eq. (13)], and
B′ is a 2N×2(N−1) sub-block that does not apprecia-
bly impact the code. The above construction ensures
that the initial correlations (generated by two-mode
squeezing) between the lone data and single ancilla
is distributed uniformly to all the ancillary modes.
While the single phase, ϕ, allows us just enough free-
dom to balance the code (see below for details). We
now formally define our codes, starting with the dtms
qudit code.

Definition 1 (dtms-GKP Qudit Encoding). Con-
sider a square GKP qudit of dimension d and N −
1 canonical GKP ancillae. The initial generator
matrix is given by a trivial direct sum, Min =(√

dI2 ⊕ I2(N−1)

)
. We define a dtms-GKP qudit code

by the resulting generator matrix,

Mdtms := SdtmsMin, (27)

where Sdtms is written explicitly in Eq. (25). Logi-
cal Pauli operations can be associated with the first 2
columns of the dual matrix,

Mdtms = Sdtms

(
I2/

√
d ⊕ I2(N−1)

)
. (28)

The columns of Mdtms describe the symmetry
translations of the 2N -dimensional lattice in real
phase space, L, that is associated with the dtms-
GKP qudit code space, C. By definition, a logical
dtms-GKP qudit state |ΨL⟩ ∈ C is a +1 eigenstate of
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unitary displacements (stabilizers) along the column
vectors of Mdtms. For further examples, please refer
to Definition 2 and Definition 3. For a concrete ex-
ample, a two-mode squeezed GKP qudit state can be
written in similar form as Eq. (5), namely,

|ΨL⟩ = ÛSG
(|Ψ⟩ ⊗ |GKP⟩) , (29)

where ÛSG
is a unitary two-mode squeezing opera-

tion (see Eq. (10)), |Ψ⟩ =
∑

j αj |j; d⟩ is an arbi-
trary single-mode square GKP qudit with basis states
{|j; d⟩}d

j=1 defined in Eq. (1), |GKP⟩ = |0; 1⟩ is a
canonical GKP state with trivial dimension (d = 1),
and |ΨL⟩ is the two-mode logical representation of
|Ψ⟩, respectively. The generator matrix is simply
Mdtms = SG

(√
dI2 ⊕ I2

)
for this code space.

Due to the structure of the code, it is easy to infer
an upper bound on the code distance directly from the
dual matrix (28). The first two columns of Mdtms are
Pauli vectors for logical X and Z operations of length√

2G − 1D□(d), where D□(d) =
√

2π/d is the local
distance for the square qudit, and we have incorpo-
rated the lattice spacing ℓ =

√
2π. However, these are

not necessarily minimal-weight Paulis, with minimal-
weight Paulis defined as the smallest displacements
that induce logical operations [see Eq. (21)]. There-
fore, by Eq. (22),

Ddtms ≤
√

2G − 1D□(d). (30)

Since the gain is a continuously tunable parameter,
we imagine starting from G = 1 (no coupling) and
slowly increasing the gain (G > 1) to increase the
code distance, such that the above inequality is al-
ways met. Alas, this continuous improvement cannot
be sustained indefinitely. There will be some optimal
value, G⋆, that saturates the inequality above and
maximizes the code distance, above which the dis-
tance will actually decrease. See Fig. 4 in Section 4.2
for numerical evidence of this intuition.

Regarding the single phase, ϕ, in the interferome-
ter B [Eq. (26)], for ϕ = 0, the dtms qudit code is of
Calderbank-Shor-Steane (CSS) type and DX = DZ =
DY /

√
2. However, we have found that keeping one

phase as a free parameter allows us just enough free-
dom to balance the code, such that DX ≈ DY ≈ DZ

for some optimal set (G⋆, ϕ⋆), and, consequently, in-
crease the code distance beyond what is achievable
with the CSS-type counterpart (ϕ = 0). Intuitively,
the balanced condition (DX ≈ DY ≈ DZ) is met by
gradually increasing the X and Z distances while de-
creasing the Y distance, until equality is met. We find
G⋆ and ϕ⋆ numerically (see Section 4.2 for details).

The current formulation of the dtms qudit code
(Definition 1) is designed to safeguard a single qudit.
To extend this construction to k qudits, a straightfor-
ward approach is to introduce k two-mode squeezers,
assigning one to each qudit. This limits the number
of active elements to scale with the number of qudits
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Figure 2: Schematic of the encoder for a dtms-GKP two-
qubit code (N = 4, k = 2).

(∼ k) as opposed to directly scaling with the size of
the code block (∼ N). See Section 6 and Fig. 9 for fur-
ther discussion. However, there may exist more clever
ways to increase the encoding rate (k/N) and code
distance without introducing more active elements.
We demonstrate this with a two-qubit code example.

Definition 2 (dtms Two-Qubit Encoding). Consider
two square GKP qubits and N − 2 canonical GKP
ancillae. The initial generator matrix is given by a
trivial direct sum, Min =

(√
2I4 ⊕ I2(N−2)

)
. The en-

coder for the two-qubit dtms-GKP code is specified by
the symplectic matrix,

Sdtms,2 =
(
I2 ⊕ SG ⊕ I2(N−3)

)
(B50:50 ⊕ B) , (31)

where B50:50 represents a 50:50 beamsplitter and
B is the multi-port interferometer of Eq. (26).
The generator matrix for the code is Mdtms;2 =
Sdtms,2

(√
2I4 ⊕ I2(N−2)

)
.

The dtms two-qubit codes rely on (1) a single two-
mode squeezer of gain G that couples one of the qubits
to one of the ancillary GKP, (2) a 50:50 beamsplit-
ter that entangles the data qubits, and (3) a multi-
port interferometer that entangles the ancillary GKP
modes. See Fig. 2 for an illustration of the encoder
for N = 4. Analogous to the dtms single-qudit code,
we find an upper bound on the code distance,

Ddtms,2 ≤
√

GD□. (32)

Finally, we encode an oscillator into many oscilla-
tors. The dtms-O2O codes (defined formally below)
are, in many respects, similar to the dtms qudit codes
because both codes utilize the same (unitary Gaus-
sian) encoder Ûdtms [see Eq. (7) and Eq. (25)]. One
major difference,2 however, is that the data mode for
the dtms-O2O code is an analog quantum state (e.g.,
squeezed vacuum) that does not have a lattice-type
description. Thus, rather than a generator matrix, of
importance to the O2O code is the correlated noise
matrix, V [11, 13], which determines the analog out-
put noise of the code. The noise matrix comes from
sandwiching the (iid) AGN channels, Φσ, between the

2Another difference is the actual value of the gain G pre-
ferred by each code.
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Figure 3: (a) Code distance Ddtms for dtms qubit code. Assorted codes from the literature are shown for reference: Square,
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decoding bound inferred from two-stage linear decoder [Section 5, Eq. (53)]. (b) Optimized squeezing for dtms qubit code.
Two-mode squeezing gain G⋆ converted to equivalent single-mode squeezing λ⋆

dB := 20 log10(
√

G⋆ +
√

G∗ − 1).

encoder, Uenc, and (the unitary part of) the decoder,
Udec = U−1

enc. From this we define our code.

Definition 3 (dtms-O2O Encoding). The dtms-O2O
code encodes a single-mode continuous-variable (CV)
state into N modes, where N − 1 modes are canonical
GKP ancillae. The unitary encoder, Ûdtms, is spec-
ified by the symplectic matrix Sdtms [Eq. (25)]. As-
suming iid AGN of variance σ2, the noise channel Φσ

transforms under the unitary encoding-decoding pair
as,

ΦV = U−1
dtms ◦ Φσ ◦ Udtms, (33)

where Udtms(·) = Ûdtms(·)Û†
dtms and ΦV is a corre-

lated AGN channel with covariance V . Explicitly,

V = σ2S−1
dtmsS

−⊤
dtms. (34)

The correlations between the data mode and the
ancillary GKP modes (generated by the unitary in-
teraction Ûdtms) allow for an estimate of the data
noise via stabilizer measurements on the ancillary
GKP modes. In turn, these estimates can be used
in the measurement-stage of decoding (see Section 5)
to perform counter displacements on the data mode,
thereby suppressing the analog noise on the data.

4.1.1 Connection to distributed quantum sensing

As shown in Fig. 1(b), a continuous-variable dis-
tributed quantum sensing protocol [36] prepares the
CV multi-partite entangled probe state by distribut-
ing a single-mode squeezed state to multiple sensor
nodes through a beamsplitter network. The symplec-
tic matrix, SDQS (associated with a Gaussian unitary,
ÛSDQS), that describes the state preparation is given
by

SDQS = BS
(1)
G , (35)

where S
(1)
G is defined in Eq. (11). Such an en-

coding allows the global reduction of vacuum fluc-
tuations via multi-mode squeezing. As shown in

Fig. 1(c), the dtms encoding operation Sdtms first
applies the beamsplitter transform and then per-
forms two-mode squeezing, as given in Eq. (25).
The decoding process starts with the reverse uni-
tary, S−1

dtms =
(
I2 ⊕ BT

) (
S−G ⊕ I2(N−2)

)
. Com-

pared with the state preparation operation SDQS,
the dtms operation S−1

dtms inherits the same spirit of
distributing squeezing, with the exception of replac-
ing the single-mode squeezer for distributed quantum
sensing with a two-mode squeezer for error correction.
In the dtms code, the two-mode squeezing correlates
the data mode error and the ancilla error; then the
beamsplitters distribute the correlations to multiple
GKP ancillae, such that the error on each GKP an-
cilla is small (compared to GKP grid size) and can be
estimated with high precision.
4.2 Numerical results for code distance

We present our results for the GKP code distance of
dtms codes obtained through numerical optimization.
On the one hand, the code distance serves as a valu-
able first-order metric for evaluating the performance
of GKP codes. On the other hand, it is worth noting
that this optimization is agnostic to the details of the
error channel that the code is meant to correct for or
the decoder used in the error correction process.

The basic idea behind our numerical optimiza-
tion routine is as follows: Given a code (e.g., the
dtms qudit code of Definition 1) specified by param-
eters ϑ (e.g., gain G, beamsplitter transmissivities
ηj , and phases ϕj), we numerically optimize the pa-
rameter set to maximize the GKP code distance, i.e.
ϑ⋆ = argmaxϑ D(ϑ), thus determining the optimal
set ϑ⋆ and the corresponding maximum code distance
D(ϑ⋆).

The code distance is numerically calculated by
searching for the closest lattice point that minimizes
the GKP code distance, as defined in Eqs. (21)
and (22). From Eq. (25), we first determine the
generator matrix M and its dual matrix M , which
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represent logical Pauli operators. Then the Lenstra-
Lenstra-Lovász (LLL) lattice reduction algorithm [70]
is applied to M to obtain a reduced basis of the gener-
ator matrix. This algorithm runs in polynomial time,
and the reduced basis {mi}2N

i=1, which are column vec-
tors of M , is more compact than the original basis.
Next we take a vector v in the dual matrix M that
corresponds to a logical Pauli in the set {X, Y, Z} to
calculate its distance with respect to the dual lattice.
Babai’s algorithm [71] is used here to find a lattice
point mL in the dual lattice that is closest to the
given vector v. However, Babai’s algorithm might
not return the true closest point, as the closest point
problem is NP-hard. Therefore, the lattice point re-
turned by Babai’s algorithm simply serves as a strong
candidate. Then a brute-force search with cutoff l is
conducted around the candidate point mL as

min
−l≤ki≤l

∥∥∥∥∥
2N∑
i=1

v − mL + kimi

∥∥∥∥∥. (36)

After the brute-force search, we obtain the closest
distance from the logical Pauli to all lattice points
around the candidate point. A total of (2N)2l points
are considered, and we take l ≤ 4 since the num-
ber of points diverges quickly with N . We perform
the above numerical search for both dtms qubit codes
(Definition 1 with d = 2) and dtms two-qubit codes
(Definition 2). We validate our optimized results by
calculating the distance in Eq. (36) with l increased
by one, ensuring that the distance does not change
with more points.

4.2.1 Example 1: Single-qubit codes

We first consider a CSS-type code with no phases
(ϕj = 0). In this scenario, the 2N -dimensional lattice
decomposes into two N -dimensional sublattices. Con-
sequently, the generator matrix can be divided into
independent q and p sections, such that DX = DZ =
DY /

√
2 and thus D = DX . The distance DX is com-

puted numerically for the q section. By optimizing
the beamsplitter array, ηi, and the two-mode squeez-
ing gain, G, with a cutoff l = 4, we generally need to
maximize the code distance over N − 1 parameters.
This optimization is further verified by ensuring that
the code distance remains consistent when the cutoff
is increased to l = 5. Note that since the problem is
NP-hard, the distance we provide will be approximate
solutions, similar to Ref. [19] and others.

However, we verify the intuition that, for both
CSS- and non-CSS–type codes, the optimal values for
the beamsplitter parameters are η1 = 1/

√
N − 1, ...,

ηN−2 = 1/
√

2. This is confirmed in numerical (lo-
cal) optimization with three and four modes, where
random initialization of beamsplitter parameters con-
verge to the above optimal values. This suggests
that a uniform beamsplitter array outperforms other

beamsplitter configurations. This is expected on sym-
metry grounds, as no single mode should be preferred
over another. Therefore, correlations generated from
the two-mode squeezing interaction in the dtms code
should be uniformly shared by all ancillary modes, a
result guaranteed by the aforementioned parameter
choices. Thus, for our CSS-type codes, only one pa-
rameter, G, needs to be optimized. Numerical results
of the code distance for CSS-type dtms qubit codes
are presented in Fig. 3(a) as blue triangles.

Next, we incorporate N −1 phase rotations, ϕj , into
the uniform beamsplitter array in order to balance
the code, such that DX = DY = DZ . The result-
ing code (with non-trivial phases) is a non-CSS–type
code that correlates the q and p sections, leading to
a genuine 2N -dimensional lattice. Importantly, bal-
ancing the code further enhances the code distance
beyond the CSS-type counterpart. The intuition is
as follows. Recall that we compute the code distance
via min{DX ,DY ,DZ}. Compared to the CSS-type
code (ϕ = 0), phase rotations allow us to increase DX

and DZ while decreasing DY . Therefore, we imagine
starting with zero phases and slowly tuning them un-
til the Pauli distances converge, effectively increasing
the overall code distance.

Our numerical calculations (with two to five modes)
suggest that it is sufficient to choose a single phase,
ϕ := ϕ1 = ... = ϕN−1, to balance the code. Hence,
in our final numerical search for optimal codes, only
two parameters, G and ϕ, are optimized. As a techni-
cal note, the code distance remains unchanged when
ϕi → ϕi + π/2. Therefore, we restrict the range of ϕi

to 0 ≤ ϕi < π/2 in numerical calculations. The re-
sults of our numerical optimization for non-CSS–type
dtms qubit codes are depicted in Fig. 3(a) as red dia-
monds. We further verify that the code distance, for
both CSS- and non-CSS-type codes, obeys the rela-
tion D =

√
(2G⋆ − 1)π, as expected (30).

For reference, we plot contours of the GKP code
distance in parameter space (G, ϕ) for a two-mode
code in Fig. 4(a), illustrating the change in the code
distance with the gain G and also the periodicity in ϕ.
Scaling of the code distance with gain for N = 2 and
N = 3 mode codes is shown in Fig. 4(b). Results agree
with the predicted code distance in Eq. (30) below
the optimal gain value, G⋆. For G > G⋆, the actual
code distance decreases, indicating that the distance
cannot increase indefinitely with the gain for fixed
number of modes, N .

4.2.2 Example 2: Two-qubit codes

We focus on CSS-type two-qubit codes of N = 3
and N = 4 modes, as generically defined in Defini-
tion 2. The N = 3 two-qubit code is obtained by
entangling two GKP qubits by a 50:50 beamsplitter
and then coupling one qubit to a single canonical GKP
state via two-mode squeezing. Logical operations are
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Figure 4: (a) Contour of code distance Ddtms for N = 2 versus phase ϕ and gain G. (b) Line plot of code distance with
respect to gain for N = 2, 3 modes.

specified by the dual matrix,

M
(3)
dtms,2 =


1
2I2 − 1

2I2 0
√

G
2 I2

√
G

2 I2
√

G − 1Z
√

G−1
2 Z

√
G−1
2 Z

√
GI2

 . (37)

The N = 4 two-qubit code is generated by indepen-
dently entangling two GKP qubits and two canonical
GKP ancilla via 50:50 beamsplitters. Subsequently,
one GKP qubit and one GKP ancilla are then coupled
via two-mode squeezing. See Fig. 2 for an illustration.
Logical operations are specified by the dual matrix,

M
(4)
dtms,2 =


1
2I2 − 1

2I2 0 0
√

G
2 I2

√
G

2 I2

√
G−1

2 Z −
√

G−1
2 Z

√
G−1
2 Z

√
G−1
2 Z

√
G
2 I2 −

√
G
2 I2

0 0 1√
2I2

1√
2I2

 .

(38)
For optimal performance, we numerically optimize the
gain, G, of the two-mode squeezer, following the same
approach as in the single-qubit examples.

We find that the code distance is determined by the
optimal gain G⋆ via Ddtms,2 =

√
G⋆π, as expected

from Eq. (32). Numerical analysis reveals that G⋆ =
4/3 and G⋆ = 2 for N = 3 and N = 4, respectively,
implying that D

(3)
dtms,2 =

√
4π/3 and D

(4)
dtms,2 =

√
2π.

The N = 3 code is intriguing, enabling the encoding
of two qubits into three modes while achieving a code
distance that is 2/

√
3 ≈ 1.15 times larger than the

square code. Curiously, the distance for the N = 4
code coincides with the standard [[4, 2, 2]] code. We
emphasize that a simple concatenation of square GKP
qubit and the qubit [[4, 2, 2]] code will need five CNOT
gates [47], leading to five active Gaussian operations
(SUM-gate), while our GKP-dtms code achieves the
same code distance with only a single active Gaussian
operation.

4.2.3 Comparison to prior works

To end this section, we briefly contextualize our re-
sults for code distance with recent literature. Regard-
ing the code distance for single-qubit dtms codes, Lin
et al [19] performed an unstructured numerical op-
timization over all symplectic matrices S ∈ Sp(2N),
which have (in the symmetry-reduced setting) N2+N
free parameters. The authors successfully identified
effective codes. However, due to their unstructured
nature, these codes practically need to be constructed
through a Bloch-Messiah decomposition, which re-
quires N active squeezers and a general N -port inter-
ferometer. Contrariwise, our dtms-GKP code designs,
based on a structured beamsplitter array and hav-
ing only two parameters, circumvent such complex-
ities while achieving almost equivalent performance
as the optimized codes found in Ref. [19]. On the
other hand, the authors of Ref. [19] also argued the
existence of the so-called YY-rep-rec code, with dis-
tance DYY =

√
2π(N/2)1/4, which demonstrates a

constant-factor improvement over the square GKP
surface code (see Fig. 3). Curiously though, the nu-
merically optimized codes considered in that work do
not achieve the distance of the theoretically proposed
YY-rep-rec code. Regarding other prototypical codes,
although our results do not surpass the perfect [[5,1,3]]
code, our approach comes remarkably close, differing
by ≲ .1 in the code distance (see Fig. 3), while only re-
quiring a single active component. Additionally, our
balanced code designs exhibit larger distances com-
pared to the recently discovered two-mode Tesseract
qubit code [17] and the standard [[4,1,2]] code.

5 Two-Stage Decoder for dtms Codes
Optimal decoding of lattice codes is generally a

computationally hard problem [16, 18, 19, 21]. To
bypass this complexity and shed light on the poten-
tial performance of dtms codes, we opt for a simpler
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Figure 5: Schematic of the two-stage decoder for dtms-GKP
codes. sanc and sdata denote syndrome information from
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respectively. ẽ′ denotes a syndrome-informed estimator at
the O2O layer. ε̃n⋆ denotes syndrome-informed estimator at
the qudit layer, used to displace the local GKP state back to
the nearest integer n⋆. For analog data, only the O2O layer
is necessary. A N = 3 dtms code is shown for concreteness.

approach: We propose a two-stage linear decoder that
first decodes at the oscillators-to-oscillators layer then
at the local qudit layer. See Fig. 5 for an illustration.
Though the decoder is, in general, not optimal, it al-
lows straightforward analytical results and performs
quite well for small code sizes, with results indicat-
ing near-optimal performance for the N = 2 dtms
qubit code. Investigation into improved decoders—
better designed to leverage the specific structure of
dtms codes—is left to future study.

Here we summarize our two-stage decoder, provid-
ing some mathematical details but deferring deriva-
tions to Appendix B.3. The unitary component of
the decoder, U−1

enc, correlates the data and ancillae
displacement noises (clouds in Fig. 5) via two-mode
squeezing. Beamsplitters then distribute the locally
amplified noise uniformly to the ancillary modes. The
first measurement step of decoding begins at the
oscillators-to-oscillators level (O2O layer). Stabilizer
measurements are conducted on the GKP ancillae and
syndrome-informed counter displacements are applied
on the data to locally reduce the data noise. If the
data hold discrete information (i.e., a qudit), then lo-
cal qudit decoding (Qudit layer) is subsequently per-
formed. Conditioned on the residual displacements
from the first stage, the qudit stage involves local
GKP stabilizer measurements to acquire an estimate
of the residual noise. This estimate is used to then
shift back to the nearest lattice point of the local qu-
dit code, analogous to standard single-qubit GKP de-
coders [8, 72].

Let e ∼ N (0, σ2I2N ) be the initial displacement
noises on the modes and K = N − k be the number
of ancillary GKP modes. Following the unitary com-
ponent of the decoding map, the noises are correlated
and described by e′ ⊕e′

anc = S−1
ence ∼ N (0,V ), where

V = σ2S−1
encS

−⊤
enc , Senc represents the encoder, and

we have written the displacement as a direct sum of
data noises, e′, and ancillary noises, e′

anc. For dtms

qudit codes and O2O codes, Senc = Sdtms of Eq. (25).
Whereas, for dtms two-qubit codes, Senc = Sdtms,2 of
Eq. (31). Performing stabilizer measurements on the
ancillary GKP modes in the O2O decoding stage, we
extract error syndromes sanc = Ωe′

anc mod ℓ. From
the ancillary syndromes, we estimate the noises on the
data via linear estimation,

ẽ′ = FΩ⊤sanc, (39)

where F is a 2k × 2K rectangular matrix that is in-
dependent of sanc and σ. For (CSS-type) dtms qudit
codes and O2O codes, we choose

Fdtms = −CG√
K

(Z Z . . . Z) , (40)

where

CG = 2
√

G(G − 1)
2G − 1 . (41)

For dtms two-qubit codes, we choose

Fdtms,2 = −CG√
2K

(
Z Z . . . Z
Z Z . . . Z

)
. (42)

Intuitively, these choices minimize the variance of the
residual noise ε = e′ − ẽ′ in a first-order (Gaussian)
approximation. This is analogous to the original O2O
code proposed in Ref. [11] but extended to a multi-
mode distributed scenario. For further mathematical
explanation of this specific O2O decoder, we refer the
reader to Appendix B.3.

After a counter displacement, D̂(−ẽ′), in the O2O
layer of error correction, the resulting output distribu-
tion of the residual error, ε, is a non-Gaussian PDF,

P (ε) =
∑

n∈Z2K

f(n) × g[Σ]
(
ε − µ(n)

)
, (43)

where Σ is the conditional data covariance and
µ(n) = ℓFΩ⊤n is a discretized mean that encodes
lattice effects from the ancillary GKP. Their explicit
forms vary depending on the encoding. Let nq :=∑

i=odd ni and np :=
∑

i=even ni, where ni is the i-
th component of n ∈ Z2K in the summation. For
single-qudit codes and O2O codes, we can then write
covariance and discrete mean as

Σdtms =
(

σ2

2G − 1

)
I2 (44)

and µ⊤
dtms(n) = ℓCG√

K
(np, nq). (45)

Whereas, for two-qubit codes,

Σdtms,2 =
(

σ2G

2G − 1

)
I2 (46)

and µ⊤
dtms,2(n) = ℓCG√

2K
(np, nq, np, nq). (47)

where the constant CG is defined in Eq. (41).
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The quantity f(n) in Eq. (43) is a discrete proba-
bility, such that 0 ≤ f(n) ≤ 1 and

∑
n∈Z2K f(n) = 1.

Formally,

f(n) :=
ˆ
x∈In(ℓ)

dx g[Σanc](x), (48)

where Σanc = σ2B⊤[(2G − 1)I2 ⊕ I2(K−1)]B is the
conditional covariance of the K ancillary modes. This
represents the fact that the amplified noise on the first
mode is split amongst all the ancillary modes via B⊤.
The region In(ℓ) :=

∏2K
i=1 Ini(ℓ) is composed of in-

tervals Ini(ℓ) := [(ni − 1/2)ℓ, (ni + 1/2)ℓ] indexed by
integers ni ∈ Z. As an example, for N = 2 modes, f0
is the probability that the amplified ancillary displace-
ment x ∼ N (0, σ2(2G − 1)I2) lies within the funda-
mental square region I0 = [−ℓ/2, ℓ/2] × [−ℓ/2, ℓ/2].

The qudit layer relies on the standard single-qudit
(d-level), square GKP decoder [8], which works as fol-
lows. An error syndrome, sdata =

√
dΩε mod ℓ, is

gathered from stabilizer measurements on the local
data qudits following the O2O layer. Informed by the
syndrome, a displacement, D̂(ε̃n⋆), is then applied,
mapping the q and p quadratures of the local square
lattices back to nearest lattice points, n⋆. If the error,
ε, is too large, the error correction procedure will mis-
takenly map back to the wrong points, inducing a log-
ical error. Consider a single qudit, and let ε = εq ⊕εp.
The error correction procedure will induce a logical X
error if the q-quadrature displacement, εq, is as a bit
longer than half of the Pauli distance, DX =

√
2π/d,

i.e. when |εq| ≳
√

π
2d . The details involved in es-

timating error rates are ultimately governed by the
PDF of the residual error, P (ε), from the O2O de-
coding layer. See Appendix B.3 for more details.

5.1 Example 1: Oscillators-to-oscillators
The goal of an oscillators-to-oscillators code is to

directly reduce the input additive noise, σ. There-
fore, we evaluate the performance of the dtms-O2O
code with the output variance, σ2

out [generically de-
fined in Eq. (19)], of the code. We provide a heuris-
tic argument that gives a good first-order estimate of
σout. Throughout, we assume a CSS-type configura-
tion (ϕ = 0).

As a first-order (Gaussian) approximation, σ2
out ∼

Tr(Σdtms)/2 = σ2/(2G − 1), where Σdtms is the con-
ditional covariance given by Eq. (44) from O2O de-
coding. However, this approximation ignores discrete
effects originating from the ancillary GKP modes, i.e.

σ2
out = σ2

2G − 1 + “lattice effects” . (49)

The “lattice effects” originate from uncertainty in es-
timating the noisy displacements from stabilizer mea-
surements on the ancillary GKP modes. In particu-
lar, there is ambiguity of the actual size and direc-
tion of the noisy displacements due to the modularity
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Figure 6: Output noise of dtms-O2O codes (Definition 3)
employing linear estimation. Results are normalized with
respect to the input noise, i.e. σout/σ. Analysis assumes
uniform beamsplitting with no phases (ϕ = 0). Inset demon-
strates scaling versus the number of modes N for a few data
points (N = 2, 3, 4). Dashed lines represent asymptotic ex-
pressions obtained from Eq. (51).

of the GKP lattice. This modular uncertainty gets
imprinted on the signal mode during the error cor-
rective displacements in the O2O decoding. We can
predict at what point these lattice effects become non-
negligible, allowing us to estimate the scaling of the
gain, G, with the input noise, σ, and consequently, the
scaling of the output noise, σout. For further mathe-
matical details, please refer to Appendix B.3.2.

Prior to stabilizer measurements, the single-mode
displacement noise, x, on any given ancillary GKP
mode is Gaussian with variance ∼ 2σ2G/N . Mathe-
matically, this follows by taking the marginal of the
ancillary covariance matrix Σanc [written just below
Eq. (48)] and assuming G/K ≫ 1, σ ≪ 1, and
K = N − 1 ≈ N . Intuitively, this is due to dis-
tributing the amplified noise of the first ancilla mode
uniformly among all ancillary modes. Lattice effects
in the error correction procedure emerge when this
noise is roughly the size of the lattice spacing, i.e.
|x| ∼ ℓ, implying that G ∼ ℓ2N/2σ2. We therefore
anticipate that the output error scales, at best, as
σ2

out ∼ σ4/(ℓ2N).
Through asymptotics (see Appendix B.3), we derive

formulae for the optimal gain, GO2O, and resulting
output variance, σ2

out, of the dtms-O2O code,

GO2O ≈ π(N − 1)
8σ2

{
ln
(

π3/2(N − 1)2

2σ4

)}−1

, (50)

σ2
out ≈ 4σ4

π(N − 1) ln
(

π3/2(N − 1)2

2σ4

)
, (51)

where N ≥ 2. This result is consistent with the
heuristic scaling from above and aligns with the orig-
inal N = 2 two-mode squeezing code introduced in
Ref. [11]. In Fig. 6, we plot results from a brute-force
numerical optimization (data points). The asymp-
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totic formulae (dashed lines) agree well with the nu-
merical results.

Observe that we obtain a quadratic suppression in
the variance due to squeezing and a simultaneous sup-
pression that is linear in the number of modes, N , due
to the beamsplitters. We note that a comparable 1/N
scaling was identified in Ref. [20] via augmented repe-
tition codes. However, those codes do not exhibit the
additional quadratic suppression in the variance from
squeezing.

5.2 Example 2: Single-qudit codes
We apply the two-stage decoder to dtms single-

qudit codes (Definition 1) and infer logical X-type
errors, corresponding to spurious displacements along
the q direction in phase space. We consider CSS-type
codes here, so X and Z error are uncorrelated and of
equal magnitude. [Y errors are parametrically sup-
pressed since DY =

√
2DX .]

One benefit of our simple two-stage decoder is that
we can derive analytical expressions for the logical X
(or Z) error rate Pr[X] and infer an effective GKP
code distance for arbitrary number of modes, N , and
qudit dimension, d. We first present the qubit case
(d = 2) to gain some familiarity then generalize to
arbitrary qudit dimension.

Following two-stage decoding, we find that the log-
ical X error rate is, to a good approximation, given
by (see Appendix B.3 for asymptotics),

Pr[X] ≈ N × erfc
(√

D2
eff(N)
8σ2

)
, (52)

and the effective code distance Deff(N) is defined as

Deff(N) :=
√

2G(N) − 1D□, (53)

where D□ =
√

π and

G(N) = 1 +
√

N2 + 4N − 4 − N

4 (54)

is the optimal gain for linear decoding in the low-noise
regime. The quantity Deff(N) is the effective code
distance deduced from the two-stage linear decoder
and represents the “Linear decoding bound” plotted
in Fig. 3.

Unfortunately, the effective code distance Deff(N)
is bounded in the large N limit,

lim
N→∞

G(N) = 3/2 =⇒ Deff(N) ≤
√

2D□ = ℓ, (55)

which apparently originates from the simple linear de-
coder that we employ. This is highlighted by the fact
that the results here contrasts the distances inferred
from numerics (see Fig. 3), which do not reference
any particular decoder. This observation justifies that
linear decoding—though simple and efficient—is not
optimal, and there are limitations to its use. On the
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Figure 7: Logical X (or Z) error rates for single-qubit dtms
codes (Definition 1) employing a two-stage linear decoder.
Dashed lines represent asymptotic expressions from Eq. (52).
Inset highlights a notable crossing in the high-noise regime,
indicative of threshold-like behavior near σ ≈ .558.

other hand, for the small code instance of N = 2,
the distance inferred from linear decoding matches the
numerically optimized CSS dtms code (and Tesseract
code) presented in Fig. 3, suggesting that the two-
stage decoder works quite well for the case of two
modes.

In Fig. 7, we plot X (or Z) error rates for N =
1, 2, 3, 4 modes. Data points correspond to numer-
ics while dashed lines represent the asymptotic for-
mula (52). For the numerical results, we perform nu-
merical integration and numerically optimize the gain
in the low-noise regime (at σ = .15). We find that the
numerically optimized gain agrees well with the ana-
lytical result, G(N), above. We then fix the gain to
the low-noise value and subsequently compute the er-
ror rates for all other input noises, σ. This numerical
approach agrees well with the asymptotics.

In terms of error correction performance, we clearly
observe an advantage for N > 1 number of modes,
however the relative advantage diminishes as N in-
creases, due to the limitations placed by linear
decoding—specifically, a capped code distance. How-
ever, for small code sizes (N ≤ 4), a notable advan-
tage over single-mode encodings is found, spanning
nearly 5 orders of magnitude for low noise (σ ≲ .15).

In the inset of Fig. 7, we plot the error rate in
the high-noise regime (σ ≳ .4). Notably, we ob-
serve a crossing for higher-mode encodings around
σ ≈ .558, indicating threshold-like behavior. This
value aligns with previous results for qubit codes (see,
e.g., Ref. [19] and references therein) and, interest-
ingly, also corresponds to the break-even point for
O2O codes employing a linear decoder [11, 13]. We
speculate that, similar to these codes, the threshold
can be extended (possibly to σ = 1/

√
e ≈ .607) with

better decoders [13] (see also Ref. [19]).
We now extend the results to qudits (d > 2). In
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gist, encoding higher dimensional systems allows us to
marginally increase the decoding rate without sacrific-
ing too much in the distance, as we now demonstrate.
From asymptotics (see Appendix B.3), we infer an ef-
fective qudit code distance,

Deff(N, d) :=
√

(2G(N ; d) − 1)2π

d
, (56)

with gain,

G(N ; d) = 1 +
√

(N − 2)2 + 4d(N − 1) − N

4 . (57)

For d = 2, the code distance and gain reduce to
Eqs. (53) and (54), respectively. For any fixed d,
the gain is bounded, limN→∞ G(N ; d) = (1 + d)/2.
Consequently, the code distance is also bounded,
Deff(N ; d) ≤ ℓ, analogous to the qubit case in
Eq. (55).

One simple but concrete example is a two-mode
qutrit code (N = 2, d = 3), exhibiting an effective dis-
tance Deff(2, 3) = ℓ/31/4. Interestingly, this is equal
to the code distance of a (single-mode) GKP hexag-
onal qubit. Hence, dtms qutrit codes exist with code
distance at least as large as the GKP hexagonal qubit
code. Performance can be improved through better
decoding or utilization of a non-CSS dtms code. [Note
that the GKP hexagonal qubit code is non-CSS.]

The effective code distance for the two-stage de-
coder is bounded by a constant (≤ ℓ), yet there is
potential for a modest, N -dependent improvement in
the encoding rate, log2(d)/N , beyond the single-qubit
baseline of 1/N . The following heuristic argument
provides a rough scaling. For linear decoding, the op-
timal gain scales as G ∼ d for large N and d. To
implement decoding at the O2O level (first stage of
the decoder) without inducing an error at the qudit
level, the distributed noise on the ancillary modes,
Gσ2/N ∼ dσ2/N , must satisfy dσ2/N ≲ ℓ2. If we
increase d arbitrarily, the code will be susceptible to
arbitrarily small noise σ, unless N increases propor-
tionally. We thus establish that d ≲ O(N), implying
log2(d)/N ≲ O(log2(N)/N).

5.3 Example 3: Two-qubit codes
We now apply the two-stage decoder to dtms two-

qubit codes (Definition 2) and infer X-type errors.
Again we consider CSS-type codes. The major dif-
ference here is that we are dealing with two qubits
encoded into N modes, thus both single-qubit and
two-qubit errors are possible.

Employing asymptotics, as was done for single-
qudit code, we can estimate an effective code distance
for dtms two-qubit codes. With an optimized gain,

G(N) =
(√

4N − 7 + 3
)

4 , (58)
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k = 2) dtms two-qubit code employing a two-stage linear
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comparison. Dashed lines represent asymptotic expressions
from Eq. (52) for square (N = 1) and Tesseract-like (N = 2)
codes, respectively, and Eq. (62) for the dtms two-qubit code.

the effective code distance takes a simple form,

D
(2)
eff (N) =

√
2G(N) − 1

G(N) D□ (59)

=

√√
4N − 7 + 1√
4N − 7 + 3

√
2π. (60)

Similar to the single-qudit case, the distance is
bounded by ℓ =

√
2π for large N . The effective dis-

tance has a different functional dependence on the
gain, G, that differs from what is anticipated for
the true distance derived from the logical dual ma-
trix of the code (32) (see also numerical results in
Section 4.2). In particular, the effective distance is
strictly smaller than the true distance, which we at-
tribute to linear decoding. Nevertheless, we achieve
notable performances with the proposed decoder.

For instance, consider the N = 3 dtms two-qubit
code, which encodes two qubits into three modes
using a 50:50 beamsplitter and a single two-mode
squeezer. The effective code distance is D

(2)
eff (3) =√√

5 − 1D□, which deviates from our numerical find-
ings (Section 4.2), highlighting once more the general
non-optimality of our two-stage decoder. Despite this,
this code outperforms single-mode encodings. Specif-
ically, the code distance, D(2)

eff (3), is 1.11 times larger
than the GKP square qubit code and 1.03 times larger
than the GKP hexagonal qubit code.

We now focus on encoding two qubits into four
modes, which requires two 50:50 beamsplitters and
a single two-mode squeezer (see Fig. 2 for an illustra-
tion). The effective code distance is,

D
(2)
eff (4) =

√
4π

3 , (61)
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which is, curiously, equal to the true distance of the
smaller (N = 3, k = 2) code obtained from numerics
(see Section 4.2). The effective code distance, D(2)

eff (4),
is
√

4/3 ≈ 1.15 times larger than the square code.
Furthermore, the quoted performance can be achieved
with approximately 5.7 dB of squeezing (G = 3/2).

We now consider error rates. Since we encode two
qubits into multiple modes, there can generically ex-
ists correlations between X1 and X2 errors. We thus
examine the likelihood of any error occurring in the
joint space X1 ∪ X2, including both single-qubit and
two-qubit X errors. For codes with independent er-
rors (a trivial example being two independent single-
qubit codes), the joint error rate can be expressed as
Pr[X1 ∪ X2] = Pr[X1] + Pr[X2] − Pr[X1] Pr[X2]. The
last term can be neglected to a good approximation
when the noise is small, simplifying the joint error to
the sum of single-qubit errors.

From asymptotics, we derive analytical expressions
for the error rates of dtms two-qubit codes (N − 2
ancillae),

Pr[X1] = Pr[X2] ≈ (N − 1) × erfc
(√

D2
eff(N)
8σ2

)
,

(62)
and

Pr[X1 ∪ X2] ≈ N × erfc
(√

D2
eff(N)
8σ2

)
, (63)

analogous to previous results for dtms qudit
codes (52). Notably, for dtms two-qubit codes, we
find that the likelihood of a two-qubit error is com-
parable to the likelihood of a single-qubit error, i.e.
Pr[X1 ∩ X2] ∝ Pr[X]. This is due to the structure of
the code, which correlates the first and second mode
by a 50:50 beamsplitter (see Fig. 2). Hence, if an er-
ror happens on the first (second) qubit, an error likely
happens on the second (first) qubit as well. The pres-
ence of correlated errors poses a potential drawback
for the code. Although, if an error on one qubit can
be flagged in some way, then we know with high prob-
ability that an error occurred on the other qubit and
can account for that.

In Fig. 8, we plot the logical single-qubit error rate
(Xi or Zi) for N = 4 modes and compare the per-
formance of the resulting dtms two-qubit code to four
copies of a square qubit and two copies of a Tesseract-
like qubit, respectively. Data points correspond to nu-
merics while the dashed line for the dtms two-qubit
code corresponds to the asymptotic formula (62). Nu-
merical optimization for the gain was performed in the
low-noise regime, analogous to single-qudit codes de-
scribed in the previous section, which agrees well with
Eq. (58).

Although using four independent square qubits
yields a higher encoding rate (k/N = 1), the er-
ror rate is correspondingly higher—around 3 or 4

orders of magnitude higher on average compared to
the other encoding schemes. The Tesseract-like qubit
(i.e., N = 2 dtms qubit code) features a GKP code
distance 4

√
2
√

π, which is 1.03 times higher than the
effective distance of the dtms two-qubit code (though
numerical results indicate a larger true distance for
the dtms code, Section 4.2). However, two copies of
a Tesseract-like qubit requires two squeezers to gen-
erate the code, whereas the dtms two-qubit code re-
quires only one squeezer. This observation reflects a
tradeoff between code performance and the physical
resources (number of active elements) required to gen-
erate the code, at least when employing our two-stage
decoder.

6 Discussion
In this work, we introduce a family of versatile

distributed two-mode squeezing (dtms) GKP codes
tailored for near-term (small) quantum information
processors, which are well-suited for applications in
quantum repeaters [12, 40–44] and quantum sensor
networks [14]. Our proposed dtms GKP codes offer a
unified framework capable of supporting both discrete
and analog quantum information. The codes adopt a
single two-mode squeezing element and simple pas-
sive interferometers for encoding, typically requiring
squeezing levels below 10dB. Our work furthermore
spotlights the synergy between distributed quantum
sensing protocols and the design of quantum error cor-
rection codes. Indeed, the syndrome measurement in
error correction can be considered as a quantum sens-
ing process.

We summarize a few future directions that have
emerged from our analyses. While our emphasis has
been on simple two-stage decoders, which demon-
strate good performance for small system sizes, find-
ing better (yet efficient) decoders for larger systems
is an outstanding open problem. Moreover, our focus
on an iid noise model for all data and ancilla con-
trasts with real-world noise, which may be hetero-
geneous and potentially correlated. Addressing this
problem calls for additional optimization in encoding
and decoding steps, as explored for the oscillators-to-
oscillators codes in Ref. [51]. Related open problems
on the noise model also include the optimal correction
for bosonic loss, where a commonly adopted (though
suboptimal [62]) approach is to convert loss to addi-
tive noise via pre-amplification.

We have focused on dtms GKP codes that rely on a
single two-mode squeezing element, which seems suf-
ficient for small-sized codes (k = 1, 2). Besides the
codes that we have focused on in this paper, as the
number of data modes increase, it becomes important
to see how dtms codes can benefit from a few more
squeezing elements. One option involves sparsely
scattering two-mode squeezing operations amongst
the large number of modes N (such that the number
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Figure 9: Introducing more squeezing components to encode
more data modes. The number of squeezers scales with k
rather than N . Here, N = 7 and k = 3.

of squeezing operations depends weakly on k or N)
and use beamsplitters to distribute the sparse squeez-
ing throughout the entire network, in a similar vein to
the dtms codes presented in this work. Further inves-
tigation is warranted here. Another concrete option
is to have a two-mode squeezing operation per data
mode, thus allowing the number of active components
to scale (linearly) with k rather than directly with the
size of the code block, N . In this scenario, one can
leverage beamsplitter interference among GKP ancil-
lae to benefit from multi-partite entanglement, similar
to the dtms-GKP codes elaborated in this paper. See
Fig. 9 for an illustrative schematic. It is worthwhile to
draw parallels between these concepts and distributed
quantum sensing of multiple parameters [73]. In sens-
ing context, the number of squeezed vacua increases
with the number of parameters of interest, albeit with
diminishing quantum advantage as more local param-
eters are estimated with a fixed number of modes.
Likewise, as the number of data qudits, k, increases,
a coding block of fixed size, N , provides diminishing
protection of more logical information.
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A Theory of multi-mode GKP Codes
To better elucidate the findings presented in this

paper, we provide a review of multi-mode GKP states,
including some basic elements of classical lattice the-
ory. With the high-level lattice technology in hand,
we leap to the quantum theory of multi-mode GKP
states through the stabilizer formalism. Technical de-
tails omitted here can be found in Refs. [5, 8, 16–18].
Lastly, we highlight key ingredients for characterizing
GKP qudit codes, such as the GKP code distance,
and GKP oscillators-to-oscillators codes, such as ana-
log noise suppression via two-mode squeezing.

A.1 Stabilizer formalism for GKP states
We associate an N -mode GKP state |ΨL⟩ with a

2N -dimensional symplectically integral lattice L in
the phase space, R2N , where each position (q) and mo-
mentum (p) quadrature constitutes a dimension. The
lattice L can be described by a set of 2N -dimensional
basis vectors {mj}2N

j=1, which we package into a gen-
erator matrix,

M := (m1,m2, . . . ,m2N ). (64)

The lattice is symplectically integral in the sense that
the symplectic product between any two basis vectors
is an integer (i.e., m⊤

i Ωmj ∈ Z). We codify this
property compactly in the symplectic Gram matrix,

A := M⊤ΩM , (65)

such that Aij ∈ Z.
Starting from any point q ∈ L, we can reach any

other point in L via discrete displacements along the
vectors mj (columns of M). In this sense, M gen-
erates the lattice, and we can use this interpretation
to define the lattice, L := {M⊤a |a ∈ Z2N }. The
representation M of L is not unique because we are
free to multiply M by an unimodular matrix N (i.e.,
Nij ∈ Z and detN = ±1), such that M ′ = MN and
M are both faithful representations of L. Clearly, this
change of basis does not alter the definition of L given
above but is otherwise useful to examine properties of
the lattice.

Theorem 1 (Appendix B of Ref. [19]). For any anti-
symmetric matrix A with integer elements, there ex-
ists a unimodular matrix N such that

N⊤AN = Ω

 N⊕
j=1

djI2

 (66)
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where di ∈ Z+.

As we elaborate more below, the positive integer
dj here corresponds to a dj-level system (a qudit) en-
coded in the j-th mode of a N -mode bosonic system.

Along with the lattice L we have the dual lattice
L⊥ which consists of all vectors v that have integral
symplectic product with the vectors in L, such that
L⊥ := {v|m⊤Ωv ∈ Z ∀m ∈ L}. It follows that L ⊆
L⊥. We can choose a generator basis for the dual
lattice as

M := MA−1Ω, (67)

such that M⊤ΩM = Ω.
The quotient space L⊥/L is the space in which we

can encode discrete logical information (e.g., qudits).
Indeed, dim(L⊥/L) = detM/ detM =

∏N
j=1 d2

j pro-
vides the number of logical operations in the code
space [8, 17, 18], with each dj describing the number
of discrete states encoded into the j-th subsystem (or
mode).

Definition 4 (Subsystem codes). We refer to each dj

as the local code dimension of the j-th subsystem (or
mode). The subsystem encodes m (qu)bits if dj = 2m.
We refer to the subsystem as canonical or self-dual if
dj = 1.

Theorem 1 suggests that M ∝ (
⊕N

j=1
√

djI2), up
to a scaling matrix that leaves the symplectic form Ω
unchanged. This intuition happens to be correct.

Theorem 2 (Codes and symplectic transforms).
Consider a lattice L represented by M , with subsys-
tems dj. Then, up to a unimodular transformation,
the generator matrix can be written as

M = S

 N⊕
j=1

√
djI2

 , (68)

where S ∈ Sp(2N,R).

See Ref. [18] for details (Corollary 1). An inter-
esting implication of Theorem 2 is that the gener-
ator matrix for any [[N, k]] code, which encodes k
(qu)bits into N modes, can be expressed as M[[N,k]] =
S[[N,k]](

√
2I2k ⊕ I2(N−k)). We illustrate this with

examples in Appendix C. This also affords an op-
erational interpretation for code construction in the
quantum theory, as S can be linked to a Gaussian
unitary (see below for further discussion).

It is often useful to consider special classes of codes
that have CSS-type properties, such that stabilizer
checks decompose into X- and Z-type stabilizers. Fol-
lowing Ref. [18], we generalize the CSS property to
lattice codes.

Definition 5 (CSS property [18]). A lattice (e.g.,
GKP) code is said to be a CSS lattice code if its sta-
bilizers can be decomposed into q and p stabilizers.

In other words, the generator matrix for a CSS GKP
code, upon reordering of the q and p rows/columns,
can be written as

MCSS = Mq ⊕ Mp. (69)

Simple examples of CSS GKP codes are square and
rectangular GKP qubits. Concatenating a local CSS
GKP code (e.g., square code) with an outer CSS qubit
code maintains the CSS property of the code [8, 18].
From Theorem 2, we can also generate a CSS GKP
code by acting on square qudits with a symplectic
transformation (Gaussian unitary) that separates into
q and p blocks.

We now leap to the quantum theory of GKP states
through the stabilizer formalism applied to bosonic
modes [8, 74]. A 2N -dimensional stabilizer group G is
an abelian group generated by a set of 2N commut-
ing operators, Ĝj , which act on the N -mode bosonic
Hilbert space H . We define the group abstractly
through the generators as G := ⟨Ĝ1, Ĝ2, . . . , Ĝ2N ⟩.
A stabilizer code space C ⊂ H associated with
S is then defined as the +1 eigenspace of G, i.e.
C := {|Ψ⟩

∣∣ Ĝ |Ψ⟩ = |Ψ⟩ , ∀ Ĝ ∈ G}.
Combining the stabilizer formalism with lattice the-

ory, we define a GKP stabilizer group, from which we
construct a GKP (stabilizer) code [8].

Definition 6 (GKP stabilizer group). Consider a
2N -dimensional lattice L with representation M . We
define stabilizers as displacements along the vectors
mj (columns of M), such that

Ŝ(mj) := D̂(ℓmj), (70)

where D̂(·) is the displacement operator in Eq. (16).
For brevity, we denote stabilizers as Ŝj when the con-
text is clear. The GKP stabilizer group associated with
the representation M of L is then,

S(M) := ⟨Ŝ1, Ŝ2, . . . , Ŝ2N ⟩. (71)

Due to the integral conditions imposed on the vec-
tors mj (i.e., m⊤

i Ωmj ∈ Z) and the commutation
relation for displacement operators [see Eq. (17)], it
is evident that the operators Ŝj (and their products)
commute. Using this set of stabilizer generators, we
construct a GKP code.

Definition 7 (GKP code [8]). A GKP code space
C(M) is defined as the +1 eigenspace of the GKP
stabilier group S(M), i.e.

C(M) :=
{

|ΨL⟩
∣∣∣ Ŝ |ΨL⟩ = |ΨL⟩ , ∀ Ŝ ∈ S(M)

}
,

(72)
where M is a generator matrix for the lattice L.

To provide a more concrete perspective, we adopt
an operational approach that can be employed to
characterize (or create) a [[N, k]] GKP qudit code.
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We assume a device that generates k local (i.e., single-
mode) square GKP qudits (dj > 1) and another de-
vice that generates a block of N − k local, square
canonical (d = 1) GKP states. The initial generator
matrix is a trivial direct sum,

Min :=

 k⊕
j=1

√
djI2

⊕ I2(N−k). (73)

We then push this collection of N independent GKP
states through a multi-mode network comprised of
active and passive elements, described by a Gaus-
sian unitary ÛS . This construction generates a multi-
mode GKP qudit code with a representation,

ML := SMin, (74)

where S is the symplectic matrix corresponding to
ÛS .

The stabilizers and code space of the resulting code,
S(ML) and C(ML), respectively, are connected to the
initial stabilizers S(Min) and code space C(Min) by
unitary conjugation, yielding the simple correspon-
dence

Ŝ(mj) → Ŝ(Smj) ∈ S(ML) (75)
and |Ψin⟩ → ÛS |Ψin⟩ ∈ C(ML) (76)

where Ŝ(mj) ∈ S(Min) and |Ψin⟩ ∈ C(Min).
Pauli X and Z operations (qudit flips and

phase flips) acting on the initial code space
C(Min) are related to the first 2k columns vectors
(m̄in,1, m̄in,2, . . . , m̄in,2k) of the dual matrix, M in
[see Eq. (67) for its definition], where

M in = M−1
in =

 k⊕
j=1

I2√
dj

⊕ I2(N−k). (77)

Whence, the Paulis on C(Min) correspond to
single-mode displacements, written abstractly as
X̂in,j = D̂(ℓm̄in,2j−1) and Ẑin,j = D̂(ℓm̄in,2j) for j =
1, 2, . . . , k [see Eq. (2)]. We can connect the Paulis
acting on the k-mode code space C(Min) to logi-
cal Paulis acting on the N -mode code space C(ML)
through the encoding S. Given ML in Eq. (74), the
dual matrix after encoding takes a simple form,

ML = SM−1
in , (78)

such that

X̂L,j = D̂(ℓSm̄in,2j−1), ẐL,j = D̂(ℓSm̄in,2j) (79)

for j = 1, 2, . . . , k. These are valid unitary represen-
tations of logical X and Z operations acting on the
N -mode code space C(ML). Although, they do not
generically correspond to minimal-weight Paulis; see
Definition 8 and the surrounding discussions.

This concrete framework for code construction (via
Min and ÛS) not only serves illustrative purposes but
potentially offers a practical approach to realize GKP
codes in platforms relying on itinerant modes, such
as optical quantum information processors. Though,
this rests on the assumption that the multi-mode
Gaussian unitary ÛS , or some version thereof, can
be effectively engineered. In this paper, we achieve
this through a single two-mode squeezer and multi-
port interferometers (see Fig. 1 of the main text for
an illustration).

A.2 Qubits-to-oscillators: GKP code distance
When encoding discrete information into a multi-

mode GKP state, we need some generic method of
characterizing the performance of the resulting code.
One natural figure of merit is the so-called GKP code
distance [8, 17, 18], which gives a relative measure of
how large a displacement error needs to be in order to
enact a logical error on the code space. For simplicity,
we focus on a single-qubit code. The extension to
qudits is straightforward.

Definition 8 (GKP Pauli distance [19]). Consider
a GKP qubit code C(M) ∼ C2 associated to a 2N -
dimensional lattice L with a representation M . We
define the GKP Pauli distance for the logical operator
ĴL ∈ {X̂L, ŶL, ẐL} as

DJ := ℓ × min
a∈Z2N

∥m̄J − Ma∥, (80)

where m̄J ∈ L⊥/L is a Pauli displacement vector
corresponding to the logical Pauli operation ĴL and
ℓ =

√
2π.

In the settings of interest here, the Pauli X and Z
displacement vectors, m̄X and m̄Z , respectively, cor-
respond to the first two columns of the dual matrix
M . This correspondence follows from the code con-
struction in Eqs. (74) and (78). For example, a square
qubit has m̄X = 2−1/2(1, 0) and m̄Z = 2−1/2(0, 1),
and thus DX(□) = DZ(□) =

√
π, and DY (□) =√

2π. It is important to note that the vectors m̄X

and m̄Z of M do not necessarily represent the short-
est displacements capable of implementing a logical
Pauli, hence the minimization in the definition above.

Definition 9 (GKP code distance). Given the Pauli
distances DJ for a GKP qubit code C(M) ∼ C2, the
GKP code distance D is defined as

D := min
J∈{X,Y,Z}

DJ . (81)

The GKP code distance sets a length scale that
serves as an initial estimate for assessing GKP code
performance. In particular, given an error e ∼
N (0, σ2I2N ), the displacement is correctable if σ ≲ D.

Finally, we note that concatenating a local GKP
code (of GKP distance Dlocal) with a [[N, k, d]] qubit
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code results in an increased GKP distance, Dconc ≥√
dDlocal. Equality is met for CSS-type codes [18].

Examples include square GKP-surface codes [72, 75],
with dsurf ∼

√
N =⇒ Dsurf ∼

√
πN1/4.

A.3 Oscillators-to-oscillators: Reducing the
variance

Protecting continuous-variable (i.e., analog) data
against analog noises, such as additive noise or atten-
uation, is a distinct challenge that has only recently
been addressed via GKP oscillators-to-oscillators
(O2O) codes [11].3 The goal of O2O codes is to
directly mitigate analog errors. That is, assuming
some small noise σ ≪ 1, we want σ → σα for some
α > 1. This capability has applications in distributed
quantum sensing [14, 15, 35] (e.g., protecting a bright
squeezed beam) and other continuous-variable infor-
mation processing tasks.

Consider a multi-mode GKP O2O code that en-
codes k oscillators into N ≥ k oscillators, using an
encoding block of N − k canonical GKP ancillae, and
protects against the AGN channel Φσ. Given the ana-
log data state is Ψ, the output state from the GKP
O2O decoding map is given by ΦP (Ψ), where ΦP is
a non-Gaussian additive noise channel in Eq. (15)
described by the PDF P (e). Here, e is the resid-
ual displacement noise on the analog data, such that
⟨e⟩ = 0 and (Vout)ij := ⟨eiej⟩ ≥ 0. The matrix Vout
is the output covariance matrix derived from the O2O
code that characterizes the residual noise affecting the
data. We use it as a performance metric for an O2O
code via the output variance, σ2

out := Tr{Vout}/2k, as
defined in Eq. (19) of the main text. Given that we
aim to safeguard an arbitrary analog state, the out-
put noise variance of the code is the preferred metric,
contrasting, for instance, the likelihood of a discrete
Pauli error in DV codes.

The non-Gaussian PDF P (e) is independent of Ψ
but depends on the Gaussian encoder as well as the
ancillae consumed, whether they be canonical square
GKP, hexagonal GKP, etc. Hence, to compute the
output variance explicitly, we must specify details of
the encoding and decoding. On the other hand, some
generic things can be said about the output noise of
GKP O2O codes.

For iid AGN, it can be shown, using quantum ca-
pacity arguments for GKP codes [11, 13], that the
output error is bounded by,

σ2
out ≥ 1√

e

(
σ2

1 − σ2

)N/k

. (82)

Furthermore, for generic (not necessarily GKP) O2O
codes that utilize unitary Gaussian operations for en-

3Indeed, the original Gottesman-Kitaev-Preskill paper [8]
stated that protecting analog information “might be too much
to hope for”.

coding and decoding, one can employ an effective two-
mode squeezing decomposition (through the mode-
wise entanglement theorem [76]) to show that

σ2
out ≥ 1

k

k∑
i=1

σ2

2Gi − 1 , (83)

where Gi are the gains of the TMS operations in the
decomposition [13]. We thus see that, without some
amount of squeezing, analog noise reduction is gener-
ally impossible.

The squeezing bound (83) implies that the noise can
be arbitrarily suppressed, however this seems in con-
tradiction with the lower bound for GKP codes (82).
This paradox can be resolved by noting that the
squeezing cannot be arbitrarily large in GKP codes.
Specifically, if ξ ∼ N (0, σ2) is the original AGN,
then the amplified error, after TMS operations, is
ξG ∼ N (0, (2G−1)σ2). To unambiguously resolve the
displacement error from syndrome measurements on
the GKP ancilla, we must have that ξG ≲

√
π/2 =⇒

G ≲ π/8σ2 + 1/2, otherwise harmful lattice effects
emerge in the decoding process. Substituting this con-
dition into Eq. (83) (and assuming N = M = 1 for
simplicity), we find that σ2

out ≳ 4σ4/π, in agreement
with the scaling implied by Eq. (82). This crude esti-
mate is actually quite close to a more precise account-
ing [see Eq. (51) in the main text].

B Details of dtms Codes
B.1 Uniform beamsplitter array

Our dtms-GKP code design relies on a staircase of
beamsplitters that uniformly distribute locally ampli-
fied noises to all modes [see Fig. 1 and Eq. (25)]. We
elaborate the choice of beamsplitter transmissivities
in order to achieve uniform splitting. We write the
symplectic matrix, B, that describes the configurable
multi-port interferometer in block form,

B =
(
B̃

B′

)
, (84)

where B̃ is a 2(N − 1) × 2 sub-matrix of B. When
there are no phases (ϕj = 0), we can write B̃ in block
form,

B̃⊤ =
(

±√
η1I2, ±

√
(1 − η1)η2I2, · · · ,

±
√

(1 − η1)...(1 − ηN−2)I2

)
, (85)

where ηi ≡ | cos θi|2 is the i-th beamsplitter transmis-
sivity. A balanced beamsplitter can be obtained by
taking η1 = (1 − η1)η2 = ... = (1 − η1)...(1 − ηN−2).
Solving this recursively, ηN−2 = 1/2, ..., η1 = 1/(N −
1), leading to,

B̃⊤ =
(

± I2, ..., ±I2

)
/
√

N − 1. (86)
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Adding phases leads to the block form,

B̃⊤ =
(
R(ϕ1), ...,R(ϕN−1)

)
/
√

N − 1, (87)

where R(ϕi) is the single-mode phase rotation in
Eq. (13), and signs have been absorbed.

B.2 Correlated noise matrix
After the unitary dtms encoding-decoding stage,

the initially independent data and ancillae noises,

e ⊕ eanc ∼ N (0, σ2I2N ), become correlated per
e′ ⊕ e′

anc = S−1
dtms(e ⊕ eanc) ∼ N (0,V ), where V =

σ2S−1
dtmsS

−⊤
dtms and Sdtms =

(
SG ⊕ I2(N−2)

)
(I2 ⊕ B)

[Eqs. (25) and (34)]. Writing the covariance out in
the sub blocks per Eq. (84), we have,

V = σ2
(

(2G − 1)I2 −2
√

G(G − 1)ZB̃

−2
√

G(G − 1)B̃⊤Z B⊤ ((2G − 1)I2 ⊕ I2(N−2)
)
B

)
. (88)

The upper left block represents the locally amplified
data noise. Observe that the ancillary noise can be
interpreted as a single-mode thermal state (of G − 1
photons) distributed to a collection of N − 1 oscilla-
tors via B⊤. For a given realization, e ⊕ eanc, the
correlated noises are,

e′ =
√

Ge −
√

G − 1Zeanc,1 (89)

and e′
anc = B⊤


√

Geanc,1 −
√

G − 1Ze
eanc,2

...

 .

(90)

Thus, in principle, through correlations (off-diagonal
elements of V ) and measurements of ancillary noises
(lower right block of V ), the data noise can be almost
exactly inferred for large G. There will be limits to
G, however, due to the measurement process, as we
detail in the following subsections.

B.3 Decoding dtms codes: Asymptotics
We sketch the derivations leading to the analytical

results for our two-stage decoder (Section 5). We start
with the oscillators-to-oscillators stage of decoding.
See Fig. 5 in the main text for an illustrative reference.
Then we derive asymptotic expressions for the output
variance of oscillators-to-oscillators codes. Finally, we

outline the argument leading to analytical expressions
for logical error rates for qudit codes.

B.3.1 O2O layer decoding: Error PDF

Starting with the ancillary noises in Eq. (89), which
are correlated with the data noises, we can perform
stabilizer measurements on the ancillary GKP, obtain-
ing an error syndrome, sanc = Ωe′

anc mod ℓ. Pro-
vided with these syndromes, we construct an esti-
mator, ẽ′ for the data noises via linear estimation
ẽ′ = FdtmsΩ

⊤sanc, where Fdtms is a 2 × 2K rect-
angular matrix. For CSS-type dtms qudit and O2O
codes (ϕ = 0), we choose

Fdtms = −CG√
K

(Z Z . . . Z) =: F , (91)

where we drop the dtms subscript in this appendix
for notational convenience. Here,

CG = 2
√

G(G − 1)/(2G − 1), (92)

which is also defined in Eq. (41) of the main text. This
choice for the estimator minimizes the data noise vari-
ance in the Gaussian approximation. To see this, con-
sider the multivariate Gaussian PDF, g[V ](e′, e′

anc).
One can then show that,

g[V ](e′, e′
anc) ∝ exp

[
−1

2(e′ ⊕ e′
anc)⊤V −1(e′ ⊕ e′

anc)
]

= exp
[
−
(

2G − 1
2σ2

)
(e′ − Fe′

anc)2
]

× exp
[
− 1

2σ2 e
′ ⊤
ancΣ

−1
ance

′
anc

]
, (93)

where, for convenience, we have defined

Σanc := σ2B⊤[(2G − 1)I2 ⊕ I2(K−1)]B. (94)

From here, we see that, conditioned on the ‘Gaussian
estimator’, Fe′

anc, the data noise in each quadrature
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has been reduced to σ2/(2G − 1). This interpretation
is a bit premature as such does account for errors mea-
surement stage, i.e. lattice effects from the ancillary
GKP.

The output noise on the data, after the O2O layer
of error correction, can be obtained from the error
PDF,

P (ε) =
ˆ

de deanc g[V ](e′, e′
anc) × δ (ε − (e′ − ẽ′)) ,

(95)
where, recall, ẽ′ = FΩ⊤sanc is the estimator informed
by ancillary GKP syndromes, sanc = Ωe′

anc mod ℓ.
Next, we write out the Dirac-delta distribution ex-
plicitly, expanding out the syndrome and accounting
for modular effects in sanc. First, for brevity, define
the finite intervals Ini

(ℓ) := [(ni − 1/2)ℓ, (ni + 1/2)ℓ]
of characteristic size ℓ, indexed by integers ni ∈ Z.
Let In(ℓ) :=

∏2K
i=1 Ini(ℓ) define the region formed

by their product. Then,

δ (ε − e′ + ẽ′) =
∑

n∈Z2K

δ
(
ε − e′ + Fe′

anc − ℓFΩ⊤n
)

× I [e′
anc ∈ In(ℓ)] , (96)

where I(x ∈ X ) = 1 if x ∈ X and zero otherwise.
The integers, n, comes from the estimation procedure
at the O2O layer, where displacements are measured
from the nearest lattice points of the ancillary square
GKP [11]. Substituting this expression into Eq. (95),
we find,

P (ε) =
∑

n∈Z2K

f(n) × g

[(
σ2

2G − 1

)
I2

]
(ε − µ(n))

(97)
where

µ(n) := ℓFΩ⊤n = ℓCG√
K

(∑
i=even ni∑
i=odd ni

)
, (98)

is a discretized mean, corresponding to Eq. (45) in the
main text, and we have defined the discrete probabil-
ity distribution,

f(n) :=
ˆ
x∈In(ℓ)

dx g[Σanc](x), (99)

where CG is defined in Eq. (92). For instance, given
a single GKP ancilla (K = 1), f(0, 0) is the likeli-
hood that an ancillary displacement lies within the
square region I0,0(ℓ) = [−ℓ/2, ℓ/2] × [−ℓ/2, ℓ/2] cen-
tered about the origin.

B.3.2 Output error: Oscillators-to-oscillators

We now estimate the output error of a dtms-O2O
code using similar tricks as in the original work of
Ref. [11].

In our current formulation, the q and p quadra-
tures are uncorrelated and on equal footing. Thus,
it suffices to focus on the noise in one quadrature,
say the q quadrature. We denote the error PDF for
the q quadrature as the marginal, P (εq) =

´
dεp P (ε)

where ε = εq ⊕ εp, such that σ2
out =

´
dεq P (εq)ε2

q.

For brevity, denote the q component of the dis-
cretized mean, µ(n), as µq(n) [first row of Eq. (98)].
Then, given the error PDF in Eq. (97), we can express
the output variance of the dtms-O2O code formally
as,

σ2
out = σ2

2G − 1 +
∑

n∈Z2K

f(n)µ2
q(n), (100)

where the first term can be obtained entirely from
the Gaussian approximation while the second term
encodes lattice effects. This relation obeys the vari-
ance bound (i.e., no-threshold result) for oscillators-
to-oscillators codes [13, 46].

We now make some approximations to obtain an
asymptotic expression for the output error, which
should be valid in the low-noise regime, σ ≪ 1. In
particular, we suppose that Gσ2/K ≲ ℓ2. For low
noises, we ignore |ni| ≥ 2 terms of the summation
in Eq. (100), thus focusing on ni = ±1 type of
terms. Observe that, for low noise and high gain
(G ∼ Kℓ2/σ2), the noises on the GKP ancillary
modes will be highly correlated, due to uniformly dis-
tributing the single amplified noise on the first an-
cilla to all K ancillary modes. This means the term
f(1, 1, . . . , 1) will dominate the summation. [The fi-
nal expression depends weakly on this assumption. It
can nevertheless be validated by observing the form of
Σanc.] For this set of indices, we have µq(1, . . . , 1) =
CG

√
K [see Eq. (92)]. Then, using f(−n) = f(n) and

f(1, . . . , 1) ≤ f(1), where f(1) =
∑

n′∈Z2(K−1) f(1,n′)
is the marginal, we can expand the output error as,

σ2
out ≈ σ2

2G − 1 + 16πG(G − 1)K
(2G − 1)2 f(1). (101)

The goal now is to estimate f(1), which amounts to
taking the marginal over f(n) in Eq. (99). It can be
verified that the single-quadrature ancilla variance is
σ2

anc = σ2(2(G − 1)/K + 1), and thus,

f(1) =
ˆ 3ℓ/2

ℓ/2
g[σ2

anc](x) ≈ 1
2erfc

(√
ℓ2

8σ2
anc

)
, (102)

where the approximation is from taking the upper
limit to infinity. Expanding everything out in full,
we find
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σ2
out ≈ σ2

2G − 1 + 8πG(G − 1)K
(2G − 1)2 erfc

1
2

√
π

σ2
(

2(G−1)
K + 1

)
 . (103)

Using the approximation erfc(x) ≈ e−x2
/(

√
πx), it

can be shown by iteration that the optimal gain,
GO2O, that minimizes the output error is approxi-
mately given as,

GO2O ≈ πK

8σ2

{
ln
(

π3/2K2

2σ4

)}−1

. (104)

The first part minimizes the exponential in Eq. (103),
while the logarithmic term accounts for the pre-factor.

B.3.3 Qudit layer decoding: Error rates

We estimate single-qudit error rates assuming a
square qudit as the data mode in the (CSS) dtms-
GKP code.

Following O2O-level decoding (first stage of the
decoder), we perform closest point decoding on the
square qudit. In other words, we measure q and p

stabilizers of the square qudit code to estimate the dis-
placement and map back to the nearest lattice point.
Since the code is CSS in our current formulation, we
can focus on one type of error, say an X error, which
is governed by the marginal PDF, P (εq). An error
occurs if the displacement, εq, falls within an error
region, Ed(m) := ℓ/

√
d[md + 1/2, (m + 1)d − 1/2],

where d is the qudit dimension and m ∈ Z. That is, if
εq ∈ Ed(m), closest point decoding will map us back
to an incorrect lattice point, inducing a logical error.
Using the form of the error PDF provided in Eq. (97),
the logical error rate can be formally written as,

Pr[X] =
∑
m∈Z

ˆ
Ed(m)

dεq P (εq)

=
∑

n∈Z2K

f(n) Pr[X|n], (105)

where we have defined the conditional error rate,

Pr[X|n] :=
∑
m∈Z

ˆ
Ed(m)

dεq g

[
σ2

2G − 1

]
(εq − µq(n))

= 1
2
∑
m∈Z

(
erf
[

ℓ√
d
((m + 1)d − 1

2 ) − µq(n)√
2σ2/(2G − 1)

]
− erf

[
ℓ√
d
(md + 1

2 ) − µq(n)√
2σ2/(2G − 1)

])
. (106)

At G = 1, these expressions result in error
rates for the square qudit code [8], Pr[X]

∣∣
G=1 ≈

erfc[
√

ℓ2/(8dσ2)]. We can then imagine starting from
G = 1 and slowly increasing the gain, thereby de-
creasing the error rate. For G close to 1, effects from
the O2O decoding layer are negligible and Pr[X] ≈
erfc[

√
ℓ2(2G − 1)/(8dσ2)]. On the other hand, for

G ≳ 1, errors are dominated by the O2O-layer de-
coding and thus determined by f(n). In particular,

Pr[X]
∣∣∣∣
G≳1

≈
∑

n̸=(0,...,0)

f(n). (107)

Assuming the gain is larger than 1, but not too large,
specifically G ≲ K, then only first order terms in the
sum are necessary, i.e.∑
n̸=0

f(n). ≈ 2 × (f(1, 0, . . . , 0) + · · · + f(0, 0, . . . , 1))

≈ 2K × f(1), (108)

where the factor of 2 comes from f(−n) = f(n) sym-
metry and f(1) is the marginal, f(1) =

∑
n′ f(1,n′),

given in Eq. (102). Expanding the error rate out in
these different regimes, we have,

Pr[X] ≈


erfc

[√
ℓ2(2G−1)

8dσ2

]
, G ≈ 1

K × erfc
[√

ℓ2

8σ2
(

2(G−1)
K +1

)] , 1 ≲ G ≲ K

.

(109)
These cases are (approximately) balanced when the
arguments of the exponentials are equal. This hap-
pens at the gain value,

G(N ; d) = 1 +
√

(N − 2)2 + 4d(N − 1) − N

4 , (110)

where N = K + 1. Setting this as the gain once and
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for all, we find,

Pr[X] ≈ (K + 1) × erfc
[√

ℓ2 (2G(N ; d) − 1)
8dσ2

]
(111)

= N × erfc
[√

D2
eff(N ; d)

8σ2

]
, (112)

where we have defined the effective distance,
Deff(N ; d) := ℓ

√
(2G(N ; d) − 1)/d. These expressions

agree with those provided in Section 5.2.
Similar asymptotic analyses can be applied to dtms

two-qubit codes, though we do not provide details
here. Notably, the main difference for two-qubit codes
is the existence of correlations between X1 and X2 (Z1
and Z2) errors, which must be taken into considera-
tion. However, the error rate for a single-qubit error,
say X1, closely resembles the single-qudit case just
discussed. Hence, similar arguments go through.

C Assorted Code Examples
We present various GKP qubit codes, such as the

tesseract code, the [[4,2,2]] code, and the [[5,1,3]]
code, along with symplectic transformations that can
be used to construct them. This gives some insight
into relationships between different codes and demon-
strates how qubit codes can be created via Gaussian
operations on a square qubits and canonical GKP
states. To streamline the presentation, we use the
following notation for the initial generator matrix of
a [[N, k]] qubit code,

M(N,k) := Min =
(√

2I2k

)
⊕ I2(N−k). (113)

C.1 Tesseract code

The Tesseract code can be represented by the gen-
erator matrix [17]

Mtess = 21/4


1 0 0 0
0 1/

√
2 0 1/

√
2

0 0 −1 0
0 1/

√
2 0 −1/

√
2

 . (114)

It can also be constructed by acting with a two-mode
Gaussian operation, Stess, on a square GKP qubit
and a canonical GKP state, i.e. M ′

tess = StessM(2,1),
where

Stess =


2−1/4 0 21/4 0

0 0 0 2−1/4

−2−1/4 0 0 0
0 −21/4 0 2−1/4

 . (115)

The generator matrices, Mtess and M ′
tess, are related

by a unimodular matrix,

Ntess =


1 0 1 0
0 −1 0 1
1 0 0 0
0 1 0 0

 , (116)

such that StessM(2,1) = MtessNtess. Furthermore, it
can be shown that the Tesseract symplectic transfor-
mation, Stess, can be decomposed into a two-mode
squeezer followed by a beamsplitter. The relation
can be expressed as Stess = BtessSGtess , with Gtess =
(
√

2 + 1)/2 and

Btess =
( √

ηI2
√

1 − ηI2
−

√
1 − ηI2

√
ηI2

)
, (117)

where η = (2 −
√

2)/4. Since the code distance (and
error correction for iid AGN) does not change with
the exterior beamsplitter, Btess, the Tesseract code is
equivalent to the N = 2 dtms qubit code in terms of
code distance. In fact, the code distance is 21/4√

π
for both codes.

C.2 [[4,2,2]] code

From the [[4,2,2]] stabilizers ⟨XXXX, ZZZZ⟩, a
generator matrix can be written [5, 17, 18],

M[[4,2,2]] = 1√
2



1 0 2 0 0 0 0 0
0 1 0 2 0 0 0 0
1 0 0 0 2 0 0 0
0 1 0 0 0 2 0 0
1 0 0 0 0 0 2 0
0 1 0 0 0 0 0 2
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


.

(118)
The [[4,2,2]] code can also be constructed by
a symplectic transformation, S[[4,2,2]], such that
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S[[4,2,2]]M(4,2) = M[[4,2,2]]N[[4,2,2]], where

S[[4,2,2]] =



1 0 0 −1 1√
2 0

√
2 0

0 0 0 0 0 0 0 1√
2

1 0 0 0 1√
2 0 0 0

0 1 0 0 0 0 0 − 1√
2

0 0 0 0 1√
2 0 0 0

0 −1 −1 0 0
√

2 0 1√
2

0 0 0 −1 1√
2 0 0 0

0 0 1 0 0 0 0 − 1√
2


,

(119a)

N[[4,2,2]] =



0 0 0 −2 1 0 0 0
0 0 2 0 0 0 0 −1
1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 1
1 0 0 1 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −1 −2 0 0 1 0 1


.

(119b)

The code distance is
√

2π. Note that the [[4,1,2]] code
is a sub-code of the [[4,2,2]] code with the same GKP
code distance.

C.3 [[5,1,3]] code
The stabilizer generators of the [[5, 1, 3]] code are

⟨IXZZX, XZZXI, XIXZZ, ZXIXZ⟩, thus provid-
ing a lattice representation,

M[[5,1,3]] = 1√
2



0 1 1 0 2 0 0 0 0 0
0 0 0 1 0 2 0 0 0 0
1 0 0 1 0 0 2 0 0 0
0 1 0 1 0 0 0 2 0 0
0 0 1 0 0 0 0 0 2 0
1 1 0 0 0 0 0 0 0 2
0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0


.

(120)
One can also obtain the [[5,1,3]] code from
a symplectic transformation, S[[5,1,3]], such that
S[[5,1,3]]M(5,1) = M[[5,1,3]]N[[5,1,3]]. The symplectic
matrix, S[[5,1,3]], and unimodular matrix, N[[5,1,3]],
are given explicitly as,

S[[5,1,3]] =



0 −1 1√
2 0

√
2 0 0 1√

2 0 0
0 0 0 0 0 1√

2 0 0 0 0
0 0 0 0 0 0 0 0 1√

2 0
0 0 0 0 0 0 0 1√

2 0
√

2
0 0 1√

2 0 0 0 0 0 0 0
−1 0 0

√
2 0 − 1√

2 −
√

2 1√
2

1√
2 0

−1 −1 0 0 0 1√
2 0 1√

2 0 0
0 0 1√

2 0 0 − 1√
2 −

√
2 0 1√

2 0
0 1 0 0 0 − 1√

2 −
√

2 0 1√
2 0

−1 −1 1√
2 0 0 1√

2 0 0 0 0



, (121)

and

N[[5,1,3]] =



0 2 0 0 0 −1 −2 0 1 0
0 −2 0 0 0 0 0 1 0 0
0 −2 1 0 0 0 0 0 0 0

−2 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 0 0

−1 0 0 1 0 0 0 0 0 0


.

(122)

The code distance of the [[5,1,3]] code is
√

3D□ =√
3π.
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