
The VLDB Journal (2024) 33:1203–1230
https://doi.org/10.1007/s00778-024-00857-w

SPEC IAL ISSUE PAPER

Reliability evaluation of individual predictions: a data-centric approach

Nima Shahbazi1 · Abolfazl Asudeh1

Received: 30 January 2023 / Revised: 5 March 2024 / Accepted: 10 May 2024 / Published online: 30 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Machine learning models only provide probabilistic guarantees on the expected loss of random samples from the distribution
represented by their training data. As a result, a model with high accuracy, may or may not be reliable for predicting an
individual query point. To address this issue, XAI aims to provide explanations of individual predictions, while approaches
such as conformal predictions, probabilistic predictions, and prediction intervals count on themodel’s certainty in its prediction
to identify unreliable cases. Conversely, instead of relying on the model itself, we look for insights in the training data. That
is, following the fact a model’s performance is limited to the data it has been trained on, we ask “is a model trained on a
given data set, fit for making a specific prediction?”. Specifically, we argue that a model’s prediction is not reliable if (i) there
were not enough similar instances in the training set to the query point, and (ii) if there is a high fluctuation (uncertainty) in
the vicinity of the query point in the training set. Using these two observations, we propose data-centric reliability measures
for individual predictions and develop novel algorithms for efficient and effective computation of the reliability measures
during inference time. The proposed algorithms learn the necessary components of the measures from the data itself and are
sublinear, which makes them scalable to very large and multi-dimensional settings. Furthermore, an estimator is designed to
enable no-data access during the inference time. We conduct extensive experiments using multiple real and synthetic data
sets and different tasks, which reflect a consistent correlation between distrust values and model performance.

1 Introduction

Motivation: Interpretability is a necessity for data scientists
who develop predictive models for critical decision-making.
In such settings, it is important to provide additionalmeans to
support the following question: is an individual prediction of
the model reliable for decision-making? To further motivate
this, let us use Example 1:

Example 1 Using data-driven predictive models is prevalent
for loan approval [73]. Consider a data science company
that has developed a predictive model tailored for bankers,
aiming to predict the chance of repayment by a prospec-
tive loan applicant. Indeed, such models can be beneficial to
helpfinancial institutesmakewise loan applicationdecisions.
Suppose the model predicts the queried individual has a poor
chance of repaying the loan in case of approval. The data
science company and the bankers are aware and concerned
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about the critiques surrounding such models [11, 18, 56].
In particular, a major question the banker faces is whether
or not they should rely on the prediction outcome to take
action for this case. Therefore, the data science company
would like to provide additional means alongside the model
itself to help with the reliability question regarding individ-
ual predictions i.e. although the model demonstrates to be
accurate on average, is it reliable for this individual predic-
tion as well? Furthermore, for the cases in which the banker
finds the model prediction unreliable, what evidence could
be provided for them?

Novelty: There has been extensive research on trustworthy
AI [39, 51, 58, 75, 80] to address the above issues. For
example, explainable AI [30, 33, 66] provides simple expla-
nations and rules that justify the model’s prediction. On the
other hand, approaches such as probabilistic predictions [59,
64, 84, 85], conformal predictions [7, 70], and prediction
intervals [21, 40, 62] utilize the model’s confidence in its
prediction to identify instances deemed less reliable.

In contrast, rather than relying on the model itself, we
seek insights within the training data used for drawing the
prediction.Acknowledging that amodel’s accuracy is limited
to the data on which it was trained, we pose the question: “Is
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a model trained on a specific dataset suitable for making a
specific prediction?”
Technical highlights: We argue that, irrespective of the
choice of model and its details, the prediction for a query
point is not reliable if the model is not trained on instances
similar to the query point or if there is a high variance in
the vicinity of the query point in the training set. Therefore,
we introduce two data-centric reliability measures based on
the Representation and Uncertainty (RU) around the query
point, called strongRU and weakRU. The RU measures
are defined based on two components:

– Representativeness: Predictive models provide only
probabilistic guarantees on the average loss over the dis-
tribution represented by the data set used for training
them. As a result, their predictions are not distribution
generalizable [44]. Consequently, if the query point is
not represented by the data, the guarantees may not hold,
hence one cannot rely on the prediction outcome.

– Uncertainty:When the query point belongs to an uncer-
tain neighborhood with high variance on the target
values, the model prediction may not be reliable.

weakRU is a warning that is raised if the individual pre-
diction is problematic at least based on one of the two
components. That is, if the query point belongs to an uncer-
tain region or it is not represented by the data. strongRU,
on the other hand, is a conservative but strong warning that
is only raised when the query point fails based on both of
the two components. That is, it both belongs to uncertain
regions and is also not well-represented in the data. While
weakRU is a weaker yellow flag (e.g., Fig. 1) warning that
can be ignored for less critical decisions, strongRU is a red
flag, which if raised, the model outcome should be ignored
or at least considered with extra caution.
Example 1 (part 2): RU measures raise warning when the
fitness of the data set used for drawing a prediction is ques-
tionable, helping the banker to be cautious when taking
action. Besides, these measures provide quantitative justi-
fication to support the banker’s action when they decide to
ignore a prediction outcome that is not trustworthy. Suppose
the weakRU for the query point is low. Besides the score,
our system specifies that, for example, lack of representation
is the issue, reflected by the low representation score. The
banker can then argue to ignore a model outcome for this
case, justifying that the model has been built using a data set
that fails to represent the given case.

To see a concrete example, let us consider the mock inter-
face in Fig. 1, showing an individual prediction with “poor
chance or repayment”. However, the 〈training data
reliability 〉 section raises a warning signal. Next, the
〈RU score breakdown 〉 reveals that the model has not
seen sufficient samples similar to this individual. That is,

Fig. 1 Illustration of a mock interface for individual prediction relia-
bility evaluation—Example 1 (Part 2)

the prediction suffers from a lack of representation. Based
on this analysis, the banker can reject the model predic-
tion and use the RU values along with the 〈reliability
explanation 〉 section to justify their action. ��

While being agnostic to the choice of the uncertainty and
lack of representation components,we propose an implemen-
tation based on the k-vicinity of a query point. In particular,
given the radius of the k-vicinity and its uncertainty, we
develop functions that return probabilities indicating the lack
of representation and uncertainty. We propose methods to
learn the probabilities from the data set itself. We devise
proper indexing and algorithms that enable sublinear query
processing that scales to large data sets.

Positioning in the context of existing work: Our work dif-
fers from existing literature including model-centric uncer-
tainty quantification, local interpretation techniques, and data
coverage in several radical ways:

– We offer a data-centric measure, a quantitative reliabil-
ity warning that measures whether a query point is in
the scope of use of a data. Unlike model-centric uncer-
tainty quantification techniques, our techniques reveal a
property of the data set that regardless of the constructed
model this property stands still.

– Although model-centric techniques such as [21, 40, 62]
guarantee a user-specified assurance level of error, this
error is still computed over the entire data and conse-
quently may fail to focus the error on local regions in
data, representing, for example, minority populations in
social applications. On the other hand, the local fidelity of
our techniques satisfies equal treatment for every query
point.
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– While some model-centric uncertainty quantification
techniques [40, 62] claim considering lack of represen-
tation as a source of uncertainty, as we observed in our
experiments, they fail to capture the associated uncer-
tainty for such query points in sparse regions. This failure
originates from the perfect sampling assumption in devel-
opment and production data which may not hold in
practice. Our measures however properly capture such
cases and directly target the lack of representation of a
query point.

– The literature on data coverage [9, 10, 49] only focuses
on representation, and hence fails to capture uncertainty.
Additionally, they only return a binary signal of whether
to trust the outcome of the model for a query point or
not which practically is not very informative. Whereas
our proposed measures target both sources of uncertainty
and representation and return a quantitative value that is
easily interpretable.

– Unlike techniques in interpretable machine learning [55]
justify (advocate) individual predictions, our technique
questions those that it finds unreliable.

Summary of contributions: In summary, our contributions
in this paper include the following:

1. We propose data set RUmeasures to raise warnings when
the fitness of a data set for an individual prediction is ques-
tionable. To the best of our knowledge, we are the first to
propose data-centric RU measures, a property associated
with data sets.

2. Our proposal is a quantitative measure based on two com-
ponents: the query’s lackof representation anduncertainty
in the data set. The proposed measures can be extended
to different data types and are independent of the model
and prediction task (classification and regression). The
measures are also agnostic to the choice of metric or
approach for computing the two components. Propos-
ing quantitative probabilistic outcomes, our measures are
interpretable for the users since beyond the scores, the
uncertainty and lack of representation components pro-
vide an explanation to justify them.

3. We propose novel algorithms based on the k-vicinity of a
query point to compute the query’s lack of representation
and uncertainty. In particular, we “learn” the measure-
ments from the data set itself. We also propose proper
preprocessing and algorithms that enable sub-linear query
answering that scales to very large and high-dimensional
data sets. Furthermore, to enable no-data access during
the query time, we build regression models to accurately
estimate parameters needed to compute RU measures.
We design an exponential search strategy for constructing
large enough samples for training the estimators.

4. We conduct comprehensive experiments on multiple syn-
thetic and real-world data sets with various scales and
dimensions, on different prediction tasks (regression and
binary/multi-class classification including text classifica-
tion and image processing), using several models (such
as Logistic Regression, DNN, Random Forest, etc.), and
distance measures to (i) validate the effectiveness and
consistency of the RU measures, (ii) evaluate the effi-
ciency and scalability of our algorithms and (iii) evaluate
the existing works.

Our extensive proof-of-concept experiments verify a con-
sistent correlation between RU values and ML performance
metrics on a variety of tasks, data sets, and ML algorithms.
For tuples that have higher RU values (meaning they are less
reliable w.r.t. to our measures), an ML model is more likely
to fail to capture the truth and make a correct decision.
How to use?As demonstrated in our experiments, when RU
values for a query point are high, one should discard or at least
not rely on the individual prediction for critical decisions.
We would like to reiterate that our proposal in this paper
is complementary to the existing literature and should be
used alongside other techniques and potential approaches
for trustworthy AI.

2 Preliminaries

2.1 Datamodel

Consider a data set D with n tuples, each consisting of d
(observation) attributes x = 〈x1, x2, · · · , xd〉 and a target
attribute y, also known as label attribute.1 The observation
attributes x are called the input space and the target attribute
is called the output space. We assume the data set is used
for training a prediction model h, as we shall further explain
in Sect. 2.2. Prediction models assume that D is a set of
iid (independent and identically distributed random) sam-
ples,2 drawn from an (unknown) underlying distribution ξ .
Attribute values may be discrete ordinal, continuous-valued,
or non-ordinal categorical. Throughout the paper, we assume
ordinal attributes are normalized in the range [0, 1], with
values drawn from the set of rational or real numbers. For
non-ordinal attributes, we assume one-hot encoded repre-

1 The measures and the algorithms proposed in this paper extend for
data sets with multiple target attributes. In such cases, each measure is
defined per each target attribute.
2 Wewould like to note that our proposal does not make the iid assump-
tion, which can be violated in practice, especially in the presence of
issues such as sampling bias. We raise a warning when the data set
is not fit to draw a specific prediction. As a result, in such cases, the
warnings will be raised more frequently for the query points that are
not represented by data.
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sentations. We use t j to refer to the j-th tuple in the data
set D and its values of the observation attributes in partic-
ular. Similarly, we use y j to refer to the value of the target
attribute of t j . For every tuple t ∈ D, we use the notation ti
to show the value of t on attribute xi ∈ x.

2.2 Query and predictionmodel

The goal of prediction is to guess the target value y of a query
point based on the observations on x. In other words, given
a point q = 〈q1, q2, · · · , qd〉, the goal is to predict the value
of the target attribute of q. We consider the prediction model
h : Rd → R as a function that predicts the target value of
q as h(q). When y is categorical, the task is classification,
while regression is considered when y is continuous.

The underlying assumption is that q is drawn from the
same distribution ξ from which D has been generated. Now,
consider the Cartesian product of the input and output space
x × y, and fix the hypothesis universeH of prediction func-
tions. A learning algorithmA takes as input the set of samples
in the data set D and finds a specific function h = A(D)

by minimizing the empirical risk (maximizing the empirical
accuracy or minimizing empirical loss) over D. Empirical
accuracy for classification is computed as the sum of sam-
ples inD for which the true label is the same as the predicted
label:

max
n∑

j=1

1
(
y j == h(t j )

)
(1)

The equivalent objective for regression is to minimize the
empirical error between the target variable and predicted val-
ues. Sumof Squares Error (SSE) is the de-facto errormeasure
for regression:

min
n∑

j=1

(
y j − h(t j )

)2
(2)

Having a prediction model h trained by maximizing its
empirical accuracy over the sample points in D, the model
is then used to predict the value of unseen target attribute
of each query point q, observed after model deployment, as
h(q). A central question at this point is whether a decision-
maker should rely on themodel prediction (at least for critical
decisions). In the next section, we propose data-centric mea-
sures generated to answer this concern.

3 Reliability and uncertainty (RU) measures

Not every data set is fit for all data science tasks [9, 77].
An essential requirement for a learning algorithm is that its

training data D should represent the underlying distribution
ξ . Even if so, the trained model guarantees to perform well
only on average over the query points drawn from ξ , not
necessarily on a specific query point. To further explain this,
let us provide some background from the machine learning
theory.

Let L be the loss function used by the learning algorithm.
Considering the underlying distribution ξ , the optimal model
h∗ ∈ H is the one with the minimum expected loss for a
random sample drawn from ξ :

E∗
H = inf

h∈HE

[
L

(
h(x), y

)] = inf
h∈H

∫

x
L

(
h(x), y

)
dξ (x) (3)

Let hn be the model generated with the algorithm A over
a data set D with n samples drawn from ξ . Given the values
ε, δ > 0, the sample complexity [79] of A is the minimum
value of n such that

Pξ

(
E(hn) − E∗ > ε

) ≤ δ (4)

If the sample complexity of A for given values of ε and
δ is unbounded, the function space is not learnable. The
interesting immediate question is whether a distribution-free
function is learnable. In other words, is there a learning
algorithm A such that its sample complexity is bounded,
independent of the underlying distribution? Unfortunately,
following the so-called “no free lunch” theorem [37], the
answer to the above question is negative.

In summary, a trained model h only provides probabilis-
tic guarantee on the expected loss on random samples from
the underlying distribution ξ represented by the data set D.
WhileMLmodels guarantee to performwell on average over
the query points that follow ξ , our objective is use-case base,
i.e., on a single query point—as opposed to the average per-
formance of the model over a set of samples. A model that
performs well on majority of samples drawn from ξ will
have a high performance on average. Still, it does not neces-
sarily mean it will perform well on theminorities and outlier
points [10]. To further observe this, we present an example
that leads to the design of our measures:

3.1 A toy example

As the running example in this section, let us consider the
following classification task:

Example 2 Consider a binary classification task where the
input space is x = 〈x1, x2〉 and the output space is the binary
label ywith values {−1 (red) ,+1 (blue)}. Suppose the under-
lying data distribution ξ follows a 2DGaussian, where x1 and
x2 are positively correlated as shown in Fig. 2a. The figure
shows the data set D drawn independently from the distri-
bution ξ , along with their labels as their colors. Using D,
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Fig. 2 A toy example (Example 2) representing a binary classification task

the prediction model h is constructed as shown in Fig. 2b.
The decision boundary is specified in the picture; while any
point above the line is predicted as +1, a query point below
it is labeled as -1. The classifier has been evaluated using a
test set that is an iid sample set drawn from the underlying
data set ξ . The accuracy on the test set is high (above 90%),
and hence, the model gets deployed for predicting the out-
come of unseen query points. We cherry-picked four query
points, q1 to q4, that are also included in Fig. 2b. Using h
for prediction, h(q1) = −1, h(q2) = +1, h(q3) = +1, and
h(q4) = −1. Figure2c adds the ground-truth boundary to
the search space, revealing the true label of the query points:
every point inside the red circle has the true label −1 while
any point outside of it is +1. Looking at the figure, y1 = +1
while the model predicted it as h(q1) = −1.

Let us take a closer look at the four query points in this
example and their placement w.r.t. the tuples in D used for
training h. q2 belongs to a dense region with many training
tuples in D surrounding it. Besides, all of the tuples in its
vicinity have the same label y = +1. As a result, one can
expect that the model’s outcome h(q2) = +1 should be a
reliable prediction. Similar to q2, q4 also belongs to a dense
region in D; however, q4 belongs to an uncertain region,
where some of the tuples in its vicinity have a label y = +1,
and some others have the label y = −1. Considering the
uncertainty in the vicinity of q4, one cannot confidently rely
on the outcome of the model h. On the other hand, the neigh-
bors of q1 (resp. q3) are not uncertain, all having the label
y = −1 (resp. y = +1). However, the query points q1 and
q3 are not well represented by D, as those would be outlier
w.r.t. D. In other words, q1 and q3 are unlikely to be gener-
ated according to the underlying distribution ξ , represented
by D. As a result, following the no-free-lunch theorem, one
cannot expect the outcome of model h to be reliable for these

points. Note that, as we observed in our experiments, model-
centric techniques such as prediction intervals and conformal
prediction fail to detect q1 and q3 as not trustworthy.

Looking at the ground-truth boundaries in Fig. 2c, h luck-
ily predicted the outcome for q3 correctly, but it was not
fortunate to predict the y1 correctly. Nevertheless, since the
model has not reliably been trained for these outlier points, its
outcome may or may not be accurate for these query points,
hence is not trustworthy.

3.2 Strong and weakRUmeasures

From Example 2, we observe that the outcome of a model h,
trained using a data set D is not reliable for a query point q,
if:

– Lack of representation: q is not well-presented by D. In
other words, q is an outlier w.r.t. the tuples in D. In such
cases, the model has not seen “enough” samples similar
to q to reliably learn and predict the outcome of q.

– Lack of certainty:q belongs to an uncertain region,where
different tuples of D in the vicinity of q have different
target values. In a classification context, that means the
tuples have different labels (similar to q4 in Example 2).
Similarly, in a regression setting, q belongs to a high-
fluctuating area, where tuples in the vicinity of q have a
wide range of values on the target variable.

We design the data-centric RU measures based on these
two observations. In order to identify if a query suffers from
uncertainty or lack of representation, one could use a deter-
ministic approach using a fixed threshold. Then if the number
of similar samples to (resp. label fluctuation in vicinity of) q
is larger than the threshold it is considered as unrepresented
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(resp. uncertain). This approach, however, would bemislead-
ing since two numbers close to the threshold could be treated
very differently. Also, all points on each side of the thresh-
old would be considered equally represented (resp., certain).
Instead, we consider a randomized approach, widely popu-
lar in the literature, including [25]. That is, instead of using
fixed thresholds, a Bernoulli variable (a biased coin) is used
that assigns q as unrepresented (resp., uncertain) based on
the number of samples similar to it (resp., its neighborhood
uncertainty). We represent the probability of the Bernoulli
variables for lack of representation or uncertainty compo-
nents as Po and Pu , respectively.

Note that the two Bernoulli variables Po and Pu are inde-
pendent from each other. That simply follows the argument
that after specifying the number of similar samples to q
whether or not it should be considered as unrepresented does
not depend on the uncertainty in the neighborhood of q. We
will further discuss this in Sect. 5.3. Before formally defin-
ing the RU measures, we would like to emphasize that our
definitions are agnostic and independent from how Po and
Pu are computed. We still shall provide the details of how to
compute these probabilities in Sect. 4.

Definition 1 (strongRU) The strong representation and
uncertainty measure is a probabilistic measure that considers
the outcome of a model for a query point q untrustworthy if q
is not represented byD and it belongs to an uncertain region.
Formally, the strong representation and uncertainty measure
is:

SRU(q) = P
(
(q is outlier) ∧ (q is in uncertain region)

)

= Po(q) × Pu(q) (5)

strongRU raises the warning signal only when the query
point fails on both conditions of being represented byD and
not belonging to an uncertain region. For instance, in Exam-
ple 2 none of the query points fail both on representation and
on uncertainty; hence neither has a high strongRU score.
On the other hand, a high strongRU score for a query point
q provides a strong warning signal that one should perhaps
reject the model outcome and not consider it for decision-
making.

strongRU is a strong signal that raises warning only for
the fearfully-concerning cases that fail both on representation
and uncertainty. However, as observed in Example 2 a query
points failing at least one of these conditions may also not
be reliable, at least for critical decision making. We define
the weak representation and uncertainty measures to raise a
warning for such cases.

Definition 2 (weakRU) Theweak representation and uncer-
tainty measure is a probabilistic measure that considers the
outcome of a model for a query point q untrustworthy if q

is not represented by D or it belongs to an uncertain region.
Formally, the weak representation and uncertainty measure
is computed as follows:

WRU(q) = P
(
(q is outlier) ∨ (q is in uncertain region)

)

= Po(q) + Pu(q) − Po(q) × Pu(q) (6)

4 Implementation of themeasures

4.1 Lack of representation oracle

The first component of the RUmeasures identifies if the data
setDmisses to represent the query pointq. The oracle returns
the probabilistic measure Po, indicating if q is an outlier
in D. Different techniques have been proposed to identify
the outliers and the anomalies [16, 20, 27, 50, 65] of a data
set. The RU measures proposed in this paper are agnostic to
the choice of the outlier detection technique, and alternative
approaches that can compute Po are equally applicable.

Still, in this section we provide a new approach for com-
puting the probability Po, indicating if q is an outlier. In
particular, we follow the existing work [10, 16, 27, 65] by
considering the k nearest neighbors of q in D for studying if
it is an outlier.

Given a distance metric Δ, let ρq = Δk(q,D) be the
distance of the k-th nearest tuple in D to q. Considering
euclidean3 distance measure for Δ, ρq is the radius of the k-
vicinity of q, the tight hyper-sphere (circle in 2D) centered at
q that includes exactly k tuples from D. For example, Fig. 3
shows the k-vicinity of the query points q1 to q4 in Exam-
ple 2. It is easy to see that smaller values of ρq correspond
to denser k-vicinities around q, meaning that the data set D
is more representative of the query point. We use this obser-
vation to develop the lack of representation component Po.
That is, we consider the k-vicinity of q and the value of ρq
to identify whether or not q is represented by D.

In particular, we would like to develop the function O :
R → [0, 1] that given the value of ρq returns the probabil-
ity Po(q). That is, Po(q) = O(Δk(q,D)). The function O
takes a distance value as the input and returns a probabil-
ity indicating if the query point with that k-vicinity radius is
not represented by D. It is clear that as the distance values
increase, the probabilityPo shouldmonotonically increase as
well. However, translating the distances to the probabilities
is unclear and may vary from one data set to another.

3 Please note that while we use euclidean distance for the explanation
and examples in the paper, ourmetrics and algorithms are agnostic to the
choice of the distance measure, and those equally work for other ones.
We evaluate the impact of the choice of the distance measure (using
multiple well-known measures) in our experiments. Our experiments
show consistent results across different measures.
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Fig. 3 Illustration of the k-vicinity (k = 10) of q1 to q4 in Example 2

Fig. 4 Computation of of Po(q) using the ratio of tuples in D with
smaller k-vicinity radius than Δk(q,D)

Our idea is to learn the function O using the tuples in
the data set D. Specifically, we note that the probability of
sampling an outlier tuple according to the underlying distri-
bution ξ is low, and hence most of the tuples in D are not
outliers. Therefore, the comparison between ρq and the k-
vicinity radii of the tuples in D can reveal if q is an outlier.
As a result, instead of directly translating the distance val-
ues to probabilities, we can first identify the rank of ρq in
comparison with other tuples in D and use this information
to specify if q is an outlier. For example, if ρq is smaller than
more than half of k-vicinity radii of the tuples in D, one can
conclude that q is not an outlier. On the other hand, if ρq is
larger than the k-vicinity radii of all tuples inD, it should be
an outlier.

Besides, it is often the case in practice that data sets are
associated with information such as outlier ratio, showing
approximately what percentage of its samples are outliers.
We use such information to develop the function O .

In particular, since the ratio of the outliers inD is often an
estimation by the experts, we consider a Normal distribution
N(μ, σ ), where the user-specified outlier ratio is (1−μ) and
σ is the standard deviation specifying the outlier ratio esti-
mation variance. Figure4 demonstrates such a distribution as

Fig. 5 The data set in Example 3

a bell curve centered at one minus the expected outlier ratio.
Recall that instead of directly using the value of k-vicinity
radius to decide if a point is an outlier or not, we use the rela-
tive position of this value to compute the probability. That is,
we define the probability distribution on the ratio of outliers
in D.

To do so, we first compute ΓD, the multi-set (including
duplicate values) of k-vicinity radii of the tuples in D. Now,
let rq be the percentage of values in ΓD that are not larger
than Δk(q,D):

rq = |{r ∈ ΓD|r ≤ Δk(q,D)}|
n

(7)

Using the value of rq, the query point q is an outlier if
its k-vicinity radius falls within the range of outlier radii. In
particular, suppose r is the boundary of outlier values in ΓD.
Then q is an outlier if rq ≥ r . Following this argument, the
function O can use the probability distribution N(μ, σ ) to
compute the probability Po(q). As shown in Fig. 4, Po(q)

is the probability that the outlier boundary r is less than or
equal to rq, i.e. Po(q) = P(r ≤ rq).

Converting the values to the standard-Normal distribution
and using the Z -table:

Po(q) = P(r ≤ rq) = Z
(rq − μ

σ

)
(8)

To further elaborate on how Po(q) is computed, let us
consider the following example:

Example 3 Consider the 2D data set D with n = 10 tuples
shown in the table of Fig. 5. In addition to the tuple values
on x1 and x2, the table also includes the k-NN (k = 2) of
the tuples and the radius ρ of their k-vicinity. Let the outlier
ratio of the data set be 20% (μ = 1 − 0.2 = 0.8) with a
standard deviation of σ = 0.1. Now consider the query point
q : 〈0.81, 0.76〉. The 2-NN of q are {t1, t6}, and ρq = 0.286.
Looking at the last column of Fig. 5, only t8 has a larger k-
vicinity radius than ρq, i.e., for 90% of tuples the k-vicinity
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radius is smaller than ρq. Therefore, using Eq.8, Po(q) =
Z((0.9 − 0.8)/0.1) = 0.84.

Computing Eq.8 requires (i) computing Δk(q,D), which
requiresfinding the k-NNofq, and (ii) computing thevalueof
rq. The baseline approach for computing these values makes
a linear pass over D to identify the k-NN of q. Besides, it
requires O(n2) to compute the multi-set of k-vicinity radii
ΓD for the tuples inD and then it needs O(n) to make a pass
over ΓD to compute rq.

However, given the interactive nature of query answering
for ML systems and potentially large size ofD, we are inter-
ested in designing an algorithm that runs in a sublinear time to
n. Theoretically speaking, finding the k nearest neighbors of a
point can be done in O(log n) using k-voronoi diagrams4 [4,
13, 22, 46], while constructing the k-voronoi cells takes
polynomial time for a constant number of dimensions [4,
26] (O(k2n log n) for 2D [46]). Besides, practically efficient
algorithms have been proposed [34, 76, 81], construct data
structures in preprocessing time that enables identifying k-
NN is near-logarithmic time. We rely on the off-the-shelf
techniques for finding the k-NN of a query point.

During the preprocessing time, we first construct the k-
NN data structure. Next, for every tuple inD, we identify its
k-vicinity radius and add it to the list ΓD. Finally, to quickly
identify the value of rq in query time, we sort the list ΓD .

Algorithm 1
Input: data set D; k; expected outlier ratio τ ; standard deviation σ ;

query point q
1: function preprocesso(D,k)
2: M ← build the k-NN index of D;

Γ ← [ ]
3: for t ∈ D do
4: V ← k-NN(t)
5: add maxt ′∈V Δ(t, t ′) to Γ

6: return M , sort(Γ )

7: function Po(q)
8: ρq ← maxΔ(q, t ′),∀t ′ ∈ k-NN(q, M)

9: rq ← 1
nBinarySearch(ρq, Γ )

10: return Z(
rq−μ

σ
)

The preprocessing algorithm and the function for identi-
fying Po(q) are provided in Algorithm 1. To compute rq for
a query point q, the algorithm first finds the k-vicinity of q
and identifies the tuple in k-vicinity with maximum distance
from q. Next, it applies a binary search on the sorted list Γ to
identify the number of cells in Γ that have a value not larger
than q, and use it to compute rq. At last, it uses Eq.8 and
returns the value of Po(q).

Let Tcn be the time to construct the k-NN index. Also,
let Tqn � O(log n) be the time to identify the k-NN of a

4 k-voronoi diagram is a partitioning of the query space into convex
cells where the k-NN of all points in each cell is the same set of tuples.

query point, using the constructed index. The preprocessing
function constructs the k-NN index, identifies the k-NN of
each tuple inD, and finally spends O(n log n) to sort the list
Γ . Therefore, the total preprocessing time is O

(
Tcn + n2).

Computing Po(q) requires Tqn to identify the k-NN of q
and O(log n) for the binary search. As a result, the time to
compute Po(q) is O(Tqn + log n) � O(log n).

4.2 Lack of certainty oracle

After the lack of representation oracle, we now turn our atten-
tion to the uncertainty oracle that, given the query point, the
data set D, and the target variable y, returns Pu , the prob-
abilistic measure that indicates if q belongs to an uncertain
region. There has been extensive research, and there exist dif-
ferent metrics for computing uncertainty, namely, entropy,
Gini impurity, Brier score, and probability calibration [15,
17, 29, 60, 71]. Indeed, we are agnostic to the choice of
the technique for developing the uncertainty oracle, and any
method that can compute the probabilistic measure Pu is
equally applicable. Even so, in the rest of this section, we
provide a development of the uncertainty oracle, following
the technique proposed in Sect. 4.1. Similar to Sect. 4.1, we
use the k-vicinity of a query point q as the region for studying
uncertainty.

Binary classification is among themost popularML tasks.
A straightforward approach for developing the uncertainty
oracle for such cases is to use the Shannon entropy (H) [71].
Let v1, · · · , v
 be the set of possible values for a target vari-
able y. Known as a measure of uncertainty, the entropy of
the random variable y is

H(y) = −

∑

i=1

P(v
) logP(v
) (9)

Higher entropy values refer to higher uncertainty, while val-
ues close to zero indicate a high certainty in the value of y.
For a binary variable y, the maximum value of entropy is
one, and it refers to the cases where the probability of each
value is 0.5. Using entropy to measure uncertainty for binary
classification, we consider the set of tuples Vk(q) ⊆ D in
the k-vicinity of the query point q and compute Pu(q) as the
entropy among them. Let p1 be the ratio of tuples in Vk(q)

with label 1. Then,

Pu(q) = −p1 log p1 − (1 − p1) log(1 − p1) (10)

Entropy can also be used for non-binary classification. How-
ever, when the cardinality of y is larger than 2, entropy is not
bounded by 1 anymore. Therefore, instead of using the abso-
lute value of the entropy, we use the comparison between the
uncertainty value of the query point vs. the uncertainty val-
ues in k-vicinities of the tuples in D to identify if q belongs
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to an uncertain region. Intuitively, if the uncertainty in the
neighborhood of q is smaller than a large portion of the other
points in the training set, it is considered safe. Specifically,
suppose ru is the expected ratio of the tuples inD that belong
to uncertain regions. Then,we consider aNormal distribution
N(μu, σu)whereμu = (1−ru) and σu is the standard devia-
tion of uncertain ratio estimation. During the preprocessing,
we construct ΓuD , the sorted list of uncertainty values for the
tuples in D. Then, given a query point q, we first compute
Hq(y), the uncertainty in the k-vicinity ofq usingEq.9.Next,
applying a binary search onΓuD , we compute ruq , the ratio of
uncertainty values in ΓuD that are not larger than ruq . Finally,
converting the values to standard-Normal distribution, Pu(q)

is computed as following:

Pu(q) = P(r ≤ ruq) = Z
(ruq − μu

σu

)
(11)

The residual sum of squares (RSS) is a popular mea-
sure for regression. In regression trees [15], for example,
the objective is to split the search space into regions with
high certainty, where the RSS values in each region are min-
imized, i.e., the certainty in each region is maximized. We
also use RSS for measuring Pu(q) for the regression tasks.
Let Vk(q) ⊆ D be the set of tuples in the k-vicinity of q.
Also, let muq be the average of y values in Vk(q). That is,
muq = (

∑
ti∈Vk (q) y

i )/k. Then the uncertainty around q is
computed as

rssq(y) =
∑

ti∈Vk (q)

(
yi − muq

)2
(12)

The process for computing Pu(q) is the same as the one for
classification, with the only difference being that RSS should
be used for computing uncertainty (instead of entropy). The
pseudo-code of the function Pu(q), along with preprocess-
ing steps, are provided in Algorithm 2. Following a similar
procedure as of Algorithm 1, the time to compute Pu(q) is
O(Tqn + log n) � O(log n). Using the functions Po and Pu ,
it takes a (near) logarithmic time to compute the uncertainty
measures SRU and WRU.

4.3 No data access during the query time

During the query-answering phase, Algorithms 2 and 1
require to compute the k-vicinity radius and the entropy with
the k-NN of a query point q. Although off-the-shelf k-NN
indices are used to find this information, one could view it
as requiring to access the training data after preprocessing.
Our practical approach to address this is to learn these val-
ues. That is, to create two models that take a query point
as the input, returning the k-vicinity radii and the entropy
values. Creating these models requires sampling from the

Algorithm 2
Input: data set D; k; expected uncertainty ratio ru ; standard deviation

σu ; query point q; k-NN index M
1: function uncertainty(V )
2: if y is categorical /*classification*/ then
3: r
 ← ∣∣{t i ∈ V |yi = v
}

∣∣ /k, ∀v
 ∈ Dom(y)

4: return − ∑

i=1 r
 log(r
)

5: mu ← (
∑

ti∈V yi )/k
6: return

∑
ti∈V (yi − mu)

2

7: function preprocessu(D,k)
8: Γu ← [ ]
9: for t ∈ D do add uncertainty(k-NN(t)) to Γu
10: return sort(Γu)

11: function Pu(q)
12: uq ←uncertainty(k-NN(q, M))
13: rq ← BinarySearch(uq, Γu)/n

14: return Z(
rq−μu

σu
)

15: function SRU(q) return Po(q) × Pu(q)

16: function WRU(q)
17: p1 ← Po(q); p2 ← Pu(q)

18: return p1 + p2 − p1 × p2

query space,5 i.e., to generate a large-enough training setwith
observations being i.i.d samples from the query space, while
the target variables are the k-vicinity radius and entropy. On
the positive side, one can generate an arbitrarily large training
set by generating i.i.d sample queries and then computing the
target values using their k-NN. On the flip side, however, as
proven in [10], the theoretical upper bound on the number of
samples needed is exponential. In other words, theoretically
speaking, the size of the training set may need to be exponen-
tial in the number of dimensions d for adversarial cases, in
order to guarantee a given error ε. Fortunately, as we observe
in our experiments, the theoretical upper bound is not tight,
and in practice, the training set size is much smaller.

We still need to specify the proper training set size for our
learning tasks. To do so, we design an exponential search
algorithm as follows: the algorithm starts by setting the sam-
ple set size Ns to an initial value (O(n)). It then collects Ns

i.i.d samples S from the query space and finds the k-vicinity
of each sample si and identifies the k-vicinity radius6 of si
as ρi ← maxΔ(si , t ′),∀t ′ ∈ k-NN(si ). Next, the algorithm
builds a regressionmodelM usingS as the training set. After
building the model, the algorithm checks ifM has the error
of at most ε, for a user-specified error ε. To check this, the
model uses the test set T. If error > ε, the algorithm doubles
the sample size and repeats the process until it reaches the
right sample size for Ns .

5 We refer to the space of valid queries as the query space. Specifically,
let domi be the cardinality of the feature xi . Then the query space is
Πn

i=1domi .
6 The process to learn the entropy values is the same as learning the
k-vicinity radii.
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Let Regρ and RegU be the trained regression models that
return the k-vicinity radius and the k-NN entropy of a query
point q, respectively. Then, the only changes in the proposed
algorithms are (i) replace Line 8 of Algorithm 1 with ρq ←
Regρ(q) and (ii) replace Line 8 of Algorithm 2 with uq ←
RegU (q).

5 Discussions

5.1 Assumptions and limitations

Let us begin our discussions by providing a synopsis of
the assumptions underlying our approach’s development and
delve into the limitations it faces:

– RU measures are data-centric and and complementary
to the the model-centric approaches for uncertainty
quantification, such as conformal predictions, predic-
tion intervals, and prediction probabilities, as well as the
explainable AI literature. The RU measures should be
considered alongside existing model-centric approaches
in order to consider the influence of the model as well.

– Our data model defines a data set in a tabular manner,
over a set of numeric attributes. For non-tabular data such
as text, image, audio, etc., we rely on the existence of
proper vector representations (aka embeddings), where
each object is represented as a high-dimensional vec-
tor. We demonstrate this on an image data set in our
experiments. The accuracy of our metrics is limited to
the accuracy of the embeddings.

– In our development of lack of representation and uncer-
tainty components, we assume the outlier ratio, the
uncertainty ratio, and the variance values are provided
as input, while considering a Normal distribution.

– To enable no-access to the training data at the inference
time, we are required to learn the essential values via an
exponential search across the query space with a 1 − ε

guarantee.This could becomecomputationally expensive
in the preprocessing step for small values of ε as a large
number of samples are required.

In the remainder of this section, we present solutions
aimed at tackling the limitations concerning hyper-
parameters within our approach.

5.2 Parameter tuning

Similar to many other techniques in data mining andML, the
RUmeasures require parameter tuning. In implementingRU
measures, we take the neighborhood size k in k-NN, along
with the outlier ratio c of the training samples, the uncertainty
ratio u, and the standard deviation for uncertainty and outlier

distributions as hyper-parameters. The techniques proposed
in this paper are agnostic to the choice of parameter tuning.
Nevertheless, we present some heuristics for tuning these
parameters in this section.

5.2.1 Tuning neighborhood size and outlier ratio
parameters

The first parameter to determine is k: the number of tuples in
D that specify the vicinity of the queried point. The second
parameter is the outlier ratio c, which estimates the percent-
age of the tuples in the data set that are outliers.

To jointly tune c and k for a data set D, we adopt a tech-
nique proposed in [82] for tuning the parameters of the local
outlier factor (LOF) [16] algorithm. However, instead of
choosing top �cn� points with the highest LOF scores, we
select top �cn� with the highest k-vicinity radii.

We define a grid of values for c and k. For each combi-
nation, we calculate the k-vicinity radius for all tuples in D,
choose the top �cn� tuples as the outliers, and the top �cn�
of remaining tuples as the inliers. The inliers are chosen in
this manner because we are only interested in the tuples that
are most similar to the outliers.

For each c and k, now we have a list of k-vicinity radii
for outliers and a list for inliers and we calculate mean
(μout (c, k), μin(c, k)) and variance (σ 2

out (c, k), σ
2
in(c, k))

over the log of the values in each list. We define the stan-
dardized difference in mean log k-vicinity radii between the
outliers and the inliers as

Tc,k = μout (c, k) − μin(c, k)√
�cn�−1 (σ 2

out (c, k) + σ 2
in(c, k))

If c is known, it is enough to find k∗
c = arg maxk Tc,k that

maximizes the standardized difference between the outliers
and inliers for the corresponding c. Otherwise, we assume
that k-vicinity radii form a random sample following a Nor-
mal distribution with the mean μout (c) and variance σ 2

out (c)
for outliers, and one with mean μin(c) and variance σ 2

in(c)
for the inliers. Then given a value of c, Tc,k approximately
follows a non-central t distribution with degrees of freedom
dfc = 2 �cn� − 2 and the non-centrality parameter:

ncpc = μout (c) − μin(c)√
�cn�−1 (σ 2

out (c) + σ 2
in(c))

We cannot directly compare the largest standardized dif-
ference Tc,k∗

c
across different values of c because Tc,k follows

different non-central t distributions depending on c. Instead,
we can compare the quantiles that correspond to Tc,k∗

c
in

each respective non-central distribution so that the compar-
ison is on the same scale. To do so, we define copt = arg
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Fig. 6 Regression: sorted uncertainty values for RN

maxc P(z < Tc,k∗
c
;dfc;ncpc), where the random variable z

follows a non-central t distribution with dfc degrees of free-
dom and ncpc non-centrality parameter. copt is where Tc,k∗

c

is the largest quantile in the corresponding t distribution as
compared to the others.

5.2.2 Tuning uncertainty ratio parameter

The next parameter we need to tune is the uncertainty ratio u,
which estimateswhat percentage of data belongs to uncertain
regions. Similar to the outliers ratios that help us transform
the k-vicinity radii to probabilities, the expected uncertainty
ratio u helps us transform an uncertainty value in a k-vicinity
to a probability. Consider the array UD = {u1, · · · , un},
where ui is the uncertainty in the k-vicinity of ti ∈ D. We
use the distribution of valuesUD for identifying u. To explain
the intuition behind this, let us consider a classification task.
While the uncertainty for the tuples far from the decision
boundary should be low, our experiments verify the uncer-
tainty sharply increases as one gets close to the boundary.
As a result, looking at the distribution of uncertainty values,
one should be able to identify an estimation of u by find-
ing the sharp slope in the distribution of uncertainty values.
For example, Figs. 6 and 7 highlight our experiment results
for two different settings for regression and classification. In
Fig. 6, one can visually confirm that the sharp slope happens
around 5000 with an uncertainty value of around 2. Simi-
larly, in Fig. 7, the sharp slope happens around 2000, with an
uncertainty around 0.4. Following this intuition, we calculate
the k-vicinity uncertainty for each tuple in D, and create the
reverse cumulative distribution V : [0, 1] → R such that,
for every value r , the ratio of tuples inD with an uncertainty
value larger than V(r) is r . For example, V(0.1) returns the
value u0.1 such that the uncertainty for 10% of tuples is larger
than it. We then identify the knee of this function (the sharp
decrease in V(r)) as the estimated uncertainty ratio. As a rule
of thumb in our experiments, we observe that the knee falls
around 10–15%.

Fig. 7 Classification: sorted uncertainty values for multi-class classifi-
cation data set shown in Fig. 11a

5.3 Independence ofRUmeasure components

Lack of representation and lack of certainty are the two
components that are used in the definition of RU measures
(Definitions 1 and 2). In particular, we use the radius of k-
vicinity of the query pointq,Δk(q,D), and define aBernoulli
random variablePo onwhether q is an outlier inD. Similarly,
we use the entropy in the vicinity of q to define the Bernoulli
random variable Pu on whether q belongs to an uncertain
region. Note that Po only depends on Δk(q,D) and does not
change based on the entropy in the vicinity of q.

Still, one can argue that in practice, there can be a corre-
lation between uncertainty and sparsity of sub-spaces for a
specific case. First, in our experiments, this correlation was
veryminimal, if not zero. Nevertheless, it is important to note
that such correlation only impacts how frequently a similar
pair of independent Bernoulli variables are sampled. To fur-
ther clarify this, let us consider a toy example with a bag of
paired coins, where the coins are biased. Suppose the paired
coins have a positive correlation, i.e., if the first coin has a
higher chance for the head, the other one has a high chance
of being biased the same way. Now let us select a pair of
coins from the bag. Suppose, the pairs are correlated, one
has a probability of 0.8 and the other a probability of 0.75
for the head. Still, the pair of coins are independent of each
other since the second coin will have a probability of 0.75
for the head, independent of the first coin. In our case, Po

and Pu can be modeled as paired independent coins, where
their probabilities may (or may not) be correlated. However,
after selecting a pair (by selecting a query point), the two
variables are independent since whether a point is an outlier
only depends on the density of points in its neighborhood not
the variance in their target values (uncertainty).

123



1214 N. Shahbazi, A. Asudeh

6 Experiments

We conduct comprehensive experiments on multiple syn-
thetic and real-world data sets of diverse sizes anddimensions
using a variety of models (Logistic Regression, K-Nearest-
Neighbor, Artificial Neural Networks, Deep Neural Net-
works, ElasticNet, Random Forest, and SVM), distance
measures (Chebyshev, Manhattan, and Euclidean), and tasks
(regression and binary/multi-class classification including
text classification and image processing) to validate the
effectiveness and consistency of our proposal and evalu-
ate the efficiency and scalability of our algorithms. In our
proof of concept experiments, we follow a similar evaluation
approach to the ones conducted in the existing literature on
the reliability of individual predictions [14, 63] where the
correlation of the reliability scores and the prediction error
over a test set is evaluated. We also demonstrate the failure
of existing work such as Conformal Prediction, Prediction
Probabilities (for cases that are not represented by the data),
and data coverage (for the cases that belong to the uncertain
regions) and how our proposed measures perform superior
in capturing the prediction unreliability associated with point
queries.

6.1 Experiments setup

The experimentswere conducted using a 2.5GHzQuad-Core
Intel Core i7 processor, 16 GBmemory, and runningmacOS.
The algorithms were implemented in Python.

6.1.1 Motivating use-cases

Wemotivate our experiments based on the following example
data science tasks:

– Regression: we consider three regression use-cases
where (i) a GIS application requires to estimate the land
altitude of a point p = 〈long, lat〉, (ii) a real-estate
agency would like to predict house sale prices for invest-
ment, and (iii) a jewelry appwould like to predict the price
of diamonds based on their attributes. The RU measures
will serve as warning signals when the altitude or price
predictions are not reliable.

– Classification:We consider two classification use-cases
where (i) a banking application that would like to pre-
dict the payment type of its credit-card holders and (ii)
an employment application that needs to predict if an
employee’s salary is above 50K or not. In addition to
class labels, the RU scores are provided as a reliability
analysis of the predictions.

– Text and image classification:Last but not least,we con-
sider two applications on text and image data as examples
of unstructured data. In particular, we consider (i) clas-

sifying an aviation article and (ii) a handwritten digit
recognition from images. Similar to the previous cases,
we will use RU measures to identify when predicted
labels are not reliable.

Considering these use cases for our non-synthetic exper-
iments, the measure of success for RU measures is to see if
the prediction reliability values are indeed aligned with these
scores. That is, the evaluation is successful if the model pre-
dictions for queries with higher RU scores are worse with a
higher probability. In other words, there should be a high cor-
relation between the RU values and the model performance
metrics.

We will use standard metrics for the model performances:
Accuracy, F1, FNR, FPR for classification, and residual sum
of squares (RSS) for regression.

6.1.2 Data sets

For evaluation purposes, we used (i) a collection of synthetic
data sets and (ii) seven real-world data sets for regression
andbinary/multi-class classification including text and image
classification.
Challenge: In the evaluation of ourRUmeasures, we needed
to generate sampleswith differentRU values. However, since
the tuples with high RU values are unlikely to be drawn
from the underlying distribution ξ , it is challenging to collect
enough samples (as a test set) to evaluate the effectiveness
of our measures. A comprehensive evaluation requires query
points drawn uniformly from the query space to cover differ-
ent parts of it. To achieve this, we need to have access to a
ground truth oracle that for any given sample taken from the
query space returns the value of target variable. However,
finding a real-world data set in a context where the ground
truth oracle exists (publicly) is challenging. To overcome this
challenge, we take three directions: first, to have full control
of the shape and complexity of the ground truth labels over
different data sets, we generate synthetic data; second, we
find a real-world data set and a third party (public) service
that provides access to ground truth labels; and third, we find
a very large data set that contains samples fromdifferent parts
of the query space and apply sub-sampling on it. Next, we
remove the outliers from each sample (detecting the outliers
using the Local Outlier Factor (LOF) algorithm) and split
each cleaned sample into train and test sets, and add the out-
liers to the test set to cover larger parts of the query space.
A downside of this approach is that it further reduces the
presentation of points from under-represented regions in the
training set, which may impact the model performance for
those regions. Alternatively, one can partition the data in two
halves and use one for the training set (without removing the
outliers from it), while using the other solely for generating
the test set. Indeed the training set size in such an approach
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is smaller. We tried this approach in Sect. 6.6.3 and observed
consistent results between the two approaches.
Real data sets: We use multiple real data sets, as briefly
explained in the following:

1. 3Droadnetwork (RN) data set [38] is a benchmark data
set for regression that was constructed by adding eleva-
tion information to a 2D road network in North Jutland,
Denmark. It includes 434,874 records with attributes
Latitude, Longitude, and Altitude. We took 30
samples of size 10,000 fromRN data set and generated 30
data sets and repeated each experiment 30 times, using
different data sets. To address the evaluation challenge for
the RN data set, we generated a uniform sample of 6,400
points 〈x1, x2〉 in the range [0, 1]. We then transform the
uniform samples back to the same space as the points in
RN. To obtain the ground-truth labels for the query points,
we used an off-the-shelf API7 that given every coordinate
〈Latitude,Longitude 〉 in the data space, it yields
the corresponding Altitude.

2. House sales in King County (HS) data set [32] is
a regression data set for house sale prices for King
County (Seattle). It includes houses sold between May
2014 and May 2015. It includes 21,614 records hav-
ing 21 attributes with 2 categorical and 16 continuous
types. Given attributes such as no. of bedrooms,
square footage, floors, etc., the task is to pre-
dict the price of the house. We took 30 samples of
size 10,000 fromHS data set, generated 30 data sets, and
repeated each experiment 30 times, using different data
sets. To address the evaluation challenge for HS data set,
for each sample, we removed the outliers and then split
the data set into train and test sets. We then added the
outliers back to the test set. Although withHSwe can not
measure the RU values for the whole query space, we
believe the findings can still confirm the effectiveness of
our measures.

3. Diamond (DI) data set [6] is a regression data set for
predicting the price of diamond given some visual prop-
erties. This data set has 53,941 records with 14 attributes,
6 of which are continuous and 3 categorical. We used a
similar approach to HS data set for utilizing DI in our
experiments.

4. Default of credit card clients (DCC) data set [83] is
a data set for classification that was constructed from
payment data in October 2005 from an important bank
in Taiwan. The data set is a binary class with default
payment (Yes = 1, No = 0), as the response variable.
Among the 30,000 records, 6,636 (22.12%) are cardhold-
ers with default payments. The data set has 23 features
(9 categorical and 14 continuous) including credit

7 https://api.open-elevation.com/.

line, age, gender, education, history of
payment, amount of bill statement,
amount of the previous statement, etc.
Since it was not feasible for us to devise a function that
can produce the ground truth forDCC, we took a sample
of size 15,000 from the data set and then split it into two
sets of train (5,000 tuples) and test (10,000 tuples) and
used the test set as a substitute for the uniform sample
over the query space. Following the same procedure, we
generated 30 data sets and repeated each experiment 30
times, using different data sets. Similar to HS, we can
not measure the RU values for the whole query space in
DCC, yet the findings can still confirm the effectiveness
of our measures.

5. Adult (AD) data set [42] is a well-known bench-
mark data set for classification tasks predicting whether
income exceeds $50K annually based on census data.
This data set has 32,561 records with 14 attributes, 6 of
which are continuous and 8 categorical. We used a sim-
ilar approach to the HS data set for utilizing AD in our
experiments.

6. Real-sim (RS) data set [53] is based on SRAA[54] data
set, preprocessed for SVMlin project [74]. The data set
is designed for text classification tasks and is based on
UseNet articles of four discussion groups on simulated
auto racing, simulated aviation, real autos, and real avi-
ation. The task is to separate real data from simulated
data. RS is a sparse data set and has 72,309 records
with 20,958 attributes with continuous values. We used
a similar approach to HS data set for utilizing RS in our
experiments.

7. Gisette (GS) data set [31] is a handwritten digit recogni-
tion data set based on the popularMNIST data set [45] for
image classification to separate highly confusible digits
‘4’ and ‘9’. The digits have been size-normalized and
centered in a fixed-size image of 28 × 28 pixels. This
data set has 6,000 records with 5,000 attributes with con-
tinuous values. We used a similar approach to HS data
set for utilizing GS in our experiments.

Synthetic (SYN) data sets: To fully investigate the relation-
ship between the RU measures and the model performance,
we generated a collection of 60 data sets and repeated each
experiment 60 times, using different data sets. Each data
set is a random sample following a 2D Gaussian distribu-

tion with μ = [0, 0] and Σ =
[
6 4
3 1

]
over the input space

x = 〈x1, x2〉 where x1 and x2 are positively correlated and
the output space is the binary label y with values {−1,+1}.
To create the binary classes for each data set, we randomly
moved the samples over each shape in Fig. 8 in a way that
the sample and shape have an intersection. As a result, each
shape is the ground truth for 15 data sets but with differ-
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Fig. 8 Shapes used as the ground truth in creating the synthetic data
sets SYN

ent placements. A data point belongs to the −1 class, if it
falls into the corresponding shape, otherwise, it belongs to
the +1 class. To address what we discussed in the evalu-
ation challenge, we create a uniform sample of size 6,400
over [0, 1] and will label the points w.r.t. each shape and its
placement in the space, generating a total of 60 uniform sam-
ples corresponding to each data set. In particular, following
Example 2, we consider a binary classification task over the
observation variables x1 and x2. We chose a 2D setting for
visualization purposes. All continuous values used are nor-
malized in the range [0, 1], using (vi − min)/(max−min)
and the non-ordinal ones are one-hot encoded using scikit-
learn OneHotEncoder.

Default values: To evaluate the performance of our algo-
rithms under different settings, we vary the value of a
parameter, while fixing the value of the other ones. The
parameters that are varied among our performance evaluation
experiments include n (number of points), k (neighborhood
size), c outlier ratio, and d number of dimensions. The default
value for neighborhood size k is 10. The outlier ratio c is set
to 0.1 suggesting that a mean μ = 0.9 is chosen for outlier
distribution with a standard deviation σ = 0.1. We adopt a
technique proposed in [82] to jointly tune k and c param-
eters for a given data set. The tuning procedure for these
two parameters alongside uncertainty ratio parameter u is
discussed in detail in Sect. 5. The default value for d (num-
ber of attributes) is 2 for SYN and RN data sets, while it is
20, 18, 9, 14, 6,000, and 20,958 for DCC, HS, DI, AD, GS
and RS respectively. The default value of n (size of data set)
for the SYN, RN, HS, DCC, DI, AD, GS and RS data sets
are 1,000, 10,000, 10,000, 5,000, 43,150, and 32,560, 6,000
and 72,309. The uncertainty ratio u is set to 0.1, therefore, a
mean μu = 0.9 is chosen for uncertainty distribution with a
standard deviation σu = 0.1.

6.2 Proof of concept

We start our experiments by evaluating the effectiveness of
RU measures across different data sets, ML models, and
different parameters. Since the RU measures are model-
independent, we perform the effectiveness validation exper-
iments for both classification and regression tasks. For the
classification tasks, we use SYN, DCC, AD, RS and GS data

sets, and for the regression tasks, we employ RN, HS and DI
data sets. To demonstrate the effectiveness of the RU mea-
sures we first provide a visual validation, using one of the 2D
SYN data sets. We then present a comprehensive validation
over all our data sets by providing the correlation between
the RU values and the performance of an ML model’s pre-
diction on the same data. To do so, we deliver the results
as bar graphs in which the x-axis is a bucketization of the
ranges of the RUmeasures and the y-axis is the ML model’s
evaluation score. Each bar represents a value corresponding
to a measure of accuracy/error i.e. Accuracy, F1 score, FPR
and FNR of the ML model for all the tuples that have a RU
value in the same range as the bar.

Visual validation: Consider the 2D data set D shown in
Fig. 9a. D is borrowed from SYN as one of the 60 data sets
with the shape of the cat as the ground truth (we obtained sim-
ilar results for other data sets, as reflected in the aggregate
values we shall report next). We compute strongRU and
weakRU values for each query point in the uniform sample
over the space using the default settings. In Fig. 9b and c, the
query space is colored by assigning a tone based on the cor-
responding values of strongRU andweakRU respectively.
As shown in Fig. 9b, the untrustworthy regions are the set of
query points in the space that are both outliers w.r.t. the tuples
inD and also uncertain since the entropy in their k-vicinity is
high. On the other hand, in Fig. 9c, the untrustworthy regions
are the set of query points that are either outliers or uncertain.
The closer the color to red, themore untrustworthy the region
will be and the opposite goes for green.Next,we train an arbi-
trary classifier (LR in this case) on data setD and evaluate the
model’s prediction. In this regard, we bucketize the uniform
query space in a 10× 10 grid and we evaluate the model for
each cell to see where it falls short (a.k.a. model predictions
become less reliable) then we create a heatmap on top of
the grid based on the values for each cell. Results are pro-
vided in Fig. 9d and e. In a side-by-side comparison between
the heatmaps and the colored space based on strongRU and
weakRU (see Fig. 9b–e), it is easy to see that themodel failed
in the regions where the RU measures are producing large
values. Finally, we generate the bar graphs with a similar
procedure as later discussed in 6.2 and are shown in Fig. 9f
and g. As the RU value increases, the F1 score of the model
drops while the FPR rises meaning that, the model fails for
the regions that are untrustworthy w.r.t. our RU measures.
In Fig. 9f, as strongRU increases, the accuracy measures
for the model rapidly drop, and for the 0.5−0.6 bucket, F1
is near zero. This confirms that while weakRU is a weaker
warning, strongRU should be viewed as a red flag.

Validation on classification: Having provided the visual
validation results, we next validate ourRUmeasures on clas-
sification tasks. In this regard, using SYN data set, we first
computed theRUmeasures for all the query points in the uni-
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Fig. 9 Proof of concept results: consistent correlation between distrust values and ML performance metrics

form sample and bucketized the points w.r.t. their RU values
in ranges of length 0.1. We repeated this for both strongRU
and weakRU measures. Next, using a classification model
that we trained on the (training) data set, we predict the tar-
get variable for the points in each range of RUmeasure. The
values corresponding to the accuracy/error of the classifier
over each bucket of RU values are provided in Fig. 9h and i
for strongRU andweakRU respectively. As the RU values
increase, the accuracy of the model drops while the FNR and

FPR rise, and therefore, the model fails to capture the ground
truth for the points that fall into untrustworthy regions in the
data set.

To also perform the experiments on a real-world data
set, we used the DCC data set with a similar procedure.
The results are shown in Fig. 9j and k and they follow
the same course as the previous experiment. We repeated
the experiments with five classification algorithms includ-
ing, Logistic Regression (LR), K-Nearest-Neighbor (k-NN),
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Fig. 10 Additional proof of concept results on AD, DI, RS and GS datasets

Neural Networks (NN), Random Forest (RF), and SVM. All
the classifiers underwent a hyperparameter tuning procedure
to achieve optimal prediction correctness. We confirm that
we obtained similar results in all cases and that all models
failed to predict satisfactorily for query points that have a
high RU value. Hence, we provide the results for the NN
model, the more advanced and powerful model. Depending
on the results of the classification, we chose the most appro-
priate accuracy/error measures that indicated the behavior of
the model. For example, if the results were dominated by
TPs and TNs, accuracy is the measure that best describes the
model, otherwise, F1 might be a better choice. Depending on
the number of FPs and FNs and the balance between them,
the same rule applies to FPR and FNR measures.

Finally, to stress test our proposed measures with more
complex learning tasks (such as complex classifiers, massive
high dimensional data sets based on NLP and vision tasks,
sparse data sets, etc.), we extended our experiments to three
other classification data sets, AD, RS, and GS. Initially, we
repeated the experiments with identical settings as before.

For AD, the results are shown in Fig. 10a and b and corrobo-
rate our findings. For tupleswith highRUvalues,models tend
to fail more to predict reliably. Next, we repeated the experi-
ments onAD, using deep learning.We trained a classification
model (with tuned parameters) with two hidden layers of size
64 and 32 units respectively. We also constructed and tuned
deep-learningmodels forRS, andGS data sets. The results are
illustrated in Fig. 10c–h and are compliant with our previous
experiments, showing that evenwith the choice ofmore com-
plexmodels that show promising results in the tasks ( 95%F1
score in the case of RS), they still are less reliable for query
points with high RU values. Models’ accuracy in Fig. 10e–
h were consistently above 95% in all cases. Therefore, for
visual clarity we only included FPR.8

Validation on regression: In this experiment, we study the
effectiveness of our RU measures in the regression tasks.
Accordingly, we used RN and HS data sets and computed

8 The absence of any records within certain RU ranges results in a 0
value for error/accuracy (y-axis) in those ranges.
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Table 1 Pearson correlations between the RU values and model per-
formance metrics for various datasets

dataset pref. metric dist. metric Correlation

AD Accuracy strongRU −0.88

FPR strongRU 0.84

Accuracy weakRU −0.88

FPR weakRU 0.78

RN MSE strongRU 0.73

MSE weakRU 0.78

HS MSE strongRU 0.91

MSE weakRU 0.70

DI MSE strongRU 0.78

MSE weakRU 0.88

strongRU andweakRUvalues for all the query points in the
uniform sample. Thereafter, we repeated the bucketization
process as we did in the last experiment, and having trained
a regressionmodel over the data set,we evaluated themodel’s
prediction over the tuples from each bucket. The results are
presented in Fig. 9l–o. As theRU value increases, the RSS of
the regressionmodel follows the same trend denoting that the
model fails to perform for tuples with a high RU value. We
repeated the experiments with 3 different regression algo-
rithms including ElasticNet, DT, and k-NN, all three with
tuned hyper-parameters. Regardless of the regression model,
the outcome was similar and therefore we only report the
results for the k-NN regressor.

Finally, using theDI data set, we repeated the experiments
with identical settings as before. The results are brought in
Fig. 10i and j verifying our findings. For tuples with high
RU values, models fail more frequently. Next, we repeated
the experiments on DI, using a Deep Learning regression
model with tuned parameters. We constructed a regression
model with four hidden layers of size 128, 64, 32, and 16
respectively. The results are shown in Fig. 10k and l and are
consistent with the previous experiments, verifying that even
more complex models fail for query points with high RU
values.

The correlations between the RU values and the model
performance metrics are visually clear in Figs. 9 and 10. Still
to further verify these correlations we computed the Pearson
correlation between the RU value bins and model perfor-
mance metrics. The results are provided in Table 1, which
confirms the high correlation values for the datasets AD,
RN, HS, and DI. Furthermore, to confirm that these values
are not sensitive to the binning choices, we perturbed the
bin boundaries. However, the results did not meaningfully
change, which confirms their robustness.

Summary of Proof of Concept: In short, experiments con-
sistently demonstrate that as the RU values grow, the ML
models become less reliable in capturing the truth for the

corresponding regions. Consequently, when RU values for a
query point in a data set are high, one should discard or at
least not rely on the outcome of the model constructed on it
for critical decisions.

6.3 Comparison with the existing work

In this section, we thoroughly evaluate the RU measures in
the context of the existing approaches discussed in Sect. 7,
demonstrate why the existing approaches fail, and how RU
measures are superior in capturing the unreliability of indi-
vidual predictions.

Consider data setD as shown in Fig. 11a createdwith three
Gaussian distributions representing classes red, blue, orange.
An arbitrary classificationmodel (e.g. Gaussian Naive Bayes
classifier) as the base classifier is trained on D and the pre-
dicted labels are depicted in Fig. 11b. Finally, Fig. 11i and j
show the corresponding strongRU andweakRU values for
data set D.

Through the rest of this section, we use the data setD and
the classifier described above to evaluate existing methods
for the reliability of individual predictions.

6.3.1 Conformal prediction

We start by employing the conformal prediction (CP) frame-
work9 with confidence level α of 0.2, 0.1, and 0.05 and
softmax score output of the base classifier as the confor-
mity score. Results are shown in Fig. 11c–e. As can be seen
in Fig. 11e, CP is creating empty prediction sets for α = 0.2
for query points around the uncertain areas which are faulty
and show that CP is highly dependent on the choice of α.
The null region disappears for smaller α values but ambigu-
ous classification regions arise with several labels included
in the prediction sets highlighting the uncertain behavior of
the base classifier. By choosing the cumulative softmax con-
formal score, the empty prediction set problem is resolved
however, uncertain regions are emphasized by wider bound-
aries. Now consider the query point q; according to themodel
prediction, q belongs to the orange class and regardless of the
chosen α, CP confirms that. However, this is only true if the
true decision boundary is identical to the one estimated by the
base classifier [70]; still, as previously discussed in Sect. 3.1,
thismay not always be the case. Therefore, although q is in an
uncertain region, CP fails to capture it as it always returns a
prediction set of size 1. Conversely, as can be seen in Fig. 11j,
theweakRUmeasure can successfully capture the RU asso-
ciated with q as it is an outlier, yet does not belong to an
uncertain region.

9 We used MAPIE (Model Agnostic Prediction Interval Estimator),
which is an implementation of Conformal Prediction works such as [5,
67]. See more at: https://mapie.readthedocs.io/
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Fig. 11 Conformal prediction fails to detect the prediction unreliability
for not well-represented point qwhileweakRU correctly captures such
unreliability

6.3.2 Prediction probabilities

In the next experiment, we evaluate the prediction proba-
bilities generated by probabilistic classification models and
demonstrate their failure for query points that are not rep-
resented by data. To do so, we employ data set D and train
an arbitrary probabilistic classifier such as Gaussian Naive
Bayes on it (remember that we can use any classifier, how-
ever, if the model is not intrinsically probabilistic, we need
to make sure that the probabilistic outcomes are calibrated).
Figure12a–c show the prediction probabilities assigned to
either of the classes red, blue and orange. As observed, pre-
diction probabilities fail to capture query points that belong
to unrepresented regions and assign a negligible chance of
belonging to any other class but the one determined by the
decision boundary, however, this is only true if the true deci-
sion boundary is identical to the one estimated by the base
classifier and as previously discussed in Sect. 3.1, this may
not always be the case if the distribution between training
and production data vary.

6.3.3 Data coverage

Finally, we conduct an experiment to assess the capacity
of data coverage techniques to create proper warnings and
demonstrate their failure for query points that are in uncer-
tain regions. To this end, using the continuous notion of data
coverage [10] and tuned parameters of k = 50 and ρ = 0.08,
we identify the uncovered region on data set D as illustrated
in Fig. 13. The training data points (D) are highlighted as
black dots. The regions highlighted in red and green com-
prise the uncovered and covered regions respectively. Any
query point belonging to the green region is covered and all
the query points in the red region are uncovered. While the
uncovered region can raise warning signals for the unrelia-
bility of underrepresented query points, it fails to capture the
unreliability associated with the uncertain regions (regions
close to the decision boundary in the case of data set D).
Furthermore, even for the query points in underrepresented
regions, data coverage creates a binary value that is sensitive
to the choice of parameters such as the radius ρ. This issue
is further highlighted considering the sharp transition from
uncovered to covered, specified by the uncovered region’s
decision boundary. As a result, while two points close to
each other, where one is inside and the other outside of the
decision boundary, are almost equally miss-presented, for
one the output signal is covered (no warning at all) while the
other is uncovered (maximum warning).

6.3.4 Uncertainty sampling

Uncertainty sampling is yet another model-centric notion of
uncertainty quantification, which is the dominant approach
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Fig. 12 Prediction probabilities of classifiers trained on D in Fig. 11a fails for query points that are not well-represented

Fig. 13 Data coverage on data set D in Fig. 11a fails to capture the
unreliability associated with the query points in uncertain regions. The
training data (D) are highlighted as black dots. The regions highlighted
in red and green comprise the uncovered and covered regions respec-
tively. Any query point belonging to the green (red) region is considered
(un)covered

for active learning. In an active learning setting, the model is
given a pool of unlabeled samples and should decide which
sample to label next. In uncertainty sampling, the idea is to
label the sample that the model is most uncertain about. This
uncertainty is evaluated based on the model’s (probabilistic)
confidence for each training point using Shannon entropy.
In this experiment, we used the class probabilities assigned
by the base classifier to calculate the Shannon entropy for
each query point. Figure14 shows the query space colored
based on the model’s confidence (using Shannon entropy).
As expected, besides being dependent on the model itself,

Fig. 14 Query space colored based onmodel’s Shannon entropy values
w.r.t. D

this approach fails for query points that lack sufficient repre-
sentation.

6.4 Performance evaluations

After demonstrating the effectiveness of the RU measures,
we now focus on the performance of our algorithms. In this
section, we use theDCC andRN data sets to evaluate the time
efficiency of algorithms. We obtained similar results with
almost identical plots for both classification and regression
tasks. In the following, we present the results for classifica-
tion tasks using DCC data set with different settings.

6.4.1 Query time

The query time consists of (i) the time to find the k-vicinity
of the query point q and identifying the tuple in k-vicinity
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Fig. 15 Performance evaluation results

that has the maximum distance from q, and (ii) the time to
apply binary search on the sorted multi-sets.
Varying :n To study the impact of the number of tuples n
on the performance of the query time, we gradually increase
the size of the data set from 50 to 100K. The results are
provided in Fig. 15a. The total query time is dominated by
the first bottleneck and the time to binary search the lists is
negligible compared to it. In our experiments, the query time
did not (meaningfully) change as the data set size increased,
showing the scalability of our algorithm to the very large
settings.
Varying :k Next, we vary the neighborhood size k from 1
to 50. The results in Fig. 15b suggest that the query time is
(almost) independent from the k.
Varying :d We next study the impact of the number of
attributes d by varying it from 2 to 20. The results in Fig. 15c
verify the scalability of our algorithms concerning the num-
ber of dimensions.
Varying :c In our final experiment, we change c from 0.05 to
0.25. The results are brought in Fig. 15d. Results verify that
the query time is independent of c.

6.4.2 Preprocessing time

Our preprocessing time consists of two parts. The first is
the time to build the k-NN data structure, identifying the k-
vicinity radius (in Algorithm 1) and computing uncertainty
(in Algorithm 2) for each tuple in the data set. The second
one is the time to construct the sorted multi-sets of k-vicinity
radii and uncertainty values.We use the exact k-vicinity radii
and entropy values in this experiment.

Varying :n In this experiment, we study the impact of the
number of tuplesn in the data set on the preprocessing timeby
gradually increasing the size of the data set from 50 to 100K.
We then measure the time to build the k-NN data structure
and construct the sorted multi-sets. The results are provided
in Fig. 15e. The total preprocessing time is dominated by the
time to build the k-NN data structure and the time to build the
multi-sets is almost negligible compared to it. Nevertheless,
the cumulative preprocessing time was small enough that the
algorithm could scale to larger settings, finishing in less than
a second for n=100K.
Varying :k To study the impact of neighborhood size k on the
preprocessing time,we vary k from1 to 50. The results can be
seen in Fig. 15f. Similarly, the total preprocessing time in this
experiment is also dominated by the time to build the k-NN
data structure and the algorithm was efficient in all settings,
finishing in less than a fraction of a second for k=50.
Varying :d To study the impact of the number of attributes
d of the data set on the preprocessing time, we gradually
change d from 2 to 20. The results are brought in Fig. 15g.
Like the previous settings, the total preprocessing time is
dominated by the time to build the k-NN data structure and
the algorithm linearly scales to larger settings, finishing in
less than 3s for d=20.

6.5 Impact of distancemeasures onRU values

In this experiment, we study the effect of the distance metric
chosen to determine the neighborhood of a data point (in k-
NN component) on the RU values. To do so, we employ data
setD (Fig. 9a) and calculate theRUvalues for the entire query
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Fig. 16 Query space colored based onweakRU and strongRU values
with regards to D in Fig. 9a subject to different distance metrics

space w.r.t. 3 distance measures of chebyshev, manhattan
and euclidean. Although the distance metric is expected as
an input in our implementation, however, the results show
general consistency across both measures (Fig. 16).

6.5.1 Training regression models for no data access

As our final experiment, we study the efficiency of the train-
ing process for building the regression models to estimate
the values of k-vicinity radius and entropy. As explained
in Sect. 4.3, we apply exponential sampling to generate the
right amount of data such that the trained models satisfy
the user-specified error. As a heuristic, we generate a frac-
tion of samples uniformly and the others from the underlying
distribution of the training data usingGANmethods or Gaus-
sian copula distribution functions [61]. Figure17 illustrates
the monotonic drop in the error of both regression models
trained to predict the entropy and k-vicinity radii of query
points (as discussed in Sect. 4.3), as the number of synthetic

Fig. 17 Effectiveness of exponential search in reducing the error of
learning distrust parameters

i.i.d samples increases. Since both entropy and k-vicinity
radii values are in the range of [0,1], selecting a sufficiently
small (RMSE) error threshold (e.g. 10−3 or 0.01% average
difference between the actual and predicted values) guaran-
tees not going overboard with generating too many samples
(affecting preprocessing time) while achieving good predic-
tion accuracy.

6.6 Sensitivity asnalyses

In the following, we provide the complimentary experiments
by choosing alternative settings compared to the previous
experiments. In short, in the complimentary experiments,
we observed consistency with our previous results, further
validating and verifying our proposal.

6.6.1 Proof of concept experiments with various underlying
distributions

We used Gaussian as the underlying distribution of our syn-
thetic datasets. In this experiment, we study whether the
underlying distribution of the data would affect the capac-
ity of the RU measures in revealing unreliability. To do so,
we follow the same procedure outlined in the construction
of synthetic datasets in Sect. 6.1.2, however, instead of gen-
erating a sample following a Gaussian distribution, we opt
to utilize alternative distributions such as Uniform, Expo-
nential, and Logistic. The results are illustrated in Fig. 18. In
summary, aligned with our previous results, there is a consis-
tent correlation between RU values and a model’s potential
to predict correctly, with models exhibiting more error asRU
values increase. For theUniformdistribution (Fig. 18a–e),we
expected the entire query space should be equally represented
by the training data and hence, the lack of representation
scores to be universally low. As a result, the strongRU
scores remain low. weakRU in this case, mostly reflects the
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Fig. 18 effect of sampling following different distributions while generating SYN data sets on distrust values

impact of uncertainty. Consistent with our previous results,
one can see the high correlation betweenweakRU andmodel
performance in Fig. 18e.

6.6.2 Effect of outlier detection metric

As previously noted in Sect. 4, theRUmeasures are agnostic
to the choice of the outlier detection technique. While we
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Fig. 19 Effect of varying the lack of representation component method of choice on the distrust values

used the distance of k−th nearest tuple to estimate Po, in this
experiment, we investigate the impact of using alternative
outlier detection approaches in computing RU values. More
specifically, we integrate the following two outlier detection
metrics in the lack of representation oracle:

– Local Outlier Factor (LOF) [16]: Widely used proximity
based outlier detection technique.

– Empirical Cumulative Distribution-based Outlier Detec-
tion (ECOD) [48]: The SOTA probabilistic outlier detec-
tion technique recognized by the PyOD toolbox [87].

We conduct this experiment on one classification (using AD
data set) and one regression task (using RN data set). The
results are shown in Fig. 19. In short, by comparing the results
corresponding to the same task and data set (e.g. effectiveness
of strongRU results for AD as shown in Fig. 19a and c and
previously in 10a and c), we observe almost identical results
per RU value ranges. This pattern is repeated for the effec-
tiveness of weakRU results for AD (Fig. 19b and d and pre-
viously in 10b and d) and the effectiveness of strongRU and
weakRU results for RN (Fig. 19e–h and previously Fig. 9l
and m), demonstrating the flexibility of RU measures to the
choice of the outlier detection techniquewhen computingPo.

6.6.3 Proof of concept experiments with uniformity of
train/test samples

In Sect. 6.1.2, to overcome the challenge of collecting enough
samples to evaluate the effectiveness of RU measures, we

proposed sub-sampling from a large data set, removing the
outliers and adding the outliers back to the test set to cover
larger parts of the query space. However, as mentioned in
Sect. 6.1.2, the downside of this approach is that it further
reduces the presentation of points from under-represented
regions in the training set, which may impact the model per-
formance for those regions. Alternatively, in this experiment,
we uniformly sample two sets from the underlying distribu-
tion. The first set serves as the training set and we did not
remove the outliers from it. The second set is used for creating
the test set by finding its outliers and adding to the test set.We
repeat this experiment for two classifications (AD and DCC)
and two regression (HS and DI) data sets. The results are
illustrated in Fig. 20. In summary, the results are consistent
with the previous observations, confirming the validity of our
previous experiment and theminimal impact of removing the
outliers from the training set to the results.

7 Related work

Responsible data science has become a timely topic, to
which the data management community has extensively con-
tributed [8, 43, 68, 69].

In particular, [28] introduces a data profiling primitive
conformance constraint to characterize whether inference
over a tuple is untrustworthy. By the assumption that the con-
formance constraints always hold, they claim that they can
use a tuple’s deviation from the constraint as a proxy to trust
a model’s outcome for that tuple. Besides, extensive studies
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Fig. 20 Uniformly sampled training data and outliers removed from test set

Fig. 21 Descriptive comparison of RU measures and related work

on different dimensions of trust in ML and AI have been
presented in [39, 51]. It is also worth mentioning the body
of work on the notion of trustworthiness of data sources that
focuses on the correctness and legitimacy of data sources[24,
35], however despite the similar terminology, it is a different
concept from our problem.

Related work also includes [1, 12, 60, 86] that aim
to estimate and quantify uncertainty in AI models, how-
ever, they have a different perspective on the issue as they
extract the uncertainty from models, while our measures
are data-centric. Probabilistic classifiers predict a probabil-
ity distribution over the set of classes for a given query point
instead of simply returning the most likely class [59, 64, 84,
85]. A given probability metric such as log loss or Brier score
is calculated for each example to evaluate the predicted prob-
abilities. Not all of the common classifiers are intrinsically
probabilistic and some return distorted probabilities that need

to be calibrated. Prediction probabilities are computed using
the model trained for global performance and may not be
accurate for the unrepresented regions. Prediction Intervals
(PIs) are a common practice for quantifying the uncertainty
associated with a model’s prediction of a query point in
regression tasks [21, 40, 62]. PIs consist of a lower and
upper bound that contains a future observation with a spec-
ified level of confidence. Although PIs can be constructed
in multiple ways, there is a negative correlation between the
quality of the PI and the computational load associated with
it [41]. Conformal Prediction (CP) is another standard way
of quantifying uncertainty in both classification and regres-
sion problems returning confidence intervals and confidence
sets respectively, guaranteeing a user-specified confidence
level. Benefiting from a heuristic notion of uncertainty in
the model of choice, a scoring function s(x, y) is defined
that assigns uncertainty values to query point x given target
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variable y with larger values to the cases that x and y disagree
more. Next, the 1 − α quantile (α being the user-specified
confidence level) of the calibration set scores is calculated
and used to form the prediction set for the new examples.
Uncertainty sampling [47, 72] is also a related model-centric
strategy used in active learning to select the most informa-
tive data points for annotation or labeling. The goal of active
learning is to reduce the labeling cost by selecting the most
valuable data instances to be labeled, rather than labeling all
available data. Uncertainty sampling achieves this by select-
ing data points about which the model is uncertain or has
low confidence in its predictions. The model typically mea-
sures uncertainty through metrics like entropy, margin, or
least confidence using the probabilities assigned to different
classes.

It is important to note that all aforementioned model-
centric approaches, including PI and CP, estimate intervals,
probabilities, and scores using model(s) built by maximiz-
ing the expected performance on random sample from the
underlying distribution. As a result, while they may provide
accurate estimations for the dense regions of data (e.g.major-
ity groups), their estimation accuracy is questionable for the
poorly represented regions (e.g. minority groups). In particu-
lar, [7] recognizes the lack of guarantees in the performance
of CP for such regions. On the contrary, prediction outcomes
are specifically unreliable for regions that are unlikely to
be sampled. As a result, as we further discuss in Sect. 3.1,
such approaches fail for cases that are not represented by
the training data. This is consistent with our experimental
evaluations. PI and CP methods usually rely on techniques
such as bootstrapping and constructing ensembles to elicit
uncertainty, which regardless of the number of subsamples
or ensembles created, fails to account for the regions that
are not represented. Contrarily, our proposed measures are
computed locally around the query point (in form of lack of
certainty and lack of representation) and therefore are equally
accurate for different regions of data. Finally, while PI and
CP return an interval or set for each query point, the results
may be too generic (e.g. including a large set) or lack a proper
explanation for the user to make an informed decision.

The notion of data coverage is a related topic that has
been studied across different settings [2, 3, 9, 10, 36, 49, 57,
78]. For categorical data, uncovered regions are identified in
form of value combinations (e.g. Hispanic Females) called
patterns. A pattern is uncovered if there are not enough sam-
ples matching it [9, 36, 49].Coverage on continuous space is
studied in [10]. Accordingly, lack of coverage is identified as
any point in the data space that doesn’t have enough points
in a fixed-radius neighborhood around it. Although coverage
does not provide a score for an arbitrary query point, follow-
ing the idea of whether the point is covered or not, users can
decide whether to trust the outcome of the model for that
query point.

Out-of-distribution generalizability is another related
topic from the ML community that quantifies the degree
to which a query point is an outlier in the underlying
distribution. Specifically, [19] proposes fivemetrics for iden-
tifying well-represented examples. These metrics are shown
to be highly correlated, stable, and model-agnostic. The
metrics rank examples based on different measures within
ensembles, distance to the decision boundary, or prediction
difference of two models for the same query point (holdout
retraining). It is important to note that these techniques are
model-agnostic in the sense that they have consistent results
for different models and parameters, however, unlike our
techniques that merely assess representation from the data,
they still measure representation within model properties.

Another related topic is the body of work on local inter-
pretation methods for explaining individual predictions [55].
LIME provides local explanations for a model’s prediction
behavior on query points by substituting the original complex
model with a locally interpretable surrogate model. Being a
model-agnostic technique, to realize what parts of the input
are involved in the prediction, LIME perturbs the query point
by creating samples around its neighborhood and observes
how the model performs for the perturbed samples. Next,
the samples are weighted with regard to their proximity to
the original query point, and an interpretable model is con-
structed on the new samples. The learned model should be
locally a good approximation and be used to interpret the
original model. We note that interpretation methods justify
amodel’s reasoning for a particular behavior. Conversely, our
measures raise warnings to cast doubt when the prediction
outcome is not reliable for a specific case.

SHAP (Shapley Additive Explanations) [52] is another
model-agnostic framework for explaining individual predic-
tions made by machine learning models. SHAP values are
based on cooperative game theory concepts, specifically the
Shapley value, which allocates a fair contribution to each
feature in the prediction. SHAP assigns importance values
to input features, indicating their contribution to a model’s
prediction. It also can provide both local explanations for
individual predictions and global insights into overall model
behavior. Similar to SHAP, QII (Quantitative Input Influ-
ence) [23] also uses Shapley values to explain individual
predictions, yet, instead of adopting the conditional approach
used in SHAP, QII draws ideas from the causal inference
and follows an interventional approach. The QII method
addresses feature correlations by iteratively altering indi-
vidual features and calculating the average impact of each
change on the model’s output, considering all features used
in constructing the model.

Figure21, presents an extensive comparison between the
related body of work and our proposedmeasures and demon-
strates how our measures stand out in the skyline. The
techniques are examined based on the following properties:
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– Target specifies whether the technique targets data or
model.

– Fidelity specifies whether the technique evaluates trust
locally or only provides global assurance (may fail for
sparse regions in the data).

– Output specifies the outcome of the technique.
– Task specifies the learning problem.
– Component specifies the considered complications caus-
ing the trust problems.

– Model advocacy specifies whether the technique ques-
tions the outcome of the model or tries to justify it.

– Data profiler specifies whether or not the outcome of the
technique is considered as a property of the data.

To the best of our knowledge, our paper is the first to provide
data-centric RUmeasures to identify the scope of use of data
sets for individual predictions. The techniques proposed in
this paper rely on the extensive research and advanced algo-
rithms for outlier detection [16, 34, 65, 82] and uncertainty
computing [15, 17, 29, 71].

8 Conclusion

Towards addressing the need for trustworthyAI, in this paper,
we proposed RU measures as the warning signals that limit
datasets’ scope of use for predicting future query points.
These measures are valuable alongside other techniques for
trustworthy AI. We proposed novel ideas for the effective
implementation ofRUmeasures and designed efficient algo-
rithms that scale to very large, high-dimensional data. Our
comprehensive experiments on real-world and synthetic data
sets validated our proposal and verified the scalability of our
algorithms with sub-second run times.
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