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Abstract

We study certain “geometric-invariant resonant cavities” introduced by Liberal,
Mahmoud, and Engheta in a 2016 Nature Communications paper. They are
cylindrical devices modeled using the transverse magnetic reduction of Maxwell’s
equations, so the mathematics is two-dimensional. The cross-section consists of
a dielectric inclusion surrounded by an “epsilon-near-zero” (ENZ) shell. When
the shell has just the right area, its interaction with the inclusion produces
a resonance. Mathematically, the resonance is a nontrivial solution of a 2D
divergence-form Helmoltz equation ∇ ·

(
ε−1(x, ω)∇u

)
+ ω2µu = 0, where

ε(x, ω) is the (complex-valued) dielectric permittivity, ω is the frequency, µ is
the magnetic permeability, and a homogeneous Neumann condition is imposed at
the outer boundary of the shell. This is a nonlinear eigenvalue problem, since ε
depends on ω. Use of an ENZ material in the shell means that ε(x, ω) is nearly
zero there, so the PDE is rather singular. Working with a Lorentz model for the
dispersion of the ENZ material, we put the discussion of Liberal et. al. on a sound
foundation by proving the existence of the anticipated resonance when the loss
parameter of the Lorentz model is sufficiently small. Our analysis is perturbative
in character, using the implicit function theorem despite the apparently singular
form of the PDE. While the existence of the resonance depends only on the area
of the ENZ shell, its quality (that is, the rate at which the resonance decays)
depends on the shape of the shell. It is therefore natural to consider an associated
optimal design problem: what shape shell gives the slowest-decaying resonance?
We prove that if the dielectric inclusion is a ball then the optimal shell is a con-
centric annulus. For an inclusion of any shape, we study a convex relaxation of the
design problem using tools from convex duality. Finally, we discuss the conjec-
ture that our relaxed problem amounts to considering homogenization-like limits
of nearly optimal designs.
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1 Introduction

This paper is motivated by a 2016 article by Liberal et al, which discusses how
epsilon-near-zero (ENZ) materials can be used to design “geometry-invariant resonant
cavities” [16] . We focus on a class of examples involving the transverse magnetic reduc-
tion of the time-harmonic Maxwell system, obtained by taking H = (0, 0, u(x1, x2))
and E = 1

iωε (−∂2u, ∂1u, 0) in

∇×H = −iωε(x)E, ∇× E = iωµ(x)H. (1.1)

Thus we shall be working with the Helmholtz equation

∇ ·
(

1

ε(x)
∇u
)
+ ω2µ(x)u = 0 (1.2)

in a bounded two-dimensional domain Ω. Here ω is the frequency, and ε = ε(x1, x2),
µ = µ(x1, x2) are the dielectric permittivity and magnetic permeability at this
frequency.

It is easy to see from (1.2) what is special about ENZ materials in the transverse-
magnetic setting. Indeed, if ε(x) is near zero in some “ENZ region,” then 1

ε(x)∇u can

avoid being large only by ∇u being small in this region. In the limit as ε → 0 in the
ENZ region, we are not solving a PDE there but rather choosing a constant value for
u. While the solution of a PDE depends sensitively on its domain and coefficients, the
constant value of u in the ENZ region should be much less sensitive. In fact, in many
settings it is only the area of the ENZ region that matters (to leading order, as ε→ 0
in the ENZ region). This effect has been used, for example, to design entirely new
types of waveguides [21; 22; 23]; for recent reviews of these and other applications, see
[14; 19].
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Fig. 1 Our resonator consists of a region D in which ε = ε0εD(ω) surrounded by a shell Ω \ D
in which ε = ε0εENZ(ω). The material in the shell is ENZ, whereas D is occupied by an ordinary
dielectric.

We now specify more precisely the PDE problem considered in this paper. The
Helmholtz equation (1.2) will be solved in a bounded domain Ω ⊂ R2 with a core-
and-shell structure: it consists of a region D ⊂ Ω containing an ordinary dielectric,
surrounded by a shell Ω \D containing an ENZ material (see Figure 1). At the outer
boundary ∂Ω we take ∂u/∂νΩ = 0. (In the language of the underlying Maxwell sys-
tem, the outer boundary is a perfect electric conductor.) Following [16], we shall ignore
the spatial and frequency dependence of µ, since it is negligible in the intended appli-
cations; thus we set µ(x) = µ0 to be the permeability of free space. The dielectric
permittivity ε is constant in each material:

ε(x) =

{
ε0 εD(ω) in D
ε0 εENZ(ω) in Ω \D (1.3)

where ε0 is the permittivity of free space. While our method is more general, we shall
use a Lorentz model for the ENZ material:

εENZ(ω) = ε∞

(
1 +

ω2
p

ω2
0 − ω2 − iωγ

)
(1.4)

Here ε∞, ω0, ωp and γ are nonnegative real numbers. Notice that in the lossless case

γ = 0 this function vanishes when ω = ω∗ :=
√
ω2
p + ω2

0 ; the resonant frequency of our

ENZ-based resonator will be very near this “ENZ frequency.” As for εD: following [16],
we shall ignore losses there, taking εD(ω) to be real-valued and positive for real-valued
ω near ωp.

With the preceding conventions, and writing c = 1/
√
ε0µ0 for the speed of light,

the Helmholtz equation (1.2) becomes

∇ ·
(

1

εD(ω)
∇u
)
+ ω2c−2u = 0 in D and (1.5)

∇ ·
(

1

εENZ(ω)
∇u
)
+ ω2c−2u = 0 in Ω \D (1.6)
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with the understanding that u and 1
ε∇u ·νD are continuous at ∂D, and that u satisfies

∂u/∂νΩ = 0 at ∂Ω. Following [16] , we shall refer to a nontrivial solution as a resonance.
It should be noted, however, that when the loss parameter γ is positive εENZ is complex,
so the resonance u and the resonant frequency ω will also be complex. Since the time-
harmonic Maxwell equations are obtained by considering electric and magnetic fields
of the form e−iωtE(x) and e−iωtH(x), and since physical solutions should decay in
time, we expect (and we will find) that in the presence of loss, the imaginary part of
ω is negative.

While the preceding discussion is accurate, it ignores an important feature of our
analysis. Indeed, in discussing the Lorentz model (1.4) we wrote εENZ = εENZ(ω),
treating the constants ε∞, ω0, ωp, and γ as being fixed. Actually, the dependence
of εENZ on the loss parameter γ is crucial to our analysis. In fact, when we prove
the existence of a resonance in Section 3, our main tool is perturbation theory in γ,
and the resonant frequency is a function of γ. When the dependence of εENZ on γ is
important, we shall write εENZ(ω, γ) rather than εENZ(ω) for the Lorentz model (1.4)
(see for example equation (1.9) below).

Equations (1.5)–(1.6) are not a conventional eigenvalue problem, since εD and
εENZ depend on ω. The fundamental insight of [16] in this context was that there
should nevertheless be a solution near the ENZ frequency when γ is small, provided
that the area of the ENZ region satisfies a certain consistency condition. This result
is interesting (and potentially useful) because the consistency condition involves only
the area of the ENZ region. Usually, for a PDE, the existence of a resonance at a
given frequency depends sensitively on the geometry of the domain. Our ENZ-based
resonator is different: it has a resonance near the ENZ frequency regardless of the
shape of the ENZ region, provided only that the area of this region is right. Thus,
the design of resonators with a given resonant frequency becomes easy (given the
availability of a material with ε ≈ 0 at that frequency).

The paper [16] uses physical insight to find the condition on the area of the ENZ
region, and it uses numerical simulations to confirm that the anticipated resonances
exist in many examples. Our work complements its contributions by proving the exis-
tence of such resonances and studying their dependence on the ENZ material’s loss
parameter γ. In particular, we provide a rather complete understanding about how
the geometry of the ENZ region influences the rate at which the resonance decays. It
is natural to ask how the shape of the ENZ shell can be chosen to minimize the decay
rate. When D is a disk, we show that the optimal ENZ shell is a concentric annulus;
for more general D, a similarly explicit solution is probably not possible, but we are
nevertheless able to estimate the optimal decay rate by considering a certain convex
optimization.

Our account has thus far emphasized the physical character of the problem. To
communicate the mathematical character of our work, it convenient (and indeed nec-
essary) to consider what happens when we ignore the frequency-dependence of εD and
εENZ. After multiplying both equations (1.5)–(1.6) by εD, our PDE (1.2) takes the form

∇ · ε−1
δ ∇u+ λu = 0 in Ω (1.7)

∂νΩu = 0 at ∂Ω ,
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with the conventions that λ = ω2c−2εD and δ = εENZ/εD, and the notation

εδ(x) :=

{
δ x ∈ Ω \D
1 x ∈ D .

(1.8)

Since δ is just a parameter, this is a linear eigenvalue problem. It appears to be rather
singular in its dependence on δ, since the PDE in Ω \D is now ∇ · (δ−1∇u) + λu = 0
and we are interested δ near 0. But it can be desingularized by a suitable ansatz, as we
shall explain in Section 2. (In Ω\D the ansatz has u = 1+δf(x), so that δ−1∇u = ∇f
is no longer singular.)

When δ is real and positive, it is a basic result about second-order elliptic PDE
that (1.7) can have a nontrivial solution (a resonance) only for a discrete set of λ’s,
which must be nonnegative. Our main result about (1.7), Theorem 2.1, identifies
the (infinite) set of λ’s for which such a result holds even for complex-valued δ in a
neighborhood of 0; moreover it shows that for each such resonance, u = uδ and λ = λδ
are complex analytic in their dependence on δ. (Our results agree with those in [16]
concerning the possible values of λ0 = limδ→0 λδ and u0(x) = limδ→0 uδ(x).) Besides
proving analyticity, our work gives easy access to the Taylor expansions of uδ and λδ;
in particular, it identifies the asymptotic electric field in the ENZ region (in other
words, the limiting value of δ−1∇u in Ω \D as δ → 0), and it shows how the shape of
the ENZ shell determines the leading-order correction to λ0 when δ ̸= 0 (that is, the
value of λ′(0)).

Let us say a word about the proof of Theorem 2.1. The arguments draw inspira-
tion from those used to study perturbations of eigenvalues in more standard settings.
Due to the singular character of our operator, however, we must solve PDE’s in D
and Ω \D separately, rather than ever solving (1.7) in the entire domain Ω. Our anal-
ysis begins by showing how the Taylor expansions of uδ and λδ can be determined
term-by-term. While analyticity (with respect to δ) can be proved by majorizing the
resulting expansion, we pursue a different approach – demonstrating analyticity by an
application of the implicit function theorem.

We are not the first to consider operators of the form ∇ · (ε−1
δ ∇u) in which εδ

takes only the values 1 and δ and the focus is on behavior near δ = 0. This operator
and others like it arise, in particular, when considering the effective behavior or band
structure of high-contrast composites [3; 5; 4; 10; 8; 9]. Our treatment of (1.7) has
some features in common with the work just cited, as we discuss in more detail near
the end of this section.

Returning to the physical problem with dispersion and loss, (1.5)–(1.6): the exis-
tence of resonances and their analytic dependence on the loss parameter γ follows
easily from Theorem 2.1 by an application of the implicit function theorem. Indeed,
it suffices to find a complex-valued function ω(γ) such that

λεENZ(ω(γ),γ)/εD(ω(γ)) = ω2(γ)c−2εD(ω(γ)) (1.9)

and such that ω(0) is the ENZ frequency (the one where εENZ vanishes when γ = 0).
We show in Theorem 3.1 that the implicit function theorem is applicable, and that
the leading-order dependence of ω(γ) (that is, ω′(0)) depends on the geometry of the
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ENZ region only through λ′(0). Also of note: we show that ω′(0) is purely imaginary.
It follows that the frequency where the resonance occurs (the real part of ω(γ)) differs
very little from the ENZ frequency (the difference is at most of order γ2).

For an experimentalist creating a resonator using the framework of this paper,
the ENZ material to be used in Ω \ D would typically be fixed, and therefore the
ENZ frequency ω∗ (defined by (3.5)) would also be fixed. As mentioned earlier, the
experimentalist’s choices of D and Ω must satisfy a consistency condition that depends
on ω∗. This is discussed in Section 2.1.3, but we summarize the main impact here: (i)
while the shape of D is unconstrained, its size must satisfy a certain (open) condition;
(ii) once both the ENZ frequency and D are fixed, the consistency condition constrains
Ω only by fixing the area of the ENZ region Ω \D.

It is natural to ask how the shape of the ENZ region should be chosen to optimize
the associated resonance. Since the imaginary part of ω gives the rate at which the
resonance decays, this amounts to asking what shape minimizes |ω′(0)|. The analysis
just summarized reduces this to asking what shape minimizes |λ′(0)|. Our results on
the function λ(δ) include a variational characterization of this number: it is a constant
times

min
ϕ

∫
Ω\D

1

2
|∇ϕ|2 − λ0ϕdx+

∫
∂D

fϕ dH1 (1.10)

for a particular choice of the function f (see (4.3)). Since the minimum value of (1.10)
is negative, our optimal design problem takes the form

max
Ω

min
ϕ

∫
Ω\D

1

2
|∇ϕ|2 − λ0ϕdx+

∫
∂D

fϕ dH1 , (1.11)

with the understanding that Ω varies over domains that contain D and remain within
some fixed region B. The domain Ω can be represented by a function χ(x), defined on
B \D, which takes the value 1 on Ω \D and 0 outside Ω. With this convention, (1.11)
becomes

max
χ(x)∈{0,1}

min
ϕ

∫
B\D

χ(x)

(
1

2
|∇ϕ|2 − λ0ϕ

)
dx+

∫
∂D

fϕ dH1.

In the language of structural optimization (see e.g. [1]), this is a compliance optimiza-
tion problem. Such problems are well-understood for mixtures of two nondegenerate
materials (that is, when χ(x) takes two values that are both positive). In the present
more degenerate setting, methods from homogenization cannot be applied directly.
But taking inspiration from that theory, we show in Section 4 that the value of (1.11)
is upper-bounded by the value of the simple-looking convex optimization

min
ϕ

∫
B\D

(
1

2
|∇ϕ|2 − λ0ϕ

)
+

dx+

∫
∂D

fϕ dH1 . (1.12)

Moreover, we argue (though we do not prove) that this bound is actually sharp. When
the inclusion D is a ball we can say much more: the optimal Ω is in fact a concentric
ball (and the upper bound (1.12) is indeed sharp in this case).

Let us briefly discuss some related work.
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• The physics literature includes many papers on devices made using ENZ materials,
including quite a few that can be modeled by Helmholtz equations like (1.2). Many
of these papers raise issues comparable to those considered in the present work.
Our recent paper [13] studied a phenomenon known as photonic doping; it provided
a mathematical foundation for and an improved understanding of an application
of ENZ materials considered in [17] (see also [22]). That work involved scattering,
whereas the present work involves resonance. Therefore the analysis in this paper is
substantially different from that of [13], though there are of course some parallels. In
particular, Section 2 of this paper shows how the perturbation theory of eigenvalue
problems can be adapted to the ENZ setting, while our earlier paper was concerned
instead with the perturbation theory of boundary-value problems.

• As already mentioned earlier, our treatment of (1.7) has some features in common
with [3; 5; 4; 10; 8; 9; 13]. Preparing to say more on this topic, we remind the reader
that (1.7) is an eigenvalue problem for the divergence-form operator ∇ ·

(
ε−1
δ ∇u

)
,

whose coefficient εδ is piecewise constant (equal to 1 in D and δ in Ω\D). We show
in Section 2 that the quantities of interest are complex analytic functions of δ near
δ = 0.

For any function of a complex variable δ, there are two rather distinct approaches
to proving its analyticity. One is to show that the function is complex differentiable
in δ; this is what we do in Section 2. The other is to identify the function’s Taylor
expansion then prove its convergence; this is the approach taken in [3; 5; 4; 8; 9; 13],
which consider problems closely related to ours. Among these references, the papers
by Chen & Lipton and Fortes, Lipton & Shipman have the strongest connections to
our setting, since they too consider spectral problems. This work studies the band
structure of certain periodic high-contrast composites; thus its physical motivation is
quite different from ours. However, the PDEs considered in these papers are closely
analogous to (1.7) (except for being solved on a period cell, with a Bloch boundary
condition). Therefore it is not surprising that in these papers, as in Section 2, one
finds each successive term of the Taylor expansion by considering (separate) PDE
problems in two complementary material regions; moreover, the Taylor expansions
found in these papers have a character quite similar to ours. (Since the work just
discussed concerns the band structure of periodic high-contrast composites, let us
also mention an earlier paper [10], which achieves impressive insight by means other
than Taylor expansion.)

Rather than majorize the Taylor expansion, our proof of analyticity uses the implicit
function theorem to show that the eigenvalue λδ and the (suitably normalized)
eigenfunction uδ of (1.7) are complex-differentiable functions of δ near δ = 0. The
fact that perturbation theory for (simple) eigenvalues can be done using the implicit
function theorem has been understood at least since 1955 [20]. While this approach
does not immediately give a radius of analyticity, extensions of that type have been
discussed in some settings [11].

• As we explain in Section 4.3, the passage from (1.11) to (1.12) involves considering
the possibility that the optimal Ω is a homogenization limit of domains with many
small holes. Our optimal design problem can be regularized by including a penalty
term involving the perimeter of Ω \D. It is known that inclusion of such a penalty
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prevents homogenization (see e.g. [2]). However, if the unpenalized optimization
requires homogenization then the solution of the penalized problem will depend
strongly on the presence and strength of the penalization. Therefore we do not
consider the use of perimeter penalization in the present work.

We close this Introduction by summarizing the organization of the paper. Section 2
contains our study of the PDE (1.7). It is the longest section, since much of our success
lies in finding a convenient way to desingularize the problem. Section 3 combines the
results of Section 2 with the implicit function theorem to show the existence of a
resonance near the ENZ frequency, and to consider the effects of dispersion and loss.
Finally, Section 4 presents our results on the optimal design problem (choosing the
shape of the ENZ region to minimize the effect of loss).

2 Analysis without dispersion

In this section we study the eigenvalue problem (1.7). Our main result is the existence
of an eigenfunction uδ with eigenvalue λδ, both depending complex-analytically on δ
in a neighborhood of 0, provided that λ0 = limδ→0 λδ satisfies a certain consistency
condition. Our proof shows in addition that λδ is a simple eigenvalue, in other words
its eigenspace is one-dimensional.

We start, in Section 2.1, with some preliminaries and a full statement of the result.
Then we show, in Sections 2.2 – 2.3, how the Taylor expansions of uδ and λδ can be
determined term-by-term if one assumes analyticity. Finally, in Section 2.4 we use the
implicit function theorem to prove the existence of uδ and λδ depending analytically
on δ.

Our analysis shows, roughly speaking, that the perturbation theory of eigenvalues
and eigenfunctions can be applied to the singular-looking operator ∇ · ε−1

δ (x)∇ with
estimates that are uniform in δ (and that δ = 0 is a removable singularity).

2.1 Preliminaries and a statement of our result about uδ and λδ

As discussed in the Introduction, we are interested throughout this paper in a bounded
two-dimensional domain Ω with a subset D (see Figure 1). Both domains are assumed
to be Lipschitz (that is, their boundaries are locally the graphs of Lipschitz functions)
and connected, and D does not touch ∂Ω. We also assume that D is simply connected,
so that the “ENZ region” Ω \ D is a connected set which can be viewed as a shell
surrounding D. While the Ω shown in Figure 1 is simply connected, we do not assume
this; rather, Ω \D can have one or more holes – in which case the boundary condition
∂νΩ

u = 0 in (1.7) applies at the boundary of each hole.
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2.1.1 The function ψd,λ0; a normalization; and the consistency
condition

It is natural to begin by finding the Taylor expansion of uδ and λδ, assuming existence
and analyticity. As a reminder, our goal is to solve

∇ · 1
εδ
∇uδ + λδuδ = 0 in Ω

∂νΩ
uδ = 0 at ∂Ω ,

(2.1)

where εδ(x) := 1 for x ∈ D and εδ(x) = δ for x ∈ Ω \D. Proceeding formally for the
moment, we seek a solution of the form

λδ = λ0 + δλ1 + δ2λ2 + . . . (2.2)

and

uδ(x) :=

{
1 + δϕ1 + δ2ϕ2 + . . . if x ∈ Ω \D
ψ0 + δψ1 + δ2ψ2 + . . . if x ∈ D .

(2.3)

This should, of course, not be possible for all choices of λ0; the condition that
determines the permissible values of λ0 will be given presently (see (2.9)).

The expansion of uδ begins with 1 in Ω \ D because (as discussed in the Intro-
duction) we expect uδ to be constant to leading order in Ω \ D. There is no loss of
generality taking the leading-order constant to be 1, since multiplying an eigenfunc-
tion by a constant gives another eigenfunction. But this normalization only affects the
leading-order term, whereas to fix uδ we need a condition that applies to all orders in
δ. It is convenient to use the normalization∫

Ω

uδ(x)u0(x) dx =

∫
Ω

u20 dx = |Ω \D|+
∫
D

ψ2
0 dx , (2.4)

where u0 = limδ→0 uδ denotes the leading-order term of (2.3),

u0(x) =

{
1 x ∈ Ω \D
ψ0 x ∈ D .

(2.5)

When we substitute the expansions (2.2)–(2.3) into the PDE (2.1) and focus on
the leading-order behavior in D, we see that ψ0 must solve a Helmholtz equation in D
with the Dirichlet boundary condition ψ0 = 1 at ∂D. The solution of this boundary
value problem also played a central role in our recent study of photonic doping [13]. To
emphasize the connections between that work and this one we will use similar notation
here, calling its solution ψd,λ0

. Thus, we take ψ0 = ψd,λ0
to be the solution of

−∆ψd,λ0 = λ0ψd,λ0 in D

ψd,λ0 = 1 at ∂D.
(2.6)

We assume here that λ0 ̸= 0 is real, and that it is not an eigenvalue of −∆ in D with
Dirichlet boundary condition 0. Under these conditions the solution of (2.6) exists and
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is unique and real-valued. Since we have only assumed that D is a Lipschitz domain,
ψd,λ0 is in H2

loc(D)∩H1(D), which is enough for our purposes. (In [13] the subscript d
stood for “dopant;” here it is just a reminder that ψd,λ0 depends on both D and λ0.)

We note for future reference that with the substitution ψ0 = ψd,λ0 , our
normalization (2.4) has become∫

Ω

uδ(x)u0(x) dx = |Ω \D|+
∫
D

ψ2
d,λ0

dx . (2.7)

Since the eigenvalues of an elliptic operator are discrete, we expect that only certain
choices of λ0 should be acceptable. When we consider the expansion term-by-term
in Section 2.2, the condition on λ0 will emerge as the consistency condition for the
existence of ϕ1; therefore we like to call it the consistency condition. However the same
condition can be derived as follows: it is easy to see from (2.1) that∫

Ω

uδ dx = 0 (2.8)

by integrating the PDE over Ω and using the homogeneous Neumann boundary
condition (along with the assumption that λ0 ̸= 0). At leading order this gives

|Ω \D|+
∫
D

ψd,λ0
dx = 0 . (2.9)

We shall discuss the solvability of this condition in Section 2.1.3, but we note here
that (i) it requires

∫
D
ψd,λ0 dx to be negative, and (ii) when this integral is negative,

(2.9) simply determines the area of the ENZ region.
We assumed above that λ0 is real-valued and nonzero. Actually, the consistency

condition (2.9) implies that it must be positive. Indeed, using the definition (2.6) of
ψd,λ0 we have∫

D

|∇ψd,λ0
|2 dx =

∫
D

div (ψd,λ0
∇ψd,λ0

) dx−
∫
D

ψd,λ0
∆ψd,λ0

dx

=

∫
∂D

∂νD
ψd,λ0

dH1 + λ0

∫
D

ψ2
d,λ0

dx .

But using the PDE again along with the consistency condition we have∫
∂D

∂νD
ψd,λ0

dH1 =

∫
D

∆ψd,λ0
dx = −λ0

∫
D

ψd,λ0
dx = λ0|Ω \D| .

Combining these relations, we conclude that∫
D

|∇ψd,λ0
|2 dx = λ0

(
|Ω \D|+

∫
D

ψ2
d,λ0

dx

)
.

So λ0 must be positive, as asserted.
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2.1.2 Statement of our theorem on analyticity of uδ and λδ

We are ready to state our result on the existence of eigenvalues and eigenvectors of
(2.1) depending analytically on δ.
Theorem 2.1. Let D and Ω be as discussed at the beginning of Section 2.1 and let
λ0 be a positive real number which (i) is not a Dirichlet eigenvalue of −∆ in D and
(ii) satisfies the consistency condition (2.9). Then for all complex δ in a neighborhood
of 0 there exists a simple eigenvalue λδ of (2.1) with eigenfunction uδ such that

lim
δ→0

λδ = λ0 and lim
δ→0

uδ = u0 =

{
1 x ∈ Ω \D

ψd,λ0
x ∈ D .

Moreover, with the normalization (2.7) the eigenfunction uδ and its eigenvalue λδ are
complex analytic functions of δ in a neighborhood of δ = 0.

To be sure the final statement is clear: we will show, in the course of the proof,
that the map δ 7→ uδ is a complex analytic function of δ (near δ = 0) taking values
in a suitable Banach space. This is equivalent to the statement that uδ has a Taylor
expansion uδ = u0 + δu1 + δ2u2 + · · · with a positive radius of convergence (see e.g.
[6] or [26]).

2.1.3 On satisfying the consistency condition

Our consistency condition (2.9) involves the function ψd,λ0
, so its dependence on D

is not very explicit. This subsection examines how it can be satisfied, either (a) by
choosingD and Ω appropriately with λ0 held fixed, or (b) by choosing λ0 appropriately,
with D and Ω held fixed. (This discussion is not used in the proof of Theorem 2.1. A
reader who is mainly interested in that theorem can skip to Section 2.2.)

We start with a representation formula for ψd,λ0
in terms of the Dirichlet eigen-

values and eigenfunctions of the domain D (more precisely, the spectrum of −∆ in
H1

0 (D)). Let {µn}∞n=1 be the Dirichlet eigenvalues of −∆, and let {χn}∞n=1 be an asso-
ciated set of orthonormal eigenfunctions; as usual, the eigenvalues are enumerated in
nondecreasing order and repeated according to multiplicity. By expressing the func-
tion ψd,λ0

− 1 (which vanishes at ∂D) in terms of the eigenfunction basis, one finds
by a routine calculation that

ψd,λ0
= 1 + λ0

( ∞∑
n=1

∫
D
χn dx

µn − λ0
χn

)
. (2.10)

We see from this formula that ψd,λ0
depends only on the eigenfunctions for which∫

D
χn dx ̸= 0. The following simple proposition assures us that there are infinitely

many of these. (For a more quantitative result – estimating how many of the first n
Dirichlet eigenfunctions have nonzero mean – see [25].)
Proposition 2.2. For any bounded domain D ⊂ Rd with Lipschitz boundary, there
are infinitely many Dirichlet eigenfunctions χn such that

∫
D
χn(x) dx ̸= 0.
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Proof. The functions {χn} form an orthonormal basis of L2(D). The constant function
1 is in L2(D) (since D is bounded), so

1 =

∞∑
n=1

(∫
D

χn(x) dx

)
χn ,

where the series on the right, if infinitely many of terms are nonzero, must be under-
stood in the sense of convergence of L2 functions. Now, if all but finitely many of the
coefficients

∫
D
χn(x) dx were to vanish then the constant function 1 would be a finite

sum of eigenfunctions that all vanish at ∂D. This is not possible, so the proposition
is proved.

The consistency condition (2.9) involves just the integral of ψd,λ0
, which by (2.10)

is ∫
D

ψd,λ0
= |D|+ λ0

∞∑
n=1

(
∫
D
χn(x) dx)

2

µn − λ0
. (2.11)

We note that the sum on the right hand side of (2.11) is absolutely convergent. Indeed,
each term is finite (since by hypothesis λ0 is not a Dirichlet eigenvalue), and for all but
finitely many terms µn > λ0 (since the eigenvalues are ordered and tend to infinity).
Since all but finitely many of the terms are positive, the sum converges absolutely.

We turn now to the question how the consistency condition (2.9) can be satisfied by
choosing D and Ω appropriately, for any fixed positive λ0. As already noted earlier, we
need only ask how

∫
D
ψd,λ0 dx can be made negative, since the consistency condition

is then satisfied by choosing the area of Ω \D correctly. For a given domain D, it is
of course possible for

∫
D
ψd,λ0

dx to be positive. However, if the Dirichlet eigenvalues
of −∆ in D are {µn}, then the Dirichlet eigenvalues of −∆ in the scaled domain tD
are µn/t

2. As t varies, there will be selected values where µn/t
2 crosses λ0 for some

eigenvalue µn such that
∫
χn dx ̸= 0. As this crossing happens, we see from (2.11) that

the value of
∫
D
ψd,λ0

dx jumps from −∞ (as µn/t
2 approaches λ0 from below) to +∞

(as µn/t
2 increases past λ0). As t ranges over the interval between two consecutive

crossings,
∫
D
ψd,λ0

dx takes every real value by the intermediate value theorem. Thus,
the scale factor t can easily be chosen so that

∫
D
ψd,λ0

dx is negative.
Finally, we examine how the consistency condition can be satisfied by choosing λ0

appropriately when D and Ω are held fixed. Combining (2.9) with (2.11), this amounts
to studying the roots of |Ω|+ f(t) = 0, where

f(t) := t

∞∑
n=1

(∫
D
χn)

2

µn − t
. (2.12)

We noted above that this sum converges absolutely provided that t is not an eigenvalue
with a nonzero-mean eigenfunction. Differentiating term-by-term gives

f ′(t) =

∞∑
n=1

µn

(∫
D
χn)

2

(µn − t)2
> 0 . (2.13)
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(This calculation is legitimate, since the differentiated sum again converges absolutely;
indeed, for large n its nth term is comparable to that of f .) Remembering that an
eigenvalue µn participates in these sums only if

∫
D
χn dx ̸= 0, it is convenient to let

J = {m1,m2, . . .} be the ordered list of eigenvalues having at least one eigenfunction
with nonzero mean (which is infinite, by Proposition 2.2). Then we see from (2.12)
– (2.13) that f(t) increases monotonically from −∞ to +∞ on each interval mi <
t < mi+1. Thus: each of these intervals contains a unique choice of λ0 for which the
consistency condition holds.

2.2 The leading order terms

We have as yet determined only the zeroth-order terms in the Taylor expansions of
λδ and uδ. We turn now to the identification of additional terms. The first few, which
are discussed in this section, are used in our proof of Theorem 2.1; briefly, knowing
them lets us desingularize the PDE problem, permitting application of the implicit
function theorem. The higher-order terms, which we discuss in Section 2.3, are also
interesting. Indeed, the process by which the expansion is determined term-by-term is
intimately related to our implicit-function-theorem-based proof of Theorem 2.1: the
implicit function theorem requires the invertibility of a certain linear operator, whereas
our identification of each successive term in the expansion involves inverting this oper-
ator. (We note in passing that the higher-order terms can also be used to provide an
alternative proof of Theorem 2.1 by directly majorizing the Taylor expansions. For
arguments of this type in closely analogous settings see [8; 9].)

Before delving into the details, let us provide a big-picture view of the calculation.
Our plan is to substitute the expansions (2.2) and (2.3) into the PDE (2.1) and the
normalization (2.7) and expand in powers of δ. The condition that λ0 must satisfy –
(2.9) – will emerge naturally as the consistency condition for the PDE problem (in
Ω \D) that determines ϕ1. When this consistency condition holds, ϕ1 is determined
only up to an additive constant, which we call e1. The function ψ1 solves a different
PDE problem (inD), which involves ϕ1 and λ1; as a result, ψ1 is initially found in terms
of the not-yet-determined parameters e1 and λ1. Finally, e1 and λ1 are determined by
the normalization condition (2.7) and the consistency condition for the existence of
ϕ2. The process by which ϕj , ψj , and λj are determined for each successive j = 2, 3, . . .
is similar.

As we shall see, each function ϕj satisfies a Poisson-type equation in Ω \D. The
associated consistency condition comes from the fact that if ∆ϕ = f in a domain
and ∂νϕ = g at its boundary, then the volume integral of f must equal the boundary
integral of g. When the equation is consistent, the solution is determined only up to
an additive constant. For this reason, it will be convenient to view each ϕj as the sum
of a mean-zero function and a constant:

ϕn = ϕ̊n + en, en ∈ R,
∫
Ω\D

ϕ̊n dx = 0 . (2.14)
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This decomposition induces one of ψj , since (as we’ll see) ψj solves a linear PDE in
D with ψj = ϕj at ∂D. While the form of this decomposition will emerge naturally
later, we mention it now as a complement to (2.14):

ψn = ψ̊n + enψd,λ0
ψ̊n = ϕ̊n on ∂D . (2.15)

We turn now to the business of this subsection: identification of the initial terms
in the expansions. We have, of course, already chosen the order-one terms in the
expansion of uδ:

ϕ0(x) := 1 for x ∈ Ω \D,
ψ0(x) := ψd,λ0

(x) for x ∈ D ,

Plugging the expansions into the PDE (2.1), at order one in the ENZ region we get a
PDE problem for ϕ1:

−∆ϕ1 = λ0 in Ω \D
∂νϕ1 = 0 on ∂Ω

∂νϕ1 = ∂νψd,λ0
on ∂D .

(2.16)

Existence requires a consistency condition. Recalling that νD denotes the unit normal
to ∂D pointing out of D, the consistency condition is

λ0|Ω \D| =
∫
∂D

∂ψd,λ0

∂νD
dH1 . (2.17)

When this holds, the solution exists but it is unique only up to an additive constant.
Therefore we decompose

ϕ1 = ϕ̊1 + e1, e1 ∈ R,
∫
Ω\D

ϕ̊1 dx = 0

and recognize that while ϕ̊1 is uniquely determined, e1 is still unknown. (We note that

ϕ̊1 is real, since ψd,λ0 is real; therefore our assumption that e1 take real values is quite
natural.)

The consistency condition (2.17) is equivalent to the condition on λ0 that we
introduced earlier, namely (2.9). Indeed, since∫

∂D

∂ψd,λ0

∂νD
dH1 =

∫
D

∆ψd,λ0
dx = −λ0

∫
D

ψd,λ0
dx ,

(2.17) can be rewritten

λ0|Ω \D| = −λ0
∫
D

ψd,λ0
dx ,

which is equivalent to (2.9) since we always assume λ0 ̸= 0.
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We turn now to the identification of the function ψ1 and the constants λ1 and e1.
Since we have already considered the order-one PDE, both in D (in defining ψd,λ0)

and in Ω \D (in finding ϕ̊1), we naturally turn to the order-δ problem in D. It says

−∆ψ1 = λ1ψd,λ0
+ λ0ψ1 in D (2.18)

ψ1 = ϕ1 on ∂D . (2.19)

(The boundary condition comes from the fact that uδ cannot jump across ∂D.) For
given ϕ1 and λ1, this boundary value problem has a unique solution (since λ0 is not
a Dirichlet eigenvalue of −∆ in D). Since the additive constant e1 in ϕ1 has not yet
been determined, it is convenient to make the dependence of ψ1 on e1 more explicit.
Therefore we decompose ψ1 as in (2.15):

ψ1 = ψ̊1 + e1ψd,λ0 , (2.20)

where
−∆ψ̊1 = λ1ψd,λ0 + λ0ψ̊1 in D

ψ̊1 = ϕ̊1 on ∂D .
(2.21)

Since λ0 is not a Dirichlet eigenvalue of D, any choice of λ1 uniquely determines ψ̊1.
We must still determine e1 and λ1. For this purpose, we shall use the normalization

condition (2.7) and the condition that∫
D

ψ̊1 dx = 0 . (2.22)

Some explanation is in order about the latter. Remember that while our condition
on λ0 was initially obtained by requiring that

∫
Ω
uδ dx = 0 at order one, the same

condition emerged above as the consistency condition for existence of ϕ1. The status
of (2.22) is similar. It is at once

(a) the order-δ version of the condition that
∫
Ω
uδ dx = 0, and

(b) the consistency condition for existence of ϕ2.

To see (a), we observe that∫
Ω\D

ϕ1 dx+

∫
D

ψ1 dx = e1|Ω \D|+
∫
D

(
ψ̊1 + e1ψd,λ0

)
dx

=

∫
D

ψ̊1 dx

using the consistency condition (2.9) in the second line. We postpone the justification
of (b) to the end of this subsection, since it requires a bit of calculation and it isn’t
immediately needed.

15



We now identify the value of λ1. Multiplying both sides of (2.21) by ψd,λ0 and
integrating gives

λ1

∫
D

ψd,λ0
(ψd,λ0

− 1) dx = −
∫
D

(
∆ψ̊1 + λ0ψ̊1

)
(ψd,λ0

− 1) dx

=
(2.6),(2.22)

∫
∂D

ϕ̊1∂νD
ψd,λ0 dH1

=
(2.16)

∫
∂D

ϕ̊1∂νD
ϕ̊1 dH1

=
(2.16)

−
∫
Ω\D

|∇ϕ̊1|2 dx .

(2.23)

Combining this with (2.9), we conclude that

λ1 = − 1

|Ω \D|+
∫
D
ψ2
d,λ0

∫
Ω\D

|∇ϕ̊1|2 dx . (2.24)

We note that this λ1 does not depend on the as-yet undetermined constant e1.
Finally, we identify the value of e1 using the order δ term in the expansion of the

normalization condition (2.7), which is∫
D

ψ1ψd,λ0
dx+

∫
Ω\D

ϕ1 = 0.

Using (2.20), this is equivalent to∫
D

ψ̊1ψd,λ0
+ e1ψ

2
d,λ0

dx+ e1|Ω \D| = 0 ,

so

e1 = −
∫
D
ψ̊1ψd,λ0

dx

|Ω \D|+
∫
D
ψ2
d,λ0

dx
. (2.25)

We note that this definition is not circular: the right hand side of (2.25) involves

ψ̊1, which is defined by (2.21) and which therefore depends on λ1. However ψ̊1 is
independent of e1, since our chosen value of λ1 – given by (2.24) – is independent of e1.

A thoughtful reader might ask: is it really true that
∫
D
ψ̊1 dx = 0 when λ1 is given

by (2.24) and ψ̊1 is determined by (2.21)? The answer is yes. To see why, we revisit
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the the calculation (2.23) without assuming that this integral vanishes:

λ1

∫
D

ψd,λ0
(ψd,λ0

− 1) dx = −
∫
D

(
∆ψ̊1 + λ0ψ̊1

)
(ψd,λ0

− 1) dx

=
(2.21),(2.6)

∫
∂D

ϕ̊1∂νD
ψd,λ0 dH1 + λ0

∫
D

ψ̊1 dx

=
(2.16)

−
∫
Ω\D

|∇ϕ̊1|2 dx+ λ0

∫
D

ψ̊1 dx .

(2.26)

This amounts to a linear relation between λ1 and
∫
D
ψ̊1 dx (since λ0, ψd,λ0 , and ϕ̊1

are by now fixed). Our choice of λ1 is precisely the one that makes
∫
D
ψ̊1 dx vanish.

We note for future reference that the functions ϕ1 and ψ1 satisfy the order-δ
versions of

∫
Ω
uδ dx = 0 and our normalization condition (2.7), namely∫

Ω\D
ϕ1 +

∫
D

ψ1 dx = 0 . (2.27)

and ∫
Ω\D

ϕ1 dx+

∫
D

ψ1ψd,λ0
= 0 . (2.28)

(Indeed, we found λ1 and e1 by assuring these relations.)

We close this subsection by justifying our claim that the condition
∫
D
ψ̊1 dx = 0 is

equivalent to the consistency condition for existence of ϕ2. Our starting point is the
PDE for ϕ2, which is the order-δ PDE in Ω \D:

−∆ϕ̊2 = λ0ϕ1 + λ1ϕ0 in Ω \D

∂νΩ
ϕ̊2 = 0 on ∂Ω

∂νD
ϕ̊2 = ∂νD

ψ1 = ∂νD
ψ̊1 + e1∂νD

ψd,λ0
on ∂D .

Its consistency condition (remembering that νD points outward from D) is
−
∫
Ω\D ∆ϕ2 dx =

∫
∂D

∂νD
ϕ2 dH1, in other words

λ0e1|Ω \D|+ λ1|Ω \D| =
∫
∂D

∂νD
ψ̊1 + e1∂νD

ψd,λ0
dH1 . (2.29)

The right side is equal to∫
D

∆ψ̊1 + e1∆ψd,λ0
dx = −

∫
D

(
λ1ψd,λ0

+ λ0ψ̊1

)
dx− e1

∫
D

λ0ψd,λ0
dx .

Using this along with the consistency condition (|Ω \ D| +
∫
D
ψd,λ0

dx = 0), (2.29)
reduces to

λ0

∫
D

ψ̊1 dx = 0 ,

which demonstrates our claim (since λ0 ̸= 0).
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2.3 The higher order terms

In this section we explain how the remaining terms in the expansions for uδ and
λδ can be found by an inductive procedure. As noted earlier, it is possible to prove
Theorem 2.1 by majorizing the resulting series. However our proof – presented in
Section 2.4 – uses a different approach, based on the implicit function theorem. There-
fore the material in this section will not be used in the rest of the paper; a reader who
is mainly interested in the proof of Theorem 2.1 can skip directly to Section 2.4.

Our procedure is inductive: given

{ϕ̊j}nj=1 , {λj}nj=1 , {ψ̊j}nj=1 , {ej}nj=1, (2.30)

satisfying certain properties, we shall explain how to find ϕ̊n+1, λn+1, ψ̊n+1, and en+1

with the analogous properties at level n + 1. The base case of the induction will be
j = 1, which was addressed in the previous subsection. Throughout this discussion,
we understand that ϕj and ψj are determined by ϕ̊j , λj , ψ̊j , and ej via

ϕj := ϕ̊j + ej , ψj = ψ̊j + ejψd,λ0
. (2.31)

Inductive hypotheses:

• For j = 1, . . . , n, the functions ϕ̊j and ψ̊j satisfy∫
Ω\D

ϕ̊j dx = 0 and

∫
D

ψ̊j dx = 0 . (2.32)

We note that when ϕ̊j has mean zero and λ0 satisfies the consistency condition (2.9),∫
Ω\D

ϕj dx+

∫
D

ψj dx =

∫
D

ψ̊j dx ;

thus, the condition that ψ̊j have mean zero is equivalent to∫
Ω\D

ϕj dx+

∫
D

ψj dx = 0 , (2.33)

which amounts to the condition that
∫
Ω
uδ dx = 0 at order δj .

• For j = 1, . . . , n the constant ej is chosen so that∫
Ω\D

ϕj dx+

∫
D

ψjψd,λ0 dx = 0 . (2.34)
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This is simply our normalization condition (2.7) at order δj . Using (2.31), we see
that it is equivalent to

ej = − 1

|Ω \D|+
∫
D
ψ2
d,λ0

dx

∫
D

ψ̊jψd,λ0
dx . (2.35)

A useful identity arises by combining (2.33) and (2.34): subtracting one from the
other gives the orthogonality relation∫

D

ψj(1− ψd,λ0) dx = 0 . (2.36)

Of course, the functions ϕ̊j , ψ̊j and the constants ej and λj will be chosen for
j = 1, . . . , n so that the associated expansions satisfy our PDE (2.1) to a certain order,
and the inductive step (choosing these quantities for j = n + 1) will assure that the
PDE is satisfied to the next order.

As already noted, the base case j = 1 is already in place. Indeed, the functions
ϕ̊1, ψ̊1 and the constants e1, λ1 found in Section 2.2 have the desired properties (see
(2.28) and (2.27)).

Induction step: We will determine ϕ̊n+1 using the PDE in the ENZ region at order
δn; then we will determine ψ̊n+1, en+1, and λn+1 by using the PDE in the region D
at order δn+1 combined with the j = n+ 1 versions of conditions (2.32) and (2.34).

Since our argument uses the entire expansion of uδ and λδ, we take the convention
that ϕ̊0 = 0, e0 = 1 so that ϕ0 = ϕ̊0 + e0 = 1; similarly, we take ψ̊0 = 0 so that
ψ0 = ψd,λ0

.

The function ϕ̊n+1 ∈ H1(Ω \D) is obtained by substituting the expansion into the
PDE, then focusing on the equation in Ω \ D at order δn. This gives the Neumann
problem

−∆ϕ̊n+1 =

n∑
k=0

λkϕn−k in Ω \D

∂νΩ
ϕ̊n+1 = 0 on ∂Ω

∂νD
ϕ̊n+1 = ∂νD

ψn on ∂D∫
Ω\D

ϕ̊n+1(x) dx = 0 .

(2.37)

For a solution to exist, the integral over Ω\D of the bulk source term must be consistent
with the integral over ∂D of ∂νD

ψn. Using the PDE for ψn, the boundary integral can
be expressed as a bulk integral over D. This leads to the consistency condition

n∑
k=0

λk

[∫
Ω\D

ϕn−k dx+

∫
D

ψn−k dx

]
= 0 , (2.38)

which holds thanks to (2.33). Thus the PDE problem (2.37) is consistent, and ϕ̊n+1 is
its unique mean-zero solution.
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Turning now to the PDE in D, at order δn+1 we find the Dirichlet problem

−∆ψn+1 − λ0ψn+1 =

n+1∑
k=1

λkψn+1−k in D

ψn+1 = ϕn+1 = ϕ̊n+1 + en+1ψd,λ0
on ∂D .

(2.39)

By linearity (and using the definition of ψd,λ0
), it suffices to solve

−∆ψ̊n+1 − λ0ψ̊n+1 =

n+1∑
k=1

λkψn+1−k in D

ψ̊n+1 = ϕ̊n+1 on ∂D .

(2.40)

The solution ψ̊n+1 depends on λn+1, which is as yet unknown. Its value can be obtained
by arguing as we did for j = 1 in Section 2.2. Inspired by that calculation, we define
λn+1 by

λn+1 :=
1

|Ω \D|+
∫
D
ψ2
d,λ0

∫
∂D

ϕ̊n+1∂νD
ψd,λ0

dH1 , (2.41)

which is well-defined, since the right hand side involves only quantities that have
already been determined. Since we have now fixed λn+1, the PDE (2.40) determines

ψ̊n+1. We may then choose en+1 by

en+1 := − 1

|Ω \D|+
∫
D
ψ2
d,λ0

dx

∫
D

ψ̊n+1ψd,λ0 dx . (2.42)

To complete the induction we must check that our choices for j = n + 1 meet
the requirements of the inductive hypothesis. To do so, it suffices to check that (2.32)
and (2.34) hold for j = n + 1. The latter follows immediately from our choice of
en+1. To get the former, we multiply both sides of (2.40) by (ψd,λ0 − 1), remembering
that this function vanishes at ∂D. Integrating, using the orthogonality in (2.36), and
remembering our convention that ψ0 = ψd,λ0 , this calculation gives

λn+1

∫
D

ψd,λ0
(ψd,λ0

− 1) dx = −
∫
D

(∆ψ̊n+1 + λ0ψ̊n+1)(ψd,λ0
− 1) dx

=

∫
∂D

ψ̊n+1∂νD
ψd,λ0 dH1 + λ0

∫
D

ψ̊n+1

=

∫
∂D

ϕ̊n+1∂νD
ψd,λ0

dH1 + λ0

∫
D

ψ̊n+1 .

Combining this with the definition (2.41) of λn+1, and remembering that∫
D
ψd,λ0

(ψd,λ0
− 1) dx =

∫
D
ψ2
d,λ dx+ |Ω \D|, we conclude that∫

D

ψ̊n+1 = 0 .
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Since ϕ̊n+1 was chosen from the start to have mean value zero, we have confirmed
(2.32) and the induction is complete.

2.4 The proof of Theorem 2.1

Our proof will be based on the implicit function theorem. To get started, we shall
“desingularize” our eigenvalue problem (2.1), reformulating it in a way that doesn’t
involve dividing by δ. This will be done by using the leading order terms of the
expansion.

Since we have assumed very little regularity for ∂D and ∂Ω – they are merely
Lipschitz domains – we cannot expect the second derivatives of uδ to be in L2(Ω).
Therefore we must work with a fairly weak solution of the PDE. However, standard
elliptic regularity results show that our uδ is actually a smooth function of x away
from the boundaries ∂Ω and ∂D. If the boundaries are smooth, then uδ is also smooth
up to the boundaries (though it cannot be smooth across ∂D, since εδ jumps there).

We now establish some notation and discuss the functional analytic framework we
will use. The reader can refer to [18] for proofs of the following facts.

• Given a bounded region A ⊂ R2 with Lipschitz continuous boundary (in our setting,
A will either be Ω \D or D), let νA denote the unit normal vector field that points
out of A. This normal vector exists at H1− almost every point of the boundary ∂A,
by Rademacher’s theorem.

• As usual, H1(A) denotes (possibly complex-valued) square-integrable functions on
A with distributional gradients that are also represented by integration against an
L2 vector field. Functions in H1(A) have a boundary trace. More precisely, there
is a bounded linear operator γ0 : H1(A) → H1/2(∂A) that is surjective. It has the
property that γ0(f)(x) = f(x) for any function f ∈ H1(A) ∩ C(A), at H1−almost
every x ∈ ∂A. When we want to indicate the dependence of γ0 on the domain A,
we will write γ0,A.

We shall also use the fact that if ξ is an L2 vector field defined on a bounded Lipschitz
domain A with∇·ξ ∈ L2(A), then it has a well-defined normal trace ξ·νA inH−1/2(∂A)
(the dual of H1/2(∂A) using the L2 inner product). It is defined by the property that
for any u ∈ H1(A) with γ0(u) = f ,

⟨ξ · νA, f⟩H−1/2(∂A)×H1/2(∂A) =

∫
A

(∇ · ξ)u+ ξ · ∇u dx , (2.43)

and it satisfies

∥ξ · νA∥H−1/2(∂A) ≤ C
(
∥ξ∥L2(A) + ∥∇ · ξ∥L2(A)

)
. (2.44)

This is well-known, but we briefly sketch the proof since it is not very explicit in [18].
The property (2.43) determines a well-defined linear functional on H1/2(∂A) since
every f ∈ H1/2(∂A) is the boundary trace of some u ∈ H1(A); we use here the fact
that if γ0(u1) = γ0(u2) then u

′ = u1−u2 can be approximated in H1(A) by compactly
supported functions, so

∫
A
(∇ · ξ)u′ + ξ · ∇u′ dx = 0. The linear functional defined this
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way satisfies (2.44), since for every f ∈ H1/2(∂A) there exists u such that γ0(u) = f
and ∥u∥H1(A) ≤ C∥f∥H1/2(∂A). We will use (2.43)–(2.44) as follows:

• Let
S(A) := {f ∈ H1(A) : ∆f ∈ L2(A)} ,

where ∆f denotes the distributional Laplacian of f . Then there is a bounded linear
map (the normal derivative trace) γ1 : S(A) → H−1/2(∂A). It has the property that
for any f ∈ C1(A), γ1(f)(x) = νA · ∇f(x) at H1−almost every x ∈ ∂A. The map
γ1 is surjective, by a straightforward application of the Lax-Milgram lemma. When
we want to indicate the dependence of γ1 on A, we will write γ1,A.

• There is an integration by parts formula: for any θ ∈ H−1/2(∂A), if f ∈ S(A) is
such that γ1(f) = θ, then for all g ∈ H1(A) we have

⟨θ, γ0(g)⟩H−1/2(∂A)×H1/2(∂A) = ⟨γ1(f), γ0(g)⟩H−1/2(∂A)×H1/2(∂A)

=

∫
A

(∆f)g +∇f · ∇g dx .

By a convenient abuse of notation we will denote the left hand side by the more
familiar expression

∫
∂A
g∂νA

f dH1.
• The following version of the divergence theorem is obtained by taking g = 1 in the
preceding identity:

⟨γ1(f), 1⟩H−1/2(∂A)×H1/2(∂A) =

∫
A

∆f dx .

We are now ready for the proof of our main theorem.

Proof of Theorem 2.1. We break up the argument into five steps.

Step 1: We begin by restating our problem in a form that is amenable to use of the
implicit function theorem. To find uδ and λδ, we shall seek functions fδ ∈ H1(Ω \D),
and gδ ∈ H1(D) and a real number µδ such that

uδ :=

{
1 + δfδ x ∈ Ω \D

ψd,λ0
+ δgδ x ∈ D

(2.45)

and

λδ := λ0 + δµδ (2.46)

satisfy (2.1) and the normalization (2.7). Note that in view of our formal expansion
we expect

fδ = ϕ1 + δϕ2 + . . . , gδ = ψ1 + δψ2 + . . . , µδ = λ1 + δλ2 + . . . ,
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so when δ = 0 we expect

f0 = ϕ1, g0 = ψ1, and µ0 = λ1. (2.47)

The point of proceeding this way is that when our PDE (2.1) is written in terms of
fδ, gδ, and µδ, there are no longer any negative powers of δ. (For example, the PDE
δ−1∆uδ +λδuδ = 0 in the ENZ region Ω \D becomes ∆fδ +(λ0 + δµδ)(1+ δfδ) = 0.)

To apply the implicit function theorem, we shall break our PDE ∇·ε−1
δ ∇uδ+λδuδ =

0 into three main statements: (i) the PDE holds in D, (ii) the PDE holds in Ω\D, and
(iii) the continuity of εδ∂νuδ at ∂D. (There are of course other conditions: uδ must
be continuous across ∂D; ∂νΩuδ must vanish at ∂Ω; and our normalization condition
must be imposed. These will be built into our chosen function spaces.)

A first-pass idea for proceeding would be to define a function F (δ, µ, f, g) such
that our PDE is equivalent to F (δ, µδ, fδ, gδ) = 0, then prove existence of (µδ, fδ, gδ)
by applying the implicit function theorem. Our argument is slightly different, because
we need an additional constant cδ to satisfy a consistency condition for the PDE in
Ω \D. Therefore we shall

(a) define a function F (δ, µ, f, g, c) such that our PDE is equivalent to
F (δ, µδ, fδ, gδ, 0) = 0; then we’ll

(b) apply the implicit function theorem to solve F (δ, µδ, fδ, gδ, cδ) = 0; then finally
(c) we’ll use the specific structure of F to show that this solution has cδ = 0.

Step 2: We now make the plan concrete by specifying two Banach spaces X and Y
and the function F : X → Y that will be used. The space X is a subspace of

X̃ := C× C× S(Ω \D)× S(D)× C

defined by

X :=

{
(δ, µ, f, g, c) ∈ X̃ such that γ0,Ω\D(f) = γ0,D(g) , γ1,Ω\D(f)|∂Ω = 0 ,

∫
Ω\D

f +

∫
D

gψd,λ0
= 0 and

∫
Ω\D

f +

∫
D

g = 0

}
. (2.48)

We note that the restrictions defining X assure that uδ (determined by f , g, and δ via
(2.45)) (i) does not jump across ∂D, (ii) satisfies our homogeneous Neumann condition
at ∂Ω, (iii) satisfies our normalization condition (2.7), and (iv) satisfies

∫
Ω
u dx = 0.

The space Y is
Y := L2(Ω \D)×H−1/2(∂D)× L2(D) . (2.49)

The function F is defined by

F (δ, µ, f, g, c) :=

∆f + λ0 + δ(µ+ f(λ0 + δµ)) + c
∂νD

f − ∂νD
(ψd,λ0 + δg)

∆g + λ0g + µ(ψd,λ0 + δg)

 . (2.50)
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Lest there be any confusion concerning the middle component: since νD points outward
from D, ∂νD

f is really −γ1,Ω\D(f). Similarly, ∂νD
(ψd,λ0 + δg) is really γ1,D(ψd,λ0 +

δg). Evidently, the middle component of F is the difference between two well-defined
elements of H−1/2(∂D).

Step 3: We will apply the implicit function theorem to get the existence of
(µδ, fδ, gδ, cδ), depending analytically on δ near δ = 0, with µ0, f0, and g0 given by
(2.47) and c0 = 0. While there is a version of the implicit function theorem in the
analytic setting (see e.g. [26]), the more familiar C1 version (e.g. [6, Theorem 10.2.1])
is sufficient for our purposes. Indeed, it assures the existence of (µδ, fδ, gδ, cδ) with
continuous (complex) derivatives with respect to δ. We may then appeal to the fact
that such functions are complex analytic (see e.g. [6, Theorem 9.10.1]). It is of course
crucial that

F (0, µ0, f0, g0, 0) = 0;

our choices (2.47) do have this property (see Sections 2.1 and 2.2).
Since our goal is to solve F (δ, zδ) = 0 near δ = 0 with z = (µ, f, g, c), we must

check that (i) F is C1, and that (ii) the partial differential of F with respect to z is
invertible at (0, z0) with z0 = (µ0, f0, g0, 0). For (i), let us express the differential DF
at (δ, µ, f, g, c) as a linear map from X to Y :

DF(δ,µ,f,g,c)(δ̇, µ̇, ḟ , ġ, ċ) =
d

dt
|t=0F (δ + tδ̇, µ+ tµ̇, f + tḟ , g + tġ, c+ tċ)

=

δ̇(µ+ f(λ0 + 2δµ)) + µ̇(δ + δ2f) + ∆ḟ + ḟ δ(λ0 + δµ) + ċ

−δ̇∂νD
g + ∂νD

ḟ − δ∂νD
ġ

δ̇µg + µ̇(ψd,λ0
+ δg) + ∆ġ + ġ(λ0 + µδ)

 . (2.51)

It is now straightforward to see that DF depends continuously (as an operator from
X to Y ) upon (δ, µ, f, g, c) ∈ X. The more subtle task is point (ii). Substituting
(δ, µ, f, g, c) = (0, µ0, g0, g0, 0) = (0, z0) in (2.51) and taking δ̇ = 0, we see that the
operator to be inverted takes the subspace of X defined by δ = 0 to Y , mapping

ż = (µ̇, ḟ , ġ, ċ)

to

DzF(0,z0)(µ̇, ḟ , ġ, ċ) =

 ∆ḟ + ċ

∂νD
ḟ

∆ġ + λ0ġ + ψd,λ0
µ̇

 . (2.52)

So our task is to prove that for all p, q, r ∈ Y , the linear system

∆ḟ + ċ = p in Ω \D
∂νD

ḟ = q on ∂D

∆ġ + λ0ġ + ψd,λ0 µ̇ = r in D

(2.53)
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has a unique solution (µ̇, ḟ , ġ, ċ) in C× S(Ω \D)× S(D)× C satisfing

γ0,Ω\D(ḟ) = γ0,D(ġ) , γ1,Ω\D(ḟ)|∂Ω = 0 ,∫
Ω\D

ḟ +

∫
D

ġψd,λ0
= 0 and

∫
Ω\D

ḟ +

∫
D

ġ = 0 ,

and that the solution operator (the map taking (p, q, r) to (µ̇, ḟ , ġ, ċ)) is a bounded
linear map from Y to C× S(Ω \D)× S(D)× C.

The execution of this task is, of course, very similar to the method by which we
found λ2, ϕ2, and ψ2 in Section 2.3. We begin by considering the first two equations
in (2.53), which give a PDE for ḟ in the ENZ region Ω \D with a Neumann boundary
condition. For a solution to exist, the consistency condition

−
∫
∂D

q dH1 + ċ |Ω \D| =
∫
Ω\D

p dx

must hold; therefore the solution has

ċ =
1

|Ω \D|

(∫
Ω\D

p dx+

∫
∂D

q dH1

)
,

(which is a bounded linear function of p and q in the given norms). With this choice
of ċ the function ḟ is undetermined up to an additive constant; as usual, we take
ḟ = f̊ + e where f̊ is the unique mean-value-zero solution of the first two equations
in (2.53) and e will be determined later. Notice that linear operator taking (p, q) ∈
L2(Ω \D)×H−1/2(∂D) to f̊ ∈ S(Ω \D) is bounded.

We turn now to the third equation in (2.53). Remembering that the trace of ġ
must match that of ḟ at ∂D, we see that it is to be solved with the Dirichlet boundary
condition ġ = ḟ at ∂D. Since λ0 is not a Dirichlet eigenvalue of −∆ in D, there is a
unique solution; moreover it has the form

ġ = g̊ + eψd,λ0

where g̊ solves

∆g̊ + λ0g̊ + ψd,λ0 µ̇ = r in D, with g̊ = f̊ at ∂D. (2.54)

With the benefit of foresight, we choose

µ̇ =
1

|Ω \D|+
∫
D
ψ2
d,λ0

[∫
∂D

f̊∂νD
ψd,λ0

+

∫
D

r(ψd,λ0
− 1)

]
(2.55)

and

e = − 1

|Ω \D|+
∫
D
ψ2
d,λ0

∫
D

g̊ψd,λ0 . (2.56)
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We note that µ̇ is a bounded linear functional of (p, q, r) ∈ Y , and it doesn’t depend on
e. Moreover, the operator taking (p, q, r) ∈ Y to g̊ ∈ S(D) is linear and bounded, since
g̊ solves a Helmholtz-type PDE in D whose source term r− µ̇ψd,λ0 and Dirichlet data

f̊ are in L2(D) and H1/2(∂D), each depending linearly on (p, q, r) ∈ Y . Finally, since
g̊ depends linearly on (p, q, r) and is independent of e, our choice of e is a bounded
linear functional of (p, q, r) ∈ Y .

To complete the proof that our linear system is invertible, we must show that our
choices (2.55) and (2.56) assure the validity of the relations∫

Ω\D
ḟ +

∫
D

ġ = 0 and

∫
Ω\D

ḟ +

∫
D

ġψd,λ0
= 0 . (2.57)

To get the first, we multiply the PDE (2.54) by ψd,λ0
− 1, integrate over D, integrate

by parts, and use the Dirichlet boundary condition to get

−
∫
∂D

f̊(∂νD
ψd,λ0

) dH1 − λ0

∫
D

g̊ + µ̇

∫
D

(ψ2
d,λ0

− ψd,λ0
) dx =

∫
D

r(ψd,λ0
− 1) dx .

Since ∫
D

(ψ2
d,λ0

− ψd,λ0
) dx = |Ω \D|+

∫
D

ψ2
d,λ0

dx

by the crucial consistency condition (2.9), we see that (2.55) is equivalent to∫
D

g̊ dx = 0 .

Since ḟ = f̊ + e and ġ = g̊ + eψd,λ0
, we conclude that∫

Ω\D
ḟ +

∫
D

ġ = e (|Ω \D|+
∫
D

ψd,λ0
) = 0,

which gives the first equation in (2.57). As for the other, we have∫
Ω\D

ḟ +

∫
D

ġψd,λ0 = e |Ω \D|+
∫
D

(̊gψd,λ0 + eψ2
d,λ0

) dx ;

evidently, our choice of e in (2.56) is exactly the one that makes this vanish.
We conclude, by the implicit function theorem, the existence of µδ, fδ, gδ, cδ

depending analytically on δ in a (complex) neighborhood of 0, such that
F (δ, µδ, fδ, gδ, cδ) = 0.

Step 4 We now prove, using the specific structure of F , that in fact cδ = 0. Indeed,
using Green’s theorem (but not the fact that F = 0), we have∫

Ω\D

(
∆fδ + λ0 + δ(µδ + fδ(λ0 + δµδ)) + cδ

)
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= −
∫
∂D

∂νD
fδ dH1 + (λ0 + δµδ)|Ω \D|+ δ(λ0 + δµδ)

∫
Ω\D

fδ + cδ|Ω \D| . (2.58)

Adding and subtracting some terms, the right hand side can be rewritten as∫
∂D

∂νD
(ψd,λ0

+ δgδ − fδ) dH1 −
∫
∂D

∂νD
(ψd,λ0

+ δgδ) dH1

+ (λ0 + δµδ)|Ω \D|+ δ(λ0 + δµδ)

∫
Ω\D

fδ + cδ|Ω \D| ,

which (applying Green’s theorem) is the same as∫
∂D

∂νD
(ψd,λ0

+ δgδ − fδ) dH1 −
∫
D

∆(ψd,λ0
+ δgδ)

+ (λ0 + δµδ)|Ω \D|+ δ(λ0 + δµδ)

∫
Ω\D

fδ + cδ|Ω \D| .

Adding and subtracting some terms and using that ∆ψd,λ0
+λ0ψd,λ0

= 0, the preceding
expression can be further rewritten as∫

∂D

∂νD
(ψd,λ0

+ δgδ − fδ) dH1 − δ

∫
D

(∆gδ + (λ0 + δµδ)gδ + µδψd,λ0
)

+ (λ0 + δµδ)

∫
D

ψd,λ0 + δ(λ0 + δµδ)

∫
D

gδ + (λ0 + δµδ)|Ω \D|

+ δ(λ0 + δµδ)

∫
Ω\D

fδ + cδ|Ω \D| .

Using now the fact that F (δ, µδ, fδ, gδ, cδ) = 0, we conclude that

(λ0 + δµδ)

∫
D

ψd,λ0 + δ(λ0 + δµδ)

∫
D

gδ + (λ0 + δµδ)|Ω \D|

+ δ(λ0 + δµδ)

∫
Ω\D

fδ + cδ|Ω \D| = 0 .

Making use of the additional relations
∫
D
gδ +

∫
Ω\D fδ = 0 and |Ω \D|+

∫
D
ψd,λ0 = 0,

we finally conclude that cδ|Ω \D| = 0. Thus cδ = 0, as asserted.

Step 5: Remembering that µδ, fδ, and gδ determine uδ and λδ via (2.45), we have
demonstrated the existence of an eigenpair (uδ, λδ) depending analytically on δ. The
only remaining assertion of the theorem is that this is a simple eigenvalue, i.e. that
the eigenspace of λδ is one-dimensional. This comes directly from the implicit function
theorem, which tells us that zδ = (µδ, fδ, gδ, cδ) is the only solution of F (δ, z) = 0
near z0 = (µ0, f0, g0, 0) when δ is sufficiently small. If the eigenspace of λδ were
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multidimensional there would be more than one solution of F (δ, zδ) near (0, z0); so
the eigenspace is one-dimensional.

3 Accounting for dispersion and loss

As noted in the Introduction, the dielectric permittivity of a material is generally a
function of frequency (this is known as dispersion) and it is complex-valued (since
waves decay as they propagate through materials). Some key structural conditions are
that

ε(ω) is holomorphic in the upper half-plane, (3.1)

ε(−ω) = ε(ω) for all ω ∈ C, and (3.2)

the imaginary part of ε(ω) is nonnegative when ω is real and positive (3.3)

(see e.g. Section 82 of [15]). The class of all such functions is huge. When considering a
particular material, however, a parsimonious framework is needed, and for this purpose
the Lorentz model is often used. (In particular, [16] uses such a model to simulate
silicon carbide as an ENZ material.) It has the form

ε(ω, γ) = ε∞

(
1 +

ω2
p

ω2
0 − ω2 − iωγ

)
(3.4)

where ε∞, ωp, ω0, and γ are nonnegative real numbers. (In discussing the dependence
of this function on ω with γ held fixed, we shall sometimes omit the variable γ, writing
ε(ω) rather than ε(ω, γ).) Viewed as a function of ω ∈ C, this model has two poles in
the lower half-plane; to leading order as γ → 0 they are at − i

2γ±ω0 (provided ω0 ̸= 0).
The Lorentz model is, roughly speaking, the simplest functional form consistent with
the general principles (3.1)–(3.3) (though it is sometimes simplified further by taking
ω0 = 0; this is known as the Drude model).

Dispersion is more than just a fact of life – it is in fact the reason that ENZ
materials exist. This is especially easy to see for the Lorentz model. Indeed, in the
lossless limit γ = 0 there is a unique (real and positive) ENZ frequency

ω∗ =
√
ω2
p + ω2

0 (3.5)

such that ε(ω∗) = 0. The presence of loss regularizes the singularity at ω = ω0, but it
leaves the picture qualitatively intact: the real part of ε(ω) vanishes at a γ-dependent
real frequency near ω∗. The imaginary part of ε(ω) is of course strictly positive when
γ > 0 and ω is real; however when γ is small it is mainly significant near ω0. (See
Figure 2.)

The main result in this section, Theorem 3.1, uses a Lorentz model for εENZ (though
as we discuss in Remark 3.2 our method applies more generally). We do not use a
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Fig. 2 The Lorentz model ε(ω, γ) = ε∞

(
1 +

ω2
p

ω2
0−ω2−iωγ

)
, graphed as a function of ω/ω0: the

solid blue curve is the real part of ε(ω, γ), while the dotted green curve is the imaginary part. The
horizontal orange line shows the value of ε∞. This figure was produced using ε∞ = 6.7, ωp/ω0 = 0.7,
and γ/ω0 = .006, consistent with experimental data on silicon carbide near its resonance at frequency
ω0 = 2.38× 1013sec−1 [24]. This material system was used for the simulations in [16].

specific model for εD; rather, we assume only that

εD(ω) is real-valued when ω is real; (3.6)

εD(ω∗) is positive, and εD is analytic in a neighborhood of ω∗; and (3.7)

for real-valued ω near ω∗,
d
dω [ω

2εD(ω)] > 0. (3.8)

The first condition says that the material in region D has negligible loss at frequencies
near ω∗. (This was assumed in [16].) The second is very routine. The third condition
is actually satisfied by any physical material, since when loss is negligible it is known
that d

dω [ωε(ω)] > 0 when ω is real and positive (see e.g. Section 80 of [15]).
Theorem 3.1. Let εENZ = εENZ(ω, γ) have the form (1.4) for some ω0 ≥ 0 and ωp > 0
(which will be held fixed), and let ω∗ be the associated ENZ frequency (3.5). Suppose
further that εD satisfies (3.6)–(3.8), that

λ∗ :=
1

c2
ω2
∗εD(ω∗) (3.9)

is not a Dirichlet eigenvalue of −∆ in D, and that λ∗ satisfies the crucial consistency
condition

|Ω \D|+
∫
D

ψd,λ∗ dx = 0 (3.10)

(which is (2.9) with λ0 replaced by λ∗). Then there is an analytic function ω(γ) defined
in a neighborhood of 0 such that ω(0) = ω∗ and

λεENZ(ω(γ),γ)/εD(ω(γ)) = ω2(γ)c−2εD(ω(γ)), (3.11)

where λδ is the function supplied by Theorem 2.1 with λ0 replaced by λ∗. It follows
that (1.5)–(1.6) has a one-dimensional solution space when ω = ω(γ), spanned by the

29



function uδ provided by Theorem 2.1 with δ = εENZ(ω(γ), γ)/εD(ω(γ)). The value of
ω′(0) can be expressed in terms of

a1 := ∂ωεENZ(ω∗, 0) (3.12)

a2 :=
1

i
∂γεENZ(ω∗, 0) (3.13)

a3 := ∂ω(ω
2εD(ω))|ω=ω∗ (3.14)

(all of which are easily seen to be positive real numbers) by

ω′(0) = −i a2
a1 + a3c−2εD(ω∗)|λ′(0)|−1

, (3.15)

where λ′(0) is given by (2.24).
Before giving the proof, let us discuss a key consequence of this result. When

designing a resonator, it is natural to use materials with relatively little loss, so the
value γ should be small and ω(γ) ≈ ω(0)+ω′(0)γ = ω∗+ω

′(0)γ. Since ω′(0) is purely
imaginary and γ is positive, we see that the real part of ω(γ) (which is, physically
speaking, the resonant frequency) is very near the ENZ frequency ω∗ (the difference is
at most of order γ2). We also see that the imaginary part of ω(γ) (which controls the
quality factor of the resonance – in other words the rate at which it decays) depends on
the shape of Ω only through |λ′(0)|, and that the quality factor is optimized (the decay
rate is minimized) by choosing the shape of Ω so that |λ′(0)| is as small as possible.

Proof of Theorem 3.1. By the implicit function theorem, it suffices to show that when
we calculate ω′(0) formally by differentiating (3.11), the calculation succeeds (without
dividing by 0). Remembering that εENZ(ω∗, 0) = 0, differentiation with respect to γ at
γ = 0 gives

λ′(0)

[
a1ω

′(0)

εD(ω∗)
+

ia2
εD(ω∗)

]
= a3c

−2ω′(0).

Solving for ω′(0) gives

ω′(0) = −i a2
a1 − a3c−2εD(ω∗)(λ′(0))−1

.

Since we know from (2.24) that λ′(0) is a negative real number, the preceding
expression is equivalent to (3.15).

Remark 3.2. While we have assumed, for simplicity, that εENZ is given by a Lorentz
model, our method is clearly also applicable in other settings. Its key requirements are
that (i) εENZ = εENZ(ω, γ) be a function of the frequency ω and a single (scalar) loss
parameter γ, and that (ii) its partial derivatives at γ = 0, ω = ω∗ be such that a1 and
a2 are positive real numbers. Suppose, for example, that the permittivity of the ENZ
material has the form

ε(ω) = ε∞

(
1 +

N∑
j=1

(ωj
p)

2

(ωj
0)

2 − ω2 − iωγj

)
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for some (positive, real) constants ωj
p, ω

j
0, and γj, ordered so that ω1

0 < . . . < ωN
0 .

By the discussion associated with Figure 2, such a material has an ENZ frequency ωj
∗

(defined as a root of ε(ω) = 0 when γ1, . . . , γN are all set to 0) between ωj
0 and ωj+1

0

for each j = 1, . . . , N−1. To get a resonance near ω1
∗ (for example), it is natural to use

εENZ(ω, γ) = ε∞

(
1 +

N∑
j=1

(ωj
p)

2

(ωj
0)

2 − ω2 − iωγγ̂j

)

with γ̂j = γj/γ1. One easily checks that a1 and a2 are positive, so our implicit-
function-theorem-based argument is applicable. (However our result is local: it gives a
resonant frequency ω(γ) for γ near 0. The argument does not show that ω(γ) is defined
even for γ = γ1.)

4 The optimal design problem

Theorem 3.1 proves the existence of a resonance at (complex) frequency ω(γ) when the
loss parameter γ is sufficiently close to 0. The theorem’s hypotheses involve the area of
Ω, but they are otherwise independent of its shape. However, according to eqn. (3.15)
the quality of the resonance does depend on the shape of Ω. Therefore it is natural to
ask how Ω should be chosen so as to optimize the resonance. Theorem 3.1 shows that,
to leading order in γ, this amounts to asking what shape minimizes |λ′(0)|.

The function λ(δ) was introduced in Section 2, where our notation was λ(0) = λ0
and λ′(0) = λ1. The analysis in Section 3 used a particular choice of λ0, which we
called λ∗. However our optimal design problem can be considered for any choice of λ0.
Therefore we revert in this section to the notation of Section 2.

In considering this optimal design problem, we will be holding D and λ0 fixed. It
follows from the consistency condition that |Ω \D| is also fixed. Recalling from (2.24)
that

λ1 = − 1

|Ω \D|+
∫
D
ψ2
d,λ0

dx

∫
D

|∇ϕ1|2 dx

and observing that the expression in front of the integral is being held fixed, we see
that the goal of our optimal design problem is to minimize the value of

1

2

∫
Ω\D

|∇ϕ1|2 dx , (4.1)

where ϕ1 solves (2.16), which we repeat for the reader’s convenience here:

−∆ϕ1 = λ0 in Ω \D
∂νΩ

ϕ1 = 0 on ∂Ω

∂νD
ϕ1 = ∂νD

ψd,λ0 on ∂D .

(4.2)

(Since this is a pure Neumann problem, the data must be consistent; this is assured
by the consistency condition (2.9), as we showed in Section 2.2. The solution is only
unique up to a constant, but the value of (4.1) is independent of this constant.)
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It is a standard fact that (4.1) has a variational characterization:

−1

2

∫
Ω\D

|∇ϕ1|2 dx = min
w∈H1(Ω\D)

∫
Ω\D

1

2
|∇w|2−λ0w dx+

∫
∂D

(∂νD
ψd,λ0)w dH1 , (4.3)

and that ϕ1 is optimal for RHS of (4.3). (To explain the sign of the boundary term
in the variational principle, we note that νD is the inward unit normal to ∂(Ω \D) at
∂D.) Our optimal design problem can thus be restated as

sup
Ω⊃D

inf
w∈H1(Ω\D)

∫
Ω\D

1

2
|∇w|2 − λ0w dx+

∫
∂D

(∂νD
ψd,λ0)w dH1 , (4.4)

where it is understood that Ω ranges over Lipschitz domains. It might seem that
the optimization over Ω should be subject to a constraint on |Ω \ D|, in view of
the consistency condition (2.9). Actually no such constraint is needed, since if the
consistency condition is violated then the minimization over w takes the value −∞.
(In (4.4) and throughout this section, we write inf and sup rather than min and max
when we do not mean to claim that the optimum is achieved.)

We have two main results on this optimal design problem:

• In Section 4.1 we show that if D is a ball then the optimal Ω is a concentric ball.
• In Section 4.2 we study a convex relaxation of (4.4), which is certainly an upper
bound but which is conjecturally equivalent to the unrelaxed problem.

The relationship between our relaxation of (4.4) and the unrelaxed problem is dis-
cussed in Section 4.3. As we explain there, our relaxation has a physical interpretation
involving homogenization. This use of homogenization is similar to the introduction
of composite materials in compliance optimization problems with design-independent
loading, as studied for example in [1]. While this interpretation of our relaxation
has yet to be justified rigorously for (4.4), it has been fully justified for compliance
optimization problems with design-independent loading.

4.1 Optimality of a ball for round D

Theorem 4.1. If D is a ball, then |λ1| is minimized by taking Ω to be a concentric ball.
(Its radius is determined by D and λ0 through the consistency condition.) Moreover,
this optimum is unique: no other Ω can do as well.

Proof. It suffices to consider the case when D is the unit disk, since the general case is
easily reduced to this one by translation and scaling. The function ψd,λ0

is then radial
and quite explicit:

ψd,λ0
(r) =

J0(λ0r)

J0(λ0)
, r ∈ (0, 1) , (4.5)

where as usual J0 is the zeroth order cylindrical Bessel function of the first kind.
Since λ0 is not an eigenvalue of the Laplacian in the unit disc, this is well-defined
(J0(λ0) ̸= 0).
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Let A0 = |Ω \ D| be the area of the ENZ shell. Its value is available from the
consistency condition for the existence of ϕ1:

λ0A0 =

∫
∂D

∂νD
ψd,λ0

dH1 ,

which in view of (4.5) gives

A0 = 2π
J ′
0(λ0)

J0(λ0)
.

(As noted in earlier sections, we need
∫
∂D

∂νD
ψd,λ0

dH1 > 0 in order that the area of

Ω \D be positive. This is a condition on λ0, which reduces in the present setting to
J ′
0(λ0)/J0(λ0) > 0.)
Our claim is that the optimal Ω is a ball centered at the origin with area |D| +

|Ω \D| = π + A0. Let us call this domain Ω0; it is the ball whose radius r0 satisfies
πr20 = π + A0. The function ϕ1 associated with Ω0 is easily made explicit. Since it
is clearly radial, we may write ϕ1 = ϕ1(r), so that the boundary value problem (4.2)
becomes

−ϕ′′1(r)−
ϕ′1(r)

r
= λ0 for r ∈ (1, r0)

ϕ′1(r0) = 0

ϕ′1(1) = ψ′
d,λ0

(1) = λ0
J ′
0(λ0)

J0(λ0)
.

The solution is unique up to an additive constant. The general solution of the ODE

is ϕ1(r) = b+ c log r − λ0
r2

4 , and the boundary condition at r = r0 gives c = λ0r
2
0/2.

(The boundary condition at r = 1 gives no additional information; it is automatically
satisfied, as a consequence of the consistency condition.)

While the constant b is arbitrary, it is convenient to choose it so that ϕ1(r0) = 0.
The resulting (now fully determined) function has the property that ϕ1(r) < 0 for
1 ≤ r < r0. (Indeed, ϕ1 is strictly concave and ϕ′1(r0) = 0, so it is an increasing
function on this interval and it vanishes at r = r0.) This implies in particular that

1

2
|∇ϕ1|2 − λ0ϕ1 =

1

2
(ϕ′1)

2 − λ0ϕ1 > 0 for r ∈ (1, r0) . (4.6)

To demonstrate the optimality of Ω0, we shall use the extension of ϕ1 by 0,

ϕ̃1 =

{
ϕ1(r) for 1 ≤ r ≤ r0
0 for r ≥ r0,

as a test function in the variational principle that characterizes λ1.
Let Ω̂ be a competitor to Ω0; in other words, let Ω̂ ⊂ R2 be a bounded, open set

with locally Lipschitz boundary that contains D and satisifes |Ω̂ \D| = A0,. If ϕ̂1 is
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the solution of (4.2) with Ω̂ in place of Ω, then the variational principle (4.3) gives

−1

2

∫
Ω̂\D

|∇ϕ̂|2 dx =

∫
Ω̂\D

1

2
|∇ϕ̂|2 − λ0ϕ̂ dx+

∫
∂D

(∂νD
ψd,λ0)ϕ̂ dH1

= min
w∈H1(Ω̂\D)

∫
Ω̂\D

1

2
|∇w|2 − λ0w dx+

∫
∂D

(∂νD
ψd,λ0)w dH1

≤
∫
Ω̂\D

1

2
|∇ϕ̃1|2 − λ0ϕ̃1 dx+

∫
∂D

(∂νD
ψd,λ0

)ϕ̃1 dH1 . (4.7)

Since 1
2 |∇ϕ̃1|

2 − λ0ϕ̃1 vanishes outside Ω0 and is positive in Ω0 \D,∫
Ω̂\D

1

2
|∇ϕ̃1|2 − λ0ϕ̃1 dx =

∫
(Ω̂\D)∩Ω0

1

2
|∇ϕ1|2 − λ0ϕ1 dx

≤
∫
Ω0\D

1

2
|∇ϕ1|2 − λ0ϕ1 dx . (4.8)

Combining this with (4.7) gives

−1

2

∫
Ω̂\D

|∇ϕ̂|2 dx ≤
∫
Ω0\D

1

2
|∇ϕ1|2 − λ0ϕ1 dx+

∫
∂D

(∂νD
ψd,λ0

)ϕ1 dH1

= −1

2

∫
Ω0\D

|∇ϕ1|2 dx

where in the final step we used (4.3). This confirms the optimality of Ω0. To see its
uniqueness, we recall that 1

2 |∇ϕ1|
2 − λ0ϕ1 is strictly positive in Ω0 \ D. Therefore

equality holds in (4.8) only when Ω̂ \D includes the entire domain Ω0 \D. Since both

sets have area A0, it follows that Ω̂ \D = Ω0 \D, whence Ω̂ = Ω0.

Remark 4.2. The preceding argument is simple, but perhaps a bit mysterious. The
next section offers a convex-optimization-based perspective on our optimal design prob-
lem. In general, for a convex variational problem, if one can guess the optimal test
function, then there is usually a simple proof that the guess is right, obtained by using
a solution of the dual problem. As we shall show in Proposition 4.4, this is indeed the
character of the argument just presented.

4.2 A convex relaxation

We turn now to the max-min problem (4.4), when D is any simply-connected Lipschitz
domain. We start by making some minor adjustments:

• As noted at the beginning of Section 2.1, we do not want to assume that Ω is simply
connected. However we want Ω to be a bounded domain, and it is therefore natural
to introduce the restriction that Ω be a subset of some fixed region B that contains
D.
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• The function ∂νD
ψd,λ0 appears in the final term of (4.4), because the PDE for ϕ1

is driven by this source term at ∂D. However, the analysis in this section applies
equally when this function is replaced by any f ∈ H−1/2(∂D) such that∫

∂D

f dH1 > 0. (4.9)

To emphasize this, throughout the present section our source term will be f rather
than ∂νD

ψd,λ0
.

• When we replace ∂νD
ψd,λ0

by f in the PDE (4.2) defining ϕ1, the condition for
existence of a solution becomes

λ0|Ω \D| =
∫
∂D

f dH1.

Obviously B must be large enough to contain Ω, so we require that

|B \D| > 1

λ0

∫
∂D

f dH1. (4.10)

Taking these adjustments into account, our goal is to understand

m := sup
Ω s.t. D⊂Ω⊂B

inf
w∈H1(Ω\D)

∫
Ω\D

1

2
|∇w|2 − λ0w dx+

∫
∂D

fw dH1 , (4.11)

with the unspoken convention that Ω ranges over Lipschitz domains. It is convenient to
write this differently, in terms of the characteristic function of Ω, viewed as a function
on B \D that takes only the values 0 and 1 (outside and inside Ω respectively):

m = sup
χ(x)∈{0,1} for x∈B\D

χ=1 at ∂D

inf
w∈H1(B\D)

∫
B\D

χ(x)

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1 .

(4.12)
Our convex relaxation of the optimal design problem is obtained by replacing the
characteristic function χ (which takes only the values 0 and 1) by a density θ (which
takes any value 0 ≤ θ ≤ 1). Since enlarging the class of test functions in a maximization
can only increase the value of the maximum, it is obvious that

m ≤ mrel = sup
0≤θ(x)≤1

inf
w∈H1(B\D)

∫
B\D

θ(x)

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1 .

(4.13)
There is reason to think that m = mrel, as we shall explain in Section 4.3. For now,
however, we focus on the relaxed problem (4.13).

It might seem strange that in formulating the relaxed problem we have kept no
remnant of the condition that χ = 1 at ∂D. The reason is that if χ = 0 near a part
of ∂D where f ̸= 0, then the min over w is −∞ (by considering test functions w
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supported in the region where χ = 0). So we believe that the value of (4.12) is not
changed by dropping the constraint that χ = 1 at ∂D.

Equation (4.13) defines mrel as the sup-inf of

L(w, θ) =

∫
B\D

θ(x)

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1 (4.14)

We note that L is linear in θ and convex in w, so the inf over w in (4.13) is a concave
function of θ and the sup-inf can be viewed as maximizing a concave function of θ
subject to the convex constraint 0 ≤ θ(x) ≤ 1. Formally, at least, the associated dual
problem is obtained by replacing sup-inf by inf-sup:

inf
w∈H1(B\D)

sup
0≤θ(x)≤1

∫
B\D

θ(x)

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1 . (4.15)

It is obvious that

sup
0≤θ(x)≤1

∫
B\D

θ(x)

(
1

2
|∇w|2 − λ0w

)
dx =

∫
B\D

(
1

2
|∇w|2 − λ0w

)
+

dx

with the notation z+ = max{z, 0}, so the formal dual is equivalent to

inf
w∈H1(B\D)

∫
B\D

(
1

2
|∇w|2 − λ0w

)
+

dx+

∫
∂D

fw dH1 . (4.16)

(We will show in due course that this infimum is achieved; but we note here that
the functional tends to infinity when w = c is constant and c → ±∞, as an easy
consequence of (4.9) and (4.10).)

The following theorem justifies the preceding formal calculation; in particular, it
shows that the optimal values of our primal and dual problems are the same, and it
proves the existence of an optimal θ for (4.13) and an optimal w for (4.16).
Theorem 4.3. Let

B = {θ ∈ L2(B \D) such that 0 ≤ θ(x) ≤ 1 a.e.},

and observe that L(w, θ) (defined by (4.14)) is well-defined and finite for θ ∈ B and
w ∈ H1(B \D). Then

(a) there is a saddle point w ∈ H1(B \D) and θ ∈ B, in other words a pair such that

L(w, θ) ≤ L(w, θ) ≤ L(w, θ)

for all θ ∈ B and w ∈ H1(B \D); moreover
(b) the sup-inf (4.13) and the inf-sup (4.15) have the same value, namely L(w, θ).

Proof. We will apply Proposition 2.4 from Chapter 6 of [7]. The overall framework of
that chapter involves a functional L(w, θ) which is defined (and finite) as w and θ range

36



over closed convex subsets of reflexive Banach spaces. This framework applies to our
example, since w ranges over the entire space H1(B \D) and θ ranges over B, which is
a closed convex subset of L2(B \D). Chapter 6 of [7] needs the additional structural
conditions that θ → L(w, θ) be concave and upper semicontinuous as a function of θ
when w is held fixed, and that w → L(w, θ) be convex and lower semicontinuous as a
function of w when θ ∈ B is held fixed. Our example meets these requirements.

Proposition 2.4 of [7] has two further hypotheses, namely that

(i) the constraint set B is bounded, and
(ii) there exists θ0 ∈ B such that

lim
∥w∥→∞

L(w, θ0) = ∞ . (4.17)

While (i) is valid in our situation, (ii) is not, since it fails when we restrict attention
to constant w. To deal with this difficulty, we will proceed in two steps. In the first
we restrict θ to lie in the smaller constraint set

B̃ = B ∩

{
θ such that λ0

∫
B\D

θ dx =

∫
∂D

f dH1

}
, (4.18)

which is nonempty by (4.10). For such θ, L(w, θ) has the property that L(w, θ) =
L(w + c, θ) for any constant c; therefore it can be viewed as being defined for all
w ∈ H1/R. (Here and in the rest of this proof, we use H1/R as shorthand for the space
H1(B \ D)/R.) In Step 1 we will show that the saddle point result from [7] applies

when θ ranges over B̃ and w ranges over H1/R. Then in Step 2 we will use this result
to prove the theorem.

Step 1. To apply the proposition from [7], it suffices to show that (4.17) is valid when

we choose θ0 ∈ B̃ to have a positive lower bound (for example, we could choose it
to be constant), if we view w → L(w, θ0) as a function on H1/R. This is standard;
indeed, we may take each equivalence class in H1/R to be represented by a function
with

∫
B\D w dx = 0. By Poincaré’s inequality, we may take the norm on H1/R to be

∥∇w∥L2(B\D). By the trace theorem and Poincaré’s inequality, the terms in L that

are linear in w are bounded by a constant times ∥w∥, whereas∫
B\D

θ0|∇w|2 dx ≥ c∥w∥2

where c is a lower bound for θ0. The quadratic term dominates when ∥w∥ is large
enough, so (4.17) holds. With the notation

A0 =
1

λ0

∫
∂D

f dH1
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we conclude (applying the result from [7]) that

sup
0≤θ≤1∫

θ(x) dx=A0

inf
w∈H1/R

L(w, θ) = inf
w∈H1/R

sup
0≤θ≤1∫

θ(x) dx=A0

L(w, θ); (4.19)

that there exist θ̃ (satisfying 0 ≤ θ̃ ≤ 1 and
∫
θ̃ dx = A0) and w̃ (in H1/R) satisfying

L(w̃, θ) ≤ L(w̃, θ̃) ≤ L(w, θ̃)

for all w ∈ H1/R and all 0 ≤ θ ≤ 1 satisfying
∫
B\D θ dx = A0; and that the value of

(4.19) is L(w̃, θ̃).

Step 2. The desired saddle point (w, θ) will be (w1, θ̃), where w1 is a well-chosen

representative of w̃. To get started, let us examine the relationship between w̃ and θ̃,
using the fact that θ̃ maximizes L(w̃, θ) over all θ ∈ B̃. Since L(w, θ) = L(w + c, θ)

when c is constant and θ ∈ B̃, we may work with any representative w0 ∈ H1(B \D)

of w̃. Evidently, θ̃ achieves

sup
0≤θ≤1∫

θ(x) dx=A0

∫
B\D

θ(x)

(
1

2
|∇w0|2 − λ0w0

)
dx+

∫
∂D

fw0 dH1 . (4.20)

Since θ doesn’t enter the boundary term, we shall be focusing in what follows on the
bulk term. To understand what conclusions we can draw from the optimality of θ̃, let
us assume for a moment that 1

2 |∇w0|2−λ0w0 has no level sets with positive measure.
Then there is a unique z0 ∈ R such that∣∣∣∣{x ∈ B \D :

1

2
|∇w0|2 − λ0w0 > z0

}∣∣∣∣ = A0

and θ̃ must be the characteristic function of this set. In general, however, we must
allow for the possibility that 1

2 |∇w0|2 − λ0w0 has level sets with positive measure. To
deal with this, let

g(z) =

∣∣∣∣{x ∈ B \D :
1

2
|∇w0|2 − λ0w0 > z

}∣∣∣∣ ,
which is a monotone (but possibly discontinuous) function of z ∈ R. We can then
consider two cases:

(i) If there exists z0 such that g(z0) = A0, then θ̃ must be the characteristic function
of the set where 1

2 |∇w0|2 − λ0w0 > z0.
(ii) If no such z0 exists then there exists z0 such that g(z) > A0 for z < z0, g(z) < A0

for z > z0, and the set where 1
2 |∇w0|2 − λ0w0 = z0 has positive measure. In

this case θ̃ must equal 0 where 1
2 |∇w0|2 − λ0w0 < z0 and it must equal 1 where
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1
2 |∇w0|2 − λ0w0 > z0. (It is not fully determined by being optimal for (4.20), and
it could easily take values between 0 and 1 on the set where 1

2 |∇w0|2 − λ0w0 = z0;
this indeterminacy will not be a problem in what follows.)

Now consider what happens to the preceding calculation when we use a different
representative w1 = w0 + c. The argument applies equally to w1, except that the role
of z0 is played by z1 = z0 − λ0c, since

1
2 |∇w1|2 − λ0w1 = 1

2 |∇w0|2 − λ0w0 − λ0c.
We now choose c = z0/λ0, so that z1 = 0 and∫

B\D
θ̃

(
1

2
|∇w1|2 − λ0w1

)
dx =

∫
B\D

(
1

2
|∇w1|2 − λ0w1

)
+

dx ,

from which it follows that

L(w1, θ̃) ≥ L(w1, θ) for all θ ∈ B.

We also have
L(w1, θ̃) ≤ L(w, θ̃) for all w ∈ H1(B \D)

since w1 is a representative of w̃. In short: (w1, θ̃) is a saddle point of L, viewed as
a function on H1(B \ D) × B. Thus, we have proved part (a) of the theorem, with

(w, θ) = (w1, θ̃). Part (b) is also clear from the preceding arguments – though it is
not really necessary to check, since in general the existence of a saddle point (w, θ)
implies that the sup-inf and inf-sup are equal, and that their common value is L(w, θ)
(see e.g. Proposition 1.2 in Chapter 6 of [7]).

Theorem 4.1 showed that when D is a ball and f = ∂νD
ψd,λ0

, the unique optimal
Ω is a concentric ball. It is natural to ask whether uniqueness holds even in the larger
class of relaxed designs. The following result provides an affirmative answer – not only
when D is a ball, but also for any D such that there exists an optimal (unrelaxed)
ENZ shell. In addition, this result and its proof provide a fresh perspective on the
argument we used for Theorem 4.1.
Proposition 4.4. Let w ∈ H1(B \D) and θ ∈ B be a saddle point for the functional
L defined by (4.14). Suppose furthermore that θ solves the unrelaxed optimal design
problem – in other words that it is the characteristic function of Ω0 \ D for some
connected Lipschitz domain Ω0 which contains D and is compactly contained in B.
Then:

(i) Ω0 \D is exactly the subset of B \D where 1
2 |∇w|

2 − λ0w > 0; and

(ii) for any other saddle point (ŵ, θ̂) of L, we have θ̂ = θ and there is a constant c such
that ŵ = w + c in Ω0 \D.

If we assume a little more regularity – specifically, if we assume that Ω0 is a C2

domain, and that ∇w(x) is uniformly continuous as x approaches ∂Ω0 from within Ω0

– we can say further that

(iii) w = 0 at ∂Ω0.
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It follows that the constant c in part (ii) is actually 0, and that w satisfies the
overdetermined boundary condition

∂νw = 0 and w = 0 at ∂Ω0. (4.21)

Remark 4.5. Our hypothesis that ∇w(x) be uniformly continuous as x approaches
∂Ω0 from within Ω0 follows from standard elliptic regularity results if ∂Ω0 is smooth
enough.
Remark 4.6. We saw in Section 4.1 that when D is a ball, a concentric ball with the
right area is optimal. The proof used the associated w, which vanished at the boundary
of the concentric ball. (The PDE that w solves in Ω0 \D determines it only up to an
additive constant; however we saw in the proof of Theorem 4.3 why for a saddle point
of L we need w to vanish – rather than simply being constant – on ∂Ω0.) It is not
surprising that in a shape optimization problem, the associated PDE should satisfy an
overdetermined boundary condition. But we wonder whether, for general D, there is
really a domain Ω0 containing D for which there exists a solution of −∆w = λ0 in
Ω0 \D with ∂νD

w = f at ∂D and the overdetermined condition (4.21) at ∂Ω0. If not,
then our optimal design problem would have no (sufficiently regular) classical solution,
though it always has a relaxed solution.

Proof of Proposition 4.4. We have assumed that Ω0 is a connected Lipschitz domain,
but we have not assumed that it is simply connected. Thus Ω0 \D is a bounded and
connected domain in R2 which could have finitely many “holes.”

To get started, we collect some easy observations that follow from (w, θ) being

a saddle point. The first is that θ must actually be in B̃ (defined by (4.18)), since
otherwise minw∈H1(B\D) L(w, θ) would be−∞. Our second observation is that −∆w =

λ0 in Ω0\D with ∂νw = 0 at ∂Ω0 and ∂νD
w = f at ∂D, since w minimizes L(w, θ) and

θ is the characteristic function of Ω0 \D. Our third observation is that 1
2 |∇w|

2 − λ0w

cannot be constant on a set of positive measure in Ω0 \D, since

∆

(
1

2
|∇w|2 − λ0w

)
= |∇∇w|2 + λ20 > 0 .

(We note that, by elliptic regularity, that w is smooth in the interior of Ω0 \D.) Our
fourth observation is that

1

2
|∇w|2 − λ0w ≥ 0 in Ω0 \D, and

1

2
|∇w|2 − λ0w ≤ 0 outside of Ω0,

since θ maximizes
∫
B\D θ

(
1
2 |∇w|

2 − λ0w
)
dx over all θ such that 0 ≤ θ(x) ≤ 1.

Assertion (i) of the Proposition is now easy: combining our third and fourth
observations, Ω0 must agree a.e. with the set where 1

2 |∇w|
2 − λ0w > 0.

For assertion (ii), we argue as we did for Theorem 4.1:

L(ŵ, θ̂) ≤ L(w, θ̂) (4.22)
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=

∫
B\D

θ̂

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1

≤
∫
B\D

θ

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1

= L(w, θ) .

But the saddle value is unique (see e.g. Proposition 1.2 in Chapter 6 of [7]). Therefore

both inequalities in the preceding argument are actually equalities; in particular, θ̂
maximizes

∫
B\D θ

(
1
2 |∇w|

2 − λ0w
)
dx over all θ such that 0 ≤ θ(x) ≤ 1. Arguing as

for part (i), it follows that θ̂ = 1 where 1
2 |∇w|

2 − λ0w > 0. But by the argument of

our first observation, θ̂ has the same integral as θ. So θ̂ must vanish outside of Ω0.
It remains to explain w−ŵ must be constant in Ω0. For this, we combine (4.22) with

the fact that θ̂ = θ. Substituting ŵ = w+(ŵ−w) into the fact that L(ŵ, θ) = L(w, θ),
expanding the square, and using the stationarity of the functional at w, we conclude
that

∫
B\D θ|∇ŵ −∇w|2 dx = 0. Writing this as

∫
Ω0\D |∇ŵ −∇w|2 dx = 0 and using

that Ω0 \D is connected, we conclude that ŵ − w must be constant on this domain.
Turning now to part (iii): consider any component C of ∂Ω0 (which is now assumed

to be a finite collection of C2 curves). Our arguments will be local, in a vicinity of the
curve C. The points to one side belong to Ω0 \D, where w satisfies 1

2 |∇w|
2 − λ0w >

0. Since we have assumed that ∇w(x) is uniformly continuous as x approaches the
boundary from Ω0 \D, we can pass to the limit in the inequality and use that ∂νw = 0
at ∂Ω0 to conclude that

1

2
|∂sw|2 − λ0w ≥ 0 on the chosen component C, (4.23)

where ∂s represents the derivative tangent to the boundary.
On the other side of C we have no PDE for w, however we know that

1

2
|∇w|2 − λ0w ≤ 0 outside of Ω0 . (4.24)

We shall use this to show that

1

2
|∂sw|2 − λ0w ≤ 0 on the chosen component C . (4.25)

As a first step, we now show that w is uniformly Lipschitz continous in the complement
of Ω0. Clearly w ≥ 0 outside of Ω0, as a consequence of (4.24). Since w ∈ H1(B \D),
its L2 norm is bounded, so using (4.24) once again we see that

∫
B\Ω0

|∇w|4 dx < ∞.

Since we are in two space dimensions, it follows that w uniformly bounded on B \Ω0.
Appealing to (4.24) once again, we conclude that

|∇w| ≤M outside Ω0,

where M is an upper bound for
√
2λ0w.
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Now we combine the bulk inequality (4.24) with the Lipschitz estimate to get
(4.25). Since C is a C2 curve, we may use tubular coordinates for points in the com-
plement of Ω0 that lie sufficiently close to C. We shall use t for the distance to C, and
s for the arclength parameter along a curve at constant distance t. To bound ∂sw at
some point (s0, 0) on C, we shall estimate the difference quotient w(s0+δ, 0)−w(s0, 0)
then pass to the limit δ → 0. Clearly

w(s0 + δ, 0)− w(s0, 0)

= [w(s0 + δ, 0)− w(s0 + δ, t)] + [w(s0 + δ, t)− w(s0, t)] + [w(s0, t)− w(s0, 0)] .

The first and last terms have magnitude at mostMt. The middle term can be estimated
using (4.24) (which for a.e. t holds almost everywhere in s – we naturally restrict our
attention to values of t with this property). In fact,

|w(s0 + δ, t)− w(s0, t)| ≤
∫ s0+δ

s0

∂sw(σ, t) dσ

≤ δ1/2

(∫ s0+δ

s0

(∂sw)
2(σ, t) dσ

)1/2

From (4.24) we have

(∂sw)
2(σ, t) ≤ 2λ0w(σ, t) ≤ 2λ0w(s0, 0) +O(|δ|+ |t|) ,

so ∫ s0+δ

s0

(∂sw)
2(σ, t) dσ ≤ δ[2λ0w(s0, 0) +O(|δ|+ |t|)] .

Combining these estimates then sending t→ 0 with δ held fixed, we get

|w(s0 + δ, 0)− w(s0, 0)| ≤ δ(2λ0w(s0, 0) +O(|δ|))1/2 .

Dividing by δ then passing to the limit δ → 0, we conclude that

|∂sw(s0, 0)| ≤ (2λ0w(s0, 0))
1/2

.

Since (s0, 0) was an arbitrary point on the chosen component C, this confirms the
validity of (4.25). (We note that since w ∈ H1(B \D), its traces on ∂Ω0 taken from
inside and outside Ω0 are the same. So while (4.23) and (4.25) were obtained by taking
limits from opposite sides of C, they estimate the same function on C.)

Combining (4.23) and (4.25), we have shown that

1

2
|∂sw|2 − λ0w = 0 on the chosen component C.
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To see that this implies w = 0, we note that since w ≥ 0 on C, the preceding relation
can be rewritten as

∂sw = ±
√

2λ0w . (4.26)

Now recall our assumption for part (iii) that ∇w(x) is uniformly continuous as x
approaches ∂Ω0 from within the domain Ω0. This implies that when viewed as a
function on C, w is C1. Therefore the ± sign in (4.26) cannot change at a point where
w ̸= 0. If, at some point on C, the function w is strictly positive and (4.26) holds with
a plus sign, then w must grow as s increases. Similarly, if w is strictly positive and
(4.26) holds with a minus sign, then w must grow as s decreases. Either way we reach
a contradiction, since C is a closed curve in the plane, and w is a C1 function on this
curve. Since this argument applies to any component of ∂Ω0, we conclude that w = 0
on the entirety of ∂Ω0, and the proof is complete.

4.3 The physical meaning of the relaxed problem

In the previous section, our convex relaxation of the optimal design problem was
introduced by replacing a maximization over characteristic functions χ(x) ∈ {0, 1} by
one over densities θ(x) ∈ [0, 1] (see (4.12) and (4.13)). We believe that the relaxed
problem and the original one are in a certain sense equivalent. Precisely: we believe
that an optimal θ for the relaxed problem is the weak limit of a maximizing sequence
for the original problem. This section explains why we believe this, though we do not
have a rigorous proof.

The basic idea is simple. If {χk(x)}∞k=1 is a maximizing sequence of characteris-
tic functions for the original problem (4.12), then it is easy to show the existence of
a subsequence converging weakly to some function θ(x) that takes values in [0, 1]. If
the domains Ωk = {x : χk(x) = 1} get increasingly complex – for example, if they
are perforated by many small holes – then the weak limit θ(x) represents the asymp-
totic density of material at x in the limit k → ∞. The asymptotic performance of
Ωk depends on more than just the density – it is also sensitive to the microstruc-
tural geometry. To avoid discussing the microstructure explicitly, it is natural to
simply assume that for each x, the microstructure at x is optimal given the density
θ(x). We believe that this is the effect of replacing χ(x)

(
1
2 |∇w|

2 − λ0w
)
in (4.12) by

θ(x)
(
1
2 |∇w|

2 − λ0w
)
in (4.13).

To explain the last statement, we make recourse to the theory of homogenization.
For any ε > 0, let aεk(x) = χk(x) + ε(1− χk), and let wε

k solve

−∇ · (aεk(x)∇wk)− λ0χk = 0 in B \D
∂νB

wk = 0 at ∂B

∂νD
wk = f at ∂D.

(4.27)

(We assume here that χk satisfies the consistency condition for existence of wk.) As
ε→ 0, limε→0 w

ε
k minimizes∫

B\D
χk(x)

(
1

2
|∇w|2 − λ0w

)
dx+

∫
∂D

fw dH1 ,
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in other words that it achieves the minimization over w in (4.12) (the proof parallels
that of Lemma 3.1.5 in [1]). The advantage of introducing ε > 0 is that aεk(x) rep-
resents a mixture of two nondegenerate materials. Our understanding of structural
optimization is rather complete in this setting: after passing to a subsequence, the
possible homogenization limits aεeff of aεk and the possible weak limits θ of χk are pre-
cisely those for which aεeff(x) lies in the G-closure of 1 and ε with volume fractions
θ(x) and 1− θ(x) respectively (see e.g. Theorem 3.2.1 in [1]). The best microstructure
is the one that maximizes the energy quadratic form ⟨aεeff∇w,∇w⟩ at given volume
fraction. This maximum is achieved by a layered microstructure, using layers parallel
to the level lines of w, which achieves the well-known arithmetic-mean bound

⟨aεeff∇w,∇w⟩ ≤ (θ + ε(1− θ))|∇w|2. (4.28)

In summary: for the positive-epsilon analogue of our optimal design problem, the
theory of homogenization provides a relaxed problem whose minimizers are precisely
the weak limits of the minimizers of the original problem. It is obtained by replacing
the term χ(x)|∇w|2 by the right hand side of (4.28) and the term χ(x)w by θ(x)w.
In the limit ε→ 0, this procedure gives exactly our relaxed problem.

The estimates justifying the results just summarized are not uniform as ε→ 0. As
a result, the preceding argument cannot be used when ε = 0. In particular, it does not
constitute a proof that our relaxed design problem is equivalent to the original one.

There is a related setting where an analogous relaxation has been justified even
for ε = 0. The argument goes back to [12] and it can also be found in Section 4.2 of
[1]. To briefly explain the idea, let us consider the optimal design problem

sup
Ω s.t. D⊂Ω⊂B

inf
w∈H1(Ω\D)

∫
Ω\D

(
1

2
|∇w|2 − γ

)
dx+

∫
∂D

gw dH1 , (4.29)

where γ > 0 is a constant and g is a function on ∂D satisfying
∫
∂D

g dH1 = 0 (so
that the min over w is bounded below). This problem is very similar to (4.11), but
the optimal w∗ is now harmonic:

∆w∗ = 0 in Ω \D
∂νΩ

w∗ = 0 at ∂Ω

∂νD
w∗ = g at ∂D.

(4.30)

Since (4.29) can be written as

sup
Ω s.t. D⊂Ω⊂B

−
∫
Ω\D

(
1

2
|∇w∗|2 + γ

)
dx ,

it seeks the domain that minimizes
∫
Ω

(
1
2 |∇w∗|2 + γ

)
dx. Section 4B of [12] explains

how this problem can be approached variationally. Briefly: extending σ = ∇w∗ by zero
to the entire set B, letting σ determine Ω = {x : σ(x) ̸= 0}, and using the principle of
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minimum complementary energy as an alternative representation of
∫
Ω

1
2 |∇w∗|2, one

finds that (4.29) is equivalent to the minimization

inf
div σ=0 onB\D
σ·νD=g at ∂D
σ·νB=0 at ∂B

∫
B\D

Φγ(σ) dx

with

Φγ(σ) =

{
1
2 |σ|

2 + γ if σ ̸= 0
0 if σ = 0 .

The relaxation of this problem is obtained by convexifying Φγ . A homogenization-
based argument similar to the one presented earlier suggests (see [12]) that the
relaxation should be obtained by replacing Φγ with

min
0≤θ≤1

|σ|2

2θ
+ γθ . (4.31)

This conclusion is correct, since (as verified in [12]) (4.31) is equal to the convexification
of Φγ .

Can our relaxation of (4.11) be justified using an argument analogous to the one
just summarized for (4.29)? Perhaps, however it seems that such an argument would
require substantial new ideas.
Remark 4.7. If, as we conjecture, the relaxation considered in Section 4.2 is equiva-
lent to considering “homogenized” designs, then the saddle point provided by Theorem
4.3 would have 0 < θ < 1 in any region where homogenization occurs. Reviewing the
proof of that Theorem, we see that w would need to have 1

2 |∇w|
2 − λ0w = 0 in such a

region.
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