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Abstract

We study certain “geometric-invariant resonant cavities” introduced by Liberal,
Mahmoud, and Engheta in a 2016 Nature Communications paper. They are
cylindrical devices modeled using the transverse magnetic reduction of Maxwell’s
equations, so the mathematics is two-dimensional. The cross-section consists of
a dielectric inclusion surrounded by an “epsilon-near-zero” (ENZ) shell. When
the shell has just the right area, its interaction with the inclusion produces
a resonance. Mathematically, the resonance is a nontrivial solution of a 2D
divergence-form Helmoltz equation V - (e_l(m,w)Vu) + w?pu = 0, where
e(x,w) is the (complex-valued) dielectric permittivity, w is the frequency, w is
the magnetic permeability, and a homogeneous Neumann condition is imposed at
the outer boundary of the shell. This is a nonlinear eigenvalue problem, since &
depends on w. Use of an ENZ material in the shell means that e(x, w) is nearly
zero there, so the PDE is rather singular. Working with a Lorentz model for the
dispersion of the ENZ material, we put the discussion of Liberal et. al. on a sound
foundation by proving the existence of the anticipated resonance when the loss
parameter of the Lorentz model is sufficiently small. Our analysis is perturbative
in character, using the implicit function theorem despite the apparently singular
form of the PDE. While the existence of the resonance depends only on the area
of the ENZ shell, its quality (that is, the rate at which the resonance decays)
depends on the shape of the shell. It is therefore natural to consider an associated
optimal design problem: what shape shell gives the slowest-decaying resonance?
We prove that if the dielectric inclusion is a ball then the optimal shell is a con-
centric annulus. For an inclusion of any shape, we study a convex relaxation of the
design problem using tools from convex duality. Finally, we discuss the conjec-
ture that our relaxed problem amounts to considering homogenization-like limits
of nearly optimal designs.
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1 Introduction

This paper is motivated by a 2016 article by Liberal et al, which discusses how
epsilon-near-zero (ENZ) materials can be used to design “geometry-invariant resonant
cavities” [16] . We focus on a class of examples involving the transverse magnetic reduc-
tion of the time-harmonic Maxwell system, obtained by taking H = (0,0, u(z1,x2))
and E = - (—0u, 01u,0) in

we

V x H=—iwe(z)E, V xE =iwpu(x)H. (1.1)

Thus we shall be working with the Helmholtz equation

1
V| —Vu wp(z)u =0 1.2
(5570 +2uto) (1.2
in a bounded two-dimensional domain 2. Here w is the frequency, and e = &(z1, x2),
u = p(xy,xe) are the dielectric permittivity and magnetic permeability at this
frequency.

It is easy to see from (1.2) what is special about ENZ materials in the transverse-
magnetic setting. Indeed, if £(z) is near zero in some “ENZ region,” then TZ)VU can
avoid being large only by Vu being small in this region. In the limit as ¢ — 0 in the
ENZ region, we are not solving a PDE there but rather choosing a constant value for
u. While the solution of a PDE depends sensitively on its domain and coefficients, the
constant value of u in the ENZ region should be much less sensitive. In fact, in many
settings it is only the area of the ENZ region that matters (to leading order, as € — 0
in the ENZ region). This effect has been used, for example, to design entirely new
types of waveguides [21; 22; 23]; for recent reviews of these and other applications, see
[14; 19].



Fig. 1 Our resonator consists of a region D in which ¢ = goep(w) surrounded by a shell Q \ D
in which € = epegnz(w). The material in the shell is ENZ, whereas D is occupied by an ordinary
dielectric.

We now specify more precisely the PDE problem considered in this paper. The
Helmholtz equation (1.2) will be solved in a bounded domain  C R? with a core-
and-shell structure: it consists of a region D C €) containing an ordinary dielectric,
surrounded by a shell 2\ D containing an ENZ material (see Figure 1). At the outer
boundary 99 we take Ou/0vg = 0. (In the language of the underlying Maxwell sys-
tem, the outer boundary is a perfect electric conductor.) Following [16], we shall ignore
the spatial and frequency dependence of p, since it is negligible in the intended appli-
cations; thus we set p(z) = po to be the permeability of free space. The dielectric
permittivity ¢ is constant in each material:

_ feoeplw) inD
el@) = { 0 €pnz(w) in Q\ D (1.3)
where €( is the permittivity of free space. While our method is more general, we shall
use a Lorentz model for the ENZ material:

O
Wi — w? —iwy

w2
Epnz (W) = €00 (1 + 2p> (1.4)

Here €, wo, wp and <y are nonnegative real numbers. Notice that in the lossless case
7 = 0 this function vanishes when w = w, 1= /w2 + w3; the resonant frequency of our

ENZ-based resonator will be very near this “ENZ frequency.” As for £ p: following [16],
we shall ignore losses there, taking e p(w) to be real-valued and positive for real-valued
w near wy.

With the preceding conventions, and writing ¢ = 1/,/€ofig for the speed of light,
the Helmholtz equation (1.2) becomes

V. (5 1(w)Vu) +w?c?u=0 in D and (1.5)
D
1 —
V . (E(w)Vu> —|— WQC_Q’U/ = 0 iIl Q \ D (16)



with the understanding that v and %Vu -vp are continuous at 0D, and that u satisfies
Ou/Ovg = 0 at 9. Following [16] , we shall refer to a nontrivial solution as a resonance.
It should be noted, however, that when the loss parameter -y is positive gy, is complex,
so the resonance u and the resonant frequency w will also be complex. Since the time-
harmonic Maxwell equations are obtained by considering electric and magnetic fields
of the form e~™!E(x) and e~*!'H(x), and since physical solutions should decay in
time, we expect (and we will find) that in the presence of loss, the imaginary part of
w is negative.

While the preceding discussion is accurate, it ignores an important feature of our
analysis. Indeed, in discussing the Lorentz model (1.4) we wrote epnz = Epnz(w),
treating the constants e, wo, wp, and v as being fixed. Actually, the dependence
of egnz on the loss parameter « is crucial to our analysis. In fact, when we prove
the existence of a resonance in Section 3, our main tool is perturbation theory in -+,
and the resonant frequency is a function of 4. When the dependence of ey, on 7 is
important, we shall write egnz(w,y) rather than egpy,(w) for the Lorentz model (1.4)
(see for example equation (1.9) below).

Equations (1.5)—(1.6) are not a conventional eigenvalue problem, since ¢p and
epnz depend on w. The fundamental insight of [16] in this context was that there
should nevertheless be a solution near the ENZ frequency when =y is small, provided
that the area of the ENZ region satisfies a certain consistency condition. This result
is interesting (and potentially useful) because the consistency condition involves only
the area of the ENZ region. Usually, for a PDE, the existence of a resonance at a
given frequency depends sensitively on the geometry of the domain. Our ENZ-based
resonator is different: it has a resonance near the ENZ frequency regardless of the
shape of the ENZ region, provided only that the area of this region is right. Thus,
the design of resonators with a given resonant frequency becomes easy (given the
availability of a material with € ~ 0 at that frequency).

The paper [16] uses physical insight to find the condition on the area of the ENZ
region, and it uses numerical simulations to confirm that the anticipated resonances
exist in many examples. Our work complements its contributions by proving the exis-
tence of such resonances and studying their dependence on the ENZ material’s loss
parameter ~. In particular, we provide a rather complete understanding about how
the geometry of the ENZ region influences the rate at which the resonance decays. It
is natural to ask how the shape of the ENZ shell can be chosen to minimize the decay
rate. When D is a disk, we show that the optimal ENZ shell is a concentric annulus;
for more general D, a similarly explicit solution is probably not possible, but we are
nevertheless able to estimate the optimal decay rate by considering a certain convex
optimization.

Our account has thus far emphasized the physical character of the problem. To
communicate the mathematical character of our work, it convenient (and indeed nec-
essary) to consider what happens when we ignore the frequency-dependence of £ p and
€pnz. After multiplying both equations (1.5)—(1.6) by €p, our PDE (1.2) takes the form

Voes'Vut+du=0 inQ (1.7)
Opou=0 at 99,



2¢p and 6 = €pnz/€D, and the notation

es(@) = {‘15 “’f&;? (1.8)

with the conventions that A = w?c¢™

Since J is just a parameter, this is a linear eigenvalue problem. It appears to be rather
singular in its dependence on §, since the PDE in Q\ D is now V- (§71Vu) + \u = 0
and we are interested ¢ near 0. But it can be desingularized by a suitable ansatz, as we
shall explain in Section 2. (In Q\ D the ansatz has u = 1+ §f(z), so that 6 'Vu =V f
is no longer singular.)

When § is real and positive, it is a basic result about second-order elliptic PDE
that (1.7) can have a nontrivial solution (a resonance) only for a discrete set of \’s,
which must be nonnegative. Our main result about (1.7), Theorem 2.1, identifies
the (infinite) set of A’s for which such a result holds even for complex-valued 0 in a
neighborhood of 0; moreover it shows that for each such resonance, u = us and A = A4
are complex analytic in their dependence on §. (Our results agree with those in [16]
concerning the possible values of A\g = limg_,o A\s and ug(z) = lims_,g us(x).) Besides
proving analyticity, our work gives easy access to the Taylor expansions of us and Ag;
in particular, it identifies the asymptotic electric field in the ENZ region (in other
words, the limiting value of " 1Vu in Q\ D as § — 0), and it shows how the shape of
the ENZ shell determines the leading-order correction to Ao when ¢ # 0 (that is, the
value of A'(0)).

Let us say a word about the proof of Theorem 2.1. The arguments draw inspira-
tion from those used to study perturbations of eigenvalues in more standard settings.
Due to the singular character of our operator, however, we must solve PDE’s in D
and Q\ D separately, rather than ever solving (1.7) in the entire domain . Our anal-
ysis begins by showing how the Taylor expansions of us and As can be determined
term-by-term. While analyticity (with respect to §) can be proved by majorizing the
resulting expansion, we pursue a different approach — demonstrating analyticity by an
application of the implicit function theorem.

We are not the first to consider operators of the form V - (¢5'Vu) in which e;
takes only the values 1 and § and the focus is on behavior near § = 0. This operator
and others like it arise, in particular, when considering the effective behavior or band
structure of high-contrast composites [3; 5; 4; 10; 8; 9]. Our treatment of (1.7) has
some features in common with the work just cited, as we discuss in more detail near
the end of this section.

Returning to the physical problem with dispersion and loss, (1.5)—(1.6): the exis-
tence of resonances and their analytic dependence on the loss parameter - follows
easily from Theorem 2.1 by an application of the implicit function theorem. Indeed,
it suffices to find a complex-valued function w(+) such that

Aepnz(wx) ) /ep(wix) = w2 (Me 2ep(w(7)) (1.9)

and such that w(0) is the ENZ frequency (the one where ey, vanishes when v = 0).
We show in Theorem 3.1 that the implicit function theorem is applicable, and that
the leading-order dependence of w(vy) (that is, w’(0)) depends on the geometry of the



ENZ region only through X (0). Also of note: we show that w’(0) is purely imaginary.
It follows that the frequency where the resonance occurs (the real part of w(vy)) differs
very little from the ENZ frequency (the difference is at most of order v?).

For an experimentalist creating a resonator using the framework of this paper,
the ENZ material to be used in © \ D would typically be fixed, and therefore the
ENZ frequency w, (defined by (3.5)) would also be fixed. As mentioned earlier, the
experimentalist’s choices of D and 2 must satisfy a consistency condition that depends
on w,. This is discussed in Section 2.1.3, but we summarize the main impact here: (i)
while the shape of D is unconstrained, its size must satisfy a certain (open) condition;
(ii) once both the ENZ frequency and D are fixed, the consistency condition constrains
Q only by fixing the area of the ENZ region Q \ D.

It is natural to ask how the shape of the ENZ region should be chosen to optimize
the associated resonance. Since the imaginary part of w gives the rate at which the
resonance decays, this amounts to asking what shape minimizes |w’(0)|. The analysis
just summarized reduces this to asking what shape minimizes |\ (0)]. Our results on
the function A(4) include a variational characterization of this number: it is a constant
times

min/ l|v¢|2—A0q>da:+/ fodH? (1.10)
o Jop 2 oD

for a particular choice of the function f (see (4.3)). Since the minimum value of (1.10)
is negative, our optimal design problem takes the form

1
maxmin/ ~|Vo|? —)\o(bdx—l—/ fodH, (1.11)
Q¢ Jo\D 2 oD

with the understanding that {2 varies over domains that contain D and remain within
some fixed region B. The domain €2 can be represented by a function x(x), defined on
B\ D, which takes the value 1 on Q\ D and 0 outside . With this convention, (1.11)
becomes
max min/ X(x)<1|V¢|2 - )\0¢>> dﬂc+/ fodH'.
x(2)e{0.1} ¢ Jp\D 2 oD

In the language of structural optimization (see e.g. [1]), this is a compliance optimiza-
tion problem. Such problems are well-understood for mixtures of two nondegenerate
materials (that is, when x(z) takes two values that are both positive). In the present
more degenerate setting, methods from homogenization cannot be applied directly.
But taking inspiration from that theory, we show in Section 4 that the value of (1.11)
is upper-bounded by the value of the simple-looking convex optimization

min/ (1|V¢>|2—/\0¢> dz + fodH'. (1.12)
¢ Jp\D\2 n oD

Moreover, we argue (though we do not prove) that this bound is actually sharp. When
the inclusion D is a ball we can say much more: the optimal §2 is in fact a concentric
ball (and the upper bound (1.12) is indeed sharp in this case).

Let us briefly discuss some related work.



® The physics literature includes many papers on devices made using ENZ materials,
including quite a few that can be modeled by Helmholtz equations like (1.2). Many
of these papers raise issues comparable to those considered in the present work.
Our recent paper [13] studied a phenomenon known as photonic doping; it provided
a mathematical foundation for and an improved understanding of an application
of ENZ materials considered in [17] (see also [22]). That work involved scattering,
whereas the present work involves resonance. Therefore the analysis in this paper is
substantially different from that of [13], though there are of course some parallels. In
particular, Section 2 of this paper shows how the perturbation theory of eigenvalue
problems can be adapted to the ENZ setting, while our earlier paper was concerned
instead with the perturbation theory of boundary-value problems.

® As already mentioned earlier, our treatment of (1.7) has some features in common
with [3; 5; 4; 10; 8; 9; 13]. Preparing to say more on this topic, we remind the reader
that (1.7) is an eigenvalue problem for the divergence-form operator V - (5(;1Vu),
whose coefficient €5 is piecewise constant (equal to 1 in D and § in Q\ D). We show
in Section 2 that the quantities of interest are complex analytic functions of § near
6 =0.

For any function of a complex variable §, there are two rather distinct approaches
to proving its analyticity. One is to show that the function is complex differentiable
in 0; this is what we do in Section 2. The other is to identify the function’s Taylor
expansion then prove its convergence; this is the approach taken in [3; 5; 4; 8; 9; 13],
which consider problems closely related to ours. Among these references, the papers
by Chen & Lipton and Fortes, Lipton & Shipman have the strongest connections to
our setting, since they too consider spectral problems. This work studies the band
structure of certain periodic high-contrast composites; thus its physical motivation is
quite different from ours. However, the PDEs considered in these papers are closely
analogous to (1.7) (except for being solved on a period cell, with a Bloch boundary
condition). Therefore it is not surprising that in these papers, as in Section 2, one
finds each successive term of the Taylor expansion by considering (separate) PDE
problems in two complementary material regions; moreover, the Taylor expansions
found in these papers have a character quite similar to ours. (Since the work just
discussed concerns the band structure of periodic high-contrast composites, let us
also mention an earlier paper [10], which achieves impressive insight by means other
than Taylor expansion.)

Rather than majorize the Taylor expansion, our proof of analyticity uses the implicit
function theorem to show that the eigenvalue A5 and the (suitably normalized)
eigenfunction us of (1.7) are complex-differentiable functions of ¢ near 6 = 0. The
fact that perturbation theory for (simple) eigenvalues can be done using the implicit
function theorem has been understood at least since 1955 [20]. While this approach
does not immediately give a radius of analyticity, extensions of that type have been
discussed in some settings [11].

e As we explain in Section 4.3, the passage from (1.11) to (1.12) involves considering
the possibility that the optimal 2 is a homogenization limit of domains with many
small holes. Our optimal design problem can be regularized by including a penalty
term involving the perimeter of Q\ D. It is known that inclusion of such a penalty



prevents homogenization (see e.g. [2]). However, if the unpenalized optimization
requires homogenization then the solution of the penalized problem will depend
strongly on the presence and strength of the penalization. Therefore we do not
consider the use of perimeter penalization in the present work.

We close this Introduction by summarizing the organization of the paper. Section 2
contains our study of the PDE (1.7). It is the longest section, since much of our success
lies in finding a convenient way to desingularize the problem. Section 3 combines the
results of Section 2 with the implicit function theorem to show the existence of a
resonance near the ENZ frequency, and to consider the effects of dispersion and loss.
Finally, Section 4 presents our results on the optimal design problem (choosing the
shape of the ENZ region to minimize the effect of loss).

2 Analysis without dispersion

In this section we study the eigenvalue problem (1.7). Our main result is the existence
of an eigenfunction us with eigenvalue A5, both depending complex-analytically on &
in a neighborhood of 0, provided that Ay = limgs_,o A5 satisfies a certain consistency
condition. Our proof shows in addition that A5 is a simple eigenvalue, in other words
its eigenspace is one-dimensional.

We start, in Section 2.1, with some preliminaries and a full statement of the result.
Then we show, in Sections 2.2 — 2.3, how the Taylor expansions of us and As can be
determined term-by-term if one assumes analyticity. Finally, in Section 2.4 we use the
implicit function theorem to prove the existence of us and A\; depending analytically
on §.

Our analysis shows, roughly speaking, that the perturbation theory of eigenvalues
and eigenfunctions can be applied to the singular-looking operator V - egl(:c)v with
estimates that are uniform in ¢ (and that 6 = 0 is a removable singularity).

2.1 Preliminaries and a statement of our result about us and A

As discussed in the Introduction, we are interested throughout this paper in a bounded
two-dimensional domain € with a subset D (see Figure 1). Both domains are assumed
to be Lipschitz (that is, their boundaries are locally the graphs of Lipschitz functions)
and connected, and D does not touch 9€2. We also assume that D is simply connected,
so that the “ENZ region” 2\ D is a connected set which can be viewed as a shell
surrounding D. While the 2 shown in Figure 1 is simply connected, we do not assume
this; rather, Q\ D can have one or more holes — in which case the boundary condition
Oyqu =0 in (1.7) applies at the boundary of each hole.



2.1.1 The function 14 ,; a normalization; and the consistency
condition

It is natural to begin by finding the Taylor expansion of us and \g, assuming existence
and analyticity. As a reminder, our goal is to solve

V-éVUg—I—)\(su(;:O in Q

(2.1)
Ouus =0 at 09,

where e5(z) := 1 for z € D and g5(z) = § for € Q\ D. Proceeding formally for the

moment, we seek a solution of the form

As = Ao +0A1 + 52>\2 + ... (2.2)

and _
us(z) = {1+5¢1+52¢2+... if r€Q\D
T\ Yo+ 0+ 0%+ ifazeD.
This should, of course, not be possible for all choices of Ag; the condition that
determines the permissible values of Ay will be given presently (see (2.9)).

The expansion of us begins with 1 in Q \ D because (as discussed in the Intro-
duction) we expect us to be constant to leading order in €\ D. There is no loss of
generality taking the leading-order constant to be 1, since multiplying an eigenfunc-
tion by a constant gives another eigenfunction. But this normalization only affects the
leading-order term, whereas to fix us we need a condition that applies to all orders in
0. It is convenient to use the normalization

(2.3)

/ us(z)up(x) de = / uddr = |Q\ D] —|—/ Y2 dx, (2.4)
Q Q D
where ug = lims_,o us denotes the leading-order term of (2.3),

T AL (25)

When we substitute the expansions (2.2)—(2.3) into the PDE (2.1) and focus on
the leading-order behavior in D, we see that 1)y must solve a Helmholtz equation in D
with the Dirichlet boundary condition 1y = 1 at dD. The solution of this boundary
value problem also played a central role in our recent study of photonic doping [13]. To
emphasize the connections between that work and this one we will use similar notation
here, calling its solution 4 »,. Thus, we take 19 = 14,5, to be the solution of

—AYg ., = AoWdn, nD

2.6
Yar, =1 at OD. (2:6)

We assume here that Ag # 0 is real, and that it is not an eigenvalue of —A in D with
Dirichlet boundary condition 0. Under these conditions the solution of (2.6) exists and



is unique and real-valued. Since we have only assumed that D is a Lipschitz domain,
ax, isin HE (D)NHY(D), which is enough for our purposes. (In [13] the subscript d

loc

stood for “dopant;” here it is just a reminder that 14 , depends on both D and A¢.)
We note for future reference that with the substitution ¢y = g,, our
normalization (2.4) has become

/ ug(x)ugp(z) doe = |Q\ D| +/ 1/)31,>\U dr. (2.7)
Q D

Since the eigenvalues of an elliptic operator are discrete, we expect that only certain
choices of A\g should be acceptable. When we consider the expansion term-by-term
in Section 2.2, the condition on Ay will emerge as the consistency condition for the
existence of ¢1; therefore we like to call it the consistency condition. However the same
condition can be derived as follows: it is easy to see from (2.1) that

/ng dex =0 (2.8)

by integrating the PDE over 2 and using the homogeneous Neumann boundary
condition (along with the assumption that Ag # 0). At leading order this gives

|Q\5\+/ Par, dr = 0. (2.9)
D
We shall discuss the solvability of this condition in Section 2.1.3, but we note here
that (i) it requires [}, 94, dz to be negative, and (ii) when this integral is negative,
(2.9) simply determines the area of the ENZ region.

We assumed above that Ao is real-valued and nonzero. Actually, the consistency

condition (2.9) implies that it must be positive. Indeed, using the definition (2.6) of
Yd,n, we have

/|V¢d,,\o\2dl‘=/ div (W,AOVW,AO)dl‘—/ Y rg Ag r, dT
D D D
:/ DupPd.rg d”H,l—l—)\o/ P35, T -
oD D

But using the PDE again along with the consistency condition we have

/ 81/D"/}d,)\0 d’HI = / A¢d,Ao dr = —/\0/ djd,/\o dr = )\0|Q\E| .
oD D D

Combining these relations, we conclude that

[ Wan s = /\0<|Q\D| + [ v, dm) .
D D

So Ag must be positive, as asserted.

10



2.1.2 Statement of our theorem on analyticity of us and As

We are ready to state our result on the existence of eigenvalues and eigenvectors of
(2.1) depending analytically on 4.

Theorem 2.1. Let D and 2 be as discussed at the beginning of Section 2.1 and let
Ao be a positive real number which (i) is not a Dirichlet eigenvalue of —A in D and
(i) satisfies the consistency condition (2.9). Then for all complex § in a neighborhood
of 0 there exists a simple eigenvalue \s of (2.1) with eigenfunction us such that

. . 1 z€eQ\D

s As = Ao and Gt ug = to = {wd,% reD.

Moreover, with the normalization (2.7) the eigenfunction us and its eigenvalue \s are
complex analytic functions of § in a neighborhood of § = 0.

To be sure the final statement is clear: we will show, in the course of the proof,
that the map § — wus is a complex analytic function of ¢ (near § = 0) taking values
in a suitable Banach space. This is equivalent to the statement that us has a Taylor
expansion us = ug + duj + 0%uy + -+ with a positive radius of convergence (see e.g.
[6] or [26]).

2.1.3 On satisfying the consistency condition

Our consistency condition (2.9) involves the function g ,, so its dependence on D
is not very explicit. This subsection examines how it can be satisfied, either (a) by
choosing D and ) appropriately with A\ held fixed, or (b) by choosing A\g appropriately,
with D and 2 held fixed. (This discussion is not used in the proof of Theorem 2.1. A
reader who is mainly interested in that theorem can skip to Section 2.2.)

We start with a representation formula for 14, in terms of the Dirichlet eigen-
values and eigenfunctions of the domain D (more precisely, the spectrum of —A in
H}(D)). Let {u,}22; be the Dirichlet eigenvalues of —A, and let {x,}>, be an asso-
ciated set of orthonormal eigenfunctions; as usual, the eigenvalues are enumerated in
nondecreasing order and repeated according to multiplicity. By expressing the func-
tion g 5, — 1 (which vanishes at D) in terms of the eigenfunction basis, one finds
by a routine calculation that

Yar, =1+ A0<Z Jp Xndo ) (2.10)

_)\0

We see from this formula that 14, depends only on the eigenfunctions for which
f p Xndz # 0. The following simple proposition assures us that there are infinitely
many of these. (For a more quantitative result — estimating how many of the first n
Dirichlet eigenfunctions have nonzero mean — see [25].)
Proposition 2.2. For any bounded domain D C RY with Lipschitz boundary, there
are infinitely many Dirichlet eigenfunctions x, such that fD Xn(x)dz # 0.

11



Proof. The functions {x,, } form an orthonormal basis of L?(D). The constant function
1is in L?(D) (since D is bounded), so

1= i(/})xn(w)dff)xn,

n=1

where the series on the right, if infinitely many of terms are nonzero, must be under-
stood in the sense of convergence of L? functions. Now, if all but finitely many of the
coefficients [}, xn(2) dz were to vanish then the constant function 1 would be a finite
sum of eigenfunctions that all vanish at 0D. This is not possible, so the proposition
is proved. O

The consistency condition (2.9) involves just the integral of 14 »,, which by (2.10)

/zp,m 1D + Ao Z fDX"_ Ao . (2.11)

We note that the sum on the right hand 81de of (2.11) is absolutely convergent. Indeed,
each term is finite (since by hypothesis A is not a Dirichlet eigenvalue), and for all but
finitely many terms pu, > Ao (since the eigenvalues are ordered and tend to infinity).
Since all but finitely many of the terms are positive, the sum converges absolutely.
We turn now to the question how the consistency condition (2.9) can be satisfied by
choosing D and (2 appropriately, for any fixed positive Ag. As already noted earlier, we
need only ask how | p Yax, dr can be made negative, since the consistency condition

is

is then satisfied by choosing the area of Q \ D correctly. For a given domain D, it is
of course possible for | p Y, n, dz to be positive. However, if the Dirichlet eigenvalues
of —A in D are {{,,}, then the Dirichlet eigenvalues of —A in the scaled domain tD
are ji, /t%. As t varies, there will be selected values where p,/t? crosses Ao for some
eigenvalue fi,, such that [ x,, dz # 0. As this crossing happens, we see from (2.11) that
the value of [, ¥4 5, dz jumps from —oco (as pn/t? approaches \g from below) to +oo
(as ju, /t? increases past \g). As t ranges over the interval between two consecutive
crossings, || p Yd,n, dx takes every real value by the intermediate value theorem. Thus,
the scale factor ¢ can easily be chosen so that [ p Yd.n, dr is negative.

Finally, we examine how the consistency condition can be satisfied by choosing Ag
appropriately when D and © are held fixed. Combining (2.9) with (2.11), this amounts
to studying the roots of || + f(¢) = 0, where

_tz fDX” . (2.12)

We noted above that this sum converges absolutely provided that ¢ is not an eigenvalue
with a nonzero-mean eigenfunction. Differentiating term-by-term gives

Z“" fDX" >0. (2.13)

,un_t

n=1

12



(This calculation is legitimate, since the differentiated sum again converges absolutely;
indeed, for large m its nth term is comparable to that of f.) Remembering that an
eigenvalue fi,, participates in these sums only if [ p Xndz # 0, it is convenient to let
J = {my,ma,...} be the ordered list of eigenvalues having at least one eigenfunction
with nonzero mean (which is infinite, by Proposition 2.2). Then we see from (2.12)
— (2.13) that f(¢) increases monotonically from —oo to 400 on each interval m; <
t < my41. Thus: each of these intervals contains a unique choice of Ag for which the
consistency condition holds.

2.2 The leading order terms

We have as yet determined only the zeroth-order terms in the Taylor expansions of
As and ug. We turn now to the identification of additional terms. The first few, which
are discussed in this section, are used in our proof of Theorem 2.1; briefly, knowing
them lets us desingularize the PDE problem, permitting application of the implicit
function theorem. The higher-order terms, which we discuss in Section 2.3, are also
interesting. Indeed, the process by which the expansion is determined term-by-term is
intimately related to our implicit-function-theorem-based proof of Theorem 2.1: the
implicit function theorem requires the invertibility of a certain linear operator, whereas
our identification of each successive term in the expansion involves inverting this oper-
ator. (We note in passing that the higher-order terms can also be used to provide an
alternative proof of Theorem 2.1 by directly majorizing the Taylor expansions. For
arguments of this type in closely analogous settings see [8; 9].)

Before delving into the details, let us provide a big-picture view of the calculation.
Our plan is to substitute the expansions (2.2) and (2.3) into the PDE (2.1) and the
normalization (2.7) and expand in powers of §. The condition that Ao must satisfy —
(2.9) — will emerge naturally as the consistency condition for the PDE problem (in
Q\ D) that determines ¢;. When this consistency condition holds, ¢; is determined
only up to an additive constant, which we call e;. The function v solves a different
PDE problem (in D), which involves ¢; and A1; as a result, 1 is initially found in terms
of the not-yet-determined parameters e; and A;. Finally, e; and A; are determined by
the normalization condition (2.7) and the consistency condition for the existence of
¢2. The process by which ¢;, ¢;, and \; are determined for each successive j = 2,3, ...
is similar.

As we shall see, each function ¢; satisfies a Poisson-type equation in Q\ D. The
associated consistency condition comes from the fact that if A¢ = f in a domain
and 0,¢ = g at its boundary, then the volume integral of f must equal the boundary
integral of g. When the equation is consistent, the solution is determined only up to
an additive constant. For this reason, it will be convenient to view each ¢; as the sum
of a mean-zero function and a constant:

On = (;n +en, en€R, (gn dr=0. (2.14)
oB
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This decomposition induces one of 1}, since (as we’'ll see) 1); solves a linear PDE in
D with ¢; = ¢; at 0D. While the form of this decomposition will emerge naturally
later, we mention it now as a complement to (2.14):

l/Jn = J}n + en¢d,)\o 'J]n = (;zn on 0D. (215)

We turn now to the business of this subsection: identification of the initial terms
in the expansions. We have, of course, already chosen the order-one terms in the
expansion of us:

po(x):=1 forzeQ\D,
Yo(x) :=Pgr, () forze D,

Plugging the expansions into the PDE (2.1), at order one in the ENZ region we get a
PDE problem for ¢;: o
APy =X inQ\D
Oyp1 =0 on 0N (2.16)
8,,gz51 = 81,1/Jd’)\0 on 6D.

Existence requires a consistency condition. Recalling that vp denotes the unit normal
to dD pointing out of D, the consistency condition is

I\ D :/
oD

When this holds, the solution exists but it is unique only up to an additive constant.
Therefore we decompose

3%,% 1
. dm'. (2.17)

<I51=<2051+61, er € R, 7¢?1dx:O
o\D

and recognize that while qcﬁl is uniquely determined, e; is still unknown. (We note that
qoﬁl is real, since 94 ), is real; therefore our assumption that e; take real values is quite
natural.)

The consistency condition (2.17) is equivalent to the condition on Ao that we
introduced earlier, namely (2.9). Indeed, since

0
/ g)d,Ao dH1 :/ qud,% dx = —)\0/ Ya,xn AT,
ap OVD D P

(2.17) can be rewritten

/\0|Q\E‘ :—)\0/ 1/),17)\0 dl‘,
D

which is equivalent to (2.9) since we always assume A\g # 0.
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We turn now to the identification of the function ; and the constants A; and e;.
Since we have already considered the order-one PDE, both in D (in defining g4 ,)
and in Q\ D (in finding ¢ ), we naturally turn to the order-§ problem in D. It says

=AY = Mgy, + o1 in D (2.18)
Y1 =¢1 ondD. (2.19)

(The boundary condition comes from the fact that us cannot jump across dD.) For
given ¢1 and Ap, this boundary value problem has a unique solution (since Ag is not
a Dirichlet eigenvalue of —A in D). Since the additive constant e; in ¢; has not yet
been determined, it is convenient to make the dependence of 11 on e; more explicit.
Therefore we decompose 17 as in (2.15):

o

1 =1+ e, (2.20)
where ) )
—AY1 = Mg, + A1 in D
1Z1 = le on 9D .

Since Ag is not a Dirichlet eigenvalue of D, any choice of A\; uniquely determines 1;1.
We must still determine e, and A;. For this purpose, we shall use the normalization
condition (2.7) and the condition that

(2.21)

/ Yrde=0. (2.22)
D

Some explanation is in order about the latter. Remember that while our condition
on )y was initially obtained by requiring that fQ usdr = 0 at order one, the same
condition emerged above as the consistency condition for existence of ¢;. The status
of (2.22) is similar. It is at once

(a) the order-§ version of the condition that [, usdx =0, and
(b) the consistency condition for existence of ¢s.

To see (a), we observe that

o1 dx + /1le dz = e1|Q\ D| + /D(J)l + 611/%1,)\0) dx

Z/ Uy dx
D

using the consistency condition (2.9) in the second line. We postpone the justification
of (b) to the end of this subsection, since it requires a bit of calculation and it isn’t
immediately needed.

o\D
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We now identify the value of A;. Multiplying both sides of (2.21) by g , and
integrating gives

AL /D Yare (Van, —1)dr = — /D(Alzl + Aoizl)(wd,,\o —1)dx

= h10, dH!
26,222 Jop $10upVan, dH 023)
_ o al/ o d 1 *
(2.16) Jop $10up P IR
P I\
(2.16) o\D
Combining this with (2.9), we conclude that
A= — ! / IV |? da (2.24)
LD fpuds, Jon |

We note that this A; does not depend on the as-yet undetermined constant e;.
Finally, we identify the value of e; using the order § term in the expansion of the
normalization condition (2.7), which is

/ P1an, dx + ¢1 =0.
D

o\D

Using (2.20), this is equivalent to

/ Y1tan + e, dr + 1|\ D| =0,
D

SO
e =— Jp¥¥arede (2.25)
Q\ D[+ [p ¢35, do
We note that this definition is not circular: the right hand side of (2.25) involves
1/0)1, which is defined by (2.21) and which therefore depends on A;. However @[011 is
independent of ey, since our chosen value of A1 — given by (2.024) —is independent of e;.

A thoughtful reader might ask: is it really true that | p ¥1dz =0 when A; is given

by (2.24) and 1/0)1 is determined by (2.21)? The answer is yes. To see why, we revisit
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the the calculation (2.23) without assuming that this integral vanishes:

A1 /D Ya g (Yan, —1)de = — /D(Ado)l + /\07/31)(1/)d,A0 —1)dx

B . . .
(220).(2.6) /ap 10y, %a,0, AH + Ao /D Y1 dx (2.26)

- —/ |V<51\2d$+)\0/121dx.
(2.16) O\D D

This amounts to a linear relation between A\; and fD 1L1 dx (since Ao, Ya,z,, and (Z)l

are by now fixed). Our choice of \; is precisely the one that makes f D 12)1 dx vanish.
We note for future reference that the functions ¢; and ; satisfy the order-d
versions of [, us dz = 0 and our normalization condition (2.7), namely

7¢1+/ Prdx =0. (2.27)
o\D D

and
7(Z)1 dr + / w1¢d,>\0 =0. (2.28)
o\D D

(Indeed, we found A; and e; by assuring these relations.)

We close this subsection by justifying our claim that the condition f D 1/011 dr =0is
equivalent to the consistency condition for existence of ¢5. Our starting point is the
PDE for ¢, which is the order-6 PDE in 2\ D:

—A<22 = X1 + Ao inQ\ D
Buyd2 =0 on 90
Ovp, 92;2 =0y, = 3@1,/011 + e10u,Yd on 0D .

Its consistency condition (remembering that vp points outward from D) is
- fQ\B Ago dx = faD 0y b2 dH1, in other words

Xoe1|Q\ D| + M\ |Q\ D| = / Byt + €10, hang dH" . (2.29)
oD
The right side is equal to
/ Adpy + e1Ag z, dr = —/ (Md&uo + Aodl) dx —e; / AoWd,x, dx .
D D D

Using this along with the consistency condition (|2 \ D| + [, ¥, dv = 0), (2.29)

reduces to
Xo / dydz=0,
D

which demonstrates our claim (since Ag # 0).
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2.3 The higher order terms

In this section we explain how the remaining terms in the expansions for us and
As can be found by an inductive procedure. As noted earlier, it is possible to prove
Theorem 2.1 by majorizing the resulting series. However our proof — presented in
Section 2.4 — uses a different approach, based on the implicit function theorem. There-
fore the material in this section will not be used in the rest of the paper; a reader who
is mainly interested in the proof of Theorem 2.1 can skip directly to Section 2.4.

Our procedure is inductive: given

{05 im1 AN Y= A= {es e (2.30)
satisfying certain properties, we shall explain how to find (;SHH, An+t1, 1[)n+17 and e;41
with the analogous properties at level n + 1. The base case of the induction will be

j = 1, which was addressed in the previous subsection. Throughout this discussion,
we understand that ¢; and v; are determined by ¢;, A;, 1;, and e; via

¢j = (zﬁj + ej, 1/1]' = ’l/oij + €j1/]d,/\0 . (2'31)

Inductive hypotheses:
® Forj=1,...,n, the functions ¢2j and sz satisfy

¢jdr=0 and / Py de=0. (2.32)
Q\D D

We note that when g%j has mean zero and )\ satisfies the consistency condition (2.9),

7¢jdx+/¢jdx=/z/3jdx;
Q\D D D

thus, the condition that 121‘ have mean zero is equivalent to

7¢jd:c+/D¢j dr =0, (2.33)

o\D

which amounts to the condition that fQ us dr = 0 at order 67.
® Forj=1,...,n the constant e; is chosen so that

_¢jdz+ /D Vjthan, dr = 0. (2.34)

o\D
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This is simply our normalization condition (2.7) at order §7. Using (2.31), we see
that it is equivalent to

1 / o
ej = — — Yiar, dT . (2.35)
" IO\D|+ [p i, dr o

A useful identity arises by combining (2.33) and (2.34): subtracting one from the
other gives the orthogonality relation

/D 051 = thary) dz = 0. (2.36)

Of course, the functions ggj, 7,[3]- and the constants e; and A; will be chosen for
j=1,...,nso that the associated expansions satisfy our PDE (2.1) to a certain order,
and the inductive step (choosing these quantities for j = n + 1) will assure that the
PDE is satisfied to the next order.

_ As already noted, the base case j = 1 is already in place. Indeed, the functions
o1, ¥1 and the constants ej, A; found in Section 2.2 have the desired properties (see
(2.28) and (2.27)).

Induction step: We will determine qoﬁnH using the PDE in the ENZ region at order
0™; then we will determine ¥, 11, €41, and A,41 by using the PDE in the region D
at order §"*! combined with the j = n + 1 versions of conditions (2.32) and (2.34).

Since our argument uses the entire expansion of us and As, we take the convention
that ¢>0 =0, eg = 1 so that ¢g = gZ)O + eg = 1; similarly, we take wo = 0 so that
Yo = Pd x- )

The function ¢,+1 € H*(Q\ D) is obtained by substituting the expansion into the
PDE, then focusing on the equation in Q \ D at order §". This gives the Neumann
problem

n
Ayl = Z NePri in Q\ D
k=0

8mqobn+1 =0 on 0N (237)
Ovp Ont+1 = OupPn, on 0D
- Gni1(z)dz =0.

o\D
For a solution to exist, the integral over Q\ D of the bulk source term must be consistent
with the integral over 9D of 0,,,. Using the PDE for 1),,, the boundary integral can
be expressed as a bulk integral over D. This leads to the consistency condition

2]

which holds thanks to (2.33). Thus the PDE problem (2.37) is consistent, and ¢,,41 is
its unique mean-zero solution.

O kdl‘—l—/ U — kd.%‘:| =0, (2.38)

oD
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Turning now to the PDE in D, at order 6"*! we find the Dirichlet problem

n+1
—AYni1 = AoVnr1 = ) Aetnti-k in D
2 29)
i1 = Gyl = Gny1 + ent1%d on 0D.
By linearity (and using the definition of g4 y,), it suffices to solve
. . n+1
—AYpi1 — Ao¥ny1 = AeUnt1—k in D
2 (2.40)
1Ln+1 = do)n+1 on 9D .

The solution 1/3n+1 depends on A\, 41, which is as yet unknown. Its value can be obtained
by arguing as we did for j = 1 in Section 2.2. Inspired by that calculation, we define

)\n+1 by

1
)\n+1 = —
QDI+ [, 03, Jov
which is well-defined, since the right hand side involves only quantities that have
already been determined. Since we have now fixed A\,41, the PDE (2.40) determines

Ypn+1. We may then choose e,,+1 by

¢?n+18upwd,/\o dH', (2.41)

1
Q\D| + [ 35,

/QZnJrl'l/Jd,/\o dx . (2.42)
dx D

€nt1 =

To complete the induction we must check that our choices for j = n + 1 meet
the requirements of the inductive hypothesis. To do so, it suffices to check that (2.32)
and (2.34) hold for j = n + 1. The latter follows immediately from our choice of
en+1- To get the former, we multiply both sides of (2.40) by (¢4, — 1), remembering
that this function vanishes at dD. Integrating, using the orthogonality in (2.36), and
remembering our convention that 19 = 14 »,, this calculation gives

/\n+1/ Yaxo(Pan, —1)dr = */ (Athni1 + Aotnt1) (o, — 1) dz
D D
- / ds10unPang AH + Ao / .
oD D

= / %nJrlaqud,/\o dHl + )\0/ /(Zn+1 .
oD D

Combining this with the definition (27.41) of Apt1, and remembering that
Jp Yare(War, —1)dx = [, qp;/\ dz + |Q\ D|, we conclude that

/ 7271+1 =0.
D
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Since qobnﬂ was chosen from the start to have mean value zero, we have confirmed
(2.32) and the induction is complete.

2.4 The proof of Theorem 2.1

Our proof will be based on the implicit function theorem. To get started, we shall
“desingularize” our eigenvalue problem (2.1), reformulating it in a way that doesn’t
involve dividing by . This will be done by using the leading order terms of the
expansion.

Since we have assumed very little regularity for 0D and 02 — they are merely
Lipschitz domains — we cannot expect the second derivatives of us to be in L?(Q).
Therefore we must work with a fairly weak solution of the PDE. However, standard
elliptic regularity results show that our ug is actually a smooth function of x away
from the boundaries 02 and dD. If the boundaries are smooth, then ug is also smooth
up to the boundaries (though it cannot be smooth across 9D, since g5 jumps there).

We now establish some notation and discuss the functional analytic framework we
will use. The reader can refer to [18] for proofs of the following facts.

® Given a bounded region A C R? with Lipschitz continuous boundary (in our setting,
A will either be Q\ D or D), let v4 denote the unit normal vector field that points
out of A. This normal vector exists at H!— almost every point of the boundary 94,
by Rademacher’s theorem.

e As usual, H'(A) denotes (possibly complex-valued) square-integrable functions on
A with distributional gradients that are also represented by integration against an
L? vector field. Functions in H'(A) have a boundary trace. More precisely, there
is a bounded linear operator 7o : H'(A) — H'/2(QA) that is surjective. It has the
property that vo(f)(z) = f(x) for any function f € H!(A) N C(A), at H'—almost
every © € JA. When we want to indicate the dependence of 7y on the domain A,
we will write y9, 4.

We shall also use the fact that if € is an L? vector field defined on a bounded Lipschitz
domain A with V-£ € L?(A), then it has a well-defined normal trace £-v4 in H~1/2(9A)
(the dual of H'/?(9A) using the L? inner product). It is defined by the property that
for any u € H'(A) with vo(u) = f,

(€ va, u-12(04)xm1/2(04) = /A(V “Qu+§-Vudr, (2.43)
and it satisfies

€ vallg-1204)y < C(I€llL2cay + IV - €l o)) - (2.44)

This is well-known, but we briefly sketch the proof since it is not very explicit in [18].
The property (2.43) determines a well-defined linear functional on H'/2(9A) since
every f € H'/?(DA) is the boundary trace of some u € H'(A); we use here the fact
that if vo(u1) = Yo(uz2) then ' = u; —us can be approximated in H'(A) by compactly
supported functions, so [ A (V-8u' +&-Vu' dr = 0. The linear functional defined this
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way satisfies (2.44), since for every f € H'/?(9A) there exists u such that vo(u) = f
and [|ul|g1ay < C| fll 1294y We will use (2.43)~(2.44) as follows:

® Let
S(A):={f e H'(A): Af € L*(A)},

where A f denotes the distributional Laplacian of f. Then there is a bounded linear
map (the normal derivative trace) v, : S(A) — H~1/2(9A). It has the property that
for any f € C1(A), 71 (f)(z) = va - Vf(z) at H!—almost every x € DA. The map
7 is surjective, by a straightforward application of the Lax-Milgram lemma. When
we want to indicate the dependence of v, on A, we will write v; 4.

e There is an integration by parts formula: for any § € H-Y2(dA), if f € S(A) is
such that v, (f) = @, then for all g € H'(A) we have

<9a70(9)>H*1/2(8A)><H1/2(6A) = <’71(f)770(9)>H*1/2(6A)><H1/2(8A)
:/(Af)g+Vf-ngx.
A

By a convenient abuse of notation we will denote the left hand side by the more
familiar expression [, , g9y, f dH'.

® The following version of the divergence theorem is obtained by taking g = 1 in the
preceding identity:

M) Da-120ayxm172(04) = /AAfdﬂf-

We are now ready for the proof of our main theorem.

Proof of Theorem 2.1. We break up the argument into five steps.

STEP 1: We begin by restating our problem in a form that is amenable to use of the
implicit function theorem. To find us and \s, we shall seek functions fs € H'(Q\ D),
and gs € H*(D) and a real number s such that

1+dfs z€Q\D
= 2.4
o { Yar, +095 x €D (245)

and
As = Ao + Ous (2.46)

satisfy (2.1) and the normalization (2.7). Note that in view of our formal expansion
we expect

fs=¢1+0p2+..., gs=v1+6ba+ ..., ps=A+0A+...,
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so when § = 0 we expect

fo =1, 9o =11, and pg = Ay (2.47)

The point of proceeding this way is that when our PDE (2.1) is written in terms of
15, gs, and s, there are no longer any negative powers of §. (For example, the PDE
1 Aus + Asus = 0 in the ENZ region Q\ D becomes A f5 + (Ao +dps) (1 +3fs) = 0.)

To apply the implicit function theorem, we shall break our PDE V'Eglvu(s—‘r)\gu(s =
0 into three main statements: (i) the PDE holds in D, (ii) the PDE holds in Q\ D, and
(iii) the continuity of e50,us at dD. (There are of course other conditions: us must
be continuous across 0D; J,,us must vanish at 0€2; and our normalization condition
must be imposed. These will be built into our chosen function spaces.)

A first-pass idea for proceeding would be to define a function F(d,u, f,g) such
that our PDE is equivalent to F(4, us, f5,9s) = 0, then prove existence of (us, fs, gs)
by applying the implicit function theorem. Our argument is slightly different, because
we need an additional constant c¢s to satisfy a consistency condition for the PDE in
Q\ D. Therefore we shall

(a) define a function F(4,u,f,g,¢) such that our PDE is equivalent to
F(6, us, fs,95,0) = 0; then we’ll

(b) apply the implicit function theorem to solve F'(d, us, fs, g5, cs) = 0; then finally

(c) we'll use the specific structure of F' to show that this solution has ¢s = 0.

STEP 2: We now make the plan concrete by specifying two Banach spaces X and Y
and the function F': X — Y that will be used. The space X is a subspace of

X:=CxCxS(Q\D)xSD)xC

defined by

X = {(67 Hy fvgvc) € )? such that 'Yoygz\ﬁoc) = '707D(g) s '7179\ﬁ(f)|89 =0,

/S)\Df+/l)gwd7A0 =0 and /Q\Df+/DgO}. (2.48)

We note that the restrictions defining X assure that us (determined by f, g, and § via
(2.45)) (i) does not jump across 9D, (ii) satisfies our homogeneous Neumann condition
at 0f, (iii) satisfies our normalization condition (2.7), and (iv) satisfies [, udz = 0.
The space Y is

Y :=L?(Q\ D) x H'2(8D) x L*(D). (2.49)
The function F' is defined by

Af+Xo+ 0+ f(Xo+0p)+c

F(67 /Jl/, f’ g7 C) = 81/Df - aVD (/lpd))\o + 6‘9) N (2'50)
Ag+ Xog + pu(an, +99)
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Lest there be any confusion concerning the middle component: since vp points outward
from D, 9y, f is really —v, o\ p5(f). Similarly, 0, (ta,x, + 69) is really v1,p(ta,x, +
0g). Evidently, the middle component of F' is the difference between two well-defined
elements of H~1/2(0D).

STEP 3: We will apply the implicit function theorem to get the existence of
(s, f5, 95, cs), depending analytically on 6 near 6 = 0, with pg, fo, and go given by
(2.47) and ¢y = 0. While there is a version of the implicit function theorem in the
analytic setting (see e.g. [26]), the more familiar C! version (e.g. [6, Theorem 10.2.1])
is sufficient for our purposes. Indeed, it assures the existence of (us, fs,gs,cs) with
continuous (complex) derivatives with respect to 6. We may then appeal to the fact
that such functions are complex analytic (see e.g. [6, Theorem 9.10.1]). It is of course
crucial that
F(Ov Ko, an 9o, 0) = Oa

our choices (2.47) do have this property (see Sections 2.1 and 2.2).

Since our goal is to solve F(d,25) = 0 near 6 = 0 with z = (u, f,g,¢), we must
check that (i) F is C!, and that (ii) the partial differential of F' with respect to z is
invertible at (0, zo) with zo = (10, fo, 90, 0). For (i), let us express the differential DF
at (0,1, f,g,c) as a linear map from X to Y:

DF(&,;L,f,g,c)(énu’vfagvc) = %‘t:OF(a +t57,u +t,LL,f +tf’g + tg,C+ tC)
S(p 4 fF(ho+201)) + 1(6 + 62f) + Af + fo6(No + 0p) + ¢
= —88,,9+ Oy, f — 60,9 . (2.51)
opg + f(han, +09) + Ag+ g(Ao + pd)

It is now straightforward to see that DF depends continuously (as an operator from
X to Y) upon (4,4, f,g,¢) € X. The more subtle task is point (ii). Substituting
(6, 1, fr9,¢) = (0, po, 9o, 90,0) = (0, 20) in (2.51) and taking 0 = 0, we see that the
operator to be inverted takes the subspace of X defined by § = 0 to Y, mapping

£= (i, f,9.0)
to .
. Af+e
DZF(O,zo)(,aa fﬂ g, C) = aupf . (252)

AG+ Aog + tang
So our task is to prove that for all p,q,r € Y, the linear system

Af+é=p mQ\D
Oupf=q ondD (2.53)
Ag+ Xog + Yar =7 inD
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has a unique solution (f, f,§,¢) in C x S(Q\ D) x S(D) x C satisfing

Y5 =2%0@), Yop(flea =

/Q\Df-F/gi/Jd,\o—O and /Q\Df+/9_0

and that the solution operator (the map taking (p,q,7) to (i, f,¢,¢)) is a bounded
linear map from Y to C x S(2\ D) x S(D) x C.

The execution of this task is, of course, very similar to the method by which we
found A2, ¢o, and 15 in Section 2.3. We begin by considering the first two equations
n (2.53), which give a PDE for f in the ENZ region Q\ D with a Neumann boundary
condition. For a solution to exist, the consistency condition

—/ qd%1+c'|9\b|=/ pdx
8D Q\D

must hold; therefore the solution has

(e [, am)
== pdx + qdH" |,
|Q\D< oD aD

(which is a bounded linear function of p and ¢ in the given norms). With this choice
of ¢ the function [ is undetermined up to an additive constant; as usual, we take
f= f + e where f is the unique mean-value-zero solution of the first two equations
in (2.53) and e will be determined later. Notice that linear operator taking (p,q) €
L2(Q\ D) x H~Y/2(dD) to f € S(Q\ D) is bounded.

We turn now to the third equation in (2.53). Remembering that the trace of ¢
must match that of f at dD, we see that it is to be solved with the Dirichlet boundary
condition ¢ = f at &D. Since Ay is not a Dirichlet eigenvalue of —A in D, there is a
unique solution; moreover it has the form

g =g+ etax,
where ¢ solves
A§+ Nod + Yar o =r in D, with § = f at dD. (2.54)
With the benefit of foresight, we choose

1
[\ DI+ [p¥d 5,

= { FOuptanr +/ m(Van, — 1)} (2.55)
oD D

and

1
S i r, - 2.56
Q\D| + [, 02, /Dg%m (2.56)
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We note that f is a bounded linear functional of (p, ¢,r) € Y, and it doesn’t depend on
e. Moreover, the operator taking (p,q,r) € Y to g € S(D) is linear and bounded, since
g solves a Helmholtz-type PDE in D whose source term r — fi)4 5, and Dirichlet data
f are in L2 (D) and H'Y2(dD), each depending linearly on (p,q,7) € Y. Finally, since
g depends linearly on (p,¢,r) and is independent of e, our choice of e is a bounded
linear functional of (p,q,r) € Y.

To complete the proof that our linear system is invertible, we must show that our
choices (2.55) and (2.56) assure the validity of the relations

/Q\Df'Jr/Dgzo and /Q\Df+/pgw”l’*°zo‘ (257)

To get the first, we multiply the PDE (2.54) by 4., — 1, integrate over D, integrate
by parts, and use the Dirichlet boundary condition to get

- /8 | FOutan) =0 /D i+ /D (2x, — tane) dz = /D r(bang — 1) da.

Since
[ W, = dar)do =10\ D)+ [ uy, o
D D

by the crucial consistency condition (2.9), we see that (2.55) is equivalent to

/édx:O.
D

Since f = er e and § = g + eq,5,, we conclude that

/Q\Df+/pg:e(Q\D|+/Dwd:Ao):0’

which gives the first equation in (2.57). As for the other, we have
/ _f +/ JYax, = €|\ D +/ (G%an0 + Vi n,) dz;
o\D D D

evidently, our choice of e in (2.56) is exactly the one that makes this vanish.
We conclude, by the implicit function theorem, the existence of us, fs,gs,cs
depending analytically on 6 in a (complex) neighborhood of 0, such that

F(6, ps, f5,95,cs) = 0.

STEP 4 We now prove, using the specific structure of F, that in fact ¢ = 0. Indeed,
using Green’s theorem (but not the fact that F' = 0), we have

/ 7(Af5 + Ao+ 0(ps + fs(Ao + dps)) + 05)
o\D
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=— Oup f5 AH + (Mo + 6p5)|Q\ D| + (X + dps) _ fs+cs|Q\D|. (2.58)
D o\D

Adding and subtracting some terms, the right hand side can be rewritten as

/ D (Vare + 595 — f) dH! — / Dy (bang + 695) dH!
oD oD

+ (Ao +015)[2\ DI+ 6(Ao +5M5)/ _fs+es|Q\ D,
O\D

which (applying Green’s theorem) is the same as

/ Ovp (Wan, + 095 — f5)dH — / A(axn, +095)
oD D

+ (Ao + dus) |2\ DI+ 6(Xo +5M§)/ _fo e\ DJ.
o\D

Adding and subtracting some terms and using that Ay x,+Xo%a,x, = 0, the preceding
expression can be further rewritten as

/ Ovp (Vare + 095 — fs5) dH — 5/ (Ags + (Mo + 0ps)gs + 6%, n,)
oD D
(ot m)/ Barg + 0000 + m)/ g5 + (o + 016)[2\ D
D D

+d(Ao +5M5)/ _ fs+eQ\DJ.
oD

Using now the fact that F(d, us, fs5,9s,¢s) = 0, we conclude that

(Mo + dps) / Yaxng +0(Ao + 5#5)/ g5 + (Mo + 0us) |2\ D]
D D

+06(Xo+0us) | fs+es|Q\D|=0.
Q\D

Making use of the additional relations [}, gs + [o, 5 f5 = 0 and [© \D|+ [pYax, =0,
we finally conclude that c5|Q2\ D| = 0. Thus ¢; = 0, as asserted.

STEP 5: Remembering that us, fs, and gs determine us and As via (2.45), we have
demonstrated the existence of an eigenpair (us, As) depending analytically on §. The
only remaining assertion of the theorem is that this is a simple eigenvalue, i.e. that
the eigenspace of \; is one-dimensional. This comes directly from the implicit function
theorem, which tells us that zs = (us, fs,9s,¢s) is the only solution of F(§,z) = 0
near zg = (po, fo,90,0) when 0 is sufficiently small. If the eigenspace of \s were
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multidimensional there would be more than one solution of F(d,z5) near (0, z2); so
the eigenspace is one-dimensional. O

3 Accounting for dispersion and loss

As noted in the Introduction, the dielectric permittivity of a material is generally a
function of frequency (this is known as dispersion) and it is complex-valued (since
waves decay as they propagate through materials). Some key structural conditions are
that

g(w) is holomorphic in the upper half-plane, (3.1)
¢(—w) =&(w) for all w € C, and

the imaginary part of ¢(w) is nonnegative when w is real and positive (3.3

(see e.g. Section 82 of [15]). The class of all such functions is huge. When considering a
particular material, however, a parsimonious framework is needed, and for this purpose
the Lorentz model is often used. (In particular, [16] uses such a model to simulate
silicon carbide as an ENZ material.) It has the form

e(w,7) = €oo (1 + wf%) (3.4)

2 2 _;
wi — w? —iwy

where e, wp, wo, and v are nonnegative real numbers. (In discussing the dependence
of this function on w with 7 held fixed, we shall sometimes omit the variable v, writing
£(w) rather than e(w,).) Viewed as a function of w € C, this model has two poles in
the lower half-plane; to leading order as v — 0 they are at —%’yiwo (provided wy # 0).
The Lorentz model is, roughly speaking, the simplest functional form consistent with
the general principles (3.1)—(3.3) (though it is sometimes simplified further by taking
wo = 0; this is known as the Drude model).

Dispersion is more than just a fact of life — it is in fact the reason that ENZ
materials exist. This is especially easy to see for the Lorentz model. Indeed, in the
lossless limit 4 = 0 there is a unique (real and positive) ENZ frequency

Wy = /w2 + w? (3.5)

such that e(w,) = 0. The presence of loss regularizes the singularity at w = wy, but it
leaves the picture qualitatively intact: the real part of e(w) vanishes at a y-dependent
real frequency near w,. The imaginary part of €(w) is of course strictly positive when
v > 0 and w is real; however when ~ is small it is mainly significant near wy. (See
Figure 2.)

The main result in this section, Theorem 3.1, uses a Lorentz model for egy, (though
as we discuss in Remark 3.2 our method applies more generally). We do not use a
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Fig. 2 The Lorentz model e(w,vy) = o (1 + - w)’ graphed as a function of w/wp: the

e e e
solid blue curve is the real part of e(w, ), while the dotted green curve is the imaginary part. The
horizontal orange line shows the value of €. This figure was produced using eoc = 6.7, wp/wo = 0.7,
and v/wo = .006, consistent with experimental data on silicon carbide near its resonance at frequency
wp = 2.38 x 10'3sec™! [24]. This material system was used for the simulations in [16].

specific model for €p; rather, we assume only that

ep(w) is real-valued when w is real; (3.6)
ep(ws) is positive, and ep is analytic in a neighborhood of w,; and (3.7)

for real-valued w near w,, -=[w?ep(w)] > 0.

The first condition says that the material in region D has negligible loss at frequencies
near w,. (This was assumed in [16].) The second is very routine. The third condition
is actually satisfied by any physical material, since when loss is negligible it is known
that - [we(w)] > 0 when w is real and positive (see e.g. Section 80 of [15]).
Theorem 3.1. Let egny = egnz(w,y) have the form (1.4) for some wg > 0 and wy, > 0
(which will be held fized), and let w, be the associated ENZ frequency (3.5). Suppose
further that ep satisfies (3.6)—(3.8), that

1
Ay 1= C—waaD(w*) (3.9)

is not a Dirichlet eigenvalue of —A in D, and that A, satisfies the crucial consistency
condition

2\ D]+ /D Var. da = 0 (3.10)

(which is (2.9) with Ao replaced by A, ). Then there is an analytic function w(vy) defined
in a neighborhood of 0 such that w(0) = w. and

Acprz(wn)m/ep i) =W (Me2ep(w()), (3.11)

where A5 is the function supplied by Theorem 2.1 with Ao replaced by A.. It follows
that (1.5)—(1.6) has a one-dimensional solution space when w = w(7y), spanned by the
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function us provided by Theorem 2.1 with § = egnz(w(7),7y)/ep(w(¥)). The value of
w'(0) can be expressed in terms of

a1 = Oy€pnz(ws,0) (3.12)
ag 1= %8,YEENZ(W*,O) (3.13)
a3 := Oy (W?ep(W))|w=w. (3.14)

(all of which are easily seen to be positive real numbers) by

’ . ag
_ 1
w (0) ! aj + agc2ep(w,) N (0)|71° (3.15)

where X' (0) is given by (2.24).

Before giving the proof, let us discuss a key consequence of this result. When
designing a resonator, it is natural to use materials with relatively little loss, so the
value v should be small and w(vy) = w(0) +w'(0)y = wx +w’(0)y. Since w'(0) is purely
imaginary and « is positive, we see that the real part of w(y) (which is, physically
speaking, the resonant frequency) is very near the ENZ frequency w, (the difference is
at most of order 7?). We also see that the imaginary part of w(vy) (which controls the
quality factor of the resonance — in other words the rate at which it decays) depends on
the shape of © only through |\ (0)|, and that the quality factor is optimized (the decay
rate is minimized) by choosing the shape of Q so that |\ (0)| is as small as possible.

Proof of Theorem 3.1. By the implicit function theorem, it suffices to show that when
we calculate w’(0) formally by differentiating (3.11), the calculation succeeds (without
dividing by 0). Remembering that epy,(wy, 0) = 0, differentiation with respect to v at
v = 0 gives

a1w'(0) ias
ep(ws)  ep(ws)

X (0) = azc %W (0).
Solving for w’(0) gives

. a3z
a1 — agc2ep(wy)(N(0))~1"

Since we know from (2.24) that X (0) is a negative real number, the preceding
expression is equivalent to (3.15). O

Remark 3.2. While we have assumed, for simplicity, that egng is given by a Lorentz
model, our method is clearly also applicable in other settings. Its key requirements are
that (i) €pnz = €pnz(w,y) be a function of the frequency w and a single (scalar) loss
parameter v, and that (ii) its partial derivatives at v = 0, w = w, be such that ay and
as are positive real numbers. Suppose, for example, that the permittivity of the ENZ
material has the form

_ - (w))?
e(w) =exo 1+Z( e
j=1 \&o

—w? —jwyd
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for some (positive, real) constants wg, wg, and v7, ordered so that w} < ... < wi.
By the discussion associated with Figure 2, such a material has an ENZ frequency wi
(defined as a root of e(w) = 0 when v*, ..., are all set to 0) between wy and wé“

foreachj =1,...,N—1. To get a resonance near w (for example), it is natural to use

ot
EENZ(wv"Y)_Eoo 1+Z 7

o (Wp)? —w? —iwyy

with 77 = ~7 /4. One easily checks that a1 and ay are positive, so our implicit-
function-theorem-based argument is applicable. (However our result is local: it gives a
resonant frequency w(7y) for v near 0. The argument does not show that w(7y) is defined

even for v =~1.)

4 The optimal design problem

Theorem 3.1 proves the existence of a resonance at (complex) frequency w(~y) when the
loss parameter + is sufficiently close to 0. The theorem’s hypotheses involve the area of
Q, but they are otherwise independent of its shape. However, according to eqn. (3.15)
the quality of the resonance does depend on the shape of €. Therefore it is natural to
ask how  should be chosen so as to optimize the resonance. Theorem 3.1 shows that,
to leading order in +, this amounts to asking what shape minimizes |\’ (0)].

The function A\(d) was introduced in Section 2, where our notation was A(0) = Ao
and A (0) = A;. The analysis in Section 3 used a particular choice of )y, which we
called \,.. However our optimal design problem can be considered for any choice of Ag.
Therefore we revert in this section to the notation of Section 2.

In considering this optimal design problem, we will be holding D and \g fixed. It
follows from the consistency condition that |2\ D] is also fixed. Recalling from (2.24)

that
1

M= / |V |* da
[\ DI+ [ ¥, dz Jp
and observing that the expression in front of the integral is being held fixed, we see
that the goal of our optimal design problem is to minimize the value of

1
5/ _ V| de, (4.1)
o\D

where ¢ solves (2.16), which we repeat for the reader’s convenience here:

_A¢1 - )\() in \E
Ovy®1 =0 on 90 (4.2)
aVD (bl = al/D 7de,,\o on 9D .

(Since this is a pure Neumann problem, the data must be consistent; this is assured

by the consistency condition (2.9), as we showed in Section 2.2. The solution is only
unique up to a constant, but the value of (4.1) is independent of this constant.)
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It is a standard fact that (4.1) has a variational characterization:

—1/7\V¢1|2d:r: min / 1|Vw|2—A0wozx+/ (Ouparg ) wdH" | (4.3)
Q o

2 /oD weH (\D) Ja\B 2 D

and that ¢ is optimal for RHS of (4.3). (To explain the sign of the boundary term
in the variational principle, we note that vp is the inward unit normal to (Q2\ D) at
0D.) Our optimal design problem can thus be restated as

1
sup inf / ~|Vw|? — Nw dz + / (Ovpar, ) wdH", (4.4)
0>D weHL(Q\D) Jo\D 2 oD

where it is understood that  ranges over Lipschitz domains. It might seem that
the optimization over Q should be subject to a constraint on |Q \ D], in view of
the consistency condition (2.9). Actually no such constraint is needed, since if the
consistency condition is violated then the minimization over w takes the value —oco.
(In (4.4) and throughout this section, we write inf and sup rather than min and max
when we do not mean to claim that the optimum is achieved.)

We have two main results on this optimal design problem:

® In Section 4.1 we show that if D is a ball then the optimal €2 is a concentric ball.
e In Section 4.2 we study a convex relaxation of (4.4), which is certainly an upper
bound but which is conjecturally equivalent to the unrelaxed problem.

The relationship between our relaxation of (4.4) and the unrelaxed problem is dis-
cussed in Section 4.3. As we explain there, our relaxation has a physical interpretation
involving homogenization. This use of homogenization is similar to the introduction
of composite materials in compliance optimization problems with design-independent
loading, as studied for example in [1]. While this interpretation of our relaxation
has yet to be justified rigorously for (4.4), it has been fully justified for compliance
optimization problems with design-independent loading.

4.1 Optimality of a ball for round D

Theorem 4.1. If D is a ball, then |\1| is minimized by taking Q) to be a concentric ball.
(Its radius is determined by D and Ao through the consistency condition.) Moreover,
this optimum is unique: no other Q can do as well.

Proof. Tt suffices to consider the case when D is the unit disk, since the general case is

easily reduced to this one by translation and scaling. The function 4, is then radial

and quite explicit:

Vi (1) = JO(AOT),
Jo(Xo)

where as usual Jy is the zeroth order cylindrical Bessel function of the first kind.

Since Ag is not an eigenvalue of the Laplacian in the unit disc, this is well-defined

(Jo(Xo) # 0).

re(0,1), (4.5)
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Let Ay = |Q\ D| be the area of the ENZ shell. Its value is available from the
consistency condition for the existence of ¢;:

NoAo = / D hang dH"
oD

which in view of (4.5) gives

Jo(Xo)

Jo(Ao) |

(As noted in earlier sections, we need [, 8,,,1ax, dH' > 0 in order that the area of
Q\ D be positive. This is a condition on \g, which reduces in the present setting to
J5(Ao)/Jo(Ao) > 0.)

Our claim is that the optimal  is a ball centered at the origin with area |D| +
|\ D| = m + Ag. Let us call this domain Qg; it is the ball whose radius 7o satisfies
73 = m+ Ag. The function ¢; associated with g is easily made explicit. Since it
is clearly radial, we may write ¢1 = ¢1(r), so that the boundary value problem (4.2)
becomes

A0:27T

N(T) - @ = )\()

—¢1 for r € (1,70)

¢1(ro) =0
/ Y _ J/()‘ )
1(1) =Yg, (1) = )\OJETZ)

The solution is unique up to an additive constant. The general solution of the ODE
is ¢1(r) = b+ clogr — )\0§7 and the boundary condition at 7 = rq gives ¢ = \gr3/2.
(The boundary condition at r = 1 gives no additional information; it is automatically
satisfied, as a consequence of the consistency condition.)

While the constant b is arbitrary, it is convenient to choose it so that ¢ (rg) = 0.
The resulting (now fully determined) function has the property that ¢;(r) < 0 for
1 < r < rg. (Indeed, ¢; is strictly concave and ¢(ro) = 0, so it is an increasing
function on this interval and it vanishes at r = r.) This implies in particular that

%|V¢1|2 — )\O¢1 = %(d)/l)Q — )\0@51 >0 for r € (177"0) . (46)

To demonstrate the optimality of €y, we shall use the extension of ¢; by 0,

(E [ pu(r) for 1 <r <y
1= 0 forr >y,

as a test function in the variational principle that characterizes A;.

Let Q be a competitor to g; in other words, let Q C R2 be a bounded, open set
with locally Lipschitz boundary that contains D and satisifes |Q \ D| = Ao,. It ¢1 is
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the solution of (4.2) with Q) in place of Q, then the variational principle (4.3) gives

1 N 1~ - N
—f/A VP da /A;\VW —Ao¢dx+/ (B Puang) B dH!
2 Ja\ oD 2 oD

1
= i [ Ve - dwde+ [ (@uvas ok
weH (O\D) JO\D 2 oD

< /ﬁ _ %‘V(Zﬂz - )\051 dx +/8 (8,,D¢d7,\0)(;~51 dH*. (4.7)

\D D

Since %|V($1|2 — )\051 vanishes outside Qg and is positive in Qg \ D,

1 _~ ~ 1
‘/A 7§‘V¢1|2_)‘0¢1 dx:/A - §|V¢1|2—)\0¢1 dx
O\D (Q\D)NQp
1
S / o §|V¢1|2 — )\0(,251 dI‘ . (48)
Qo\D

Combining this with (4.7) gives

1 ~ 1
5 [ IVaRdrs [ SIVeP—debide+ [ (@uyvan)on i
o\ D oD

o\

1
— 5 | vl
2 Jao\D

where in the final step we used (4.3). This confirms the optimality of Qg. To see its
uniqueness, we recall that £[V¢1|? — Aoy is strictly positive in Qo \ D. Therefore
equality holds in (4.8) only when €\ D includes the entire domain ¢ \ D. Since both
sets have area Ag, it follows that 0 \ D = Qo \ D, whence Q= Q. O

Remark 4.2. The preceding argument is simple, but perhaps a bit mysterious. The
next section offers a convex-optimization-based perspective on our optimal design prob-
lem. In general, for a convex variational problem, if one can guess the optimal test
function, then there is usually a simple proof that the guess is Tight, obtained by using
a solution of the dual problem. As we shall show in Proposition 4.4, this is indeed the
character of the argument just presented.

4.2 A convex relaxation

We turn now to the max-min problem (4.4), when D is any simply-connected Lipschitz
domain. We start by making some minor adjustments:

® Asnoted at the beginning of Section 2.1, we do not want to assume that € is simply
connected. However we want €2 to be a bounded domain, and it is therefore natural
to introduce the restriction that {2 be a subset of some fixed region B that contains
D.
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® The function 0,,1%4 ), appears in the final term of (4.4), because the PDE for ¢,
is driven by this source term at dD. However, the analysis in this section applies
equally when this function is replaced by any f € H~/2(dD) such that

- fdau' >o. (4.9)

To emphasize this, throughout the present section our source term will be f rather
than 81,]3 ’Lﬁd,)\o.

e When we replace d,,%4, by f in the PDE (4.2) defining ¢, the condition for
existence of a solution becomes

\o|Q\ D| = / faut.
oD

Obviously B must be large enough to contain 2, so we require that

|B\ D| > /\io/ancml. (4.10)

Taking these adjustments into account, our goal is to understand

1
m = sup inf / ~|Vw|? — Nw dz —|—/ fwdH", (4.11)
Q s.t.Dcacp weH (\D) Jo\D 2 oD

with the unspoken convention that € ranges over Lipschitz domains. It is convenient to
write this differently, in terms of the characteristic function of (2, viewed as a function
on B\ D that takes only the values 0 and 1 (outside and inside ) respectively):

1
m= sup inf / ~ x(x) <2|Vw|2 - )\gw) dx + fwdH'.
x(z)€{0,1} forz€ B\D weH!'(B\D) JB\D oD
x=latdD
(4.12)

Our convex relaxation of the optimal design problem is obtained by replacing the
characteristic function x (which takes only the values 0 and 1) by a density 6 (which
takes any value 0 < 6 < 1). Since enlarging the class of test functions in a maximization
can only increase the value of the maximum, it is obvious that

1
m < M = Sup inf / 0(x) (Vw2 - /\ow> dz + fwdH".
0<6(z)<1 weH (B\D)./B\D 2 oD
(4.13)

There is reason to think that m = m., as we shall explain in Section 4.3. For now,
however, we focus on the relaxed problem (4.13).

It might seem strange that in formulating the relaxed problem we have kept no
remnant of the condition that x = 1 at dD. The reason is that if y = 0 near a part
of 9D where f # 0, then the min over w is —oo (by considering test functions w
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supported in the region where x = 0). So we believe that the value of (4.12) is not
changed by dropping the constraint that y =1 at 9D.
Equation (4.13) defines my as the sup-inf of

L(w,0) = /B\DG(x) <;|Vw|2 — )\Ow> dx + - fwdH! (4.14)

We note that L is linear in 6 and convex in w, so the inf over w in (4.13) is a concave
function of 6 and the sup-inf can be viewed as maximizing a concave function of 6
subject to the convex constraint 0 < 6(z) < 1. Formally, at least, the associated dual
problem is obtained by replacing sup-inf by inf-sup:

1
inf  sup / 0(zx) <|Vw|2 — )\ow> dz + fwdH' . (4.15)
weH (B\D) 0<6(x)<1./B\D 2 oD

It is obvious that

1 1
sup / 0(x) <Vw2 - )\ow) dx = / (Vw2 - )\ow> dz
0<6(z)<1.JB\D 2 B\D \ 2 i

with the notation z; = max{z,0}, so the formal dual is equivalent to

1
inf 7/ (|Vw|2—)\ow> dz + fwdH". (4.16)
weH (B\D) JB\D \ 2 + oD

(We will show in due course that this infimum is achieved; but we note here that
the functional tends to infinity when w = c¢ is constant and ¢ — +oo, as an easy
consequence of (4.9) and (4.10).)

The following theorem justifies the preceding formal calculation; in particular, it
shows that the optimal values of our primal and dual problems are the same, and it
proves the existence of an optimal 0 for (4.13) and an optimal w for (4.16).
Theorem 4.3. Let

B={0€ L*(B\ D) such that 0 < 0(x) <1 a.c.},

and observe that L(w,0) (defined by (4.14)) is well-defined and finite for 6 € B and
w € HY(B\ D). Then

(a) there is a saddle point w € H'(B\ D) and 0 € B, in other words a pair such that
L(w,0) < L(w,0) < L(w,0)

for all § € B and w € H'(B\ D); moreover B
(b) the sup-inf (4.13) and the inf-sup (4.15) have the same value, namely L(w,0).

Proof. We will apply Proposition 2.4 from Chapter 6 of [7]. The overall framework of
that chapter involves a functional L(w, §) which is defined (and finite) as w and 6 range
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over closed convex subsets of reflexive Banach spaces. This framework applies to our

example, since w ranges over the entire space H'(B\ D) and 6 ranges over B, which is

a closed convex subset of L?(B\ D). Chapter 6 of [7] needs the additional structural

conditions that § — L(w, d) be concave and upper semicontinuous as a function of

when w is held fixed, and that w — L(w, 8) be convex and lower semicontinuous as a

function of w when 6 € B is held fixed. Our example meets these requirements.
Proposition 2.4 of [7] has two further hypotheses, namely that

(i) the constraint set B is bounded, and
(ii) there exists 8y € B such that

lim L(w,b) = oo . (4.17)

llw||—o00

While (i) is valid in our situation, (ii) is not, since it fails when we restrict attention
to constant w. To deal with this difficulty, we will proceed in two steps. In the first
we restrict 6 to lie in the smaller constraint set

E:Bm{esuchthat )\0/ 79dat:/ fd’Hl}, (4.18)
B\D 8D

which is nonempty by (4.10). For such 6, L(w,#) has the property that L(w,6) =
L(w + ¢,0) for any constant c¢; therefore it can be viewed as being defined for all
w € H'/R. (Here and in the rest of this proof, we use H! /R as shorthand for the space
HY(B\ D)/R.) In Step 1 we will show that the saddle point result from [7] applies
when 6 ranges over B and w ranges over H'/R. Then in Step 2 we will use this result
to prove the theorem.

STEP 1. To apply the proposition from [7], it suffices to show that (4.17) is valid when
we choose 0y € B to have a positive lower bound (for example, we could choose it
to be constant), if we view w — L(w, ) as a function on H'/R. This is standard;
indeed, we may take each equivalence class in H'/R to be represented by a function
with fB\ﬁw dx = 0. By Poincaré’s inequality, we may take the norm on H!/R to be
[Vwll2(5\5)- By the trace theorem and Poincaré’s inequality, the terms in L that
are linear in w are bounded by a constant times |Jw||, whereas

/ b0l V|2 d > cfjuw]?
B\D

where ¢ is a lower bound for 6y. The quadratic term dominates when |lw]| is large
enough, so (4.17) holds. With the notation

Aozi fam?
Xo Jop
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we conclude (applying the result from [7]) that

su inf L(w,0)= inf su L(w, 0); 4.19
05921 weH' /R ( ) weH' /R 03921 ( ) ( )
[ 0(z)dz=Ao [0(z) de=Ao

that there exist § (satisfying 0 < 6 < 1 and Ik fdx = Ag) and @ (in H'/R) satisfying

L(@,0) < L(,0) < L(w, 0)

for all w € H'/R and all 0 < # < 1 satisfying fB\ﬁﬂdx = Ay; and that the value of

(4.19) is L(w, 6).

STEP 2. The desired saddle point (w,0) will be (wy,6), where w; is a well-chosen
representative of w. To get started, let us examine the relationship between w and 5,
using the fact that 6 maximizes L(w, ) over all § € B. Since L(w,0) = L(w + ¢, 0)
when ¢ is constant and 6 € B, we may work with any representative wo € H(B \ D)
of w. Evidently, 9 achieves

1
sup / 0(x) <|Vw0|2 - )\Ow()) dx + fwo dH*. (4.20)
0<6<1  JB\D 2 aD

[ 0(z) dz=Ag

Since 6 doesn’t enter the boundary term, we shall be focusing in what follows on the
bulk term. To understand what conclusions we can draw from the optimality of 6, let
us assume for a moment that %\Vw0|2 — Aowp has no level sets with positive measure.
Then there is a unique zg € R such that

— 1
HxEB\D : §‘Vw0|2*)\0w0 >ZOH = Ay

and 6 must be the characteristic function of this set. In general, however, we must
allow for the possibility that %|Vw0|2 — Mwg has level sets with positive measure. To
deal with this, let

)

— 1
g(Z) = ‘{{E (S B\D : §|Vw0|2 — )\()’LU() > Z}

which is a monotone (but possibly discontinuous) function of z € R. We can then
consider two cases:

(i) If there exists zg such that g(zp) = Ao, then 0 must be the characteristic function
of the set where %|Vw0\2 — AoWp > 20.

(if) If no such z exists then there exists zy such that g(z) > Ao for z < zp, g(z) < Ao
for z > zp, and the set where %|Vwo|2 — Mwo = 2o has positive measure. In

this case § must equal 0 where %|Vwo|2 — Awp < zp and it must equal 1 where
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1|Vwo|* = Xowo > 2. (It is not fully determined by being optimal for (4.20), and
it could easily take values between 0 and 1 on the set where %|Vw0|2 — Awy = 2p;
this indeterminacy will not be a problem in what follows.)

Now consider what happens to the preceding calculation when we use a different
representative wy = wg + ¢. The argument applies equally to wy, except that the role
of zg is played by 21 = zg — Agc, since %|Vw1|2 — dowi = %|Vw0|2 — AoWp — AgC.

We now choose ¢ = zy/ Ao, so that z; = 0 and

~/1 1
/ 9<VU}1|2 - )\ow1> dr = / (VU}1|2 - )\0w1> dx,
B\D \2 B\D \ 2 i

from which it follows that

L(wy,0) > L(wy,0) for all 6 € B.

We also have

L(wy,0) < L(w,) for all w e H'(B\ D)
since wy is a representative of w. In short: (wl,g) is a saddle point of L, viewed as
a function on H*(B \ D) x B. Thus, we have proved part (a) of the theorem, with
(w,0) = (wy,6). Part (b) is also clear from the preceding arguments — though it is
not really necessary to check, since in general the existence of a saddle point (w, )
implies that the sup-inf and inf-sup are equal, and that their common value is L(w, )
(see e.g. Proposition 1.2 in Chapter 6 of [7]). O

Theorem 4.1 showed that when D is a ball and f = 0,,%4,,, the unique optimal
Q is a concentric ball. It is natural to ask whether uniqueness holds even in the larger
class of relaxed designs. The following result provides an affirmative answer — not only
when D is a ball, but also for any D such that there exists an optimal (unrelaxed)
ENZ shell. In addition, this result and its proof provide a fresh perspective on the
argument we used for Theorem 4.1.
Proposition 4.4. Let w € H'(B\ D) and € B be a saddle point for the functional
L defined by (4.14). Suppose furthermore that 6 solves the unrelazed optimal design
problem — in other words that it is the characteristic function of Qo \ D for some
connected Lipschitz domain Qg which contains D and is compactly contained in B.
Then:
(i) Qo \ D is ezactly the subset of B\ D where 5|Vw|* — \ow > 0; and
(ii) for any other saddle point (W, 5) of L, we have 0 = 0 and there is a constant ¢ such
that @ =w + ¢ in Qo \ D.

If we assume a little more reqularity — specifically, if we assume that Qg is a C?
domain, and that Vw(x) is uniformly continuous as x approaches 9 from within Qg
— we can say further that

(iii) =0 at 9.
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It follows that the constant c in part (i) is actually 0, and that W satisfies the
overdetermined boundary condition

0,w =0 and W =0 at 08. (4.21)

Remark 4.5. Our hypothesis that Vw(x) be uniformly continuous as x approaches
00 from within Qg follows from standard elliptic reqularity results if 0Qqy is smooth
enough.

Remark 4.6. We saw in Section 4.1 that when D is a ball, a concentric ball with the
right area is optimal. The proof used the associated w, which vanished at the boundary
of the concentric ball. (The PDE that W solves in Qo \ D determines it only up to an
additive constant; however we saw in the proof of Theorem 4.3 why for a saddle point
of L we need W to vanish — rather than simply being constant — on 0€q.) It is not
surprising that in a shape optimization problem, the associated PDE should satisfy an
overdetermined boundary condition. But we wonder whether, for general D, there is
really a domain Qo containing D for which there exists a solution of —Aw = g in
Q0 \ D with ,,w = f at D and the overdetermined condition (4.21) at 8. If not,
then our optimal design problem would have no (sufficiently reqular) classical solution,
though it always has a relaxed solution.

Proof of Proposition 4.4. We have assumed that () is a connected Lipschitz domain,
but we have not assumed that it is simply connected. Thus Qg \ D is a bounded and
connected domain in R? which could have finitely many “holes.”

To get started, we collect some easy observations that follow from (w,) being
a saddle point. The first is that @ must actually be in B (defined by (4.18)), since
otherwise min, _ (B\D) L(w, ) would be —oo. Our second observation is that —Aw =
Ao in 2\ D with 9, = 0 at 9Qg and d,,,w = f at dD, since W minimizes L(w, #) and
6 is the characteristic function of o\ D. Our third observation is that 3|Vw|* — Aow
cannot be constant on a set of positive measure in € \ D, since

1
A<2|Vw|2 - A0w> = |VVuw|? + X3 > 0.

(We note that, by elliptic regularity, that w is smooth in the interior of Q¢ \ D.) Our
fourth observation is that

1 — 1
§|V@|2 —Xw >0 in Qg \ D, and §|Vﬁ|2 —Xw <0 outside of Q,

since § maximizes fB\50(%\Vm2 — X\ow) dz over all 6 such that 0 < 6(z) < 1.
Assertion (i) of the Proposition is now easy: combining our third and fourth
observations, 0y must agree a.e. with the set where %|V@|2 — Xow > 0.
For assertion (ii), we argue as we did for Theorem 4.1:

~ ~

L(w,0) < L(w, 9) (4.22)
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~(1
:/ 9<|Vw|2—)\ow> dr+ | fwdH
B\D 2

< 0(1|Vw|2 - )\ow> dx +/ fwdH?
B\D 2 9
= L(w,0).

But the saddle value is unique (see e.g. Proposition 1.2 in Chapter 6 of [7]). Therefore
both inequalities in the preceding argument are actually equalities; in particular, 0
maximizes fB\B 0(3|VW|* — Aow) dz over all § such that 0 < 6(x) < 1. Arguing as
for part (i), it follows that 6 = 1 where 1|Vw|? — A\gw > 0. But by the argument of
our first observation, 0 has the same integral as 6. So 9 must vanish outside of Q.

It remains to explain W—w must be constant in Q. For this, we combine (4.22) with
the fact that # = . Substituting @ = W+ (@ —w) into the fact that L(w,0) = L(w, ),
expanding the square, and using the stationarity of the functional at w, we conclude
that fB\5§|V@ — Vw|?dz = 0. Writing this as Jooo VO = Vw|?dz = 0 and using
that Qg \ D is connected, we conclude that @ — w must be constant on this domain.

Turning now to part (iii): consider any component C of 9y (which is now assumed
to be a finite collection of C? curves). Our arguments will be local, in a vicinity of the
curve C. The points to one side belong to € \ D, where w satisfies 1|Vw|? — Aow >
0. Since we have assumed that Vw(z) is uniformly continuous as x approaches the
boundary from Qg \ D, we can pass to the limit in the inequality and use that 9,w = 0
at 0 to conclude that

1
§|Bsﬁ|2 — Xow >0 on the chosen component C, (4.23)

where 0, represents the derivative tangent to the boundary.
On the other side of C we have no PDE for w, however we know that

1
§|Vﬁ|2 —Xow <0 outside of Q. (4.24)
We shall use this to show that
1
5\&9@2 — AW <0 on the chosen component C. (4.25)

As a first step, we now show that w is uniformly Lipschitz continous in the complement
of Q. Clearly w > 0 outside of g, as a consequence of (4.24). Since w € H'(B\ D),
its L? norm is bounded, so using (4.24) once again we see that fB\STo |Vw|* do < oo.

Since we are in two space dimensions, it follows that @ uniformly bounded on B\ €.
Appealing to (4.24) once again, we conclude that

|Vw| < M outside Q,

where M is an upper bound for v/2\qw.
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Now we combine the bulk inequality (4.24) with the Lipschitz estimate to get
(4.25). Since C is a C? curve, we may use tubular coordinates for points in the com-
plement of €y that lie sufficiently close to C. We shall use t for the distance to C, and
s for the arclength parameter along a curve at constant distance ¢. To bound 0;w at
some point (sg, 0) on C, we shall estimate the difference quotient w(sg+d,0) —w(so,0)
then pass to the limit § — 0. Clearly

w(sg + 9,0) — wW(sp,0)
= [E(SO + 67 0) - E(SU + 57 t)] + [E<SO + 67 t) - m(SCH t)] + [E(SQ, t) - w(807 O)} :
The first and last terms have magnitude at most Mt. The middle term can be estimated

using (4.24) (which for a.e. ¢ holds almost everywhere in s — we naturally restrict our
attention to values of ¢ with this property). In fact,

so+0
[@W(so + d,t) —W(so,t)| < / 0sw(o,t) do

S0

s046 1/2
< 12 / (0.0)2(0, 1) do

From (4.24) we have
(0sw)%(0,t) < 200w (0,t) < 2M0T0(80,0) + O(|| + |t])
SO
So+5
/ (0.0)2(0, 1) do < 6[220W(50,0) + O(13] + [£])].

S0

Combining these estimates then sending ¢ — 0 with  held fixed, we get
[ (s0 +6,0) = W(s0,0)] < 6(2AaW(s0,0) + O(3]))""*.
Dividing by d then passing to the limit § — 0, we conclude that
_ _ 1/2
|0sw(s0,0)| < (2A0w(s0,0))"" .

Since (sp,0) was an arbitrary point on the chosen _component C, this confirms the
validity of (4.25). (We note that since w € H*(B \ D), its traces on 9 taken from
inside and outside g are the same. So while (4.23) and (4.25) were obtained by taking

limits from opposite sides of C, they estimate the same function on C.)
Combining (4.23) and (4.25), we have shown that

1
§|BSE|2 — Xow =0 on the chosen component C.
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To see that this implies w = 0, we note that since w > 0 on C, the preceding relation
can be rewritten as

OsW = /20w . (4.26)
Now recall our assumption for part (iii) that Vw(z) is uniformly continuous as z
approaches 0y from within the domain 4. This implies that when viewed as a
function on C, w is C'. Therefore the 4 sign in (4.26) cannot change at a point where
w # 0. If, at some point on C, the function w is strictly positive and (4.26) holds with
a plus sign, then w must grow as s increases. Similarly, if w is strictly positive and
(4.26) holds with a minus sign, then @ must grow as s decreases. Either way we reach
a contradiction, since C is a closed curve in the plane, and w is a C' function on this
curve. Since this argument applies to any component of 0€), we conclude that w = 0
on the entirety of 0€), and the proof is complete. O

4.3 The physical meaning of the relaxed problem

In the previous section, our convex relaxation of the optimal design problem was
introduced by replacing a maximization over characteristic functions x(x) € {0,1} by
one over densities §(z) € [0,1] (see (4.12) and (4.13)). We believe that the relaxed
problem and the original one are in a certain sense equivalent. Precisely: we believe
that an optimal 8 for the relaxed problem is the weak limit of a maximizing sequence
for the original problem. This section explains why we believe this, though we do not
have a rigorous proof.

The basic idea is simple. If {x%(z)}72; is a maximizing sequence of characteris-
tic functions for the original problem (4.12), then it is easy to show the existence of
a subsequence converging weakly to some function 6(x) that takes values in [0, 1]. If
the domains Q; = {x : xr(x) = 1} get increasingly complex — for example, if they
are perforated by many small holes — then the weak limit 6(x) represents the asymp-
totic density of material at x in the limit k& — oo. The asymptotic performance of
Q) depends on more than just the density — it is also sensitive to the microstruc-
tural geometry. To avoid discussing the microstructure explicitly, it is natural to
simply assume that for each z, the microstructure at = is optimal given the density
0(x). We believe that this is the effect of replacing x(z)(%|Vw|? — Aw) in (4.12) by
0(x)(3|Vw|? — Aw) in (4.13).

To explain the last statement, we make recourse to the theory of homogenization.
For any € > 0, let a5 (z) = xx(z) +&(1 — xx), and let w§ solve

~V - (af(z)Vwg) — Aoxx =0 in B\ D
Oypw, =0 at OB (4.27)
Ovp,wr = f at OD.

(We assume here that yj satisfies the consistency condition for existence of wy.) As
€ — 0, lim._,o wj, minimizes

1
/ Xk () (|Vw|2 - )\Ow) dx + fwdH',
B\D 2 oD
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in other words that it achieves the minimization over w in (4.12) (the proof parallels
that of Lemma 3.1.5 in [1]). The advantage of introducing ¢ > 0 is that af(z) rep-
resents a mixture of two nondegenerate materials. Our understanding of structural
optimization is rather complete in this setting: after passing to a subsequence, the
possible homogenization limits alg of af and the possible weak limits 6 of x;, are pre-
cisely those for which alg4(x) lies in the G-closure of 1 and e with volume fractions
0(z) and 1 — 0(z) respectively (see e.g. Theorem 3.2.1 in [1]). The best microstructure
is the one that maximizes the energy quadratic form (al;Vw, Vw) at given volume
fraction. This maximum is achieved by a layered microstructure, using layers parallel
to the level lines of w, which achieves the well-known arithmetic-mean bound

(aSgVw, Vw) < (0 +¢e(1 — 0))|Vw|?. (4.28)

In summary: for the positive-epsilon analogue of our optimal design problem, the
theory of homogenization provides a relaxed problem whose minimizers are precisely
the weak limits of the minimizers of the original problem. It is obtained by replacing
the term y(x)|Vw|? by the right hand side of (4.28) and the term x(z)w by 6(x)w.
In the limit € — 0, this procedure gives exactly our relaxed problem.

The estimates justifying the results just summarized are not uniform as € — 0. As
a result, the preceding argument cannot be used when € = 0. In particular, it does not
constitute a proof that our relaxed design problem is equivalent to the original one.

There is a related setting where an analogous relaxation has been justified even
for e = 0. The argument goes back to [12] and it can also be found in Section 4.2 of
[1]. To briefly explain the idea, let us consider the optimal design problem

1
sup inf / (|Vw|2 - ’y) dz Jr/ gwdH!, (4.29)
0 st.Dcocp weH (Q\D) Jo\D \ 2 oD

where v > 0 is a constant and ¢ is a function on 0D satisfying faD gdH! =0 (so
that the min over w is bounded below). This problem is very similar to (4.11), but
the optimal w, is now harmonic:

Aw, =0 inQ\D
Opow, =0 at O (4.30)
Oup,w., =g at oD.

Since (4.29) can be written as

1
sup —/ (|Vw,.<|2 + 7) dx,
Qst.Dcacs  JoD\2

it seeks the domain that minimizes [, (3|Vw.|? 4+ 7) dz. Section 4B of [12] explains
how this problem can be approached variationally. Briefly: extending ¢ = Vw, by zero
to the entire set B, letting o determine = {z : o(x) # 0}, and using the principle of
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minimum complementary energy as an alternative representation of fQ %|Vw*|27 one
finds that (4.29) is equivalent to the minimization

inf 7/ P, (0)dx
divo=0o0n B\ D B\ﬁ

o-vp=gatoD
o-vg=0at OB

with
[ ileP+rifo#0

0 ifo=0.
The relaxation of this problem is obtained by convezifying ®-. A homogenization-
based argument similar to the one presented earlier suggests (see [12]) that the
relaxation should be obtained by replacing ®., with

P, (o)

o
min ——

Jmin S +~0. (4.31)

This conclusion is correct, since (as verified in [12]) (4.31) is equal to the convexification
of @,.

Can our relaxation of (4.11) be justified using an argument analogous to the one

just summarized for (4.29)7 Perhaps, however it seems that such an argument would
require substantial new ideas.
Remark 4.7. If, as we conjecture, the relazation considered in Section 4.2 is equiva-
lent to considering “homogenized” designs, then the saddle point provided by Theorem
4.3 would have 0 < 0 < 1 in any region where homogenization occurs. Reviewing the
proof of that Theorem, we see that W would need to have %|Vﬁ|2 — XMW = 0 in such a
region.
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