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1. INTRODUCTION

MANY REAL-WORLD ALLOCATION PROBLEMS are too complex for exact optimization. For
example, it is computationally difficult—even under full information—to optimally pack
indivisible cargo for transport (Dantzig (1957), Karp (1972)), to coordinate electricity
generation and transmission (Lavaei and Low (2011), Bienstock and Verma (2019)), to as-
sign radio spectrum broadcast rights subject to legally-mandated interference constraints
(Leyton-Brown, Milgrom, and Segal (2017)), or to find welfare-maximizing allocations
in combinatorial auctions (Sandholm (2002), Lehmann, Müller, and Sandholm (2006)).
Rising to the challenge for these and many other problems, researchers have developed
fast approximation algorithms.

Approximation algorithms can be combined with pricing rules to produce truthful
mechanisms, provided that the algorithm is “monotone” (Lavi, Mu’Alem, and Nisan
(2003)). In this paper, we study the ex ante investment incentives created by such mecha-
nisms.

Suppose that one bidder can make a costly investment to change its value before partic-
ipating in a truthful mechanism. As an initial result, we show that all truthful mechanisms
using the same allocation algorithm entail the same investment incentives, so we can re-
gard the investment incentives as properties of the algorithm itself.

If an allocation algorithm exactly maximizes total welfare, then the corresponding
truthful mechanism is a Vickrey–Clarke–Groves (VCG) mechanism. For VCG mecha-
nisms, any single bidder’s investment is profitable if and only it improves total welfare
(Rogerson (1992)). In this respect, the VCG mechanisms are essentially unique. We find
that a truthful mechanism aligns a bidder’s investment incentives with welfare maximiza-
tion only if there is some set of allocations such that, for generic valuation profiles, its al-
location algorithm exactly maximizes welfare over that set. Many practical approximation
algorithms do not have this structure and, as a result, lack efficient investment incentives.

One might also hope that if an allocation algorithm approximately maximizes total wel-
fare, then it generates approximately efficient investment incentives—but we show to the
contrary that arbitrarily good approximations can have arbitrarily bad investment guar-
antees. To make this statement precise, we evaluate an algorithm’s performance on any
particular instance by the welfare it achieves divided by the maximum welfare. We re-
fer to the worst-case ratio over all instances when values are exogenous as the allocative
guarantee, and the worst-case ratio when one bidder’s ex ante investment endogenously
determines its value as the investment guarantee.1 (The investment guarantee measures
welfare net of investment costs.)

Because the investment guarantee is a worst case over instances and over investment
technologies, it is never more than the allocative guarantee. We characterize the algo-
rithms for which the allocative and investment guarantees are equal, and apply those
results to evaluate and improve upon standard approximation algorithms.

1.1. The Knapsack Example

We use the knapsack problem (Dantzig (1957)) to introduce the investment problem
and our general results. An instance of the knapsack problem is described by a list of
indivisible items, each having a positive size and value, and a capacity constraint. Each

1Our results partially extend to the case of multiple bidders who make simultaneous investments, as we
discuss in Section 2.4.6.
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TABLE I

A KNAPSACK INSTANCE, WITH CAPACITY 1. ASSUME ε > 0.

Bidder A B C

Value ε 1 0�5
Size 0�4 0�6 0�5

item’s size is no more than the capacity constraint. The problem is to select (“pack”) a set
of items to maximize the total value, subject to the sum of the item sizes not exceeding
the capacity constraint. Finding an exact optimal solution to the knapsack problem is
computationally difficult—it is NP-hard.

Suppose that each item is associated with a different bidder and that all the item sizes
are publicly observed, but the value of being packed is the bidder’s private information.
An algorithm for the knapsack problem is monotone if when any packed bidder’s value is
increased, the algorithm still packs that bidder. Any monotone algorithm can be paired
with a payment rule to create a truthful mechanism. One such payment rule—the thresh-
old rule—charges zero to each unpacked bidder and charges each packed bidder its thresh-
old price, which is the infimum of the set of values that would result in the bidder being
packed.

A packing algorithm that is careless about packing low-value items can have a good
allocative guarantee but a poor investment guarantee. For an extreme but simple exam-
ple, consider a satisficing algorithm that packs only the most valuable item when its value
is at least 99% of the sum of all values, and otherwise optimizes exactly. This algorithm
is monotone, so its threshold auction is truthful, and its allocative guarantee is 99%. Its
investment guarantee, however, is 0, as shown by the example in Table I. In this example,
suppose that bidder A can invest at a cost of 200 to raise its value from ε to 200 + 2ε.
Bidder A’s threshold price is 0, so this investment is profitable. The investment causes
the satisficing algorithm to pack just A, for net welfare of 200 + 2ε − 200 = 2ε. But the
social optimum is to invest and pack both A and B, for net welfare 1 + 2ε. Thus, despite
the 99% allocative guarantee, the investment guarantee of this algorithm is no more than
infε>0{ 2ε

1+2ε}= 0.
While the preceding example is extreme, it contains the seed of a general lesson. In

the example, increasing the value of a packed item worsens the packing of other items.
We show that a monotone algorithm’s investment performance can be worse than its al-
locative performance only if an investment that “confirms” the investor’s allocation can
reduce the total value of other participants’ allocations—an effect that we call a confirm-
ing negative externality. An algorithm that excludes confirming negative externalities—an
XCONE algorithm—always has an investment guarantee equal to its allocative guarantee.

1.2. Summary of Main Results

For our general treatment, we assume a finite set of outcomes. Each bidder’s value
is a vector vn, with element vn�o capturing bidder n’s value for outcome o. The bidder’s
possible values are a product of intervals, one for each outcome. An allocation assigns
one outcome to each bidder; there is an arbitrary set of feasible allocations. An algorithm
selects an allocation given the value profile v and the set of feasible allocations.

We allow that investments may be made under uncertainty about all the inputs to the
algorithm, including the values resulting from the bidder’s investment, the values reported
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by the other bidders, and the set of feasible allocations. Each input is a random variable
described by a function from a finite state space S. We allow any probability distribution
on S; our only restriction is that in every state, the realization is an allowable instance of
the deterministic problem. We assume that the investor selects an investment from some
finite set to maximize the investor’s own expected payoff, net of its investment cost and
the price it pays in the truthful mechanism. We compare the resulting expected welfare to
that of the optimum, which results from the ex ante efficient investment and the ex post
efficient allocation. An algorithm is a β-approximation for investment if for any instance
of the investment problem, the expected welfare of the mechanism is at least β times the
optimum welfare.

We prove that the worst case is always deterministic, so introducing uncertainty does
not affect the investment guarantee: if an algorithm is a β-approximation for investment
for all singleton state spaces, then it is also a β-approximation for investment for any finite
state space.

To study algorithm performance under certainty, we introduce two new concepts, algo-
rithmic externalities and confirming changes.

When a bidder invests under a truthful mechanism, that bidder changes its reported
value. We define the algorithmic externality from that change to be the increase (positive,
negative, or zero) in the sum of other bidders’ values for the resulting allocation, plus the
increase in the price the bidder pays. For example, if the bidder’s change in value reduces
the welfare of other bidders but also increases the bidder’s payment to the auctioneer by
a larger absolute amount, we count that as a positive externality because it increases the
total welfare of the other bidders plus the auctioneer. As we show, any two truthful mech-
anisms that use the same underlying allocation algorithm result in identical externalities.

Suppose that at some value profile (vn� v−n), the algorithm assigns outcome o to bid-
der n. A change in bidder n’s values from vn to ṽn is confirming if for any other outcome ô,
we have ṽn�o − vn�o ≥ ṽn�ô − vn�ô; that is, n’s value for the original outcome increases at
least as much as its value for any other outcome. If the inequalities were all strict, then
monotonicity of the algorithm would imply that such a value change must leave n’s out-
come unchanged, but others’ outcomes may change. With weak inequalities, it is possible
that n’s outcome changes as well, with a compensating change to n’s payments. If, given a
confirming change to n’s value, the algorithm’s allocation changes in a way that results in
a negative externality, we call that a confirming negative externality.

Our first main result establishes a necessary and sufficient condition for the invest-
ment and allocative guarantees to coincide, in the form of a bound on the magnitude of
confirming negative externalities. Suppose we start at value profile (vn� v−n) and make
a confirming change to ṽn; our condition requires that any resulting negative externality
must not exceed the slack in the allocative guarantee β∗ at the original value profile. This
bound can be hard to assess, however, because the slack depends on the optimal welfare,
which is hard to compute or characterize for many problems of interest. The second re-
sult is a corollary of the first that may be more useful because it is easier to check: if an
algorithm excludes confirming negative externalities (XCONE), then its investment and
allocative guarantees coincide.

To explore the intuition for our results, we limit attention here to packing problems, in
which bidder n faces only two outcomes—winning (being “packed”) or losing—when its
price for being packed is p.2 A preliminary observation is that the worst-case investment

2Under the assumptions listed below, the same arguments and intuition can be extended to the case with
multiple outcomes.
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performance must occur when a bidder who chooses to invest c makes zero additional
profit, because reducing c leaves the investment decision unchanged while increasing the
ratio of the algorithm’s welfare net of costs to the optimal net welfare.

Consider a bidder n who would not be packed without investment, but by investing at
cost c > 0 can increase its value to p + c, resulting in a net profit of zero. The intuitive
argument hinges on decomposing this investment into two parts. Suppose that the bidder
first has the option of investing at zero cost to raise its value just to the threshold price p.
This is a zero-profit investment, since the result is that the bidder is packed but pays its
full value p for that. Because the investment cost is zero, this results in the same welfare
as if the bidder’s value were fixed at p, so the allocative guarantee implies that welfare
is at least β∗ times the optimum. In the actual problem, bidder n can invest c > 0 to
increase its value above the threshold to p+c. Compared to raising value to the threshold,
adding this option changes neither the investor’s net payoff nor the total net welfare under
the optimal benchmark. Thus, this investment, which confirms n’s packing, reduces the
algorithm’s performance for that instance if and only if it leads to a confirming negative
externality. If that externality is large enough, it may drag total welfare below β∗ times
the optimum. For an XCONE algorithm, there are no confirming negative externalities,
so there is no instance in which total net welfare is less than when the investor’s value is
equal to the threshold, which is at least β∗ times the optimal welfare for that problem. So,
for an XCONE algorithm, investment performance is as good as allocation performance.

Some familiar approximation algorithms are XCONE; these include greedy algorithms
for the knapsack problem and the clock auction algorithm used for the 2016 Federal Com-
munication Commission’s broadcast incentive auction (with a perfect feasibility checker)
(Leyton-Brown, Milgrom, and Segal (2017), Milgrom and Segal (2020)).

XCONE is also closely related to non-bossiness. An algorithm is non-bossy if a change
in one bidder’s report that does not affect that bidder’s outcome cannot change any other
bidder’s outcome. For allocation problems with two outcomes, such as the knapsack prob-
lem, every non-bossy algorithm is XCONE. Moreover, we show that any algorithm that
takes the best output from a family of non-bossy algorithms is XCONE.3

We use our results to illuminate and repair the bad investment performance of a certain
“fully polynomial time approximation scheme” (FPTAS), that is, an indexed collection of
algorithms with parameter ε > 0 that have allocative guarantees of 1 − ε and maximum
run-times bounded by a polynomial function of ε−1 and the input length. The Briest,
Krysta, and Vöcking (2005) (henceforth BKV) FPTAS for the knapsack problem consists
of algorithms that are monotone but not XCONE. Each of the BKV algorithms fails to
be XCONE because, like the satisficing algorithm described earlier, they pack low-value
items poorly when one item has a very high value. Just as in our earlier example, this
results in the BKV algorithms having investment guarantees of zero. We show how to
modify the BKV algorithms to be XCONE—creating a FPTAS for which the allocative
and investment guarantees coincide.

1.3. Related Work

Economists have studied ex ante investment in mechanism design at least since the
work of Rogerson (1992), who demonstrated that Vickrey mechanisms induce efficient in-
vestment. Bergemann and Välimäki (2002) extended Rogerson’s finding in a setting with

3This result extends to problems with more than two outcomes under a tie-breaking condition.
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uncertainty, in which bidders invest in information before participating in an auction. Re-
latedly, Arozamena and Cantillon (2004) studied pre-market investment in procurement
auctions, showing that while second-price auctions induce efficient investment, first-price
auctions do not. Hatfield, Kojima, and Kominers (2014, 2019) extended these findings to
characterize a relationship between the degree to which a mechanism fails to be truth-
ful and/or efficient and the degree to which it fails to induce efficient investment. While,
like us, Hatfield, Kojima, and Kominers (2014, 2019) dealt with the connection between
(near-)efficiency at the allocation stage and (near-)efficiency at the investment stage, they
used additive error bounds, rather than the multiplicative worst-case bounds that are stan-
dard for the analysis of computationally hard problems. Gershkov, Moldovanu, Strack,
and Zhang (2021) studied the construction of revenue-maximizing mechanisms with ex
ante investment. Tomoeda (2019) studied full implementation of exactly-efficient social
choice rules with investment.

Our paper is not the first to study investment incentives in an NP-hard allocation setting.
Milgrom (2017) introduced a “knapsack problem with investment” in which the items to
be packed are owned by individuals, and owners may invest to make their items either
more valuable or smaller (and thus easier to fit into the knapsack). In the present paper,
we reformulate the investment question in terms of worst-case guarantees and broaden
the formulation to study truthful mechanisms for a wide class of resource allocation prob-
lems.

Our work is also naturally connected to the large literature on algorithmic mechanism
design, started by the seminal paper of Nisan and Ronen (1999). This literature considers
computational complexity in mechanism design, and explores properties of approximately
optimal mechanisms. Among these works are those of Nisan and Ronen (2007) and
Lehmann, Oćallaghan, and Shoham (2002). Nisan and Ronen (2007) showed that VCG-
based mechanisms with nearly-optimal allocation algorithms are generically non-truthful,
while Lehmann, Oćallaghan, and Shoham (2002) introduced a truthful mechanism for
the knapsack problem in which the allocation is determined by a greedy algorithm. In
addition, Hartline and Lucier (2015) developed a method for converting a (non-optimal)
algorithm for optimization into a Bayesian incentive compatible mechanism with weakly
higher social welfare or revenue; Dughmi, Hartline, Kleinberg, and Niazadeh (2017) gen-
eralized this result to multidimensional types. For a more comprehensive review of results
on approximation in mechanism design, see Hartline (2016).

There is also a literature on greedy algorithms—all of which are XCONE—which sort
bidders based on some criterion and choose them for packing in an irreversible way;
see Pardalos, Du, and Graham (2013) for a review. Lehmann, Oćallaghan, and Shoham
(2002) studied the problem of constructing truthful mechanisms from greedy algorithms;
similarly, Bikhchandani, De Vries, Schummer, and Vohra (2011) and Milgrom and Segal
(2020) proposed clock auction implementations of greedy allocation algorithms.

Finally, our concept of an XCONE algorithm is closely related to the definition of
a “bitonic” algorithm, introduced by Mu’Alem and Nisan (2008) to construct truthful
mechanisms in combinatorial auctions. Bitonicity is defined for binary outcomes; with the
restriction to binary outcomes, every XCONE algorithm is bitonic, but not vice versa.

2. MODEL AND RESULTS

2.1. Approximation Algorithms

Consider a set of bidders N and a set of outcomes O, both finite. For instance, in the
knapsack problem, the set of outcomes is {packed�unpacked}. The value of bidder n for



ALGORITHMIC MECHANISM DESIGN WITH INVESTMENT 1975

outcome o is vn�o ∈ R≥0. We write vn ≡ (vn�o)o∈O to denote n’s values, and we write v ≡
(vn)n∈N to denote a full value profile. An allocation a ∈ ON assigns one outcome to each
bidder; an denotes the outcome of bidder n.

An allocation instance (N�O�v�A) consists of a set of bidders N , a set of outcomes O,
a value profile v, and a set of feasible allocations A ⊆ ON . To simplify notation, we often
write instances as a pair (v�A), leaving N and O implicit.

The standard approach in computer science is to assess an algorithm’s worst-case per-
formance over a domain of instances. Hence, we define an allocation problem � to be a
collection of instances.

ASSUMPTION 2.1: We assume that the value profiles in � have a product structure.
That is, let Vn�o be a closed interval of R≥0 capturing the possible values that bidder n
might have for outcome o. We define Vn ≡ ∏

o∈O Vn�o and require that for each N , O,
and A, we have {v : (N�O�v�A) ∈�}= ∏

n∈N Vn.

In some settings, one outcome o ∈ O is an outside option known to be valued at 0; we
capture this with Vn�o ={0}.

Assumption 2.1 is restrictive. For example, suppose that each outcome is a bundle of
goods. If a bidder has additive valuations, then their value for a bundle is equal to the sum
of their values for the individual goods. Thus, the allocation problem composed of all and
only the instances with additive valuations does not satisfy Assumption 2.1.

An allocation algorithm is a computational procedure that takes as input the value
profile and the set of feasible allocations and then outputs an allocation. Each algorithm
induces an allocation rule, that is, a function from inputs to outputs. Practical algorithms
must run quickly, but most of our results do not depend on running time, so we often use
the term “algorithm” to refer both to the computational procedure and to the function
that it induces.

We restrict attention to deterministic allocation algorithms. Formally, an algorithm x is
a function that selects a feasible allocation for each instance (v�A) ∈�; that is, x(v�A) ∈
A.4 We denote the outcome assigned to bidder n under x by xn(v�A). We abuse notation
and identify outcomes o ∈ O with binary vectors of length|O|, with one element equal to 1
and all others equal to 0, which allows us to write the welfare of algorithm x on instance
(v�A) as

Wx(v�A) ≡
∑
n

[
vn · xn(v�A)

]
�

The optimal welfare at instance (v�A) is

W ∗(v�A) ≡ max
a∈A

{∑
n

[vn · an]
}
�

4In complexity theory, we often are not given the feasible allocations A directly, but instead only a descrip-
tion that implies which allocations are feasible. For instance, a description could specify the bidders’ sizes and
the capacity of the knapsack. In principle, algorithms for the knapsack problem could output different allo-
cations for two instances with different item sizes but the same feasible allocations. Our formulation ignores
this description-dependence, but we could easily accommodate it by specifying a function from descriptions to
feasible allocations, and defining an instance as consisting of a value profile v and a description d; none of our
results would materially change with this adjustment.
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Given some β ∈ [0�1], algorithm x is a β-approximation for allocation if, for all
(v�A) ∈ �, we have that Wx(v�A) ≥ βW ∗(v�A). We refer to the largest such β as the
algorithm’s allocative guarantee.

2.2. Truthful Mechanisms

Suppose that the bidders’ values are private information, so that the algorithm can-
not directly input each bidder n’s value vn but must instead rely on each bidder’s re-
ported value v̂n. To elicit these reports, we use a mechanism (x�p), which is a pair
consisting of an algorithm x and a payment rule p that maps any reported instance
(v̂�A) into an allocation x(v̂�A) ∈ A and a profile of payments p(v̂�A) ∈ R

N . We adopt
the sign convention that payments are made by the participants and to the auction-
eer. A mechanism is truthful if, for all instances (v�A) ∈ � and all v̂n ∈ Vn, we have
that

vn · xn(v�A) −pn(v�A) ≥ vn · xn(v̂n� v−n�A) −pn(v̂n� v−n�A)�

When can an algorithm be paired with a pricing rule to produce a truthful mecha-
nism? Algorithm x is weakly monotone (W-Mon) if, for any two instances (v�A) and
(ṽn� v−n�A), we have

[ṽn − vn] · [xn(ṽn� v−n�A) − xn(v�A)
] ≥ 0� (1)

For packing problems, we have O = {packed�unpacked}, a value for being “packed”
vn�packed ≥ 0, and an outside option with vn�unpacked = 0. In this special case, (1) reduces
to the requirement that, under x, if n is packed at (vn� v−n�A) and ṽn�packed ≥ vn�packed, then
n is packed at (ṽn� v−n�A).

A necessary condition for the existence of a pricing rule p such that (x�p) is truthful is
that the algorithm is weakly monotone—and since Vn is convex by Assumption 2.1, this is
also sufficient.5

LEMMA 2.2—Lavi, Mu’Alem, and Nisan (2003), Saks and Yu (2005): An algorithm x is
weakly monotone if and only if there exists a payment rule p such that (x�p) is truthful.

Pricing rules in truthful mechanisms can be defined in terms of threshold prices, one
for each outcome. The least value for bidder n to achieve outcome o is denoted by

τ̂n�o(v−n�A�x) = inf
vn∈Vn

{
vn�o : xn(vn� v−n�A) = o

}
and the threshold price is

τn�o(v−n�A�x) ≡ min
{
τ̂n�o(v−n�A�x)� supVn�o

}
�

Our results hold trivially if τn�o(v−n�A�x) = ∞ for some o.6 To focus on the non-
trivial case, we assume that τn�o(v−n�A�x) < ∞; since Vn�o is closed, it then follows that

5Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen (2006) provided other domain assumptions such
that weak monotonicity is sufficient.

6Observe that if τn�o(v−n�A�x) = ∞, then τ̂n�o(v−n�A�x) = ∞ and supVn�o = ∞, that is, bidder n is never
allocated outcome o and can have arbitrarily large values for o, which in turn implies that x has an allocative
guarantee of 0.



ALGORITHMIC MECHANISM DESIGN WITH INVESTMENT 1977

τn�o(v−n�A�x) ∈ Vn�o. We denote the threshold vector by

τn(v−n�A�x) ≡ (τn�o(v−n�A�x))o∈O�

The set of possible values Vn has a product structure, so we have τn(v−n�A�x) ∈ Vn.
Now, Vn is path-connected, so a standard argument using the envelope theorem yields

the following lemma (Milgrom and Segal (2002)).

LEMMA 2.3: If (x�p) is a truthful mechanism, then for each n, there exists a real-valued
function fn(v−n�A) such that

pn(v�A) = τn(v−n�A�x) · xn(v�A) + fn(v−n�A)�

Lemma 2.3 states that in a truthful mechanism, each bidder pays the threshold price
to achieve its assigned outcome plus a strategically irrelevant term that does not depend
on the bidder’s own report. Truthfulness of (x�p) implies that x assigns each bidder an
outcome that maximizes its value minus its threshold price.

2.3. Algorithmic Externalities

Given mechanism (x�p) and instance (v�A), the externality of changing n’s value from
vn to ṽn is

Ex�p

(
ṽn� (v�A)

) ≡ pn(ṽn� v−n�A) −pn(v�A)︸ ︷︷ ︸
change in n’s payment

+
∑
m �=n

vm · [xm(ṽn� v−n�A) − xm(v�A)
]

︸ ︷︷ ︸
effect on others’ welfare

� (2)

Expression (2) is the portion of n’s effect on other participants’ welfare that is not fully
reflected by n’s price.7 Equivalently, if we treat the auctioneer as the residual claimant to
any surplus or deficit of the mechanism, then (2) is the change in the sum of the payoffs
of other participants, including the auctioneer.

Lemma 2.3 implies that any two truthful mechanisms that use the same allocation al-
gorithm x have the same externalities. Consequently, we henceforth suppress the depen-
dence of Ex�p on p, writing Ex and calling this an algorithmic externality. VCG mecha-
nisms have zero externalities, so it follows that if x is exactly maximizing, then x has no
algorithmic externalities.

For an algorithm to yield efficient investment incentives, it must have zero externalities.
Suppose that bidder n changes its value from vn to ṽn. If Ex(ṽn� (v�A)) �= 0, then the
change in n’s payment does not fully capture the effect on others’ welfare. Thus, we can
find cost c ∈ R such that paying c to change n’s value from vn to ṽn is privately profitable
but not socially optimal, or socially optimal but not privately profitable.

We characterize the zero-externality algorithms. An algorithm x is maximal-in-range if
for each set of feasible allocations A, there exists an R⊆ A such that, for all v, we have

x(v�A) ∈ argmax
a∈R

{∑
n

[vn · an]
}
�

7In some parts of the economics and mechanism design literatures, the word “externality” is used to refer
just to the second term, but our definition here is faithful to the traditional Pigouvian concept of externality.
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We say that algorithm x is welfare-equivalent to algorithm x′ if for every instance (v�A),
we have Wx(v�A) = Wx′ (v�A). Note that if two algorithms are welfare-equivalent, then
they yield identical allocations except when two allocations yield exactly the same welfare.

THEOREM 2.4: Suppose that algorithm x is weakly monotone. Then x has no algorithmic
externalities (Ex ≡ 0) if and only if x is welfare-equivalent to a maximal-in-range algorithm.

Theorem 2.4 implies that it is (essentially) only VCG mechanisms that have no external-
ities, since any truthful mechanism based on a maximal-in-range algorithm is just a VCG
mechanism with restricted range.8 Some allocation problems have fast maximal-in-range
algorithms with meaningful allocative guarantees (Holzman, Kfir-Dahav, Monderer, and
Tennenholtz (2004), Dobzinski and Nisan (2007)).

Theorem 2.4 is substantially the same as Theorem 3.2 of Nisan and Ronen (2007),
except that the Nisan and Ronen (2007) version requires the possible values Vn to be
unbounded above, whereas ours allows Vn to be any product of closed intervals.

2.4. Performance Under Investment

In mechanisms with algorithmic externalities, selfish investment decisions do not always
maximize social welfare. Thus, we study the connection between algorithmic externalities
and performance guarantees under investment.

Given a truthful mechanism (x�p), we assess whether the mechanism’s allocative guar-
antee also applies to investment problems in which a single bidder, denoted ι ∈ N , can
decide ex ante whether to invest and/or what investment to make. In our formulation,
the bidder may be uncertain about what the situation will be when the mechanism is run,
including potential uncertainty as to the values that would result from each of its possible
investments, the values of the other bidders, and the feasible allocations. We compare the
expected social welfare from the bidder’s selfish investment choice and the given mech-
anism’s allocation to the expected welfare from making the ex ante efficient investment
and using the ex post efficient allocation.

We model the investor’s uncertainty using a probability space with a finite number of
states S. Each uncertain investment opportunity is a pair (νι� c) consisting of a function
νι : S → Vι and a cost c ∈ R. An investment instance specifies the set of possible invest-
ments as well as the other bidders’ values as a function ν−ι : S → V−ι and the feasible set
as a correspondence A : S⇒A.9

Formally, an investment instance (N�O�S�g� ι� I� ν−ι�A) consists of:
1. Sets of bidders N and outcomes O.
2. A finite set of states S and a probability distribution g ∈ 
S.
3. A distinguished bidder—the investor—which we denote by the Greek letter ι.
4. A finite set of investments I for ι. To represent the status quo, we require that this

set includes at least one pair (νι� c) with c = 0.10

5. A function from states to the other bidders’ values, ν−ι : S → V−ι.
6. A correspondence from states to feasible allocations, A : S ⇒ON .

8Here is an example of a weakly monotone, zero-externality algorithm that is not maximal-in-range, which
applies to the problem of selecting two auction winners from among four bidders: If all four bidders have the
same value of winning, then the algorithm selects bidders 1 and 2; otherwise, it selects a pair of bidders to
maximize welfare from the set � consisting of the other five bidder pairs. This algorithm is welfare-equivalent
to the algorithm that always selects the welfare-maximizing allocation from �.

9We do not restrict the correlations among these uncertain elements.
10Negative costs c < 0 represent disinvestments compared to the status quo.
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We require that each state s ∈ S and investment (νι� c) ∈ I together result in an instance
of the original allocation problem, that is, that (N�O�ν(s)�A(s)) ∈ �. To simplify our
notation, we write each investment instance in the form ω = (g� I� ν−ι�A), suppressing
N , O, S, and ι. (We use an overline to distinguish functions or variables related to an
investment problem.)

Suppose that the investor participates in some truthful mechanism (x�p). After an
investment is chosen and the state is realized, the investor can do no better than to re-
port the resulting value to the mechanism truthfully. Hence, its best-response investment
choice at instance ω= (g� I� ν−ι�A) is

BR(x�p�ω)

≡ argmax
(νι�c)∈I

{(∑
s∈S

g(s)
[
νι(s) · xι

(
νι(s)� ν−ι(s)�A(s)

) −pι

(
νι(s)� ν−ι(s)�A(s)

)]) − c

}
�

By Lemma 2.3, the price pι(v�A) paid by the investor ι consists of a term entirely pinned
down by the algorithm x, plus a term that does not depend on ι’s own report. Thus, for any
two truthful mechanisms that use the same algorithm, (x�p) and (x�p′), the investor ι has
the same privately optimal investments—BR(x�p�ω) = BR(x�p′�ω)—so we henceforth
suppress the payment rule argument p from BR.11

The welfare of algorithm x at investment instance ω = (g� I� ν−ι�A) is

W x(ω) ≡ min
(νι�c)∈BR(x�ω)

{(∑
s∈S

g(s)Wx

(
νι(s)� ν−ι(s)�A(s)

)) − c

}
�

We benchmark performance relative to the net welfare delivered by ex ante efficient in-
vestment and ex post efficient allocations. That is, the optimal welfare at investment in-
stance ω = (g� I� ν−ι�A) is

W
∗
(ω) ≡ max

(νι�c)∈I

{(∑
s∈S

g(s)W ∗(νι(s)� ν−ι(s)�A(s)
)) − c

}
�

The benchmark W
∗
(ω) is equal to the net welfare from selfish investment under a VCG

mechanism. Given some β ∈ [0�1], algorithm x is a β-approximation for investment if
for every investment instance ω, we have that W x(ω) ≥ βW

∗
(ω). Notably, since we are

quantifying over ι ∈ N and I, this requires the inequality to hold regardless of which
bidder is the investor and which investments are available.12 We refer to the largest such
β as the algorithm’s investment guarantee.

Adding investment opportunities cannot improve an algorithm’s performance.

PROPOSITION 2.5: If x is a β-approximation for investment, then x is a β-approximation
for allocation.

11By assuming that the investor best-responds, we are abstracting from any computational limitations that
the investor might face when there are many states.

12Our results extend naturally to the case in which some bidders are known in advance to be unable to make
investments; in that case, our necessary conditions weaken to pertain only to those bidders who can make
investments.
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PROOF: Any instance of the allocation problem (v�A) is equivalent to the instance
of the investment problem (g� I� ν−ι�A) with the singleton investment technology I =
{(νι�0)}, νι ≡ vι, ν−ι ≡ v−ι, and A≡A; the result then follows. Q.E.D.

The converse of Proposition 2.5 does not hold in general—investment opportunities
may strictly reduce the algorithm’s performance guarantee. But when is an algorithm’s
allocative guarantee equal to its investment guarantee? We now determine the answer.

2.4.1. Reduction to the Case Without Uncertainty

First, we simplify the problem by observing that, for our purposes, it is without loss of
generality to focus on the case without uncertainty. A certain investment instance ω is an
investment instance with just one state, so |S|= 1, and we abuse notation by writing such
an instance as (I� v−ι�A). An algorithm is a β-approximation for certain investment if
W x(ω) ≥ βW

∗
(ω) for any certain investment instance ω.

The next theorem states that an algorithm’s investment guarantee is unaffected by un-
certainty.

THEOREM 2.6: For any weakly monotone algorithm x and any β ∈ [0�1], x is a β-
approximation for investment if and only if x is a β-approximation for certain investment.

The intuition for Theorem 2.6 is as follows: Suppose we start from some investment
instance with uncertainty. We can construct a related generalized investment instance
where each investment is replaced by a generalized investment with the same values in
every state but a state-dependent cost that makes the realized profit in each state equal to
the original ex ante expected profit. This leaves the expected profits and expected costs
from investing unchanged, so selfish investment in the original instance yields the same
expected welfare as selfish investment in the new instance. If the algorithm x is a β-
approximation for certain investment, then in the new instance, in every state, selfish in-
vestment achieves at least a fraction β of the welfare from the ex post efficient investment
and the ex post efficient allocation. In turn, this is an upper bound for the expected wel-
fare from the ex ante efficient investment and the ex post efficient allocation in the new in-
stance, which is the same as in the original instance. It follows that x is a β-approximation
for investment.

2.4.2. Performance Under Certain Investment

Having reduced the problem with uncertain investment to the problem with certain
investment, we now derive a necessary and sufficient condition for an algorithm x to be a
β-approximation for certain investment.

We show a link between investment guarantees and algorithmic externalities. We can
simplify the problem by focusing on the externalities that result from value changes in
particular directions. Changing from vn to ṽn confirms outcome õ if

[ṽn − vn] · [õ− o] ≥ 0 for all outcomes o� (3)

Intuitively, (3) means that changing n’s value from vn to ṽn raises n’s value for õ at least
as much as it raises n’s value for any other outcome; equivalently, n’s marginal gain from
switching from o to õ does not fall. The system of inequalities (3) defines a convex cone
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with vertex at vn. If x is weakly monotone, then any change from vn to ṽn that confirms
xn(v�A) implies that

[ṽn − vn] · [xn(ṽn� v−n�A) − xn(v�A)
] = 0; (4)

this follows by combining (1) and (3), with õ = xn(v�A) and o = xn(ṽn� v−n�A). For any
truthful (x�p), type vn cannot profitably imitate ṽn and vice versa, so

vn · [xn(ṽn� v−n�A) − xn(v�A)
] ≤ pn(ṽn� v−n�A) −pn(v�A)

≤ ṽn · [xn(ṽn� v−n�A) − xn(v�A)
]
� (5)

From (4) and (5), it follows that

pn(ṽn� v−n�A) −pn(v�A) = vn · [xn(ṽn� v−n�A) − xn(v�A)
]; (6)

that is, the bidder with value vn is indifferent between reporting vn and reporting the
confirming change ṽn when facing (v−n�A).

The externalities from confirming changes reduce to a simple expression. In particular,
they are equal to the difference between the welfare yielded by the new allocation at the
old values and the welfare yielded by the old allocation at the old values.

PROPOSITION 2.7: For any weakly monotone x, any instance (v�A), and any change from
vn to ṽn that confirms xn(v�A), we have

Ex

(
ṽn� (v�A)

) =
∑
m

[
vm · [xm(ṽn� v−n�A) − xm(v�A)

]]
� (7)

PROOF: Substituting (6) into (2) yields (7). Q.E.D.

The key condition for our characterization is a lower bound on the externalities result-
ing from confirming value changes.

DEFINITION 2.8: For some β ∈ [0�1], algorithm x has β-bounded confirming external-
ities if given any instance (v�A) and any change from vn to ṽn that confirms xn(v�A), we
have

Ex

(
ṽn� (v�A)

) ≥ βW ∗(v�A) −Wx(v�A)� (8)

The inequality (8) requires the algorithmic externality of the confirming change to
exceed the lower bound, which is the negative of the slack in the allocative guarantee
at instance (v�A). Definition 2.8 is a necessary condition for an algorithm to be a β-
approximation for certain investment, as we now prove.

THEOREM 2.9: For any weakly monotone algorithm x and any β ∈ [0�1], if x is a β-
approximation for certain investment, then x has β-bounded confirming externalities.

PROOF: We prove the contrapositive. Suppose that x does not have β-bounded con-
firming externalities. Take any allocation instance (v�A), bidder n, and value change ṽn
such that (8) does not hold, so that

Ex

(
ṽn� (v�A)

)
<βW ∗(v�A) −Wx(v�A)� (9)
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We construct an investment instance with n as the investor by choosing an investment
cost c so that n is indifferent between vn at cost 0 and ṽn at cost c, and denote the resulting
investment instance by ω. By construction, it is a best response for n to choose ṽn at cost c,
so we have

W x(ω) ≤Wx(ṽn� v−n�A) − c� (10)

Moreover, the welfare of the best allocation when n chooses vn at cost 0 is no more than
the optimal benchmark at ω, so we have

W ∗(v�A) ≤ W
∗
(ω)� (11)

Combining the inequalities (10), (9), and (11) yields

W x(ω) ≤Wx(ṽn� v−n�A) − c

=Wx(v�A) + ṽn · xn(ṽn� v−n�A) − vn · xn(v�A) − c︸ ︷︷ ︸
=pn(ṽn�v−n�A)−pn(v�A) by construction of c

+
∑
m �=n

vm · [xm(ṽn� v−n�A) − xm(v�A)
]

=Wx(v�A) + Ex

(
ṽn� (v�A)

)
<βW ∗(v�A)

≤ βW
∗
(ω)�

showing that x is not a β-approximation for certain investment. Q.E.D.

We now state the converse of Theorem 2.9, that is, that Definition 2.8 is a sufficient
condition.

THEOREM 2.10: For any weakly monotone algorithm x and any β ∈ [0�1], if x has β-
bounded confirming externalities, then x is a β-approximation for certain investment.

The intuition for Theorem 2.10 is as follows: Algorithm x being a β-approximation
for investment means the welfare of x at value profile v must not be too low. We char-
acterize the exact bound, which depends on the optimal welfare only at the bidder’s
threshold value. Therefore, x is a β-approximation for investment as long as a change
from the threshold value to vn has externalities that are not too negative. Since, for any
value vn, there is value v′

n arbitrarily close to the threshold value such that the change
from v′

n to vn confirms xn(v′
n� v−n�A), having β-bounded confirming externalities is also

sufficient.
We summarize the preceding results in a corollary.

COROLLARY 2.11: For any weakly monotone algorithm x and any β ∈ [0�1], the following
statements are equivalent:

1. x is a β-approximation for investment.
2. x is a β-approximation for certain investment.
3. x has β-bounded confirming externalities.
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2.4.3. A Tractable Sufficient Condition

Corollary 2.11 characterizes the allocation algorithms that attain performance guaran-
tee β under investment. However, to check expression (8) in the definition of β-bounded
confirming externalities, we must assess the optimal welfare W ∗ at some instance. Given
that our main interest is in problems for which optimal allocations are hard to compute,
verification of that condition may be intractable, so next we introduce the following more
tractable sufficient condition.

DEFINITION 2.12: Algorithm x excludes confirming negative externalities (“is
XCONE”) if given any instance (v�A) and any change from vn to ṽn that confirms
xn(v�A), we have

Ex

(
ṽn� (v�A)

) ≥ 0�

THEOREM 2.13: For any weakly monotone algorithm x and any β ∈ [0�1], if x is XCONE
and a β-approximation for allocation, then x is a β-approximation for investment.

PROOF: Take any (v�A) and any change from vn to ṽn that confirms xn(v�A). We have

Ex

(
ṽn� (v�A)

) ≥ 0 ≥ βW ∗(v�A) −Wx(v�A);
the first inequality follows because x is XCONE and the second inequality follows because
x is a β-approximation for allocation. Thus, we see that x has β-bounded confirming
externalities. By Corollary 2.11, x is a β-approximation for investment. Q.E.D.

Note that our results do not apply to non-deterministic algorithms, which randomize
over multiple feasible allocations and have guarantees that hold only in expectation, nor
to algorithms that apply to restricted value profiles, as our next example shows.

EXAMPLE 2.14: Consider the randomized algorithm that packs a knapsack optimally
or leaves it empty, each with probability 1/2. This algorithm is a 1/2-approximation for
allocation and has no externalities, so it is XCONE. Suppose there is just one bidder who
can choose value 0 at cost 0 or value 3 at cost 2. In the threshold auction based on this
approximation algorithm, the bidder will find that it is not profitable to invest, so the net
welfare will be 0. But it is socially optimal for the bidder to invest and be packed, for net
welfare 1. Thus, the randomized algorithm’s investment guarantee is 0. If we treat this as
a deterministic algorithm that can choose between packing an item or half the item with
half the value, the same analysis shows that our result does not apply to problems with
restricted value domains.

2.4.4. Relating XCONE to Non-Bossiness

Our XCONE condition is related to the standard mechanism design concept of non-
bossiness. Algorithm x is non-bossy if having xn(ṽn� v−n�A) = xn(v�A) implies that
x(ṽn� v−n�A) = x(v�A); that is, if changing n’s value does not change n’s outcome, then
it must not change others’ outcomes, either. Algorithm x is consistent if (4) implies that
xn(ṽn� v−n�A) = xn(v�A); this holds, for instance, if whenever bidder n is indifferent be-
tween several outcomes at the threshold prices, the algorithm breaks ties according to
some fixed order on outcomes.

PROPOSITION 2.15: In packing problems, every algorithm is consistent.
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PROOF: We prove the contrapositive. Suppose xn(ṽn� v−n�A) �= xn(v�A); in a pack-
ing problem, this implies that ṽn�packed �= vn�packed. Without loss of generality, suppose n is
packed under xn(ṽn� v−n�A) and not packed under xn(v�A). Then the expression in the
left-hand side of (4) is equal to ṽn�packed − vn�packed, which is non-zero (and hence (4) does
not hold). Q.E.D.

PROPOSITION 2.16: If x is weakly monotone, consistent, and non-bossy, then x is XCONE.

PROOF: Because x is weakly monotone, any change from vn to ṽn that confirms
xn(v�A) implies (4). Next, because x is consistent and non-bossy, (4) implies that
x(ṽn� v−n�A) = x(v�A). Thus, we have

0 =
∑
m

vm · [xm(ṽn� v−n�A) − xm(v�A)
] = Ex

(
ṽn� (v�A)

)
�

where the final equality follows from Proposition 2.7. Q.E.D.

2.4.5. Combinations of XCONE Algorithms

A standard technique for addressing computationally difficult allocation problems is to
run several candidate algorithms and select the best of their solutions; this can yield a
better allocative guarantee than for each algorithm individually. However, the resulting
algorithm may be bossy, even if the candidate algorithms are non-bossy.13 By contrast, if
the candidate algorithms are XCONE, then the resulting algorithm is XCONE.

PROPOSITION 2.17: LetX be a collection of weakly monotone XCONE algorithms. If y is
a weakly monotone algorithm that at each instance (v�A) ∈� outputs a welfare-maximizing
allocation from the collection {x(v�A)}x∈X , then y is XCONE.14

PROOF: Consider any instance (v�A) and any ṽn that confirms y(v�A). Let x ∈ X be
such that y(v�A) = x(v�A). Because x is weakly monotone and XCONE, Proposition 2.7
implies that

0 ≤ Ex

(
ṽn� (v�A)

) =
∑
m

vm · [xm(ṽn� v−n�A) − xm(v�A)
]; (12)

hence, we have∑
m

vm · ym(v�A) =
∑
m

vm · xm(v�A)

≤
∑
m

vm · xm(ṽn� v−n�A) ≤
∑
m

vm · ym(ṽn� v−n�A)� (13)

13To see this, consider an allocation problem with three bidders; bidder n’s value for being packed is vn�packed

and its value for not being packed is vn�unpacked = 0. Algorithm x packs bidders 1 and 2 if v2�packed + 3 > v3�packed

and packs bidders 1 and 3 otherwise. Algorithm x′ always packs just bidder 3. Let x′′ select the best solution
from x and x′. When v1�packed = 1, v2�packed = 2, v3�packed = 4, x′′ packs bidder 3, but if we raise v3�packed to 8,
then x′′ packs bidders 1 and 3. Thus, while x and x′ are non-bossy, x′′ is bossy—yet all three algorithms are
XCONE.

14Our necessary and sufficient condition, Definition 2.8, also has this property. That is, if we replace the sup-
position that every algorithm in X is XCONE with the supposition that every algorithm in X has β-bounded
confirming externalities, then a parallel proof yields the conclusion that y has β-bounded confirming external-
ities.



ALGORITHMIC MECHANISM DESIGN WITH INVESTMENT 1985

where the first inequality follows from (12), and the second uses the definition of y . Re-
arranging (13) yields

0 ≤
∑
m

vm · [ym(ṽn� v−n�A) − ym(v�A)
] = Ey

(
ṽn� (v�A)

)
�

where the equality follows from Proposition 2.7 because y is weakly monotone. Q.E.D.

Proposition 2.17 assumes that y is weakly monotone. Yet weak monotonicity of every
algorithm in X does not necessarily imply weak monotonicity of y , even though y is a
welfare-maximizing selection from X (see Example 2.19 below). One other advantage of
XCONE algorithms is that such a y does inherit weak monotonicity from X when there
are only two outcomes.

PROPOSITION 2.18: Suppose that |O|= 2, and let X be a collection of weakly monotone
XCONE algorithms. If y is an algorithm that at each instance (v�A) ∈ � outputs a welfare-
maximizing allocation from the collection {x(v�A)}x∈X , then y is weakly monotone.

Proposition 2.18 does not generalize to |O|> 2. Indeed, there exist pairs of candidate
algorithms, both weakly monotone and XCONE, such that the resulting y is not weakly
monotone—as the following example illustrates.

EXAMPLE 2.19: Consider an allocation problem with two bidders and three outcomes,
and suppose that V1 = [0�4] × [0�4] ×{0} and V2 ={(5�0�0)}. We suppose that algorithm
x always allocates outcome 2 to bidder 1 and outcome 3 to bidder 2, while algorithm x̃
allocates outcome 1 to both bidders if v1 ≥ 1 and allocates outcome 3 to both bidders
otherwise. Both x and x̃ are weakly monotone and XCONE. Let y be an algorithm that
outputs a welfare-maximizing allocation from the set {x(v1� v2)� x̃(v1� v2)}. Under algo-
rithm y , bidder 1 gets outcome 2 when v1 = (0�1�0) and outcome 1 when v1 = (2�4�0),
so y is not weakly monotone.

2.4.6. Allowing Multiple Investors

Suppose that each bidder n has a finite set of feasible investments In and, as before, an
investment consists of a function νn : S → Vn and a cost c ∈ R. Suppose that all bidders
simultaneously choose investments, knowing that in each state s ∈ S, the resulting alloca-
tion and payments will be x(ν(s)�A(s)) and p(ν(s)�A(s)), for truthful mechanism (x�p).
The resulting investment game has a Nash equilibrium, possibly in mixed strategies.

Even for VCG mechanisms, not every Nash equilibrium of the investment game is effi-
cient. Complementarities between the bidders can result in inefficient Nash equilibria, as
the following example illustrates.

EXAMPLE 2.20: Consider a packing problem with three bidders. It is feasible to pack
any single bidder, or to pack bidder 2 and bidder 3 simultaneously. There is only one
state and so no uncertainty: |S|= 1. Bidder 1 has a status quo value 10 for being packed,
that is, its technology is the singleton I1 = {(10�0)}. Bidders 2 and 3 have the technology
I2 = I3 = {(0�0)� (9�1)}. Total welfare is maximized if both bidders 2 and 3 choose the
investment (9�1), which leads to both being packed. However, if only one of them invests,
then it is optimal to pack just Bidder 1. Under the VCG auction, there are two pure
strategy Nash equilibrium investment profiles. In one Nash equilibrium, no bidder invests
and Bidder 1 is packed, for net welfare 10. In the efficient Nash equilibrium, both Bidders
2 and 3 invest and both are packed, for net welfare 16.
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Nevertheless, VCG mechanisms satisfy a different efficiency criterion: Conditional on
any belief about the strategies of the other bidders, every best response for bidder n max-
imizes interim social welfare net of bidder n’s investment costs.

Our results extend this observation to include approximate efficiency. Any best re-
sponse of bidder n to its belief about the other bidders’ investments yields social welfare
(net of n’s investment costs) that is at least a fraction β of what would be achieved by the
interim efficient investment for bidder n and the ex post efficient allocation.

PROPOSITION 2.21: Let h ∈ 
(I−n), with h(ν−n) denoting the marginal distribution. Let
(νn� c) ∈ In be a best response for bidder n to the belief h given algorithm x. If x has β-
bounded confirming externalities, then(∑

ν−n

h(ν−n)
∑
s∈S

g(s)Wx

(
νn(s)� ν−n(s)�A(s)

)) − c

≥ β max
(ν′

n�c
′)∈In

{(∑
ν−n

h(ν−n)
∑
s∈S

g(s)W ∗(ν′
n(s)� ν−n(s)�A(s)

)) − c′
}
�

PROOF: Let us define a new single-investor instance that is payoff-equivalent for n,
incorporating n’s belief h using an expanded state space S×S′ and functions ν̂−n : S×S′ →
V−n. For each of bidder n’s investments (νn� c) ∈ In, we define a corresponding investment
(ν̂n� c) with ν̂n(s� s′) ≡ νn(s), and similarly define Â(s� s′) ≡ A(s). By Corollary 2.11, if x
has β-bounded confirming externalities, then the desired inequality follows. Q.E.D.

3. APPLICATION: KNAPSACK ALGORITHMS

The knapsack problem is a special case of the packing problem, in which each bidder n
has possible values Vn�packed = [0�∞) and Vn�unpacked = {0}, each bidder has size qn ≥ 0, and
the “knapsack” has capacity Q.

For knapsack problems, we abuse notation and use vn to denote vn�packed—i.e., bidder n’s
value for being packed—since vn�unpacked ≡ 0 uniformly. Without loss of generality, we also
suppose that no bidder’s size is more than Q.15 The set of feasible allocations is any subset
of bidders K ⊆ N such that

∑
n∈K qn ≤ Q. As before, let A denote the set of feasible

allocations and let a be an element of A.
The knapsack problem is NP-Hard (Karp (1972)); there is no known polynomial-time

algorithm that outputs optimal allocations (Cook (2006), Fortnow (2009)).

3.1. Greedy Algorithms

Dantzig (1957) suggested applying a greedy algorithm to the knapsack problem. For-
mally, we have:

ALGORITHM—GREEDY: Sort bidders by the ratio of their values to their sizes so that

v1

q1
≥ v2

q2
· · · ≥ v|N|

q|N|
� (14)

15Bidders with qn >Q can be deleted with no substantial change in an algorithm’s runtime.
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Add bidders to the knapsack one by one in the sorted order, so long as the sum of the
sizes does not exceed the knapsack’s capacity. When encountering the first bidder that
would violate the capacity constraint, stop.

Although the GREEDY algorithm performs well on some instances—including ones for
which all bidders are small in relation to the capacity of the knapsack—its allocative guar-
antee is 0, as illustrated by the following example.

EXAMPLE 3.1: Consider a knapsack with capacity 1 and two bidders. For some arbi-
trarily small ε > 0, let v1 = ε, q1 = ε

2 , v2 = 1, and q2 = 1. The GREEDY algorithm picks
bidder 1 and stops, whereas the optimal algorithm picks bidder 2. Thus, the worst-case
performance of GREEDY is no better than ε of the optimum.

There is a standard modification of the GREEDY algorithm that improves the allocative
guarantee for the knapsack problem (Williamson and Shmoys (2011, p. 77)). Let us define
the “smart greedy” algorithm as follows.

ALGORITHM—SMARTGREEDY: Run the GREEDY algorithm. Compare the GREEDY
algorithm’s packing to the packing that just packs the most valuable individual bidder,
and output whichever has higher welfare.

SMARTGREEDY’s allocative guarantee is much better than GREEDY’s.

PROPOSITION 3.2: SMARTGREEDY is a 1
2 -approximation for allocation in the Knapsack

problem.

PROOF: For any instance ω, order the bidders by value/size as in (14). If GREEDY packs
all bidders, then trivially W ∗(ω) = WSmartGreedy(ω). Otherwise, let k be the lowest index
of a bidder not packed by GREEDY and let K be the index of a bidder with maximum
value. Optimal welfare W ∗(ω) is no more than the best solution to the linear program
in which we can pack fractional bidders, which—given that we have sorted the bidders in
descending order of value-to-size—in turn is no more than

∑k

n=1 vn. It follows that

W ∗(ω) ≤
k∑

n=1

vn

=WGreedy(ω) + vk

≤WGreedy(ω) + vK

≤ 2 max
{
WGreedy(ω)� vK

}
= 2WSmartGreedy(ω);

hence, we see that SMARTGREEDY is a 1
2 -approximation for allocation, as desired. Q.E.D.

SMARTGREEDY is bossy, as our next example shows.

EXAMPLE 3.3: Consider the knapsack instance with capacity 10 and three bidders; with
v1 = 2, v2 = 1, v3 = 8, q1 = q2 = 1, and q3 = 9. At this instance, SMARTGREEDY packs just
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bidder 3. If bidder 3 instead reports v3 = 10, then SMARTGREEDY instead packs bidder
1 and bidder 3. Thus, we see that SMARTGREEDY is bossy. However, the adjustment just
described is a confirming positive externality; raising the value of a packed bidder has
strictly increased the welfare of other bidders.

The GREEDY and SMARTGREEDY algorithms are XCONE.

PROPOSITION 3.4: For the knapsack problem, the GREEDY algorithm and the SMART-
GREEDY algorithm are both XCONE.

PROOF: Consider the bidders sorted by the GREEDY algorithm as in (14), and suppose
the GREEDY algorithm packs bidders 1 through k. If we raise the value of a packed bidder
(without changing sizes), then the GREEDY algorithm again packs bidders 1 through k.
If we lower the value of an unpacked bidder, then the GREEDY algorithm terminates no
earlier than before, packing at least bidders 1 through k. The only confirming externalities
are positive ones; hence the GREEDY algorithm is XCONE.

Meanwhile, the algorithm that selects the most valuable single bidder is monotone and
non-bossy and so is XCONE by Proposition 2.16, as well. Thus, by Proposition 2.18, the
SMARTGREEDY algorithm is monotone, and so by Proposition 2.17 it is XCONE. Q.E.D.

Proposition 3.2, Proposition 3.4, and Theorem 2.13 together yield the following corol-
lary.

COROLLARY 3.5: The SMARTGREEDY algorithm is a 1
2 -approximation for investment.

3.2. Fully Polynomial-Time Approximation Schemes

State-of-the-art knapsack algorithms that run in polynomial time have stronger alloca-
tive guarantees than the SMARTGREEDY algorithm. Are these algorithms XCONE, or if
not, can fast XCONE algorithms be constructed that match their performance? Or does
restricting attention to XCONE algorithms force us to accept slower speeds or poorer
allocative guarantees? We answer these questions shortly.

Our construction in the sequel can be read at two different levels. To follow in full
detail, readers should be acquainted with the theory of computation—in particular with
how instances are represented as input strings and how running time is defined as a func-
tion of input size.16 Alternatively, readers can follow the proofs that our new algorithms
are XCONE while observing that they inherit their allocative guarantees and polynomial
runtimes from the other algorithms used in the construction.

As is standard for computational running-time analyses, we now assume that the bid-
ders’ values are non-negative integers.17 Under this assumption, the input size is polyno-
mial in the logarithm of the highest value log(maxn{vn}) and the number of bidders |N|.18

We have used the SMARTGREEDY algorithm for illustration, but there are fast knap-
sack algorithms that do better. In particular, there exist families of algorithms indexed
by parameter ε > 0, that yield (1 − ε)-approximations for allocation, with running time

16These formalisms can be reviewed in the Arora and Barak (2009, pp. 9–37) textbook.
17Real numbers can take infinitely many bits to represent, complicating statements about input size. But

note that the restriction to non-negative integers is only needed for our running-time analysis—the algorithm
works fine for non-integral values, which is crucial for satisfying our product structure assumption.

18It is conventional to take the logarithm with base 2, but this statement is true for any base.
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polynomial in ε−1 and the input size. Such a family is called a fully polynomial-time ap-
proximation scheme (FPTAS).

Briest, Krysta, and Vöcking (2005) (henceforth BKV) constructed a weakly monotone
FPTAS for the knapsack problem. Our construction modifies two steps in theirs to ensure
that the algorithms have the XCONE property in addition to being a weakly monotone
FPTAS.

Suppose we have some allocation instance with value profile v, and our desired alloca-
tive guarantee is (1 − ε). The first step of the BKV construction is to round each value to
a grid. We define a family of modified value profiles, one for each non-negative integer

 ∈ N, essentially, censoring values above 2
+1 and then rounding the values to a grid with
step size γε�
 := ε2


|N|. Formally, for given ε > 0 and 
, let us define a modified value profile
vε�
 as follows:

1. v′
n := min{vn�2
+1} (for all n).

2. vε�
n := �v′
n/γ

ε�

 · γε�
 (for all n).
An exact optimum for the modified values vε�
 can be computed in polynomial time (for

the textbook algorithm, see Williamson and Shmoys (2011, pp. 65–68)).
Let x∗(ṽ) be any selection from the set of optimal allocations at value profile ṽ (im-

plicitly, given the feasible allocations A), that is, x∗(ṽ) ∈ argmaxa∈A{
∑

n[ṽn · an]}. Given
parameter ε > 0, the BKV allocation rule (henceforth the BKV rule) selects an alloca-
tion in the infinite set {x∗(vε�
)}
∈N that maximizes performance according to the modified
values, that is, an allocation in argmax
{

∑
n[vε�
n · x∗

n(vε�
)]}. One needs to search only a
finite number of non-negative integers 
 to find the desired maximum, because, for large
enough 
, all the modified values round to 0. Combining the preceding steps, we obtain
an algorithm that computes the BKV rule in polynomial time.

PROPOSITION 3.6—Briest, Krysta, and Vöcking (2005): The BKV rule is weakly mono-
tone and a (1 − ε)-approximation for allocation, and moreover, it can be computed in
poly(ε−1�|N|� log(maxn{vn})) time.

Despite the appealing properties described in Proposition 3.6, the BKV rule has con-
firming negative externalities because a large investment can make only large values of

 relevant in the preceding computation, reducing the total welfare of the other bidders.
For sufficiently large investments, this negative confirming externality can be arbitrarily
bad, as we now state formally.

PROPOSITION 3.7: For all δ > 0, there exists ε < δ such that the BKV rule with parameter ε
has an investment guarantee of 0.

The proof of Proposition 3.7 uses an example that mimics the satisficing example from
the Introduction, but using the more complicated FPTAS algorithm. The two examples
share these key properties:

1. When bidder 1 does not invest, its value is very low so that nearly the entire value is
derived from the packing of other bidders.

2. When bidder 1 does invest, its value becomes very high but it incurs an equally high
cost, so the investment is barely profitable. The algorithm then packs bidder 1 but
obtains almost no value from the other bidders, so the value of the packing net of
investment cost falls to zero.

Nevertheless, we can construct a XCONE FPTAS by modifying the BKV rule in two
ways. First, instead of defining x∗ to be an arbitrary maximizer when there are multiple
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maximizers, we limit the selection so that we never pack any bidders whose modified
values are exactly 0, and we break ties among maximizers using a strict ordering. The
resulting x∗ is non-bossy. Second, where the BKV rule selects an allocation in the family
{x∗(vε�
)}
∈N that maximizes welfare using the modified values

∑
n[vε�
n · an], we instead

select an allocation in the same family that maximizes welfare using the actual values∑
n[vn · an]. For any parameter ε > 0, we use x̆ε to denote the resulting allocation rule.

PROPOSITION 3.8: Allocation rule x̆ε is XCONE, weakly monotone, and a (1 − ε)-
approximation for allocation.

PROOF: Let us define the allocation rule

x̆ε�
(v) ≡ x∗(vε�
)�
The allocation rule x∗ as modified remains weakly monotone, and the censoring and
rounding operations are monotone transformations, so x̆ε�
 is weakly monotone. More-
over, x∗ as modified is non-bossy, so x̆ε�
 is non-bossy. Thus, x̆ε�
 is XCONE by Proposi-
tion 2.15 and Proposition 2.16.

Now, x̆ε chooses the best output from the collection {x̆ε�
(v)}
∈N, so x̆ε is weakly mono-
tone by Proposition 2.18. Next, applying Proposition 2.17 yields the conclusion that x̆ε is
XCONE.

The BKV rule is a (1 − ε)-approximation for allocation and chooses the allocation
from the collection {x̆ε�
(v)}
∈N that maximizes welfare under the modified values. The
allocation x̆ε(v) is selected from the same collection to maximize welfare under the actual
values, so it achieves a weakly higher welfare than the BKV rule. Hence x̆ε is a (1 − ε)-
approximation for allocation. Q.E.D.

COROLLARY 3.9: Allocation rule x̆ε is a (1 − ε)-approximation for investment.

Moreover, since x̆ε is computed by tweaking the BKV algorithm, it inherits BKV’s poly-
nomial time property, resulting in a FPTAS.

PROPOSITION 3.10: Allocation rule x̆ε can be computed in poly(ε−1�|N|� log(maxn{vn}))
time.

Proposition 3.8 and Proposition 3.10 demonstrate that good investment guarantees and
efficient computation are sometimes compatible: there is a knapsack FPTAS that achieves
both. Although the BKV FPTAS and our modification both run in polynomial time, ours
requires additional steps: our FPTAS is slower than the BKV FPTAS. Further details are
in the proof of Proposition 3.10.

We have focused on the knapsack problem for ease of exposition, but BKV showed how
to construct a monotone FPTAS for a range of weakly NP-complete problems, such as
job scheduling with deadlines and the constrained shortest-path problem.19 Our method
adapts easily to convert the BKV FPTAS to a XCONE FPTAS for those problems as well.

19If an allocation problem is NP-complete, but one can find an optimal allocation with running time polyno-
mial in the numeric value of the largest integer in the input, then it is called “weakly NP-complete.” Note that
such an algorithm might still run in time exponential in the length of the input.
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4. DISCUSSION

Mechanism design analysis in economics has traditionally focused on mechanisms that
exactly optimize some objective like welfare, revenue, or consumer surplus, neglecting
issues of computational hardness. Yet exact optimization is tractable only for small prob-
lems or problems with special structure.

Practical mechanisms without optimization can be created by using the large corpus of
fast approximation algorithms developed by computer scientists, but doing so raises new
questions. Approximation algorithms have heretofore been designed for short-run prob-
lems in which participants’ values are fixed exogenously, but in practice, participants can
often make ex ante investments that alter their values. In this paper, we study investment
incentives in a class of environments in which there is a finite number of outcomes for
each bidder and the bidder’s possible values lie in a product of intervals. We asked three
general questions:

1. Can mechanisms based on (deterministic) approximation algorithms avoid distorting
participants’ investment incentives as VCG mechanisms, based on optimization, do?

2. When do such mechanisms have the same allocative and investment guarantees?
3. Is there a trade-off between an algorithm’s speed, its allocative guarantee, and the re-

quirement that its performance extends to the case when an agent can invest?
To frame the first question, we began by showing that the externalities from any truthful

mechanism depend only on the algorithm, and not on which prices are used to promote
truthful reporting. For that reason, we call these “algorithmic externalities.” Then, for the
first question, we find a negative answer: unless the algorithm mimics welfare maximiza-
tion on some possibly limited set of allocations, there are necessarily non-zero externali-
ties that can cause privately profitable investments to reduce welfare or welfare-increasing
investments to be privately unprofitable.

Our analysis of investment guarantees hinges on a new category of externalities that we
dub “confirming” algorithmic externalities. These arise when a change in a bidder’s report
that raises the relative value of its outcome results in an externality to other bidders. We
show that an algorithm’s worst-case allocative guarantee extends to become an investment
guarantee if and only if its confirming negative externalities are not too large. That con-
dition, however, can be hard to verify, so we also offer a sufficient condition—XCONE—
that can be easier to check. An XCONE algorithm is one that excludes confirming
negative externalities, but may have confirming positive externalities. We show that for
some algorithms for the knapsack problem including GREEDY and SMARTGREEDY, the
XCONE condition can be checked and verified without much difficulty. However, the
XCONE condition also fails for some algorithms with very good—even arbitrarily good—
performance for the short-run allocation problem.

Towards the third question, we study one particular FPTAS for the knapsack problem,
modifying it with investment incentives in mind. The result is a new XCONE FPTAS—
a collection of algorithms that, for every ε, is XCONE, always achieves at least a 1 − ε
fraction of the optimum, and runs in time that is polynomial in the size of the input and
ε−1.

More broadly, there is a long tradition in economics of studying the performance of
a competitive equilibrium, which assumes that all decisions, short-run and long-run, are
guided by optimization. Because some problems are too complex for exact optimization,
it can be valuable to study economies in which approximation algorithms replace opti-
mization. As we have shown, investment incentives in economies based on approximation
algorithms can differ sharply from economies with full optimization. Approximations can
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also affect how participants understand mechanisms in practice, create new opportuni-
ties for coordination or collusion, and influence post-auction resale markets. Given the
close connection between weakly monotone algorithms and truthful mechanisms, it seems
possible—and important—to analyze how these and other economic properties of mech-
anisms reflect properties of their underlying algorithms.

APPENDIX: PROOFS OMITTED FROM THE MAIN TEXT

Preliminaries and Notation

Before getting into the proofs, we introduce a few notations and conventions. The value
profile for bidders other than n, v−n; the set of possible allocations, A; the algorithm, x;
and the probability distribution, g, usually do not change within a given proof. Therefore,
we often suppress the dependence on these parameters to ease notation (see Table A.I).

Meanwhile, truthfulness of the mechanism (x�p) implies that for every allocation in-
stance (v�A), x assigns each bidder n an outcome that maximizes its value minus its
threshold price. We call this maximum the bidder’s normalized utility and denote it as
follows:

un(v�A�x) ≡ [
vn − τn(v−n�A�x)

] · xn(v�A) = max
o∈O

{
vn�o − τn�o(v−n�A�x)

}
�

The normalized utility corresponds to the bidder’s utility in the mechanism with prices
pn(v�A) = τn(v−n�A�x) ·xn(v�A); other truthful mechanisms may shift prices and utility
by a strategically irrelevant additive term. By construction, we have un(v�A�x) ≥ 0.

We extend the normalized utility notation u to the case of investment as follows:

uι

(
(vι� c)� v−ι�A�x

) ≡ max
o∈O

{
vι�o − τι�o(v−ι�A�x)

} − c;
uι(I� v−ι�A�x) ≡ max

(vι�c)∈I

{
uι

(
(vι� c)� v−ι�A�x

)}
�

This allows us to talk about normalized utility for an investor facing a cost or a set of
investment opportunities.

TABLE A.I

CORRESPONDENCE TABLE FOR THE SIMPLIFIED/SUPPRESSED NOTATION WE OFTEN USE IN THIS SECTION.

Notation Description Simplified Notation

x(vn� v−n�A) Allocation of algorithm x x(vn)
Wx(vn� v−n�A) Welfare of algorithm x Wx(vn)
W ∗(vn� v−n�A) Welfare of the optimal algorithm W ∗(vn)
BR(x�g� I� v−n�A) Best response for the investor BR(x� I)
τn(v−n�A�x) Threshold price τn
un(vn� v−n�A�x) Normalized utility of bidder n un(vn)
uι((vι� c)� v−ι�A�x) Normalized utility of bidder ι uι(vι� c)
uι(I� v−ι�A�x) Normalized utility of bidder ι uι(I)
pn(vn� v−n�A) Price paid by bidder n pn(vn)
Ex(ṽn� (v�A)) Externality from changing vn to ṽn Ex(ṽn� vn)
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Proof of Theorem 2.4

THEOREM 2.4: Suppose that algorithm x is weakly monotone. Then x has no algorithmic
externalities (Ex ≡ 0) if and only if x is welfare-equivalent to a maximal-in-range algorithm.

If x is welfare-equivalent to a maximal-in-range algorithm with some range R, then
x’s welfare coincides with that of the VCG mechanism restricted to R. Since a VCG
mechanism has zero externalities, x also has zero externalities because of the following
lemma.

LEMMA A.1: If algorithms x and x′ are weakly monotone and welfare-equivalent, then
they have the same threshold prices and externalities.

PROOF: Assume x and x′ are welfare-equivalent and have different threshold prices,
say τn�o(x) < τn�o(x′). Then there exists some value vn with vn�o < τn�o(x′) and xn(vn) = o.
Let us define v′

n with v′
n�o ∈ [vn�o� τn�o(x′)), and v′

n�o′ = vn�o′ for o′ �= o. By (weak) mono-
tonicity, xn(v′

n) = o—but by the definition of the threshold price, x′
n(v′

n) �= o. However,
while there are infinitely many such v′

n�o ∈ [vn�o� τn�o(x′)), there are only a finite set of val-
ues v′

n�o where an allocation a with an = o can have the same welfare as an allocation a′

with a′
n �= o. Thus, we obtain a contradiction to the hypothesis that x and x′ are welfare-

equivalent. Therefore, x and x′ must have the same threshold prices. Now,

Ex�p(ṽn� vn) ≡ pn(ṽn) −pn(vn)︸ ︷︷ ︸
change in n’s threshold payment

+
∑
m �=n

[
vm · [xm(ṽn) − xm(vn)

]]
︸ ︷︷ ︸

effect on others’ welfare

=Wx(ṽn) − un(ṽn) −Wx(vn) + un(vn)

=Wx(ṽn) − max
o∈O {ṽn�o − τn�o}−Wx(vn) + max

o∈O {vn�o − τn�o}�

so the externalities of x only depend on the welfare and threshold price functions—and
similarly for x′.20 Thus, since x and x′ are welfare-equivalent (by hypothesis) and have the
same threshold prices (by the first part of the lemma), we see that they have the same
externalities. Q.E.D.

Let W (v�a) ≡ ∑
n[vn · an] denote the welfare of allocation a at a value profile v. We

write a � a′ if W (v�a) = W (v�a′) for every value profile v. Define the modified domain
as D ={v ∈ V :W (v�a) = W (v�a′) =⇒ a� a′} and the modified range as R = x(D).

We now fix a weekly monotone algorithm x with no algorithmic externalities. In out-
line, our proof of the forward direction of Theorem 2.4 constructs a maximal-in-range
algorithm x′ welfare-equivalent to x as follows. We have just defined a subdomain of val-
ues D ⊆ V on which no two essentially different allocations have the same welfare. Any
algorithm x′ that is welfare-equivalent to x must satisfy x′(v) = x(v) for v ∈ D. For v /∈ D,
we use the monotonicity and zero-externality properties of x to show that there exists
a ∈ R such that W (v�a) = W (v�x(v)) and set x′(v) = a. This ensures that x and x′ are
welfare-equivalent. We then use the same properties to establish that x′ is a maximal-in-
range algorithm with range R, which finishes the proof.

20Here we use the normalized utility notation introduced in the Preliminaries and Notation section at the
start of the Appendix.
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CLAIM A.2: Algorithm x is welfare-equivalent to a maximal-in-range algorithm with
range R.

PROOF: The proof relies on the following two lemmata. The first characterizes proper-
ties of the welfare function for an algorithm that has no externalities. The second shows
that the modified domain D is dense.

LEMMA A.3: If algorithm x has no externalities, then Wx is
• non-decreasing in vn and
• 1-Lipschitz in vn in the sup norm.

PROOF: Recall that the formula for externalities is

Ex�p

(
ṽn� (v�A)

) ≡ pn(ṽn� v−n�A) −pn(v�A)︸ ︷︷ ︸
change in n’s threshold payment

+
∑
m �=n

[
vm · [xm(ṽn� v−n�A) − xm(v�A)

]]
︸ ︷︷ ︸

effect on others’ welfare

= Wx(ṽn) − un(ṽn) −Wx(vn) + un(vn)�

Since x has no externalities, Ex�p(ṽn� (v�A)) = 0, so Wx(vn) − un(vn) = Wx(ṽn) − un(ṽn).
Therefore, Wx is a constant plus the function un. It is clear that un is non-decreasing and
1-Lipschitz; hence we see that Wx is non-decreasing and 1-Lipschitz, as well. Q.E.D.

LEMMA A.4: The modified domainD is non-empty. In addition, for all v ∈ V , d ∈ D, and
ε > 0, there exists v′ ∈D such that

• ‖v′ − v‖1 < ε, and
• ∏

n�o{v
′
n�o� dn�o}⊆D.

PROOF: To show D is non-empty, we construct a value profile d ∈ D. We describe its
components dn�o by ordering the pairs (n�o), beginning with the pairs (n�o) for which Vn�o

is a singleton and listing the rest in arbitrary order, indexed by k. In step k = 0, for each
pair (n�o) such that Vn�o is a singleton, we fix dn�o to be equal to the sole element of Vn�o.
Set B0 := {dn�o ∈ Vn�o : Vn�o is a singleton} (and B0 = ∅ if no Vn�o is a singleton). For each
step k ≥ 1, given a finite set Bk−1 and any two subsets B′�B′′ ⊆ Bk−1, consider equations
of the form

dn�o +
∑
b∈B′

b =
∑
b∈B′′

b� (15)

There are finitely many such equations and, for k ≥ 1, the interval Vn�o has non-empty
interior, so there exists some dn�o ∈ Vn�o that satisfies none of the equations (15). We set
Bk := Bk−1 ∪ {dn�o} and iterate until d has been constructed. Suppose that allocations a
and a′ satisfy W (d�a) = W (d�a′). Then, for all n, either an = a′

n or Vn�an and Vn�a′
n

are
both singletons, so a� a′ and hence d ∈D.

The second half of the lemma is proved by constructing v′ in a similar way. Call a value v′

generic (with respect to d) if
∏

n�o{v
′
n�o� dn�o} ⊆ D. Start with v′ = d. If Vn�o is a singleton,

then v′
n�o = vn�o. Otherwise, Vn�o is an interval with non-empty interior, so there exists some

value v′
n�o within ε

|N|·|O| of vn�o that keeps v′ generic (because only a finite number of choices
for v′

n�o would result in v′ being non-generic). Q.E.D.
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Now, we show that at any value profile v, the welfare of x is less than or equal to
the welfare of some allocation in the modified range R. Because the welfare W (v�a) is
continuous in v and the set D is dense in V , the welfare of x at any value profile (even
outside of D) must be equal to the welfare of some allocation in R at that value profile.

Formally, for any ε > 0 and v ∈ V , by Lemma A.4, we can find v′ ∈ D so that ‖v′ −v‖1 <
ε. By Lemma A.3, we then obtain ∣∣Wx(v) −Wx

(
v′)∣∣< ε

and we have ∣∣Wx

(
v′) −W

(
v�x

(
v′))∣∣< ε�

By the triangle inequality, we then have

Wx(v) <W
(
v�x

(
v′)) + 2ε ≤

(
max
r∈R

{
W (v� r)

}) + 2ε�

Thus, taking ε → 0, we have

Wx(v) ≤ max
r∈R

{
W (v� r)

}
� (16)

Next, we show that the welfare of x at a value profile v is bounded below by the welfare
of any allocation r ∈ R at that value profile. This is because if we start at a value profile d
where the allocation is r and look at the welfare as we change the value profile to v, weak
monotonicity ensures certain changes do not change the allocation r, and the welfare
function being 1-Lipschitz ensures that the other changes weakly increase the algorithm’s
welfare compared to the welfare of allocation r.

Formally, for any r ∈ R, let d ∈ D be a value profile where r = x(d). For any v ∈ V and
ε > 0, we can construct v′ as in Lemma A.4. Consider the profile v′′ where

v′′
n�o =

{
max

{
v′
n�o� dn�o

}
xn(d) = o�

min
{
v′
n�o� dn�o

}
xn(d) �= o�

We now prove that x(v′′) � r. Consider changing the value profile from d to v′′ one
element at a time, and let vk denote the value profile in step k; we show that at each
step we have x(vk) � r. We argue by contradiction; suppose at some step we are at value
profile vk and x(vk) � r, but x(vk+1) �� r. We define

α̃≡ inf
{
α ∈ [0�1] : x(

αvk+1 + (1 − α)vk
) �� r

}
and ṽ ≡ α̃vk+1 + (1− α̃)vk. We can find an allocation a �� r and a sequence of value profiles
(vl)∞

l=1 such that x(vl) = a, vl is a convex combination of vk and vk+1, and liml→∞ vl = ṽ.
By the continuity of Wx (from Lemma A.3), we have

W (ṽ� a) = lim
l→∞

Wx

(
vl

) =Wx(ṽ) = lim
l→∞

Wx

(
(1/l)vk + (1 − 1/l)ṽ

) =W (ṽ� r)� (17)

Moreover, because x is weakly monotone, we have an�o = rn�o for the n�o pertaining to
step k. The value profiles vk and ṽ are identical except for the element pertaining to
n�o, so (17) implies that W (vk�a) = W (vk� r). But since the value profile vk is in D (by
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construction of v′ and v′′), it must be that a � r, a contradiction. We have proven that
x(v′′) � r, so

Wx

(
v′′) =W

(
v′′� r

)
�

By Lemma A.3, the welfare function Wx is non-decreasing and 1-Lipschitz, so21

Wx

(
v′) ≥ Wx

(
v′′) −

∑
xn(d)=o

[
v′′
n�o − v′

n�o

] =W
(
v′� r

)
�

Since we could construct v′ for any ε > 0 (by Lemma A.4) and the welfare function Wx is
continuous, we have

Wx(v) ≥ W (v� r);
since this is true for all r ∈ R, we have

Wx(v) ≥ max
r∈R

{
W (v� r)

}
� (18)

Combining (16) and (18), we obtain

Wx(v) = max
r∈R

{
W (v� r)

}
�

so x is welfare-equivalent to a maximal-in-range algorithm with range R. Q.E.D.

Proof of Theorem 2.6

THEOREM 2.6: For any weakly monotone algorithm x and any β ∈ [0�1], x is a β-
approximation for investment if and only if x is a β-approximation for certain investment.

The certain investment instances are a subset of the investment instances. Thus, if x is
a β-approximation for investment, then x is a β-approximation for certain investment.

We now prove the other direction. Suppose we have some investment instance
(g� I� ν−ι�A) and some algorithm x that is a β-approximation for certain investment. Go-
ing off the intuition described in the main text, we seek to construct state-dependent cost
functions c̃ : S → R to make the ex post normalized utility from the investment constant
(and equal to the ex ante normalized expected utility from that investment).

Now, the state-dependent cost function c̃ : S → R that gives constant utility in each
state for investment (νι� c) is given by

c̃(s) ≡ uι

(
ν(s)�A(s)�x

) −
([∑

s′
g
(
s′)uι

(
ν
(
s′)�A(

s′)�x)] − c

)
︸ ︷︷ ︸

ex ante normalized utility from (νι� c)

�22

Observe that
∑

s g(s)c̃(s) = c. By construction, the ex post normalized utility of choosing
the investment with state-dependent cost (νι� c̃), that is, uι(ν(s)�A(s)�x) − c̃(s), is in
every state equal to the ex ante normalized utility of the original investment (νι� c).

21By construction, v′′
n�o ≥ v′

n�o if xn(d) = o and v′′
n�o ≤ v′

n�o if xn(d) �= o. We use the fact that the welfare is
1-Lipschitz in the first case and non-decreasing in the second case.

22Here we use the normalized utility notation introduced in the Preliminaries and Notation section at the
start of the Appendix.
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However, we need a status quo alternative so that the realization in each state is a valid
investment instance, so we introduce a new investment option with 0 normalized utility
and 0 cost. Formally, we define an investment option that yields a value in each state equal
to the investor’s threshold prices

ν′
ι(s) ≡ τι

(
ν−ι(s)�A(s)�x

)
�

Let I ′ consist of the investments modified to have state-dependent costs, as well as the
status quo alternative, that is, I ′ ≡ {(νι� c̃) : ((νι� c) ∈ I} ∪ {(ν′

ι�0)}. For each state s, the
tuple (I ′(s)� ν−ι(s)�A(s)) is a certain investment instance. Since x is a β-approximation
for certain investment, for any (νι� c) ∈ BR(x�g� I� ν−ι�A) and any state s, we have

Wx

(
ν(s)�A(s)

) − c̃(s) ≥ βW
∗(
I ′(s)� ν−ι(s)�A(s)

)
�

Thus, for any (νι� c) ∈ BR(x�g� I� ν−ι�A) such that

W x(I�A) =
[∑

s

g(s)Wx(νι(s)�A(s))
]

− c�

we conclude that

W x(I� ν−ι�A) =
[∑

s

g(s)Wx

(
ν(s)�A(s)

)] − c

=
∑
s

g(s)
[
Wx

(
ν(s)�A(s)

) − c̃(s)
]

≥
∑
s

g(s)βW
∗(
I ′(s)� ν−ι(s)�A(s)

)
≥ βW

∗(
I ′� ν−ι�A

)
≥ βW

∗
(I� ν−ι�A)�

where the penultimate inequality holds because the expectation of the maximum is no
less than the maximum of the expectation, and the final inequality holds because for all
(νι� c) ∈ I, we have (νι� c̃) ∈ I ′ with

∑
s g(s)c̃(s) = c.

Proof of Theorem 2.10

THEOREM 2.10: For any weakly monotone algorithm x and any β ∈ [0�1], if x has β-
bounded confirming externalities, then x is a β-approximation for certain investment.

We start with the following technical lemma.

LEMMA A.5: The optimal welfare function W ∗(vn) is
• non-decreasing in vn and
• 1-Lipschitz in vn in the sup norm.

PROOF: This follows from Lemma A.3 because the optimal welfare function has zero
externalities. Q.E.D.
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Next, we state a technical condition that we will prove is equivalent to β-approximation
for certain investment. The condition compares Wx(v�A) minus one bidder’s normalized
utility to the optimal welfare when that bidder’s value is set to the threshold vector.23

DEFINITION A.6: For some β ∈ [0�1], algorithm x is β-pivotal if for any allocation
instance (v�A) and any bidder n, we have

Wx(v�A) − un(v�A�x) ≥ βW ∗(τn(v−n�A�x)� v−n�A
)︸ ︷︷ ︸

optimal welfare at n’s threshold vector

�

LEMMA A.7: For any weakly monotone algorithm x and any β ∈ [0�1], x is a β-
approximation for certain investment if and only if x is β-pivotal.

PROOF: Being a β-approximation for certain investment means the welfare for algo-
rithm x must be lower bounded by β times the optimal welfare for any investment in-
stance. However, many of these lower bounds turn out to be redundant, and our argument
shows that the only relevant bounds are those in the β-pivotality condition.

Algorithm x is a β-approximation for certain investment if and only if for every set of
investments I, any (vι� c) ∈ BR(x� I), and any (v′

ι� c
′) ∈ I, we have

Wx(vι) − c ≥ β
(
W ∗(v′

ι

) − c′)� (19)

If we restrict attention to investment sets of the form

I = {
(vι� c)�

(
v′
ι� c

′)� (τι�0)
}
�

then we still obtain the bounds (19); however, we can rewrite the requirement that
(vι� c) ∈ BR(x� I) as uι(vι� c) ≥ max{uι(v′

ι� c
′)�0}. By formulating (19) as

Wx(vι) − uι(vι) ≥ β
(
W ∗(v′

ι

) − uι

(
v′
ι

)) − uι(vι� c) +βuι

(
v′
ι� c

′)�
we notice that the tightest bound occurs when uι(vι� c) = uι(v′

ι� c
′) = 0. Therefore, algo-

rithm x is a β-approximation for certain investment if and only if for any vι we have

Wx(vι) − uι(vι) ≥ max
v′
ι

{
β

(
W ∗(v′

ι

) − uι

(
v′
ι

))}
� (20)

Since by Lemma A.5 we have

W ∗(v′
ι

) − uι

(
v′
ι

) = W ∗(v′
ι − uι

(
v′
ι

)) ≤W ∗(v′
ι − (

v′
ι − τι

)) =W ∗(τι)�

we know the maximum in (20) occurs at v′
ι = τι; plugging this in, (20) becomes

Wx(vι) − uι(vι) ≥ βW ∗(τι)�

which is exactly the β-pivotality condition. Therefore, algorithm x is a β-approximation
for certain investment if and only if x is β-pivotal. Q.E.D.

23Here we use the normalized utility notation introduced in the Preliminaries and Notation section at the
start of the Appendix.
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We are now ready to prove Theorem 2.10. Suppose that x has β-bounded confirming
externalities. If the change from the threshold price τn to any value vn is a confirming
change, then x having β-bounded confirming changes would immediately imply that x is
β-pivotal. Now, while it is not the case that the change from the threshold price τn to any
value vn is confirming, we show that it is true that for any value vn, there exists a value vεn
arbitrarily close to τ such that the change from vεn to vn is a confirming change.

Formally, for any vn and ε ∈ (0�1], we let

vεn ≡ εvn + (1 − ε)τn�

Now, because x is truthful, we have

xn

(
vεn

) ∈ argmax
o

{
vεn�o − τn�o

} = argmax
o

{(
εvn�o + (1 − ε)τn�o

) − τn�o]
}

= argmax
o

{
ε[vn�o − τn�o]

}
= argmax

o
{vn�o − τn�o}�

It follows that for any outcome o′ ∈ O, we have

vn�xn(vεn) − τn�xn(vεn) ≥ vn�o′ − τn�o′ � (21)

Thus, we see that the change from vεn to vn confirms xn(vεn) because

vn�xn(vεn) − vn�o′ = [
(vn�xn(vεn) − τn�xn(vεn)) − (vn�o′ − τn�o′)

] + τn�xn(vεn) − τn�o′

≥ ε
[
(vn�xn(vεn) − τn�xn(vεn)) − (vn�o′ − τn�o′)

] + τn�xn(vεn) − τn�o′

= vεn�xn(vεn) − vεn�o′�

where the inequality follows from (21).
Since the change from vεn to vn confirms xn(vεn) and x has β-bounded confirming exter-

nalities, we have

pn(vn) −pn

(
vεn

) +
∑
m �=n

[
vm · [xm(vn) − xm

(
vεn

)]] = Ex

(
vn� v

ε
n

)
≥ βW ∗(vεn) −Wx

(
vεn

)
� (22)

Using the definition of normalized utility un, the inequality (22) becomes

Wx(vn) −Wx

(
vεn

) − un(vn) + un

(
vεn

) ≥ βW ∗(vεn) −Wx

(
vεn

)
� (23)

Canceling Wx(vεn) from both sides of (23) and taking the limit as ε → 0, we obtain

Wx(vn) − un(vn) ≥ βW ∗(τn)�

Thus, we see that x is β-pivotal, and by Lemma A.7, x is a β-approximation for certain
investment.
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Proof of Proposition 2.18

PROPOSITION 2.18: Suppose that |O|= 2, and let X be a collection of weakly monotone
XCONE algorithms. If y is an algorithm that at each instance (v�A) ∈ � outputs a welfare-
maximizing allocation from the collection {x(v�A)}x∈X , then y is weakly monotone.

Suppose that y and X satisfy the assumptions of Proposition 2.18. We want to prove
that for any (v�A) and ṽn,

0 ≤ [ṽn − vn] · [yn(ṽn) − yn(vn)
]
� (24)

If yn(ṽn) = yn(vn), then (24) follows immediately. Suppose yn(ṽn) �= yn(vn). If the change
from vn to ṽn confirms yn(ṽn), then (24) follows immediately. Suppose it does not con-
firm yn(ṽn). Then because yn(ṽn) �= yn(vn) and |O|= 2, the change from vn to ṽn confirms
yn(vn), and the change from ṽn to vn confirms yn(ṽn).

Let us pick x� x̃ ∈X such that x(vn) = y(vn) and x̃(ṽn) = y(ṽn). We have

vn · x̃n(vn) +
∑
m �=n

[
vm · x̃(vn)

] ≤ vn · xn(vn) +
∑
m �=n

[
vm · xm(vn)

]
≤ vn · xn(ṽn) +

∑
m �=n

[
vm · xm(ṽn)

]
� (25)

where the first inequality is by construction and the second inequality is by Proposition 2.7
(because x is XCONE and weakly monotone). A symmetric argument yields

ṽn · xn(ṽn) +
∑
m �=n

[
vm · xm(ṽn)

] ≤ ṽn · x̃n(ṽn) +
∑
m �=n

[
vm · x̃m(ṽn)

]
≤ ṽn · x̃n(vn) +

∑
m �=n

[
vm · x̃m(vn)

]
� (26)

Adding inequalities (25) and (26) and canceling terms yields

0 ≤ [ṽn − vn] · [x̃n(vn) − xn(ṽn)
]
� (27)

Since the change from vn to ṽn confirms yn(vn) = xn(vn) and xn is weakly monotone, we
have

0 = [ṽn − vn] · [xn(ṽn) − xn(vn)
]
� (28)

Similarly, since the change from ṽn to vn confirms yn(ṽn) = x̃n(ṽn) and x̃n is weakly mono-
tone, we have

0 = [ṽn − vn] · [x̃n(ṽn) − x̃n(vn)
]
� (29)

Adding (27), (28), and (29) yields

0 ≤ [ṽn − vn] · [x̃n(ṽn) − xn(vn)
] = [ṽn − vn] · [yn(ṽn) − yn(vn)

]
�

as desired.
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Proof of Proposition 3.7

PROPOSITION 3.8: For all δ > 0, there exists ε < δ such that the BKV rule with parameter ε
has an investment guarantee of 0.

In the following family of examples, we consider ε = 1
2i for i ∈ N.

Let there be |N|= 2j bidders, where the first bidder is the investor, the second bidder
has a value of 2, and the remaining |N|− 2 bidders have a value of 1. The knapsack can
fit either the first two bidders or everyone except for the second bidder.

Consider what happens when the investor has value 0. For the BKV rule, the allocation
that maximizes the rounded values will have 
 ≤ i + j. For 
 ≤ i + j, the BKV rule will
pack everyone except for the second bidder. If 
 > i + j, then the last |N|− 2 bidders’
values will be rounded to 0.

If the investor increases its value to 2i+j+2, then the allocation that maximizes the
rounded values will have 
= i+ j+1. If 
 is smaller, the investor’s value will be truncated,
and if 
 is larger, the second bidder’s value will be rounded down to 0. For 
 = i + j + 1,
we have γε�
 = 1

2 so all values will be rounded down to the nearest even integer. Since the
last |N|− 2 bidders’ values are rounded down to 0, the BKV rule will pack the first two
bidders.

As shown above, the investor increasing its value from 0 to 2i+j+2 results in a confirming
negative externality, and therefore the BKV rule is not XCONE. If the set of investments
is {(0�0)� (2i+j+2�2i+j+2)}, then the performance under investment is 2

|N|−2 which goes to 0
as |N| goes to ∞.

Proof of Proposition 3.10

PROPOSITION 3.11: Allocation rule x̆ε can be computed in poly(ε−1�|N|� log(maxn{vn}))
time.

If ε2


|N| > maxn{vn}, then every value rounds to 0, and by construction x∗(vε�
) packs
no bidders and thus yields 0 welfare. Consequently, it suffices to compute x∗(vε�
) from

 = 0 to 
 = �log(ε−1|N|maxn{vn})
 + 1 in order to find the best output from the col-
lection (x̆ε�
)
∈N. Briest, Krysta, and Vöcking (2005) proved that computing x∗(vε�
)
in each step takes poly(ε−1�|N|� log(maxn{vn})) time. Thus, we can compute x̆ε in
poly(ε−1�|N|� log(maxn{vn})) time, which completes the proof of Proposition 3.10.

As an aside, we note that our proposed FPTAS runs slower than the BKV FP-
TAS. The BKV FPTAS searches 
 from �log(maxn{vn})
 − �log((1 − ε)−1|N|)� − 1 to
�log(maxn{vn})
. Our FPTAS searches a larger range, from 0 to �log(ε−1|N|maxn{vn})
 +
1; this is because we are choosing the maximal allocation according to v instead of vε�
,
and must search a larger range to find the relevant maximum.
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