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Abstract

In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover
frequency of the largest turbulent eddy, €2, is the local Keplerian frequency k. In terms of the standard
dimensionless Shakura—Sunyaev « parameter that quantifies turbulent viscosity or diffusivity, this assumption
leads to characteristic length and velocity scales given respectively by «JaH and /& c, in which H and c are the
local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is
forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more
general case where (; > Qg and show that, under these conditions, the characteristic length and velocity scales are
respectively y/a/R'H and v aR’'c, where R’ = Q /Q is twice the Rossby number. It follows that o = &/R’,
where /@ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally
explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence,
and it may help with interpreting recent edge-on disk observations; more general implications for observations are
also presented. For R’ > 1, the effective particle Stokes numbers are increased, which has implications for particle

collision dynamics and growth, as well as for planetesimal formation.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Solar system (1528)

1. Introduction

Protoplanetary disks are increasingly regarded as being
moderately turbulent, under a handful of magnetohydrodynamic
(Balbus & Hawley 1991; Turner et al. 2014; Lesur et al. 2023)
or purely hydrodynamic instabilities (Marcus et al. 2013; Nelson
et al. 2013; Lyra 2014). In many applications, such as global
models of disk evolution under turbulent viscosity (Estrada
et al. 2016; Sengupta et al. 2022), it is impractical to use more
than a simple parameterization of the viscous and diffusive
effects of turbulence, and by far the most popular one is the so-
called “a-model” (Shakura & Sunyaev 1973; Shakura
et al. 1978). In this closure model, the spatial and temporal
evolution of turbulent protoplanetary gas and particle disks is
determined by the large-scale effective viscosity and diffusivity
of the gas, as well as the particles in it. For many purposes, it is
adequate (and indeed necessary, given our limited under-
standing) to simplify the complex effects of real turbulence into
a scalar viscosity v and diffusivity D. The basic scaling or
mixing length approximation for turbulent diffusivity and
viscosity is (D, v) = [L][V.], where L and V, are respectively
the characteristic length and velocity scales of the turbulence. In
this case, L can be identified with the energy injection scale or
the energy-containing large spatial scale, and V; is the velocity
at that scale. Shakura & Sunyaev (1973) introduced the widely
used mixing-length-like closure model v = acH to incorporate
our ignorance about the turbulence into the single parameter a,
where c is the gas sound speed and H is the gas vertical scale
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height. In that classic paper,® it was suggested briefly that L ~ H
and thus V; ~ ac, indeed with « often taken to be of order
unity (Cameron 1978; Lin & Bodenheimer 1982; Weidenschil-
ling 1984; Morfill 1985; Weidenschilling & Cuzzi 1993), given
that early works were more focused on accretion disks around
compact objects where trans-sonic turbulence used to be widely
believed to exist. Moreover, to study the properties of solid
particles (hereafter simply called “particles”) in the disk as they
grow by collisional sticking and evolve radially by drift and
diffusion (e.g., Estrada et al. 2016, P. R. Estrada & J. N. Cuzzi
2022, in preparation, P. R. Estrada et al. 2022, in preparation),
it has become necessary to separate the velocity and length-
scale properties of the turbulence that influence the particles
(Cuzzi et al. 2001).

A common assumption in such studies is that the turnover
time of the largest energy-containing eddy of the nebula
turbulence equals the local orbital time (Shakura &
Sunyaev 1973). Shakura et al. (1978, Appendix I and page
184) worked through an energy-dissipation argument that
implied €2; = Qk, and a logical chain resulted that was similar
to the one given in Section 2.1 below (see Appendix A for
more details). The €2; = Qg assumption had been made earlier
by Safronov (1972), and there has been some numerical
support for this assumption under certain conditions (Coleman
et al. 1992).

As simulations of particle collisions and growth in
turbulence have become more detailed, it has also become
important to reasonably estimate particle velocities given V
(Volk et al. 1980). Weidenschilling (1997) adopted the scaling

® We note that the first description and application of mixing length theory to

disks may be found in Prendergast & Burbidge (1968), but an explicit
mathematical prescription was not given.
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of Shakura et al. (1978), and Cuzzi et al. (2001) independently
reproduced the scaling of Shakura et al. (1978) in the form
most often used today, as described below in Section 2.1.
Dubrulle (1992) generalized the discussion to eddy frequencies
Q> Qg and Q; < Qg, but concluded that €2; ~ Qg for self-
generated nebula turbulence. Dubrulle (1992) even proposed a
scaling of L relevant to these conditions, but without
connecting it to « in any clear way. The idea that large-eddy
frequencies in turbulence could significantly exceed the orbit
frequency has also been discussed in the context of midplane
turbulence generated by a settled particle layer (Cuzzi
et al. 1993; Sekiya 1998), but has never been explored using
direct numerical simulations.

Q; = Qg seems to be a sensible assumption, given that the
disk is rotating, and thus any radial or azimuthal velocity
deviation will be subsequently dominated by the Coriolis force,
leading to a Keplerian turnover time (e.g., Cuzzi et al. 2001).
While reasonable for the magnetorotational instability (MRI;
Balbus & Hawley 1991), this result does not appear to be
generally valid for turbulence generated by, e.g., vertical shear
instability, where Stoll & Kley (2016) measure eddy lifetimes
much shorter than Keplerian, of the order of 0.1€2;!. Sengupta
& Umurhan (2023) find similarly short eddy lifetimes for the
turbulence generated by the settled particle layer at the disk
midplane. Incidentally, even for the MRI, Johansen et al.
(2006) find eddy lifetimes to be shorter than Keplerian in the
case of forcing by a sufficiently strong externally imposed
vertical magnetic field.

Taken all in all, these results suggest that the tendency of the
Coriolis force to impose a Keplerian turnover time will be in
competition with other external forcing agents acting on the
system. If these other forcing agents exert greater strength or
amplitude, then the Coriolis force becomes less influential,
potentially resulting in the turnover time of the largest eddies
deviating from Keplerian. It is this case we investigate in this
paper.

In this contribution, we numerically assess the properties of
externally forced turbulence under conditions of a rotating,
sheared nebula flow, under the general condition 2; > Q. The
utility of the work is to allow for initial conditions in forced
simulations of turbulence with particles that satisfy simulta-
neously the critical nebula parameters « and €2;. Without
actually knowing what the appropriate turbulent frequency €2
is, the relevant particle Stokes number St = 7} may be
incorrectly defined—here, ¢, is the aerodynamic stopping time
of the particles. This appears to be the case in many prior
simulations of particle behavior in nebula turbulence for which
the particle properties are defined by an (x-based Stokes
number (Birnstiel et al. 2010; Estrada et al. 2016; Sengupta
et al. 2019; Gole et al. 2020), which we define as Stx = £,Qk,
and in which the possibility of £2; > Q2x was not considered. In
this paper, we will introduce and utilize an injection-scale eddy
Stokes number defined hereafter by St; = £,£);.

2. Generalizing the Components of o
2.1. The Current Ansatz (2 = (x

We first revisit the original ansatz, which is generally
assumed to be true in the literature in cases where the
turbulence parameter is calculated from numerical simulations.
We shall call this &, the turbulence intensity when Q; = Q.

Sengupta et al.

Cuzzi et al. (2001) restated the separation of the L and V;,
components of v based on the ansatz that the largest-scale
eddies in the nebula would have eddy frequency ; = Q.
Situations where €27 < Qg generally correspond to slow
currents rather than fluctuating eddies, such as gently varying
zonal flows.

These structures do not survive longer periods, due to the
Coriolis effect introduced by rotation (Zahn 1989; Cuzzi
et al. 2001).

When the ansatz €); = Qg is assumed true, ¢ relates to the
length and velocity scales in a specific way by starting with the
usual formulation,

D, v) ~ LV, ~ &cH ~ &H* ), (1)

where c is the local sound speed and we have used H = ¢/,
where H is the local gas scale height. In this case, ¢ and H are
considered as the characteristic velocity and length scales of the
system. Now, if the ansatz (; = Qg is valid, then Equation (1)
can be rewritten as

(D, v) ~ LV, ~ L2y ~ L*Q. 2)

Combining Equations (1) and (2) gives L?> = &H? or
L = J&H. Substituting L back in LV, = &cH reveals

v, = Vae. 3

Often invoked in the form & = VLZ/ ¢2, this result is widely
used to calculate particle relative velocities in growth models
(e.g., Ormel & Cuzzi 2007; Birnstiel et al. 2010, 2016; Estrada
et al. 2016; Sengupta et al. 2019). The estimate & is also used
as a measure of turbulent intensity in forced turbulence models,
i.e., based on root-mean-square (rms) velocities (Gole
et al. 2020; see Section 3.2 for more discussion).

2.2. The General Case (2 > (2

The above usual ansatz does not address cases where
Q; > Qk, which may be the case in realistic turbulence. In
order to address cases where the traditional assumption
Q; = Qg is invalid (as occurs in at least the highly relevant
VSI regime; Nelson et al. 2013; Stoll & Kley 2016), the
analysis of Section 2.1 must be generalized. For the general
situation, we denote the turbulence (diffusion) parameter as «
(rather than &). Starting once again with Equation (1), we write
the frequency of the largest eddy as 2, ~ V /L, where V is the
velocity of the largest (energy-containing) eddy and L is the
corresponding length scale. We define Q; /Qx = R’, where R’
is twice the traditional Rossby number Ro (Cushman-
Roisin 2011).

With this, Equation (2) now reads as

(D, v) ~ LV, ~ L?Qy ~ R'L*Qx. “)

As before, setting this result equal to Equation (1) in terms of

o, we get
(e

Using Equation (5), the velocity V for the largest eddy can be
written as

V, = LOy = /%R’HQK — JRac, (©6)
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Figure 1. A cartoon showing turbulent kinetic energy spectra E(k) as a function of spatial wavenumber k for two different cases: 2, = Qg and €, > Q. It is worth
noting that, when ; exceeds (2, the largest energy-containing length scale of the turbulence shifts toward the right. As this is the governing scale setting the turbulent

dynamics, transport and diffusion properties are thus altered.

which is equivalent to the expression Equation (3). Thus, while
L and V; change form, their product does not, and we recover

(D, v) ~ LV, = acH. @)
From Equation (6), o can be related to & as
Vi a
R R ®)

In the limit of Q; = Qg, R’ — 1, and the general case reduces
to a = &. Also, substituting the above expression into
Equation (6) demonstrates its equivalence to Equation (3).

It is noteworthy that a similarity can be drawn between the
expression for the diffusive o found in Equation (8) and the
one given by Youdin & Lithwick (2007; see their Section 3),
ie., ~5ng7'eddy, where V, is the rms of the gas fluctuation

velocities and Teqqy is the eddy turnover time. Given that 6Vg2 is
dominated by the largest energy-containing scale, Teagy ~ 1/R’
if g~ 1/Qg~ 1 is assumed.

2.3. Why Is 2 So Pivotal in Nebular Turbulence?

In the protoplanetary disk, the gas scale height H = ¢/Qg is a
natural length scale arising from hydrostatic balance. In a
Keplerian disk, it is also the largest scale on which organized
motions like large vortices remain subsonic—so if the
turbulence reaches the scales of H (either through that scale
being unstable or through inverse cascade), then H will shape
the turbulence.

The most significant length scale for turbulence is the scale
associated with the largest eddy, the correlations of which
govern major aspects of nebula physics from transport
properties to particle dynamics, and it has been found that it
can be orders of magnitude smaller than H for many plausible
turbulence mechanisms studied to date, even when R’ =
(Figure 1, left).

When the more general case is considered (€2, > Qg),
the largest turbulent eddy length scale shifts toward smaller
scales (Figure 1, right), and under such conditions, it is this
scale that dominates the particle transport and diffusion
properties in the nebula. Scales longer than this may be
important for zonal flows or coherent structures, such as long
lived vortices, but they are not relevant to fluctuating turbulent
gas dynamics.

7 The interested reader is referred to Carballido et al. (2011) for a validation

and discussion of the Youdin & Lithwick (2007) expression for particle
diffusion.

3. Simulations with Forced Turbulence

For the purpose of demonstrating the theoretical concept
constructed in Section 2.2, we executed a series of simulations
where turbulence is forced externally in a shearing box with
domain size 0.2H in the radial and azimuthal directions and
0.4H in the vertical. All the simulations presented in this
section are gas-only (Lagrangian particles are introduced in
Section 4), and we solve for the equations for mass and
momentum conservation under isothermal condition with
vertical gas stratification in a shearing box setup:

0
9P + V- (pty) = 0;

ot ®

Ou
(“)—tg + (g - Vyug + 202 X uy

- _Llyp_ 0% 28 + 30%x%,
Pe

(10)

where u, is the gas velocity, P is the gas pressure, p, is the gas
densityand Q is the local Keplerian frequency. The term %z
in Equation (10) represents the vertical gravity responsible for
the gas stratification. The third term on the left-hand side of
Equation (10) represents the Coriolis force arising from the
rotation, and the last term of the right-hand side of the same
equation is the shear.

The resolution used in all the simulations in this section is
(Ny X Ny x N;) =256 x 256 x 512. We have shear, rotation,
and vertical stratification included in the simulations, and
we use the PENCIL CODE® (Pencil Code Collaboration
et al. 2021) to solve the continuity and momentum equations.
The forcing scheme is the same one used in Sengupta &
Umurhan (2023). The external forcing is controlled by a
forcing parameter f; that sets the amount of energy injected in
the system at a previously chosen wavenumber. For the gas-
only simulations presented in this section, we have chosen two
forcing wavenumbers k= 3 and 6, and used f, = [0.003, 0.005,
0.01, 0.03, 0.05, 0.1, 0.3] for each k totaling 14 simulations.
The details of the forcing scheme are presented in Appendix F.
We have also used sixth-order hyperdiffusion and hypervisc-
osity in the simulations, allowing the fields to dissipate their
energy near the smallest scales while preserving the power
spectra at the larger scales (for details see Sengupta &
Umurhan 2023).

8 http:/ /pencil-code.nordita.org/
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Figure 2. (a): Kinetic energy spectra for two different wavenumbers: k= 3 (blue star) and 6 (orange diamond). The largest energy-containing eddy coincides with the
injection scales. It should be noted that the inertial ranges in both cases follow a —4/3 power law instead of —5/3, due to the rotation of the system. (b): The variation

of V2,./R’ with the tangential Reynolds stress %VV,@ and R, calculated based on the KE spectrum and Equation (16). The relationship shows a power law with
exponent 0.91 & 0.05 for k;= 6, close to our expectation of unity, and 0.71 £ 0.03 for k= 3 (see Section 3.2 for details).

We calculate o and & directly from our code results

Vi 2 () an
R¢2 3 27

s

a=Vi/ct~ Vi3, (12)

where v/ and vg’) are the local velocity fluctuations relative to the
mean flow, and V,,,, is a spatial and temporal average of the
fluctuating velocity amplitudes. It is generally the case that
Vi = Vs (see Appendix B for details).

3.1. The Importance of Turbulent Kinetic Energy Spectra

Here, we illustrate how relevant turbulence parameters are
determined directly from the turbulent kinetic energy spectrum
E(k) as a function of spatial wavenumber k (see Figure 1). The
first step to test the general case through our numerical
simulations is to estimate {2;. The velocity v; of an arbitrary
eddy with wavenumber k can be written as

v = 2kE(k), (13)

where E(k)dk is the energy per unit mass contained in eddies
with wavenumber ranging between k and k + dk, where E(k)
has units of H3Qf<. Then, the turnover time for eddies with
wavenumber k is

1

Tl v~ —, (14)
kvk

where ¢~ 1/k is the eddy length scale (Tennekes &
Lumley 1972; Davidson 2004) and the corresponding eddy
frequency is simply €2, = 1/7. We note that 7 here is the same
as the nonlinear timescale or the timescale associated with the
scale-to-scale energy transfer.

Using Equations (13-14), the eddy turnover frequency can
be expressed as

Q ~ 1/7 ~ kv = 2K°E (k). (15)

For the energetically dominant eddy with length scale L,
Equation (15) reads as

O = 2k7E (kp) , (16)

where k¢ is the energy injection scale or the forcing scale in our
simulations. Correspondingly,

V. = 2k Eky) (17)

with L ~ 1/ky. Figure 2(a) illustrates these relationships for two
energy spectra with f; = 0.05 with forcing at k,=3 and 6. One
should take note of the positions of the largest energy-
containing scales, which determine (2; for the two cases.
Appendix C shows how these spectral expressions also lead to
a = J& [keH = &/R’ (Equation (8)).

3.2. Connection between o and Tangential Reynolds Stresses

Following Shakura & Sunyaev (1973), the coefficient of
turbulent dynamical viscosity  is defined by the mixing length
form

w= pLVg, (18)

and using the correspondence between Reynolds stress W,, and
viscosity,

0 Vp 3

Wy Hrs 2I~LQK» (19)
in which r is the cylindrical radius coordinate and where
Keplerian flow is assumed for the azimuthal velocity vy, i.e.,
Ve 1=~ F3/29 Re-expressing the stress—viscosity rela-
tionship Equation (19) in terms of variables we use here for the
box—including the use of Equation (7) and the assumption that
the density p is constant on the scales of interest—we find

%Wm = (acH)Q = ac?, (20)

where the above has been expressed in terms of the negative of
the specific tangential stress W,y = —W,s/p. Similarly to Vs,
W,4 is calculated from the spatiotemporal average of the
correlations between the radial and azimuthal velocity fluctua-
tions (see Appendix B). Equation (20) simply states that
turbulent kinematic viscosity can be estimated from the specific

® isotropic turbulence, the ensemble-averaged correlations of off-diagonal
fluctuating velocity components are equal to zero (Davidson 2004). However,
in anisotropic systems like those involving Keplerian shear, off-diagonal
velocity correlations like W, are nonzero in general, and can lead to transport.
This explains the original motivation behind the mixing length model
Equation (19).
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Figure 3. (a): Calibration for R’ as a function of forcing-energy injection, given in terms of the forcing parameter f; for two different injection wavenumbers: k, = 3
(blue star) and k= 6 (orange diamond). The straight lines are the power-law fits for each data set. For fixed energy injection, R’ increases with k. (b): Calibration for «
(corrected by R') vs. f;y for k= 3 (blue star) and k= 6 (orange diamond). (c): Variation of & with f; for k= 3 and 6. It should be noted that the values of & are almost
the same for two different injection scales. With & ~ V 1,2/ c? over the full inertial range, ¢ is expected to reflect the total energy injected into the system, irrespective
of the injection scale. (d): Variation of o with R’ for k, = 3 and 6. A power-law fit for y = ax” gives b = 0.98 + 0.07 for kp=3 and 1.02 £ 0.02 for k;= 6 (see

Section 3.5).

tangential stresses via the simple form o« = 2W,/3¢?
(Equation (11)). However, the quantity W}, (also commonly
written as (v,v,")) is sensitive to the correlations of the velocity
fluctuations in addition to their magnitudes, while V. is not,
corroborating the analysis of Balbus & Papaloizou (1999).
Indeed, in several cases, turbulent Reynolds stresses have been
numerically calculated from actual velocity correlations rather
than only their magnitudes (e.g., as done for the VSI
turbulence, Nelson et al. 2013; Stoll & Kley 2014). Such
stresses can be directly associated with « (also see Youdin &
Lithwick 2007, Appendix B).

This important distinction is accounted for by our R’ scaling
term as shown in Figure 2. Using the k,= 6 simulation results
in Figure 2(a), Figure 2(b) shows a fit of the form y:axb
between log(Vﬁm/R’) and log(2W,4/3), where b =0.91 £ 0.05
—that is, W, ~ V2A/R'. For kr=3, however, we get
b=0.71 £0.03, which is about 30% less than the expected
value.

3.3. £ in Forced Turbulence as a Function of f,

In Figure 3(a), we show the variation of R’ = ) /Q as a
function of f;, for two different injection wavenumbers k;= 3
(blue star) and 6 (orange diamond). For a particular forcing
wavenumber &y, {);—and hence R'—increases with the forcing
amplitude. Increasing the injection energy at the same

wavenumber and associated length scale results in a faster
rotation for the largest (energy-containing) eddy and a
corresponding increase in the turnover frequency 2;. It is also
evident from Figure 3(a) that, for a fixed value of f,, R’
increases when energy is injected at a higher wavenumber and
smaller scale, and as for fixed energy injection, smaller eddies
have a smaller turnover time.

3.4. o in Forced Turbulence as a Function of fy

In Figure 3(b), a calibration of @ = &/R’ as a function of f;
is shown for forcing at two different wavenumbers: k,= 3 (blue
star) and 6 (orange diamond). It is evident from the figure that,
for a fixed ks, o increases with the increasing energy injection.
Diffusion and viscosity are primarily governed by the largest
energy-containing scales, so increasing energy at those scales
will result in an increased diffusion and hence a higher a.
However, for a fixed f;, a decreases when energy is injected at
a higher wavenumber (see ky=3 versus k;=6 plots in
Figure 3(b), as the length scale for the largest energy-
containing eddy decreases when a higher wavenumber is
chosen.

Interestingly, as & is not a function of R’ and it depends on
the rms of the fluctuating velocities throughout the inertial
range, which measures the total energy injected into the system,
variation in & for a fixed f, is minimal with the injection
wavenumber k; as shown in Figure 3(c). This result is also
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consistent with our findings in Equations (6) and (8) that V%
remains reasonably constant with the forcing wavenumber and
R’ implicitly conveys the length-scale information in the
realization of a.

3.5. Scaling between o and R’

The present model, developed on the basis of the general
case €2 > Qy, can be tested by analyzing the scaling between
a and R, using the parameter f,. Consider that the total energy
injected varies with f; with some power-law index p as
E(k) oc ff. With R = Q;/Q and O, xEk)'?, as in
Equation (16), we can write R’ o< E(k)'/? fo"/ 2. Similarly
for «, following Equation (B2), a = VLZ/R’ and V; EY 2 as
in Equation (13); thus, we can write o oc E'/2 oc f/2. So, we
expect that, for a particular value of ks o/R’ is constant and the
slope of the plot for log « versus log R’ will be unity.

In Figure 3(d), we show the variation of log a versus log R’
for k;=3 (blue star) and 6 (orange diamond), with the
calibrations shown by dotted lines. When a power-law fitting in
the form y = ax” is done for the respective data sets, we get
b=0.98 £ 0.07 for kp=3 and b =1.02 = 0.02 for kr=6,

3.6. Physical Processes Leading to Different R'

The model developed in this article is relevant to several
kinds of nebula turbulence, such as that driven by vertical shear
instability (VSI; Nelson et al. 2013; Flock et al. 2020) or
convective overstability (COV; Lyra 2014). For example, Stoll
& Kley (2014) found that their VSI simulations had €2
significantly higher than g (eddy turnover time Teqay < 1).
More recently, the energy spectra presented for global VSI
simulations in Flock et al. (2020) show that energy injection
happens around k ~ 100 and the stratification-induced inverse
cascade sets the largest energy-containing scale around k ~ 20,
suggesting that the value of R’ may significantly exceed unity.
More recently, Sengupta & Umurhan (2023) found Ro > 1 in
particle-laden disk midplane when turbulence is driven by
Kelvin—Helmholtz and symmetric instability (Stamper &
Taylor 2017). If the disk turbulence is primarily triggered
and sustained by such hydrodynamic processes, the method of
approximating « as ~&v2/c?(=é&) will be an overestimation,
whereas values for « from the analyses of edge-on disks will
probably be more consistent with the actual level of disk
turbulence (see Section 5.1).

4. Numerical Validation

There are several situations in which the value of R’ becomes
relevant—particle scale height being one of them. In order to
investigate the validity of ; > Qg and the effect of R/, we
have performed numerical tests where inertial (St =0) particles
have been introduced in the simulation box with rotation and
vertical stratification, with the turbulence being generated and
maintained by external forcing. The particles are then allowed
to settle under the influence of vertical gravity until a balance
between the settling and turbulent diffusion is reached. We then
investigated the scale heights obtained in the simulations, the
main objective being to test whether inertial particles react to
the nebula turbulence following (v, St;) or (&, Stg).

In a protoplanetary disk, a steady state between particle
settling toward the disk midplane and turbulent diffusion
in the vertical direction sets the particle scale height
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(Cuzzi et al. 1993; Dubrulle et al. 1995; Youdin &
Lithwick 2007; also see Appendix E):

h=H|—% 21
Stg(1 + St3) @b

In order to test the validity of the theory and insights
developed in Sections 2 and 3, we now introduce Lagrangian
particles in our simulations and compare their scale heights &
with Equation (21). We use a monodisperse particle distribu-
tion with Sty = 0.06 and an initial vertically averaged particle-
to-gas mass ratio Z=0.1%. Thus, while the particle back-
reaction is formally in play, the particle local density never gets
large enough for it to be significant. The particles are coupled
to the gas through aerodynamic drag by their stopping time
(Section 1)—the time required for a particle to lose all its
momentum to the differentially moving gas. Here, the
Lagrangian equations of motion for a particle’s vector position
(x,) and velocity (u,) can be written as

ali (22)
—=u s
dt r
du,
:’ 1 20E % my = — Q%28 + 30%ak
t
_ w_ (23)
f

The second term on the right-hand side in Equation (23)
represents momentum exchange via aerodynamic drag that
depends upon the gas velocity evaluated at the particle’s
position. In the gas momentum equation Equation (10), we
must introduce a term representing the equal and opposite
momentum transfer. This modifies the Equation (10) to

ou 1

—& + (ug - VIug + 20x% X ug = ——VP

ot Py
R ]

— 0228 + 30%x% (24)

b

where p,, is the local volume mass density of the particle phase.

In Figure 4, we present the results of our numerical
experiment where turbulence is forced with f;=0.05 at
k;=3 (blue dashed curve) and 8 (orange solid curve) with
k ~ 45 and 120, respectively, when normalized by domain size,
producing & ~ 8 x 1073 in a simulation box, including
vertical gravity, rotation, and density stratification. The
vertically integrated solid-to-gas mass ratio in the simulation
is kept low (Z=0.1%) in order to minimize the effects of
particle mass loading. The scale height for the particles when
calculated using & and Sty is h = 0.34H, significantly larger
than what the simulations show. In Figure 4(a), the obtained

(z%) is shown to be different for the two runs, even though all
the parameters are the same and the runs differ only by the
forcing wavenumber, clearly indicating that R’ plays an
important role in setting « and hence the vertical distributions
of the particles. The values of R’ for k,=3 and 8are
approximately 5 and 12, producing St;~0.3 and 0.7.
respectively. When % is calculated using Equation (21) with
these values, we get h ~ 0.14 for ky= 3 and ~0.08 for k;= 6. In
Figure 4(b), the particle density for the two simulations is
shown with a Gaussian fit in the form y = ae~"/2°" on the top.
The fitted values for |o| (the particle scale height of the
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Figure 4. (a): Scale heights & for particles with Stx = 0.06 when forcing at ky= 3 (blue dashed curve) and 8 (orange solid curve). Here, fy = 0.05, producing
&~ 8 x 1073, and R’ ~ 5.5 and ~12 for kr= 3 and 8, respectively. The St; for the two wavenumbers are 0.3 (for kr= 3) and 0.7 (for k; = 8). The simulations show

J{(z?) ~ 0.097H and 0.082H for kr= 3 and 8, respectively. The scale height calculated using Stx and & gives h = 0.36. (b): The vertical particle density distribution
for two injection scales and the respective Gaussian fits in the form y = a exp(—x2/20?) on the top. The fitting gives the values of the parameter |o| = 0.13 + 0.0007
for kr= 3 and 0.08 £ 0.0001 for k= 8. The particle distribution is Gaussian with the midplane particle-to-gas mass ratio reaching ~0.009 for k= 3 and ~0.012 for
k=8, implying that the effect of particle mass loading is negligible. (c): Kinetic energy spectra for the particle-gas simulation forced at ky= 8 (k ~ 120 when
normalized by domain size). A curve fit for the slope of the inertial range gives —1.36 & 0.2, shallower than —5/3 even in the presence of inertial particles. (d): A plot
for eddy turnover time €2,/ for all the wavenumbers. The location for the largest energy-containing wavenumber k¢ and the corresponding value of R" are noted by

the dashed straight lines.

distribution) for the two wavenumbers come out to be 0.13 and
0.08, closely matching the calculated scale heights from
Equation (21). So, it is evident from our numerical experiment
that the vertical diffusion of particles under nebula turbulence
should be effectively parameterized by «, not &, and without
the scaling by R’ as in Equations (8) and (B2), the reported &
will be an overestimation of the true diffusivity of the particles
in the domain.

We calculate R’ using equation Equation (16) directly from
the KE spectra produced from the simulation data. In
Figure 4(c), the kinetic energy spectra for the particle—gas
simulation with k;= 8 is shown. The associated eddy turnover
times €2, for all wavenumbers are shown in Figure 4(d). The
vertical and horizontal dashed black lines in the figure indicate
the forcing wavenumber (length scale L) and the asso-
ciated ; = R'Qk.

We note that the estimated particle scale heights % using «
and St; match nicely with the values for |o| obtained from the
Gaussian vertical particle distribution. However, when com-
pared with /(z%), the estimate agrees well with k=8 but
differs by ~35% for ky= 3. This difference is due to the effect
of a relatively small vertical domain used in the simulation. &

gets smaller either when the level of turbulence is low or when
the energy is injected at a higher wavenumber (smaller scale)
such that the velocity correlations at the largest energy-
containing scales are small. This is the reason why ./(z%)
agrees well with the actual scale height for k,=8. We also
expect that /(z?) and |o| will be close for k= 3, when using a
smaller value for f; (lower level of turbulence) where particle-
layer thickness is small, or if a larger vertical domain is used.
So, we can infer that ,/(z2) is a good representation of particle
scale height only when the particles are settled sufficiently
away from the vertically periodic boundary of the simulation
domain.

5. Discussion
5.1. Determination of o from Observations

There are several situations in which the value of R’ is
relevant—estimating the level of nebula turbulence from disk
observations is one of them. Observations of protoplanetary
disks reveal that the systems are turbulent to varying degrees,
and the observed levels differ by the mode of observation
as well.
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One way of assessing « for disks through observations is by
analyzing the turbulent line broadening in order to obtain év/c
and estimating o as ~&? / ¢* using velocity information only
(Flaherty et al. 2017, 2018; Teague et al. 2018; Flaherty
et al. 2020). Generally, this method gives an upper bound of o
—for example, Flaherty et al. (2017) found év/c ~ 0.01 for HD
163296 and ~0.3 at ~1-2 scale heights above the midplane
for DM Tau (also see Lesur et al. 2023 for a discussion).
Similar analysis by Teague et al. (2018) on TW-Hya using the
J=7-6, 5—4, and 3-2 transitions of CS imaged at ~0”5
spatial resolution estimated 6v/c <0.1. As these observations
improve, it will be critical to remember that they are
fundamentally V2 -based and thus measure &, not a.

On the other hand, the observed vertical thicknesses of edge-
on disks with ALMA and the VLA have been used to infer
values of a/St using Equation (21). Then, values of a are
inferred using assumptions of St based on these observations
and nebula-growth models (Doi & Kataoka 2021; Villenave
et al. 2022; Doi & Kataoka 2023; Villenave et al. 2023). In this
way, Villenave et al. (2022) estimated o~ 10> for
Oph 163131. For HD 163296, which is an older Class II disk,
estimates for o vary based on which ring system is being
analyzed: for the inner, more vertically extended ring, the
turbulence is vigorous, with « = 6 X 1072 Doi &
Kataoka 2023), while the corresponding values for the outer
flatter ring are systematically lower but with little agreement
between published values with a <6 X% 1073 Doi &
Kataoka 2023) or a ~ 4.5 x 107> (Pizzati et al. 2023).

We underscore that particle-layer thicknesses are sensitive to
a, not & (Section 4 and Figure 4). It is interesting to note that,
while uncertainties remain significant (especially in St), the
values of « estimated from the analyses of particle scale heights
seem to be consistently smaller compared to the ones obtained
from the turbulent line broadening, and this is just what would
be expected from the difference between values of particle
height derived from & and « if R’ > 1.

It is possible to combine the independent and distinct
observational constraints discussed above (on h/H from
particle-layer thicknesses and Vs from spectral line observa-
tions) with other observed constraints on particle size and gas
disk surface mass density (e.g., Carrasco-Gonzilez et al. 2019;
Macias et al. 2021; Doi & Kataoka 2023) to actually constrain
the critical value of R’ and thus the nature of the underlying
processes causing disk turbulence in the first place. We sketch
the logic by which this may be done in Appendix H.

5.2. R" and Sc: Effects on Global Particle Redistribution

Here, we comment on how R’ may affect particle radial
distributions. As noted in Section 1, the ratio v/D = Sc (the
Schmidt number) is usually taken as unity; indeed, there has
been some confusion in the literature as to the definition of Sc
itself (see Jacquet et al. 2012 and Estrada & Cuzzi 2016, their
Appendix B). As shown in Section 3.2, this quantity is the
same as the ratio (v,'v;’)/V2 = 1/R’. To our knowledge,
Hughes & Armitage (2010, 2012) represent the most complete
(or only) study of the role of variable Sc in global redistribution
of particles undergoing growth, drift, and diffusion. They only
varied Sc from 0.5 to 2.0, and over this range found the effects
minor. Unsurprisingly, (what we find to be) the more realistic
case, Sc<1, favors diffusion over drift or advection, leading to
a slightly greater retention of small particles in outer disks after
longer times. To the degree that future studies of different kinds
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of nebula turbulence might be found to favor larger values of
R’, the implications for particle radial transport might need to
be reassessed. This would include studies where the radial
structure of a particle band is used to infer the properties of the
local particle size and/or v (Dullemond et al. 2018).

5.3. Effects on Collision Velocities and Particle Growth

Following Volk et al. (1980), Ormel & Cuzzi (2007) derived
closed-form solutions for the collision velocities for particles in
the turbulent nebula for three different regimes: (1) the tightly
coupled particles when #, < t,, where ¢, is the stopping time at
the Kolmogorov scale (their Equation (27); (2) the inertial
range regime where 1, <t, <1, (their Equation (28)); and (3)
the heavy particle limit when ¢, > #; (their Equation (29)). The
response of a particle to turbulence is determined by St;, which
is a factor of R’ larger than the Stg assumed by previous studies
along these lines (e.g., Birnstiel et al. 2010; Zsom et al. 2010;
Estrada et al. 2016; Sengupta et al. 2019, 2022). This has
different implications in the three different particle size ranges,
as noted below. Regarding the equations below, recall that
Ormel & Cuzzi (2007) defined St with the meaning of St;,
while at the time implicitly associating it with Stk as has been
done by all dust growth models to date.

The velocities for the tightly coupled small particles in the
sub-Kolmogorov regime are mostly dominated by Brownian
motion (Sengupta et al. 2019, see their Figure 2) and are
unlikely to change significantly. However, with the R’ effect
included, the collision velocities AV}, between particles with
large-eddy Stokes numbers Sti; and Sty; (Equation (27) Ormel
& Cuzzi 2007) for the tight coupling limit become

AV = RV (Stik — Stak)?. (25)

Similarly, in the most important range (2) above, Equation
(28) of Ormel & Cuzzi (2007) shows the collision velocity,
which can be written with the new scaling included as

AVp = R'V; ASt, (26)

where the term A is only weakly dependent on St; for St; < 1
(Ormel & Cuzzi 2007). Thus, Equation (26), along with
Equation (6), shows that the collision velocity is increased by a
factor of R’'/2 for a given «, and thus particles reach the
bouncing or fragmentation barriers at physical sizes that are
smaller by a related factor.

In the heavy particle limit, a higher St; with R’ > 1 reduces
collision velocities, allowing for larger particles. The modified
expression from Ormel & Cuzzi (2007, Equation (29)) would

read as
1 1
+ . 27
1+ R/Sth 1+ R/StZK

m@zﬁ(

5.4. Planetesimal Formation

Our results have implications for the process of planetesimal
formation, an outstanding problem in planet formation theory.

For example, we have seen that turbulence with R’ > 1 can
significantly reduce the particle scale height (Figure 4) and
increase € = p,/p, at the midplane, for particles of some given
Stx or nominal physical size, relative to estimates based on the
rms velocity-based turbulence parameter &. This is primarily
because the (more appropriate) value of o will decrease, and
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because St; for the particles will increase (however,
Equation (21) shows the St; effect to be relatively minor when
St;, < 1). Planetesimal formation by either streaming instability
(SI; Youdin & Goodman 2005; Johansen et al. 2007) or
turbulent concentration (TC; Cuzzi et al. 2010; Hartlep &
Cuzzi 2020) is aided when the near-midplane e is larger; even
though this effect may only increase € by a factor of order
unity, this can be important.

TC has a more subtle dependence on St; than SI, but
comparison of planetesimal formation models with observa-
tions of, e.g., observed chondrule or aggregate sizes will be
affected. Hartlep & Cuzzi (2020) find reasonable sizes and
abundances for their resulting planetesimals if the initial
pebbles are centimeter- and decimeter-sized, implicitly assum-
ing R" = 1. However, if R’ ~ 10, for example, the same
outcome would be achieved with mm—cm sized particles.

6. Conclusions

The main objective of the work presented here is to
investigate how the particle behavior in a turbulent fluid under
nebular conditions is altered with varying large-eddy frequency
Q> Qg. Below, we present a summary of our findings:

1. When Q; > Qg, the characteristic length and velocity
scales for nebula turbulence are L = /a/R'H and

Vi = JaR'c, where H and ¢ are the gas scale height
and local sound speed respectively, R’ = € /Qx, and «
is the <w/w,/>-like true gas kinematic viscosity
parameter.

2. Under our more general scenario, the turbulent o of the
nebula scales as a = &/R’, where & ~ V2 /c? is the
turbulence parameter when €2; = Q. The parameter & is
commonly used as a convenient approximation for the
correct value o oc (1) v(//,) up to an undetermined correc-
tion factor, supposedly of order unity. Here, we quantify
this correction factor to be R’, which can be significantly
larger than unity. In this context, it is important to note
that the calculation of « from the correlations of velocity
fluctuations always incorporates the R’ dependence and is
itself a proper measure of diffusivity or viscosity.

3. The effective particle Stokes number is best defined by
the large-eddy frequency (2; rather than the orbital
frequency Qg. When Q; > Qg, Sty = R'Stg. St; is the
parameter that governs the particle transport properties
and should be used for turbulent concentration simula-
tions when comparing with the cascade model predictions
from, e.g., Hartlep & Cuzzi (2020).

4. When R’ > 1 (Q > Qg), the particle-layer scale heights
h in our 3D simulations show excellent matching with the
predictions obtained from («, St;) instead of
from (&, Stg).

5. The self-consistent generation of turbulence by hydro-
dynamic processes, such as vertical shear instability
(Nelson et al. 2013) consistently shows R’ > 1 (Stoll &
Kley 2016; Flock et al. 2020). Our findings imply that
particle scale heights inferred from turbulent broadening
(& ~ 6v?/c?) will be overestimates, while those obtained
from direct observations of particle scale heights in edge-
on disks or actual calculated Reynolds stresses are
diffusion-based and probably more appropriate.

6. The collision velocity of particles, under the condition
Qp > Qg, is scaled by different positive powers of R’,
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suggesting that, for R’ > 1 turbulence, the maximum
particle sizes should be smaller compared to R’ = 1
turbulence, all other things being equal.

7. The reduction of particle-layer scale height and the
enhancement of midplane €= p,/p, for high R’ turbu-
lence in the nebula should favor planetesimal formation
by both streaming instability (Youdin & Goodman 2005;
Johansen et al. 2007) and turbulent Concentration
(Hartlep et al. 2017; Hartlep & Cuzzi 2020).

8. Calibration of a numerical code for the purpose of
particle—gas simulations under external forcing should be
done separately for different particle sizes, as the mass
loading changes the values for o and R’ for same
injection energy. Furthermore, for external forcing in the
presence of vertical stratification, choosing a forcing scale
away from the domain size is a safer choice and is
advisable (preferably kr = 4 or higher).

In conclusion, we would like to emphasize the importance of
turbulent kinetic energy spectra in the context of numerical
studies of «, and in particular, directly determining the value of
Q; based on these spectra.
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Appendix A
Physics of the ; = Q2 Ansatz

While the a-model was introduced in Shakura & Sunyaev
(1973), they somewhat casually suggested that V; = ac, and
this simple suggestion appears in a number of early papers.
However, the underlying physics of the more commonly used
form V, = Jac, which Section 2.1 shows rests on an
assumption that 2 = Qg, can be found in Appendix A of
Shakura et al. (1978). In particular, their Equations (A1) and
(A2) give the energy-dissipation rates E of the large eddies, and
of the global nebula under Keplerian shear, respectively (in our
notation) as

E=Vy/L =V} (A1)
and
. %YV 9 9
b= (W] = ot Jrush )

Setting these energy-dissipation rates equal leads directly to
Q; =Qk, and this represents the closure relation needed to
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separate L and V;. The ansatz is thus underlain by the
physically plausible assumption that the turbulent kinetic
energy budget of the large eddies (Equation (Al)) is supplied
by the local release of gravitational energy by inwardly drifting
mass, which is in turn caused by viscous outward transport of
angular momentum (Lynden-Bell & Pringle 1974). The
gravitational energy released is locally transformed to mechan-
ical turbulent motions by viscosity acting across the local
Keplerian gradient (Equation A2). In all this, of course,
“viscosity” is generalized to a turbulent viscosity. This
turbulent kinetic energy budget is transformed to heat on
the smallest scales of turbulence and radiated away locally.
On this basis, Shakura et al. (1978) then used a logic parallel
to that of our Section 2.1, which they expressed as V, /¢ =
M ~ L/H = 6, where M is a Mach number. In their Section
3, they had already found that o ~ M§ ~ M? ~ §2, leading
directly, as in our Section 2.1, to V, = ¢/ and L = H/a.

Extending this “energetics” logic to physical conditions
where other nebula structures are driven by non-Keplerian
shear and have different local energy-dissipation rates, it is not
hard to see how the large, energy-containing eddies can have
Q = Q. For example, Cuzzi et al. (1993) studied midplane
turbulence driven by a settled particle layer, which imposes a
vertical velocity shear considerably larger than the radial
Keplerian shear, recently demonstrated explicitly in Sengupta
& Umurhan (2023). Cuzzi et al. (1993) argued that the largest
eddies would have large R’ and adjusted their treatment of St
accordingly. Given the forcing implicit in the shearing vertical
sheets of VSI (Nelson et al. 2013; Stoll & Kley 2014), a similar
situation there seems inevitable. Other turbulent instabilities
should be considered from this standpoint, as well.

Appendix B
Directly Calculating &, «, and Tangential Stresses WV, 4
from Driven Turbulence Simulations

Driven turbulence calculations are quantified by an effective
“driving” o parameter. Following the prescription described in
Gole et al. (2020), we write this control parameter as a,'% and it
is defined as

> ¥ (vt vz o), (B1)

where ¢ =1 is the sound speed and év,(x, y, z, 1) =vi(x, y, 2,
) — (vi)x(z, 1) represents the velocity fluctuations. Here, (..)
denotes the spatial average, and the overbar denotes the
temporal average, with the xy subscript being the spatial
average over the xy plane. For the temporal average in
Equation (B2), we take the spatial averages at five different
snapshots at the statistically steady turbulent state.

Based on the foregoing discussion, it follows that we can
define and calculate the diffusive « in the simulation box by
reference to the driving parameter & according to

1
R

o B2)

S (e y. 2 on) =

i=x,,2

x|

19 We note that Gole et al. (2020) write & as Qgrive-
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The Rossby number R’ can also be determined from
information read directly from the KE power spectrum,
according to the prescription described in Appendix C.

In the spirit of the above, we similarly express the
spatiotemporal average of the tangential stresses W, in terms
of its negative specific value via the relationship — pW,;, where

(B3)

Wr¢ = —<|($VX(X, Y, Z, t)évy(x’ Y, 2, t)|>’

where for practical intents and purposes p is assumed to be
constant. Expressing W, in terms of a negative quantity ensures
that gas accretion in the traditional sense of the effect occurs
toward the star.

Appendix C
Mixing Length Phenomenology

In light of our introductory remarks in Section 2.1, we seek
to relate turbulent viscosity D and « to the KE spectrum of the
gas. Diffusion in a turbulent medium can be phenomenologi-
cally assessed by the dominant length (L) and velocity scales
(V) associated with the turbulent dynamics, which usually
occurs at the start of the inertial range in 3D isotropic
turbulence. According to standard mixing length theory (e.g.,
Knobloch 1978), when the turbulence is isotropic, the diffusion
becomes a scalar and can be written as

1

D= gVLL. (C1)

Considering that a particular length scale £ may reasonably be
taken to contain two counter-rotating eddies of size £/2,
Equation (C1) reads

(C2)

Using Equations (6) and (16), Equation (C2) above can be
further manipulated into

_KE®) _ EG) _ [2EGy) )
ks J2OE (k) ko

The approach leading to Equation (C3) captures both the
form of the original mixing length ansatz and the Reynolds
stress approach (Section 2.1) as well as the spectral approach to
identifying V;, for which we generally find that indeed
VL2 ~ Vr%m ~ &c?.

Using the expression for €2; found in Equation (16), and
& = Vi /c* = 2ksE(kp)/c?, we write R’ in terms of & and
H=c/Qx as

R = O [Qx = ks J2ksE (k) [ = HkpJ&

which in turn leads to to an equivalent restatement of
Equation (C3) as

(C4)

& g = Y8 oo,

Dr=2=
TR Hky

(C5)
which demonstrates the equivalence introduced in Section 3.1
between « and d/R’ =.Ja /ka. Thus, in practice, one can
estimate « using either of these preceding formulae by
identifying the wavenumber k; corresponding to the peak value
of v2(k = kp) = 2k¢E (kp).
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Appendix D
Algorithm to Obtain a Predefined o and R’

An external forcing prescription is a simple way of
generating the turbulence in the simulation, allowing us to
investigate particle dynamics and related processes, such as the
formation of planetesimals under plausible nebula conditions.
Below, we present a simple algorithm for calibration of R’ and
« in an externally forced turbulence in any numerical code one
may use.

1. Select a particular box size (Lg = (H, where £ < 1) and a
forcing wavenumber k.

2. Vary the energy injection by tuning the forcing
parameter. In each case, generate a spectrum for turbulent
energy (see Section 4.2.2 of Sengupta & Umurhan 2023)
and calculate €2; using Equation (16) and R’ = € /Qk.
This will produce the calibration for f;, versus R’. We note
that, for the correct values of R’, the wavenumbers must
be scaled to the domain size such that 27/k gives the
actual physical length scale the wavenumber corre-
sponds to.

3. Calculate « for each case using Equation (B2) and the R’
calculated in step 2. The calibration for fy versus « is
now done.

4. For consistency, check that a(R’) follows a power-law
relation with index ~1.

5. For calibrations with a different kg, repeat the above steps
for the newly chosen wavenumber.

Once the calibration curves are in place, a value of f; can be
easily chosen in order to achieve a desired value of o. We note
that, in cases of particle—gas simulations, separate calibration
curves need to be produced for each particle size.

It should also be noted that the f; versus « calibration
presented in Figure 3(b) is applicable for gas-only simulations.
When inertial (St ==0) particles are present, the interaction
between the gas and the particles through aerodynamic drag
provides an extra source of nonlinearity to the system,
changing the overall dynamics. For example, in gas-only
simulations, for fy~0.03, the expected value of & is
~3 x 1072 (from calibrations in Figures 3(a) and (b)). When
we introduce inertial particles with Stg=0.06 in order to
investigate the particle scale heights (Section 4), we find
& ~ 1.6 x 1073, A reasonable rationalization for this would be
to think of the increased effective density of the gas in the
presence of particles and their mutual drag, making the largest
eddy rotate slower with a smaller €2; and hence a smaller R’ for
a fixed injection energy. Indeed, Sengupta & Umurhan (2023)
found this effect in their particle—gas simulations in a rotating
stratified setup. However, at present, no proper phenomenology
exists for rotating stratified turbulence (Alexakis & Bifer-
ale 2018), let alone in the presence of particles. Therefore, the
individual contributions from the rotation, stratification, and
particle drag cannot be identified separately, and they require a
detailed investigation—which we leave for future work.

Appendix E
Particle Scale Height

For convenience, we repeat here a simple derivation of the
particle scale height, highlighting the different roles of Stx and
St;. The reader is referred to the original papers for details
(Cuzzi et al. 1993; Dubrulle et al. 1995; Cuzzi &
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Weidenschilling 2006; Youdin & Lithwick 2007; Zsom &
Dullemond 2008; Sengupta et al. 2019). The physics is to
assume a steady-state particle layer of some half-thickness 7, in
balance between downward mass flow per unit area o at
terminal settling velocity Vr

o= p,,VT (El)

and upward gradient diffusion mass flow with particle diffusion
coefficient D,,

o = D,(9p,/02). (E2)

The settling velocity, for small particles with St < 1, is simply
V5= gt, = StghQg, where t, is the particle stopping time and
g = Q%z is the vertical component of solar gravity at height
z. The particle diffusion coefficient D, = Dgas/ 1+ Sth) =
acH/(1 + Sth) (Youdin & Lithwick 2007). We note that the
settling velocity depends on St and the diffusion coefficient on
St;. One approximates p, ~ p,, and (9p,/0z) ~ ppo/h, s0

0 Vr = Dypyo/h (E3)

StxhQx = D,/h (E4)

2 Lz (ES)
StxQx (1 + St7)

BR=H— (E6)

Stx(1 + St

The St? term from the diffusion coefficient plays relatively
little role in the process, given that St; <1 for most realistic
cases (Carballido et al. 2011; Estrada et al. 2016). This is also
true in cases where there is a balance between radial diffusion
and drift (Dullemond et al. 2018; Umurhan et al. 2020) because
radial drift, like vertical drift, is determined by St.

Appendix F
The Forcing Scheme

In order to drive turbulence in the simulation box by external
forcing, we shall use the same prescription as Brandenburg
(2001), Haugen & Brandenburg (2004), and Sengupta &
Umurhan (2023) and drive turbulence with a random, non-
helical, and delta-correlated forcing function f(x, f), written as

fx,t) =Re {j\ffk(t) explik(t) - x + ip ()]} (F1)

Here, k(f) = (ky, ky, k) is a time-dependent wavevector, and ¢
(t) with |¢| <  is the random phase. On a purely dimensional
argument, the normalization factor A can be written as
N = fyc(ke/6t)'/2, where c is the sound speed set as 1 in the
code unit, & is the time step, k = |k| is the wavenumber, and f;
is a dimensionless factor we call the forcing amplitude. In the
code, fj is the knob we adjust in order to control the forcing and
achieve a desired value of « (also see below). We choose to
force the system at some k = kg in which case, at each step, a
randomly chosen possible wavenumber within a narrow band
of kr—0.5 < |k| < kp+0.5 is forced. The forcing is executed
with the eigenfunctions of the curl operator

£ = ik x (k x &) — olk|(k x &)
k

_ . (F2)
1+ 02k2\1 — (k - 02 /K>
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Here, ¢ is the arbitrary unit vector used to generate k X é,
which is perpendicular to k. o denotes the helicity factor, which
is set to zero in order to make the forcing purely non-helical. It
is worth noting that this forcing is essentially divergenceless.
However, as the fluid equations solved by the Pencil code are
not strictly incompressible, which is perhaps more applicable
for astrophysical systems compared to a fully incompressible
dynamics, a small nonzero divergence is introduced over the
course of the simulation. Nonetheless, the spatiotemporal
dynamics of all of our simulations are effectively incompres-
sible (Sengupta & Umurhan 2023).

Appendix G
Comments on Simulation Domain

All variations of (ks f,) in the simulations shown here result
in two lines on the plot of (R, ), one for each ks. This is
because all our simulations assumed the same computational
box size Lg = 0.2H. It is simple to access other parts of (R’, &)
space, as follows. From Equation (5), L = H\a/R'. By
definition, the integral scale L can also be written as L =L/
ky=¢H /ky, where in the current simulations = 0.2. Setting
these equal leads directly to R'/av = (ks/€)?. This relationship
can be used to move around in (R’, @) space. Choosing a
smaller £ allows us to reach smaller « for a given R’, or to
decrease ky and capture a wider inertial range at some given a.
Conversely, choosing a larger ¢ allows us to reach larger « for
a given R’. The details of these results will vary, however, from
code to code. Moreover, the scaling is not entirely linear unless
the forced turbulence is homogeneous and isotropic; increasing
¢ too much in the presence of nebula rotation, stratification, and
shear can lead to a more complicated blend of rotation and
stratification.

Appendix H
Inferring St;, and R’ from Observations

Here, we sketch how combining various independently
observed properties of a turbulent protoplanetary disk can lead
to constraints not only on its true turbulent «, but on both St ,
which is of value in its own right, and also the turbulent R’,
which may be diagnostic of the kind of turbulent process that is
active. Even if observational realities preclude such a clean
extraction, being aware of the implications of R’ > 1 is
important. The (potentially) observed quantities are the particle
size r and actual internal density p,, (the latter admitting the
possibility the particles are porous aggregates), the disk gas
surface mass density X,, the local rotation rate and temperature,
the root-mean-square gas turbulent velocity (V) through
spectral line broadening (Equation (12)), and the particle
vertical scale height # from mm—cm interferometric observa-
tions, usually expressed as a ratio to the local gas scale
height H.

Equation (21), which is valid in the limit S¢>> «, is directly
rewritten as

2 ~
Lan a , (HI)
H?>  R'Stx(1 + R'*St%)

where we have used the relationships o = &/R’ found in
Equation (8) and the definition St; = R’Stx. Equation (H1) can
be viewed as a cubic equation for St;, in which the turbulent
Stokes number is a function of the observables h/H and
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& ~ V2 /c? (see Appendix H for details):

St; + Stz = o, (H2)
where
sz szrfns ‘71’2[1’18
p=— R = S (H3)
h h C h QK

Cubic equations are awkward to solve, but one can obtain
simple expressions in two limiting regimes to illustrate the use
of the technique. It is important to note that St, itself may be
determined directly from ¢, which is composed entirely of the
observable quantities, i, Vi, and .

First, consider the highly likely regime ¢ <1 or
Sty = R'Sty < 1. In this regime, St; > Stz, so from
Equation (H2), R'Stx = St; ~ ¢ = &(H/h)>. We can now
solve directly for R in terms of observables, making use of the
standard approximation for the small-particle (Epstein) regime
that StK = thK = 2rpp/2g:

R — i(ﬂ)z _ X @(E)z
Stg\ h 2rp, \h
that is, R’ is constrained by a combination of potentially

observable parameters including &, and once R’ is determined,
« itself can be immediately calculated.

(H4)

The alternate limiting regime is ¢ > 1 or St;, = R'Stx > 1.
Here, St; >> St;, so from Equation (H2), R'Stx = St; ~ ¢!/3
and

~1/3 2/3 D 2/3
R = a_(ﬁ) = _3@1/3(5) . (H5)
Stx \ h 2rpp h

It will always be evident from the observed values of h/H
(ALMA or VLA) and & (spectral line broadening) which regime
is of interest. Again, once R’ is determined, « itself can be
immediately calculated. The usually cited combined parameter
loosely referred to as «/St is thus seen to be merely an
intermediate step in a complete determination of the properties
of the system.
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