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Abstract

In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover
frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard
dimensionless Shakura–Sunyaev α parameter that quantifies turbulent viscosity or diffusivity, this assumption
leads to characteristic length and velocity scales given respectively by H and c, in which H and c are the
local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is
forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more
general case where ΩL�ΩK and show that, under these conditions, the characteristic length and velocity scales are

respectively R H and R c, where R L K is twice the Rossby number. It follows that ˜ R ,

where ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally
explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence,
and it may help with interpreting recent edge-on disk observations; more general implications for observations are
also presented. For R 1, the effective particle Stokes numbers are increased, which has implications for particle
collision dynamics and growth, as well as for planetesimal formation.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Solar system (1528)

1. Introduction

Protoplanetary disks are increasingly regarded as being

moderately turbulent, under a handful of magnetohydrodynamic

(Balbus & Hawley 1991; Turner et al. 2014; Lesur et al. 2023)

or purely hydrodynamic instabilities (Marcus et al. 2013; Nelson

et al. 2013; Lyra 2014). In many applications, such as global

models of disk evolution under turbulent viscosity (Estrada

et al. 2016; Sengupta et al. 2022), it is impractical to use more

than a simple parameterization of the viscous and diffusive

effects of turbulence, and by far the most popular one is the so-

called “α-model” (Shakura & Sunyaev 1973; Shakura

et al. 1978). In this closure model, the spatial and temporal

evolution of turbulent protoplanetary gas and particle disks is

determined by the large-scale effective viscosity and diffusivity

of the gas, as well as the particles in it. For many purposes, it is

adequate (and indeed necessary, given our limited under-

standing) to simplify the complex effects of real turbulence into

a scalar viscosity ν and diffusivity D. The basic scaling or

mixing length approximation for turbulent diffusivity and

viscosity is ( ) [ ][ ]D L V, L , where L and VL are respectively

the characteristic length and velocity scales of the turbulence. In

this case, L can be identified with the energy injection scale or

the energy-containing large spatial scale, and VL is the velocity

at that scale. Shakura & Sunyaev (1973) introduced the widely

used mixing-length-like closure model ν≡ αcH to incorporate

our ignorance about the turbulence into the single parameter α,
where c is the gas sound speed and H is the gas vertical scale

height. In that classic paper,6 it was suggested briefly that L∼H

and thus VL∼ αc, indeed with α often taken to be of order
unity (Cameron 1978; Lin & Bodenheimer 1982; Weidenschil-
ling 1984; Morfill 1985; Weidenschilling & Cuzzi 1993), given
that early works were more focused on accretion disks around
compact objects where trans-sonic turbulence used to be widely
believed to exist. Moreover, to study the properties of solid
particles (hereafter simply called “particles”) in the disk as they
grow by collisional sticking and evolve radially by drift and
diffusion (e.g., Estrada et al. 2016, P. R. Estrada & J. N. Cuzzi
2022, in preparation, P. R. Estrada et al. 2022, in preparation),
it has become necessary to separate the velocity and length-
scale properties of the turbulence that influence the particles
(Cuzzi et al. 2001).
A common assumption in such studies is that the turnover

time of the largest energy-containing eddy of the nebula

turbulence equals the local orbital time (Shakura &

Sunyaev 1973). Shakura et al. (1978, Appendix I and page

184) worked through an energy-dissipation argument that

implied ΩL=ΩK, and a logical chain resulted that was similar

to the one given in Section 2.1 below (see Appendix A for

more details). The ΩL=ΩK assumption had been made earlier

by Safronov (1972), and there has been some numerical

support for this assumption under certain conditions (Coleman

et al. 1992).
As simulations of particle collisions and growth in

turbulence have become more detailed, it has also become

important to reasonably estimate particle velocities given VL

(Völk et al. 1980). Weidenschilling (1997) adopted the scaling
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of Shakura et al. (1978), and Cuzzi et al. (2001) independently
reproduced the scaling of Shakura et al. (1978) in the form
most often used today, as described below in Section 2.1.
Dubrulle (1992) generalized the discussion to eddy frequencies
ΩL>ΩK and ΩL<ΩK, but concluded that ΩL∼ΩK for self-
generated nebula turbulence. Dubrulle (1992) even proposed a
scaling of L relevant to these conditions, but without
connecting it to α in any clear way. The idea that large-eddy
frequencies in turbulence could significantly exceed the orbit
frequency has also been discussed in the context of midplane
turbulence generated by a settled particle layer (Cuzzi
et al. 1993; Sekiya 1998), but has never been explored using
direct numerical simulations.

ΩL=ΩK seems to be a sensible assumption, given that the
disk is rotating, and thus any radial or azimuthal velocity
deviation will be subsequently dominated by the Coriolis force,
leading to a Keplerian turnover time (e.g., Cuzzi et al. 2001).
While reasonable for the magnetorotational instability (MRI;
Balbus & Hawley 1991), this result does not appear to be
generally valid for turbulence generated by, e.g., vertical shear
instability, where Stoll & Kley (2016) measure eddy lifetimes

much shorter than Keplerian, of the order of 0.1 K
1. Sengupta

& Umurhan (2023) find similarly short eddy lifetimes for the
turbulence generated by the settled particle layer at the disk
midplane. Incidentally, even for the MRI, Johansen et al.
(2006) find eddy lifetimes to be shorter than Keplerian in the
case of forcing by a sufficiently strong externally imposed
vertical magnetic field.

Taken all in all, these results suggest that the tendency of the
Coriolis force to impose a Keplerian turnover time will be in
competition with other external forcing agents acting on the
system. If these other forcing agents exert greater strength or
amplitude, then the Coriolis force becomes less influential,
potentially resulting in the turnover time of the largest eddies
deviating from Keplerian. It is this case we investigate in this
paper.

In this contribution, we numerically assess the properties of
externally forced turbulence under conditions of a rotating,
sheared nebula flow, under the general condition ΩL�ΩK. The
utility of the work is to allow for initial conditions in forced
simulations of turbulence with particles that satisfy simulta-
neously the critical nebula parameters α and ΩL. Without
actually knowing what the appropriate turbulent frequency ΩL

is, the relevant particle Stokes number St ≡ tsΩ may be
incorrectly defined—here, ts is the aerodynamic stopping time
of the particles. This appears to be the case in many prior
simulations of particle behavior in nebula turbulence for which
the particle properties are defined by an ΩK-based Stokes
number (Birnstiel et al. 2010; Estrada et al. 2016; Sengupta
et al. 2019; Gole et al. 2020), which we define as StK= tsΩK,
and in which the possibility of ΩL>ΩK was not considered. In
this paper, we will introduce and utilize an injection-scale eddy
Stokes number defined hereafter by StL= tsΩL.

2. Generalizing the Components of α

2.1. The Current Ansatz ΩL=ΩK

We first revisit the original ansatz, which is generally
assumed to be true in the literature in cases where the
turbulence parameter is calculated from numerical simulations.
We shall call this ˜ , the turbulence intensity when ΩL=ΩK.

Cuzzi et al. (2001) restated the separation of the L and VL

components of ν based on the ansatz that the largest-scale
eddies in the nebula would have eddy frequency ΩL=ΩK.
Situations where ΩL<ΩK generally correspond to slow
currents rather than fluctuating eddies, such as gently varying
zonal flows.
These structures do not survive longer periods, due to the

Coriolis effect introduced by rotation (Zahn 1989; Cuzzi
et al. 2001).
When the ansatz ΩL=ΩK is assumed true, ˜ relates to the

length and velocity scales in a specific way by starting with the
usual formulation,

( ) ˜ ˜ ( )D LV cH H, , 1L K
2

where c is the local sound speed and we have used H≡ c/ΩK,

where H is the local gas scale height. In this case, c and H are

considered as the characteristic velocity and length scales of the

system. Now, if the ansatz ΩL=ΩK is valid, then Equation (1)

can be rewritten as

( ) ( )D LV L L, . 2L L K
2 2

Combining Equations (1) and (2) gives ˜L H2 2 or

˜L H . Substituting L back in ˜LV cHL reveals

˜ ( )V c. 3L

Often invoked in the form ˜ V cL
2 2, this result is widely

used to calculate particle relative velocities in growth models

(e.g., Ormel & Cuzzi 2007; Birnstiel et al. 2010, 2016; Estrada

et al. 2016; Sengupta et al. 2019). The estimate ˜ is also used

as a measure of turbulent intensity in forced turbulence models,

i.e., based on root-mean-square (rms) velocities (Gole

et al. 2020; see Section 3.2 for more discussion).

2.2. The General Case ΩL>ΩK

The above usual ansatz does not address cases where
ΩL>ΩK, which may be the case in realistic turbulence. In
order to address cases where the traditional assumption
ΩL=ΩK is invalid (as occurs in at least the highly relevant
VSI regime; Nelson et al. 2013; Stoll & Kley 2016), the
analysis of Section 2.1 must be generalized. For the general
situation, we denote the turbulence (diffusion) parameter as α
(rather than ˜ ). Starting once again with Equation (1), we write
the frequency of the largest eddy as ΩL∼ VL/L, where VL is the
velocity of the largest (energy-containing) eddy and L is the
corresponding length scale. We define RL K , where R
is twice the traditional Rossby number Ro (Cushman-
Roisin 2011).
With this, Equation (2) now reads as

( ) ( )D LV L R L, . 4L L K
2 2

As before, setting this result equal to Equation (1) in terms of

α, we get

( )L
R
H. 5

Using Equation (5), the velocity VL for the largest eddy can be

written as

( )V L
R
R H R c, 6L L K

2
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which is equivalent to the expression Equation (3). Thus, while

L and VL change form, their product does not, and we recover

( ) ( )D LV cH, . 7L

From Equation (6), α can be related to ˜ as

˜
( )

V

R c R
. 8L

2

2

In the limit of ΩL=ΩK, R 1, and the general case reduces

to ˜ . Also, substituting the above expression into

Equation (6) demonstrates its equivalence to Equation (3).
It is noteworthy that a similarity can be drawn between the

expression for the diffusive α found in Equation (8) and the
one given by Youdin & Lithwick (2007; see their Section 3),
i.e., Vg

2
eddy, where Vg is the rms of the gas fluctuation

velocities and τeddy is the eddy turnover time. Given that Vg
2 is

dominated by the largest energy-containing scale, R1eddy

if τK∼ 1/ΩK∼ 1 is assumed.7

2.3. Why Is ΩL So Pivotal in Nebular Turbulence?

In the protoplanetary disk, the gas scale height H= c/ΩK is a
natural length scale arising from hydrostatic balance. In a
Keplerian disk, it is also the largest scale on which organized
motions like large vortices remain subsonic—so if the
turbulence reaches the scales of H (either through that scale
being unstable or through inverse cascade), then H will shape
the turbulence.

The most significant length scale for turbulence is the scale
associated with the largest eddy, the correlations of which
govern major aspects of nebula physics from transport
properties to particle dynamics, and it has been found that it
can be orders of magnitude smaller than H for many plausible
turbulence mechanisms studied to date, even when R 1
(Figure 1, left).

When the more general case is considered (ΩL�ΩK),
the largest turbulent eddy length scale shifts toward smaller
scales (Figure 1, right), and under such conditions, it is this
scale that dominates the particle transport and diffusion
properties in the nebula. Scales longer than this may be
important for zonal flows or coherent structures, such as long
lived vortices, but they are not relevant to fluctuating turbulent
gas dynamics.

3. Simulations with Forced Turbulence

For the purpose of demonstrating the theoretical concept
constructed in Section 2.2, we executed a series of simulations
where turbulence is forced externally in a shearing box with
domain size 0.2H in the radial and azimuthal directions and
0.4H in the vertical. All the simulations presented in this
section are gas-only (Lagrangian particles are introduced in
Section 4), and we solve for the equations for mass and
momentum conservation under isothermal condition with
vertical gas stratification in a shearing box setup:

· ( ) ( )u
t

0; 9
g

g g

( · ) ˆ

ˆ ˆ ( )

u
u u z u

z x

t

P z x

2

1
3 , 10

g
g g K g

g

K K
2 2

where ug is the gas velocity, P is the gas pressure, ρg is the gas

densityand ΩK is the local Keplerian frequency. The term Ω
2z

in Equation (10) represents the vertical gravity responsible for

the gas stratification. The third term on the left-hand side of

Equation (10) represents the Coriolis force arising from the

rotation, and the last term of the right-hand side of the same

equation is the shear.
The resolution used in all the simulations in this section is

(Nx× Ny× Nz)≡ 256× 256× 512. We have shear, rotation,
and vertical stratification included in the simulations, and
we use the PENCIL CODE

8
(Pencil Code Collaboration

et al. 2021) to solve the continuity and momentum equations.
The forcing scheme is the same one used in Sengupta &
Umurhan (2023). The external forcing is controlled by a
forcing parameter f0 that sets the amount of energy injected in
the system at a previously chosen wavenumber. For the gas-
only simulations presented in this section, we have chosen two
forcing wavenumbers kf= 3 and 6, and used f0= [0.003, 0.005,
0.01, 0.03, 0.05, 0.1, 0.3] for each kf, totaling 14 simulations.
The details of the forcing scheme are presented in Appendix F.
We have also used sixth-order hyperdiffusion and hypervisc-
osity in the simulations, allowing the fields to dissipate their
energy near the smallest scales while preserving the power
spectra at the larger scales (for details see Sengupta &
Umurhan 2023).

Figure 1. A cartoon showing turbulent kinetic energy spectra E(k) as a function of spatial wavenumber k for two different cases: ΩL = ΩK and ΩL > ΩK. It is worth
noting that, when ΩL exceeds ΩK, the largest energy-containing length scale of the turbulence shifts toward the right. As this is the governing scale setting the turbulent
dynamics, transport and diffusion properties are thus altered.

7
The interested reader is referred to Carballido et al. (2011) for a validation

and discussion of the Youdin & Lithwick (2007) expression for particle
diffusion.

8
http://pencil-code.nordita.org/
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We calculate α and ˜ directly from our code results

( )
V

R c

v v

c

2

3
, 11

r

s

rms
2

2 2

˜ ( )V c V c , 12Lrms
2 2 2 2

where vr and v are the local velocity fluctuations relative to the

mean flow, and Vrms is a spatial and temporal average of the

fluctuating velocity amplitudes. It is generally the case that

VL≈ Vrms (see Appendix B for details).

3.1. The Importance of Turbulent Kinetic Energy Spectra

Here, we illustrate how relevant turbulence parameters are
determined directly from the turbulent kinetic energy spectrum
E(k) as a function of spatial wavenumber k (see Figure 1). The
first step to test the general case through our numerical
simulations is to estimate ΩL. The velocity vk of an arbitrary
eddy with wavenumber k can be written as

( ) ( )v kE k2 , 13k

where E(k)dk is the energy per unit mass contained in eddies

with wavenumber ranging between k and k+ dk, where E(k)

has units of H K
3 2 . Then, the turnover time for eddies with

wavenumber k is

( )ℓ v
kv

1
, 14k

k

where ℓ∼ 1/k is the eddy length scale (Tennekes &

Lumley 1972; Davidson 2004) and the corresponding eddy

frequency is simply Ωe≡ 1/τ. We note that τ here is the same

as the nonlinear timescale or the timescale associated with the

scale-to-scale energy transfer.
Using Equations (13–14), the eddy turnover frequency can

be expressed as

( ) ( )kv k E k1 2 . 15e k
3

For the energetically dominant eddy with length scale L,

Equation (15) reads as

( ) ( )k E k2 , 16L f f
3

where kf is the energy injection scale or the forcing scale in our

simulations. Correspondingly,

( ) ( )V k E k2 , 17L f f

with L∼ 1/kf. Figure 2(a) illustrates these relationships for two
energy spectra with f0= 0.05 with forcing at kf= 3 and 6. One

should take note of the positions of the largest energy-

containing scales, which determine ΩL for the two cases.

Appendix C shows how these spectral expressions also lead to

˜ ˜k H Rf (Equation (8)).

3.2. Connection between α and Tangential Reynolds Stresses

Following Shakura & Sunyaev (1973), the coefficient of
turbulent dynamical viscosity μ is defined by the mixing length
form

( )LV , 18L

and using the correspondence between Reynolds stress Wrf and

viscosity,

( )r
r

v

r

3

2
, 19r KW

in which r is the cylindrical radius coordinate and where

Keplerian flow is assumed for the azimuthal velocity vf, i.e.,

vf/r=ΩK∼ r−3/2 9 Re-expressing the stress–viscosity rela-

tionship Equation (19) in terms of variables we use here for the

box—including the use of Equation (7) and the assumption that

the density ρ is constant on the scales of interest—we find

( ) ( )cH c
2

3
, 20r K

2

where the above has been expressed in terms of the negative of

the specific tangential stress r rW . Similarly to Vrms,

r is calculated from the spatiotemporal average of the

correlations between the radial and azimuthal velocity fluctua-

tions (see Appendix B). Equation (20) simply states that

turbulent kinematic viscosity can be estimated from the specific

Figure 2. (a): Kinetic energy spectra for two different wavenumbers: kf = 3 (blue star) and 6 (orange diamond). The largest energy-containing eddy coincides with the
injection scales. It should be noted that the inertial ranges in both cases follow a −4/3 power law instead of −5/3, due to the rotation of the system. (b): The variation

of V Rrms
2 with the tangential Reynolds stress r

2

3
and R , calculated based on the KE spectrum and Equation (16). The relationship shows a power law with

exponent 0.91 ± 0.05 for kf = 6, close to our expectation of unity, and 0.71 ± 0.03 for kf = 3 (see Section 3.2 for details).

9
In isotropic turbulence, the ensemble-averaged correlations of off-diagonal

fluctuating velocity components are equal to zero (Davidson 2004). However,
in anisotropic systems like those involving Keplerian shear, off-diagonal
velocity correlations like Wrf are nonzero in general, and can lead to transport.
This explains the original motivation behind the mixing length model
Equation (19).

4
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tangential stresses via the simple form c2 3r
2

(Equation (11)). However, the quantity r (also commonly

written as v vr ) is sensitive to the correlations of the velocity

fluctuations in addition to their magnitudes, while Vrms is not,

corroborating the analysis of Balbus & Papaloizou (1999).

Indeed, in several cases, turbulent Reynolds stresses have been

numerically calculated from actual velocity correlations rather

than only their magnitudes (e.g., as done for the VSI

turbulence, Nelson et al. 2013; Stoll & Kley 2014). Such

stresses can be directly associated with α (also see Youdin &

Lithwick 2007, Appendix B).
This important distinction is accounted for by our R scaling

term as shown in Figure 2. Using the kf= 6 simulation results
in Figure 2(a), Figure 2(b) shows a fit of the form y= ax b

between ( )V Rlog rms
2 and ( )log 2 3r , where b= 0.91± 0.05

—that is, V Rr rms
2 . For kf= 3, however, we get

b= 0.71± 0.03, which is about 30% less than the expected
value.

3.3. ΩL in Forced Turbulence as a Function of f0

In Figure 3(a), we show the variation of R L K as a
function of f0 for two different injection wavenumbers kf= 3
(blue star) and 6 (orange diamond). For a particular forcing
wavenumber kf, ΩL—and hence R —increases with the forcing
amplitude. Increasing the injection energy at the same

wavenumber and associated length scale results in a faster
rotation for the largest (energy-containing) eddy and a
corresponding increase in the turnover frequency ΩL. It is also
evident from Figure 3(a) that, for a fixed value of f0, R
increases when energy is injected at a higher wavenumber and
smaller scale, and as for fixed energy injection, smaller eddies
have a smaller turnover time.

3.4. α in Forced Turbulence as a Function of f0

In Figure 3(b), a calibration of ˜ R as a function of f0
is shown for forcing at two different wavenumbers: kf= 3 (blue
star) and 6 (orange diamond). It is evident from the figure that,
for a fixed kf, α increases with the increasing energy injection.
Diffusion and viscosity are primarily governed by the largest
energy-containing scales, so increasing energy at those scales
will result in an increased diffusion and hence a higher α.
However, for a fixed f0, α decreases when energy is injected at
a higher wavenumber (see kf= 3 versus kf= 6 plots in
Figure 3(b), as the length scale for the largest energy-
containing eddy decreases when a higher wavenumber is
chosen.
Interestingly, as ˜ is not a function of R and it depends on

the rms of the fluctuating velocities throughout the inertial
range, which measures the total energy injected into the system,
variation in ˜ for a fixed f0 is minimal with the injection
wavenumber kf as shown in Figure 3(c). This result is also

Figure 3. (a): Calibration for R as a function of forcing-energy injection, given in terms of the forcing parameter f0 for two different injection wavenumbers: kf = 3
(blue star) and kf = 6 (orange diamond). The straight lines are the power-law fits for each data set. For fixed energy injection, R increases with kf. (b): Calibration for α
(corrected by R ) vs. f0 for kf = 3 (blue star) and kf = 6 (orange diamond). (c): Variation of ˜ with f0 for kf = 3 and 6. It should be noted that the values of ˜ are almost

the same for two different injection scales. With ˜ V crms
2 2 over the full inertial range, ˜ is expected to reflect the total energy injected into the system, irrespective

of the injection scale. (d): Variation of α with R for kf = 3 and 6. A power-law fit for y = ax
b gives b = 0.98 ± 0.07 for kf = 3 and 1.02 ± 0.02 for kf = 6 (see

Section 3.5).

5
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consistent with our findings in Equations (6) and (8) that VL
2

remains reasonably constant with the forcing wavenumber and
R implicitly conveys the length-scale information in the
realization of α.

3.5. Scaling between α and R

The present model, developed on the basis of the general
case ΩL>ΩK, can be tested by analyzing the scaling between
α and R , using the parameter fo. Consider that the total energy
injected varies with f0 with some power-law index p as

( )E k f p
0
. With R L K and ΩL∝ E(k)1/2, as in

Equation (16), we can write ( )R E k f p1 2
0

2. Similarly

for α, following Equation (B2), V RL
2 and VL∝ E1/2, as

in Equation (13); thus, we can write E f p1 2
0

2. So, we

expect that, for a particular value of kf, R is constant and the
slope of the plot for log versus Rlog will be unity.

In Figure 3(d), we show the variation of log versus Rlog
for kf= 3 (blue star) and 6 (orange diamond), with the
calibrations shown by dotted lines. When a power-law fitting in
the form y= ax

b is done for the respective data sets, we get
b= 0.98± 0.07 for kf= 3 and b= 1.02± 0.02 for kf= 6,

3.6. Physical Processes Leading to Different R

The model developed in this article is relevant to several
kinds of nebula turbulence, such as that driven by vertical shear
instability (VSI; Nelson et al. 2013; Flock et al. 2020) or
convective overstability (COV; Lyra 2014). For example, Stoll
& Kley (2014) found that their VSI simulations had ΩL

significantly higher than ΩK (eddy turnover time τeddy< 1).
More recently, the energy spectra presented for global VSI
simulations in Flock et al. (2020) show that energy injection
happens around k∼ 100 and the stratification-induced inverse
cascade sets the largest energy-containing scale around k∼ 20,
suggesting that the value of R may significantly exceed unity.
More recently, Sengupta & Umurhan (2023) found Ro> 1 in
particle-laden disk midplane when turbulence is driven by
Kelvin–Helmholtz and symmetric instability (Stamper &
Taylor 2017). If the disk turbulence is primarily triggered
and sustained by such hydrodynamic processes, the method of
approximating α as ( ˜ )v c2 2 will be an overestimation,
whereas values for α from the analyses of edge-on disks will
probably be more consistent with the actual level of disk
turbulence (see Section 5.1).

4. Numerical Validation

There are several situations in which the value of R becomes
relevant—particle scale height being one of them. In order to
investigate the validity of ΩL>ΩK and the effect of R , we
have performed numerical tests where inertial (St ≠0) particles
have been introduced in the simulation box with rotation and
vertical stratification, with the turbulence being generated and
maintained by external forcing. The particles are then allowed
to settle under the influence of vertical gravity until a balance
between the settling and turbulent diffusion is reached. We then
investigated the scale heights obtained in the simulations, the
main objective being to test whether inertial particles react to
the nebula turbulence following (α, StL) or ( ˜ ), StK .

In a protoplanetary disk, a steady state between particle
settling toward the disk midplane and turbulent diffusion
in the vertical direction sets the particle scale height

(Cuzzi et al. 1993; Dubrulle et al. 1995; Youdin &
Lithwick 2007; also see Appendix E):

( )
( )h H

St 1 St
. 21

K L
2

In order to test the validity of the theory and insights
developed in Sections 2 and 3, we now introduce Lagrangian
particles in our simulations and compare their scale heights h
with Equation (21). We use a monodisperse particle distribu-
tion with StK= 0.06 and an initial vertically averaged particle-
to-gas mass ratio Z= 0.1%. Thus, while the particle back-
reaction is formally in play, the particle local density never gets
large enough for it to be significant. The particles are coupled
to the gas through aerodynamic drag by their stopping time ts
(Section 1)—the time required for a particle to lose all its
momentum to the differentially moving gas. Here, the
Lagrangian equations of motion for a particle’s vector position
(xp) and velocity (up) can be written as

( )
x

u
d

dt
, 22

p
p

ˆ ˆ ˆ

( )
( )

u
z u z x

u u

d

dt
z x

x

t

2 3

. 23

p
K p K K

p g p

s

2 2

The second term on the right-hand side in Equation (23)

represents momentum exchange via aerodynamic drag that

depends upon the gas velocity evaluated at the particle’s

position. In the gas momentum equation Equation (10), we

must introduce a term representing the equal and opposite

momentum transfer. This modifies the Equation (10) to

( · ) ˆ

ˆ ˆ ( )

u
u u z u

z x
u u

t
P

z x
t

2
1

3 , 24

g
g g K g

g

K
p

g

g p

s

2 2

where ρp is the local volume mass density of the particle phase.
In Figure 4, we present the results of our numerical

experiment where turbulence is forced with f0= 0.05 at
kf= 3 (blue dashed curve) and 8 (orange solid curve) with
k∼ 45 and 120, respectively, when normalized by domain size,
producing ˜ 8 10 3 in a simulation box, including
vertical gravity, rotation, and density stratification. The
vertically integrated solid-to-gas mass ratio in the simulation
is kept low (Z= 0.1%) in order to minimize the effects of
particle mass loading. The scale height for the particles when
calculated using ˜ and StK is h= 0.34H, significantly larger
than what the simulations show. In Figure 4(a), the obtained

z2 is shown to be different for the two runs, even though all
the parameters are the same and the runs differ only by the
forcing wavenumber, clearly indicating that R plays an
important role in setting α and hence the vertical distributions
of the particles. The values of R for kf= 3 and 8 are
approximately 5 and 12, producing StL∼ 0.3 and 0.7.
respectively. When h is calculated using Equation (21) with
these values, we get h∼ 0.14 for kf= 3 and ∼0.08 for kf= 6. In
Figure 4(b), the particle density for the two simulations is

shown with a Gaussian fit in the form y ae z 22 2
on the top.

The fitted values for |σ| (the particle scale height of the
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distribution) for the two wavenumbers come out to be 0.13 and

0.08, closely matching the calculated scale heights from

Equation (21). So, it is evident from our numerical experiment

that the vertical diffusion of particles under nebula turbulence

should be effectively parameterized by α, not ˜ , and without

the scaling by R as in Equations (8) and (B2), the reported ˜

will be an overestimation of the true diffusivity of the particles

in the domain.
We calculate R using equation Equation (16) directly from

the KE spectra produced from the simulation data. In

Figure 4(c), the kinetic energy spectra for the particle–gas

simulation with kf= 8 is shown. The associated eddy turnover

times Ωe for all wavenumbers are shown in Figure 4(d). The

vertical and horizontal dashed black lines in the figure indicate

the forcing wavenumber (length scale L) and the asso-

ciated RL K .
We note that the estimated particle scale heights h using α

and StL match nicely with the values for |σ| obtained from the

Gaussian vertical particle distribution. However, when com-

pared with z2 , the estimate agrees well with kf= 8 but

differs by ∼35% for kf= 3. This difference is due to the effect

of a relatively small vertical domain used in the simulation. h

gets smaller either when the level of turbulence is low or when
the energy is injected at a higher wavenumber (smaller scale)
such that the velocity correlations at the largest energy-

containing scales are small. This is the reason why z2

agrees well with the actual scale height for kf= 8. We also

expect that z2 and |σ| will be close for kf= 3, when using a
smaller value for f0 (lower level of turbulence) where particle-
layer thickness is small, or if a larger vertical domain is used.

So, we can infer that z2 is a good representation of particle
scale height only when the particles are settled sufficiently
away from the vertically periodic boundary of the simulation
domain.

5. Discussion

5.1. Determination of α from Observations

There are several situations in which the value of R is
relevant—estimating the level of nebula turbulence from disk
observations is one of them. Observations of protoplanetary
disks reveal that the systems are turbulent to varying degrees,
and the observed levels differ by the mode of observation
as well.

Figure 4. (a): Scale heights h for particles with StK = 0.06 when forcing at kf = 3 (blue dashed curve) and 8 (orange solid curve). Here, f0 = 0.05, producing

˜ 8 10 3, and R 5.5 and ∼12 for kf = 3 and 8, respectively. The StL for the two wavenumbers are 0.3 (for kf = 3) and 0.7 (for kf = 8). The simulations show

z H0.0972 and 0.082H for kf = 3 and 8, respectively. The scale height calculated using StK and ˜ gives h = 0.36. (b): The vertical particle density distribution

for two injection scales and the respective Gaussian fits in the form ( )y a xexp 22 2 on the top. The fitting gives the values of the parameter |σ| = 0.13 ± 0.0007
for kf = 3 and 0.08 ± 0.0001 for kf = 8. The particle distribution is Gaussian with the midplane particle-to-gas mass ratio reaching ∼0.009 for kf = 3 and ∼0.012 for
kf = 8, implying that the effect of particle mass loading is negligible. (c): Kinetic energy spectra for the particle–gas simulation forced at kf = 8 (k ∼ 120 when
normalized by domain size). A curve fit for the slope of the inertial range gives −1.36 ± 0.2, shallower than −5/3 even in the presence of inertial particles. (d): A plot
for eddy turnover time Ωe/ΩK for all the wavenumbers. The location for the largest energy-containing wavenumber kf and the corresponding value of R are noted by
the dashed straight lines.
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One way of assessing α for disks through observations is by
analyzing the turbulent line broadening in order to obtain δv/c
and estimating α as ∼δv2/c2 using velocity information only
(Flaherty et al. 2017, 2018; Teague et al. 2018; Flaherty
et al. 2020). Generally, this method gives an upper bound of α
—for example, Flaherty et al. (2017) found δv/c∼ 0.01 for HD
163296 and ∼0.3 at ∼1–2 scale heights above the midplane
for DM Tau (also see Lesur et al. 2023 for a discussion).
Similar analysis by Teague et al. (2018) on TW-Hya using the
J= 7− 6, 5− 4, and 3–2 transitions of CS imaged at ∼0 5
spatial resolution estimated δv/c 0.1. As these observations
improve, it will be critical to remember that they are
fundamentally Vrms

2 -based and thus measure ˜ , not α.
On the other hand, the observed vertical thicknesses of edge-

on disks with ALMA and the VLA have been used to infer
values of α/St using Equation (21). Then, values of α are
inferred using assumptions of St based on these observations
and nebula-growth models (Doi & Kataoka 2021; Villenave
et al. 2022; Doi & Kataoka 2023; Villenave et al. 2023). In this
way, Villenave et al. (2022) estimated α∼ 10−5 for
Oph 163131. For HD 163296, which is an older Class II disk,
estimates for α vary based on which ring system is being
analyzed: for the inner, more vertically extended ring, the
turbulence is vigorous, with α = 6× 10−2

(Doi &
Kataoka 2023), while the corresponding values for the outer
flatter ring are systematically lower but with little agreement
between published values with α� 6× 10−3

(Doi &
Kataoka 2023) or α≈ 4.5× 10−3

(Pizzati et al. 2023).
We underscore that particle-layer thicknesses are sensitive to

α, not ˜ (Section 4 and Figure 4). It is interesting to note that,
while uncertainties remain significant (especially in St), the
values of α estimated from the analyses of particle scale heights
seem to be consistently smaller compared to the ones obtained
from the turbulent line broadening, and this is just what would
be expected from the difference between values of particle
height derived from ˜ and α if R 1.

It is possible to combine the independent and distinct
observational constraints discussed above (on h/H from
particle-layer thicknesses and Vrms from spectral line observa-
tions) with other observed constraints on particle size and gas
disk surface mass density (e.g., Carrasco-González et al. 2019;
Macías et al. 2021; Doi & Kataoka 2023) to actually constrain
the critical value of R and thus the nature of the underlying
processes causing disk turbulence in the first place. We sketch
the logic by which this may be done in Appendix H.

5.2. R and Sc: Effects on Global Particle Redistribution

Here, we comment on how R may affect particle radial
distributions. As noted in Section 1, the ratio ν/D≡ Sc (the
Schmidt number) is usually taken as unity; indeed, there has
been some confusion in the literature as to the definition of Sc
itself (see Jacquet et al. 2012 and Estrada & Cuzzi 2016, their
Appendix B). As shown in Section 3.2, this quantity is the
same as the ratio v v V R1r rms

2 . To our knowledge,
Hughes & Armitage (2010, 2012) represent the most complete
(or only) study of the role of variable Sc in global redistribution
of particles undergoing growth, drift, and diffusion. They only
varied Sc from 0.5 to 2.0, and over this range found the effects
minor. Unsurprisingly, (what we find to be) the more realistic
case, Sc<1, favors diffusion over drift or advection, leading to
a slightly greater retention of small particles in outer disks after
longer times. To the degree that future studies of different kinds

of nebula turbulence might be found to favor larger values of
R , the implications for particle radial transport might need to
be reassessed. This would include studies where the radial
structure of a particle band is used to infer the properties of the
local particle size and/or ν (Dullemond et al. 2018).

5.3. Effects on Collision Velocities and Particle Growth

Following Völk et al. (1980), Ormel & Cuzzi (2007) derived
closed-form solutions for the collision velocities for particles in
the turbulent nebula for three different regimes: (1) the tightly
coupled particles when ts< tη, where tη is the stopping time at
the Kolmogorov scale (their Equation (27); (2) the inertial
range regime where tη< ts< tL (their Equation (28)); and (3)
the heavy particle limit when ts> tL (their Equation (29)). The
response of a particle to turbulence is determined by StL, which
is a factor of R larger than the StK assumed by previous studies
along these lines (e.g., Birnstiel et al. 2010; Zsom et al. 2010;
Estrada et al. 2016; Sengupta et al. 2019, 2022). This has
different implications in the three different particle size ranges,
as noted below. Regarding the equations below, recall that
Ormel & Cuzzi (2007) defined St with the meaning of StL,
while at the time implicitly associating it with StK as has been
done by all dust growth models to date.
The velocities for the tightly coupled small particles in the

sub-Kolmogorov regime are mostly dominated by Brownian
motion (Sengupta et al. 2019, see their Figure 2) and are
unlikely to change significantly. However, with the R effect
included, the collision velocities ΔV12 between particles with
large-eddy Stokes numbers St1L and St2L (Equation (27) Ormel
& Cuzzi 2007) for the tight coupling limit become

( ) ( )V R V St St . 25g12
2 2 2

1K 2K
2

Similarly, in the most important range (2) above, Equation
(28) of Ormel & Cuzzi (2007) shows the collision velocity,
which can be written with the new scaling included as

( )V R V St , 26g12
2 2

1K

where the term Λ is only weakly dependent on StL for StL= 1

(Ormel & Cuzzi 2007). Thus, Equation (26), along with

Equation (6), shows that the collision velocity is increased by a

factor of R 1 2 for a given α, and thus particles reach the

bouncing or fragmentation barriers at physical sizes that are

smaller by a related factor.
In the heavy particle limit, a higher StL with R 1 reduces

collision velocities, allowing for larger particles. The modified
expression from Ormel & Cuzzi (2007, Equation (29)) would
read as

⎜ ⎟⎛
⎝

⎞
⎠

( )V V
R R

1

1 St

1

1 St
. 27g12

2 2

1K 2K

5.4. Planetesimal Formation

Our results have implications for the process of planetesimal
formation, an outstanding problem in planet formation theory.
For example, we have seen that turbulence with R 1 can

significantly reduce the particle scale height (Figure 4) and
increase ò= ρp/ρg at the midplane, for particles of some given
StK or nominal physical size, relative to estimates based on the
rms velocity-based turbulence parameter ˜ . This is primarily
because the (more appropriate) value of α will decrease, and
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because StL for the particles will increase (however,
Equation (21) shows the StL effect to be relatively minor when
StL= 1). Planetesimal formation by either streaming instability
(SI; Youdin & Goodman 2005; Johansen et al. 2007) or
turbulent concentration (TC; Cuzzi et al. 2010; Hartlep &
Cuzzi 2020) is aided when the near-midplane ò is larger; even
though this effect may only increase ò by a factor of order
unity, this can be important.

TC has a more subtle dependence on StL than SI, but
comparison of planetesimal formation models with observa-
tions of, e.g., observed chondrule or aggregate sizes will be
affected. Hartlep & Cuzzi (2020) find reasonable sizes and
abundances for their resulting planetesimals if the initial
pebbles are centimeter- and decimeter-sized, implicitly assum-
ing R 1. However, if R 10, for example, the same
outcome would be achieved with mm–cm sized particles.

6. Conclusions

The main objective of the work presented here is to
investigate how the particle behavior in a turbulent fluid under
nebular conditions is altered with varying large-eddy frequency
ΩL>ΩK. Below, we present a summary of our findings:

1. When ΩL>ΩK, the characteristic length and velocity

scales for nebula turbulence are L R H and

V R cL , where H and c are the gas scale height
and local sound speed respectively, R L K , and α
is the v vr -like true gas kinematic viscosity
parameter.

2. Under our more general scenario, the turbulent α of the
nebula scales as ˜ R , where ˜ V crms

2 2 is the
turbulence parameter when ΩL=ΩK. The parameter ˜ is
commonly used as a convenient approximation for the
correct value v vr , up to an undetermined correc-
tion factor, supposedly of order unity. Here, we quantify
this correction factor to be R , which can be significantly
larger than unity. In this context, it is important to note
that the calculation of α from the correlations of velocity
fluctuations always incorporates the R dependence and is
itself a proper measure of diffusivity or viscosity.

3. The effective particle Stokes number is best defined by
the large-eddy frequency ΩL rather than the orbital
frequency ΩK. When ΩL>ΩK, RSt StL K . StL is the
parameter that governs the particle transport properties
and should be used for turbulent concentration simula-
tions when comparing with the cascade model predictions
from, e.g., Hartlep & Cuzzi (2020).

4. When R 1 (ΩL>ΩK), the particle-layer scale heights
h in our 3D simulations show excellent matching with the
predictions obtained from (α, StL) instead of
from ( ˜ ), StK .

5. The self-consistent generation of turbulence by hydro-
dynamic processes, such as vertical shear instability
(Nelson et al. 2013) consistently shows R 1 (Stoll &
Kley 2016; Flock et al. 2020). Our findings imply that
particle scale heights inferred from turbulent broadening
( ˜ )v c2 2 will be overestimates, while those obtained
from direct observations of particle scale heights in edge-
on disks or actual calculated Reynolds stresses are
diffusion-based and probably more appropriate.

6. The collision velocity of particles, under the condition
ΩL>ΩK, is scaled by different positive powers of R ,

suggesting that, for R 1 turbulence, the maximum
particle sizes should be smaller compared to R 1
turbulence, all other things being equal.

7. The reduction of particle-layer scale height and the
enhancement of midplane ò= ρp/ρg for high R turbu-
lence in the nebula should favor planetesimal formation
by both streaming instability (Youdin & Goodman 2005;
Johansen et al. 2007) and turbulent Concentration
(Hartlep et al. 2017; Hartlep & Cuzzi 2020).

8. Calibration of a numerical code for the purpose of
particle–gas simulations under external forcing should be
done separately for different particle sizes, as the mass
loading changes the values for α and R for same
injection energy. Furthermore, for external forcing in the
presence of vertical stratification, choosing a forcing scale
away from the domain size is a safer choice and is
advisable (preferably kf = 4 or higher).

In conclusion, we would like to emphasize the importance of
turbulent kinetic energy spectra in the context of numerical
studies of α, and in particular, directly determining the value of
ΩL based on these spectra.

Acknowledgments

We are grateful to Karim Shariff and Uma Gorti for multiple
valuable conversations. We also thank Neal Turner for a careful
review of the manuscript and important suggestions that
significantly improved the manuscript. We thank our reviewer
for comments that improved the quality of the paper. D.S.
acknowledges support from NASA Prosdoctoral Program
(NPP) Fellowship, NASA Astrobiology Institute, NASA
Theoretical and Computational Astrophysical Networks
(TCAN) via grant 80NSSC21K0497 and NSF via grant AST-
2007422. O.M.U. and W.L. acknowledge support from the
NASA Theoretical and Computational Astrophysical Networks
(TCAN) via grant 80NSSC21K0497. W.L. is further supported
by grant #80NSSC22K1419 from the NASA Emerging
Worlds program. All the simulations presented in this paper
have been performed on the NASA Advanced Supercomputing
(NAS) facility, with generous computational resources pro-
vided through NPP, ISFM, and TCAN allocations.

Appendix A
Physics of the ΩL=ΩK Ansatz

While the α-model was introduced in Shakura & Sunyaev
(1973), they somewhat casually suggested that VL= αc, and
this simple suggestion appears in a number of early papers.
However, the underlying physics of the more commonly used
form V cL , which Section 2.1 shows rests on an
assumption that ΩL=ΩK, can be found in Appendix A of
Shakura et al. (1978). In particular, their Equations (A1) and
(A2) give the energy-dissipation rates E of the large eddies, and
of the global nebula under Keplerian shear, respectively (in our
notation) as

( )E V L V A1L L Led
3 2

and

⎛
⎝

⎞
⎠

( )E R
R

LV
9

4

9

4
. A2

K
K L KKep

2
2 2

Setting these energy-dissipation rates equal leads directly to

ΩL=ΩK, and this represents the closure relation needed to
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separate L and VL. The ansatz is thus underlain by the

physically plausible assumption that the turbulent kinetic

energy budget of the large eddies (Equation (A1)) is supplied

by the local release of gravitational energy by inwardly drifting

mass, which is in turn caused by viscous outward transport of

angular momentum (Lynden-Bell & Pringle 1974). The

gravitational energy released is locally transformed to mechan-

ical turbulent motions by viscosity acting across the local

Keplerian gradient (Equation A2). In all this, of course,

“viscosity” is generalized to a turbulent viscosity. This

turbulent kinetic energy budget is transformed to heat on

the smallest scales of turbulence and radiated away locally.

On this basis, Shakura et al. (1978) then used a logic parallel

to that of our Section 2.1, which they expressed as V cL

L H , where is a Mach number. In their Section

3, they had already found that 2 2, leading

directly, as in our Section 2.1, to V cL and L H .
Extending this “energetics” logic to physical conditions

where other nebula structures are driven by non-Keplerian
shear and have different local energy-dissipation rates, it is not
hard to see how the large, energy-containing eddies can have
ΩL≠ΩK. For example, Cuzzi et al. (1993) studied midplane
turbulence driven by a settled particle layer, which imposes a
vertical velocity shear considerably larger than the radial
Keplerian shear, recently demonstrated explicitly in Sengupta
& Umurhan (2023). Cuzzi et al. (1993) argued that the largest
eddies would have large R and adjusted their treatment of St
accordingly. Given the forcing implicit in the shearing vertical
sheets of VSI (Nelson et al. 2013; Stoll & Kley 2014), a similar
situation there seems inevitable. Other turbulent instabilities
should be considered from this standpoint, as well.

Appendix B
Directly Calculating ˜ , α, and Tangential Stresses r

from Driven Turbulence Simulations

Driven turbulence calculations are quantified by an effective
“driving” α parameter. Following the prescription described in
Gole et al. (2020), we write this control parameter as ˜ ,

10 and it
is defined as

( )˜ ∣ ( )∣ ( )
c

v x y z t
1

, , , , B1
i x y z

i2
, ,

2

where c= 1 is the sound speed and δvi(x, y, z, t)= vi(x, y, z,

t)− 〈vi〉xy(z, t) represents the velocity fluctuations. Here, 〈..〉
denotes the spatial average, and the overbar denotes the

temporal average, with the xy subscript being the spatial

average over the xy plane. For the temporal average in

Equation (B2), we take the spatial averages at five different

snapshots at the statistically steady turbulent state.
Based on the foregoing discussion, it follows that we can

define and calculate the diffusive α in the simulation box by
reference to the driving parameter ˜ according to

( )∣ ( )∣
˜

( )
R c

v x y z t
R

1
, , , . B2

i x y z

i2
, ,

2

The Rossby number R can also be determined from

information read directly from the KE power spectrum,

according to the prescription described in Appendix C.
In the spirit of the above, we similarly express the

spatiotemporal average of the tangential stresses Wrf in terms
of its negative specific value via the relationship r , where

∣ ( ) ( )∣ ( )v x y z t v x y z t, , , , , , , B3r x y

where for practical intents and purposes ρ is assumed to be

constant. Expressing Wrf in terms of a negative quantity ensures

that gas accretion in the traditional sense of the effect occurs

toward the star.

Appendix C
Mixing Length Phenomenology

In light of our introductory remarks in Section 2.1, we seek
to relate turbulent viscosity D and α to the KE spectrum of the
gas. Diffusion in a turbulent medium can be phenomenologi-
cally assessed by the dominant length (L) and velocity scales
(VL) associated with the turbulent dynamics, which usually
occurs at the start of the inertial range in 3D isotropic
turbulence. According to standard mixing length theory (e.g.,
Knobloch 1978), when the turbulence is isotropic, the diffusion
becomes a scalar and can be written as

( )D V L
1

3
. C1L

Considering that a particular length scale ℓ may reasonably be

taken to contain two counter-rotating eddies of size ℓ/2,
Equation (C1) reads

( )D V L
V

k

V

k

1

3 3
. C2L

L

f

L

f

Using Equations (6) and (16), Equation (C2) above can be

further manipulated into

( ) ( )

( )

( )
( )D

k E k

k

k E k

k E k

E k

k

2 2

2

2
. C3

f f

f

f f

f f

f

f3

The approach leading to Equation (C3) captures both the
form of the original mixing length ansatz and the Reynolds
stress approach (Section 2.1) as well as the spectral approach to
identifying VL, for which we generally find that indeed

˜V V cL
2

rms
2 2.

Using the expression for ΩL found in Equation (16), and

˜ ( )V c k E k c2L f f
2 2 2, we write R in terms of ˜ and

H≡ c/ΩK as

( ) ˜ ( )R k k E k Hk2 , C4L K f f f K f

which in turn leads to to an equivalent restatement of

Equation (C3) as

˜ ˜
( )D

R
H

Hk
H , C5T K

f
K

2 2

which demonstrates the equivalence introduced in Section 3.1

between α and ˜ ˜R Hkf . Thus, in practice, one can

estimate α using either of these preceding formulae by

identifying the wavenumber kf corresponding to the peak value

of ( ) ( )v k k k E k2k f f f
2 .10

We note that Gole et al. (2020) write ˜ as αdrive.
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Appendix D
Algorithm to Obtain a Predefined α and R

An external forcing prescription is a simple way of
generating the turbulence in the simulation, allowing us to
investigate particle dynamics and related processes, such as the
formation of planetesimals under plausible nebula conditions.
Below, we present a simple algorithm for calibration of R and
α in an externally forced turbulence in any numerical code one
may use.

1. Select a particular box size (LB= ξH, where ξ< 1) and a
forcing wavenumber kf.

2. Vary the energy injection by tuning the forcing
parameter. In each case, generate a spectrum for turbulent
energy (see Section 4.2.2 of Sengupta & Umurhan 2023)
and calculate ΩL using Equation (16) and R L K .
This will produce the calibration for f0 versus R . We note
that, for the correct values of R , the wavenumbers must
be scaled to the domain size such that 2π/k gives the
actual physical length scale the wavenumber corre-
sponds to.

3. Calculate α for each case using Equation (B2) and the R
calculated in step 2. The calibration for f0 versus α is
now done.

4. For consistency, check that ( )R follows a power-law
relation with index ∼1.

5. For calibrations with a different kf, repeat the above steps
for the newly chosen wavenumber.

Once the calibration curves are in place, a value of f0 can be
easily chosen in order to achieve a desired value of α. We note
that, in cases of particle–gas simulations, separate calibration
curves need to be produced for each particle size.

It should also be noted that the f0 versus α calibration
presented in Figure 3(b) is applicable for gas-only simulations.
When inertial (St ≠0) particles are present, the interaction
between the gas and the particles through aerodynamic drag
provides an extra source of nonlinearity to the system,
changing the overall dynamics. For example, in gas-only
simulations, for f0∼ 0.03, the expected value of ˜ is
∼3× 10−3

(from calibrations in Figures 3(a) and (b)). When
we introduce inertial particles with StK= 0.06 in order to
investigate the particle scale heights (Section 4), we find
˜ 1.6 10 3. A reasonable rationalization for this would be
to think of the increased effective density of the gas in the
presence of particles and their mutual drag, making the largest
eddy rotate slower with a smaller ΩL and hence a smaller R for
a fixed injection energy. Indeed, Sengupta & Umurhan (2023)
found this effect in their particle–gas simulations in a rotating
stratified setup. However, at present, no proper phenomenology
exists for rotating stratified turbulence (Alexakis & Bifer-
ale 2018), let alone in the presence of particles. Therefore, the
individual contributions from the rotation, stratification, and
particle drag cannot be identified separately, and they require a
detailed investigation—which we leave for future work.

Appendix E
Particle Scale Height

For convenience, we repeat here a simple derivation of the
particle scale height, highlighting the different roles of StK and
StL. The reader is referred to the original papers for details
(Cuzzi et al. 1993; Dubrulle et al. 1995; Cuzzi &

Weidenschilling 2006; Youdin & Lithwick 2007; Zsom &
Dullemond 2008; Sengupta et al. 2019). The physics is to
assume a steady-state particle layer of some half-thickness h, in
balance between downward mass flow per unit area at
terminal settling velocity VT

( )V E1p T

and upward gradient diffusion mass flow with particle diffusion

coefficient Dp

( ) ( )D z . E2p p

The settling velocity, for small particles with St= 1, is simply

VT= gts= StKhΩK, where ts is the particle stopping time and

g zK
2 is the vertical component of solar gravity at height

z. The particle diffusion coefficient ( )D D St1p Lgas
2

( )cH St1 L
2 (Youdin & Lithwick 2007). We note that the

settling velocity depends on StK and the diffusion coefficient on

StL. One approximates ρp∼ ρpo and (∂ρp/∂z)∼ ρpo/h, so

( )V D h E3p T p po

( )h D hSt E4K K p

( )
( )h

cH

St 1 St
E5

K K L

2
2

( )
( )h H

St 1 St
. E6

K L

2 2
2

The StL
2 term from the diffusion coefficient plays relatively

little role in the process, given that StL= 1 for most realistic

cases (Carballido et al. 2011; Estrada et al. 2016). This is also

true in cases where there is a balance between radial diffusion

and drift (Dullemond et al. 2018; Umurhan et al. 2020) because

radial drift, like vertical drift, is determined by StK.

Appendix F
The Forcing Scheme

In order to drive turbulence in the simulation box by external
forcing, we shall use the same prescription as Brandenburg
(2001), Haugen & Brandenburg (2004), and Sengupta &
Umurhan (2023) and drive turbulence with a random, non-
helical, and delta-correlated forcing function f(x, t), written as

( ) { [ ( ) · ( )]} ( )( )f x f k xt Re exp i t i t, . F1k t

Here, k(t)= (kx, ky, kz) is a time-dependent wavevector, and f

(t) with ∣ ∣ is the random phase. On a purely dimensional

argument, the normalization factor can be written as

( )f c kc t0
1 2, where c is the sound speed set as 1 in the

code unit, δt is the time step, k= |k| is the wavenumber, and f0
is a dimensionless factor we call the forcing amplitude. In the

code, f0 is the knob we adjust in order to control the forcing and

achieve a desired value of α (also see below). We choose to

force the system at some k= kf, in which case, at each step, a

randomly chosen possible wavenumber within a narrow band

of kf−0.5< |k|< kf+ 0.5 is forced. The forcing is executed

with the eigenfunctions of the curl operator

( ˆ) ∣ ∣( ˆ)

( · ˆ)
( )f

k k k k

k k k

i e e

e1 1
. F2k

2 2 2 2
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Here, ê is the arbitrary unit vector used to generate ˆk e,

which is perpendicular to k. σ denotes the helicity factor, which

is set to zero in order to make the forcing purely non-helical. It

is worth noting that this forcing is essentially divergenceless.

However, as the fluid equations solved by the Pencil code are

not strictly incompressible, which is perhaps more applicable

for astrophysical systems compared to a fully incompressible

dynamics, a small nonzero divergence is introduced over the

course of the simulation. Nonetheless, the spatiotemporal

dynamics of all of our simulations are effectively incompres-

sible (Sengupta & Umurhan 2023).

Appendix G
Comments on Simulation Domain

All variations of (kf, fo) in the simulations shown here result
in two lines on the plot of ( )R , , one for each kf. This is
because all our simulations assumed the same computational
box size LB= 0.2H. It is simple to access other parts of ( )R ,

space, as follows. From Equation (5), L H R . By
definition, the integral scale L can also be written as L= LB/
kf= ξH/kf, where in the current simulations ξ= 0.2. Setting
these equal leads directly to ( )R kf

2. This relationship

can be used to move around in ( )R , space. Choosing a
smaller ξ allows us to reach smaller α for a given R , or to
decrease kf and capture a wider inertial range at some given α.
Conversely, choosing a larger ξ allows us to reach larger α for
a given R . The details of these results will vary, however, from
code to code. Moreover, the scaling is not entirely linear unless
the forced turbulence is homogeneous and isotropic; increasing
ξ too much in the presence of nebula rotation, stratification, and
shear can lead to a more complicated blend of rotation and
stratification.

Appendix H
Inferring StL and R from Observations

Here, we sketch how combining various independently
observed properties of a turbulent protoplanetary disk can lead
to constraints not only on its true turbulent α, but on both StL,
which is of value in its own right, and also the turbulent R ,
which may be diagnostic of the kind of turbulent process that is
active. Even if observational realities preclude such a clean
extraction, being aware of the implications of R 1 is
important. The (potentially) observed quantities are the particle
size r and actual internal density ρp (the latter admitting the
possibility the particles are porous aggregates), the disk gas
surface mass density Σg, the local rotation rate and temperature,
the root-mean-square gas turbulent velocity (Vrms) through
spectral line broadening (Equation (12)), and the particle
vertical scale height h from mm–cm interferometric observa-
tions, usually expressed as a ratio to the local gas scale
height H.

Equation (21), which is valid in the limit St? α, is directly
rewritten as

˜

( )
( )

h

H R RSt 1 St
, H1

K K

2

2 2 2

where we have used the relationships ˜ R found in

Equation (8) and the definition RSt StL K . Equation (H1) can

be viewed as a cubic equation for StL, in which the turbulent

Stokes number is a function of the observables h/H and

˜ V crms
2 2 (see Appendix H for details):

( )St St , H2L L
3

where

˜ ˜ ˜
( )

H

h

H V

h c

V

h
. H3

K

2

2

2
rms
2

2 2

rms
2

2 2

Cubic equations are awkward to solve, but one can obtain

simple expressions in two limiting regimes to illustrate the use

of the technique. It is important to note that StL itself may be

determined directly from j, which is composed entirely of the

observable quantities, h, Vrms, and ΩK.
First, consider the highly likely regime j= 1 or

RSt St 1L K . In this regime, St StL L
3 , so from

Equation (H2), ˜ ( )R H hSt StK L
2. We can now

solve directly for R in terms of observables, making use of the
standard approximation for the small-particle (Epstein) regime
that StK= tsΩK= 2rρp/Σg:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜
˜ ( )R

H

h r

H

hSt 2
, H4

K

g

p

2 2

that is, R is constrained by a combination of potentially

observable parameters including ˜ , and once R is determined,

α itself can be immediately calculated.
The alternate limiting regime is j? 1 or RSt St 1L K .

Here, St StL L
3 , so from Equation (H2), R St StK L

1 3

and

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜
˜ ( )R

H

h r

H

hSt 2
. H5

K

g

p

1 3 2 3
1 3

2 3

It will always be evident from the observed values of h/H
(ALMA or VLA) and ˜ (spectral line broadening) which regime

is of interest. Again, once R is determined, α itself can be

immediately calculated. The usually cited combined parameter

loosely referred to as α/St is thus seen to be merely an

intermediate step in a complete determination of the properties

of the system.

ORCID iDs

Debanjan Sengupta https://orcid.org/0000-0003-0801-3159
Jeffrey N. Cuzzi https://orcid.org/0000-0003-0553-1436
Orkan M. Umurhan https://orcid.org/0000-0001-5372-4254
Wladimir Lyra https://orcid.org/0000-0002-3768-7542

References

Alexakis, A., & Biferale, L. 2018, PhR, 767, 1
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Balbus, S. A., & Papaloizou, J. C. B. 1999, ApJ, 521, 650
Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A, 513, A79
Birnstiel, T., Fang, M., & Johansen, A. 2016, SSRv, 205, 41
Brandenburg, A. 2001, ApJ, 550, 824
Cameron, A. G. W. 1978, M&P, 18, 5
Carballido, A., Bai, X.-N., & Cuzzi, J. N. 2011, MNRAS, 415, 93
Carrasco-González, C., Sierra, A., Flock, M., et al. 2019, ApJ, 883, 71
Coleman, G. N., Ferziger, J. H., & Spalart, P. R. 1992, JFM, 244, 677
Cushman-Roisin, B. 2011, Introduction to geophysical fluid dynamics:

physical and numerical aspects, 2nd ed., International geophysics series,
Vol. 101 (Waltham, MA: Academic Press)

Cuzzi, J. N., Dobrovolskis, A. R., & Champney, J. M. 1993, Icar, 106, 102
Cuzzi, J. N., Hogan, R. C., & Bottke, W. F. 2010, Icar, 208, 518

12

The Astrophysical Journal, 966:90 (13pp), 2024 May 1 Sengupta et al.



Cuzzi, J. N., Hogan, R. C., Paque, J. M., & Dobrovolskis, A. R. 2001, ApJ,
546, 496

Cuzzi, J. N., & Weidenschilling, S. J. 2006, in Meteorites and the Early Solar
System II, ed. D. S. Lauretta & H. Y. McSween (Tucson, AZ: Univ. of
Arizona Press), 353

Davidson, P. A. 2004, Turbulence: An Introduction for Scientists and
Engineers (Oxford: Oxford Univ. Press)

Doi, K., & Kataoka, A. 2021, ApJ, 912, 164
Doi, K., & Kataoka, A. 2023, ApJ, 957, 11
Dubrulle, B. 1992, A&A, 266, 592
Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icar, 114, 237
Dullemond, C. P., Birnstiel, T., Huang, J., et al. 2018, ApJL, 869, L46
Estrada, P. R., & Cuzzi, J. N. 2016, LPSC, 2854
Estrada, P. R., Cuzzi, J. N., & Morgan, D. A. 2016, ApJ, 818, 200
Flaherty, K., Hughes, A. M., Simon, J. B., et al. 2020, ApJ, 895, 109
Flaherty, K. M., Hughes, A. M., Rose, S. C., et al. 2017, ApJ, 843, 150
Flaherty, K. M., Hughes, A. M., Teague, R., et al. 2018, ApJ, 856, 117
Flock, M., Turner, N. J., Nelson, R. P., et al. 2020, ApJ, 897, 155
Gole, D. A., Simon, J. B., Li, R., Youdin, A. N., & Armitage, P. J. 2020, ApJ,

904, 132
Hartlep, T., & Cuzzi, J. N. 2020, ApJ, 892, 120
Hartlep, T., Cuzzi, J. N., & Weston, B. 2017, PhRvE, 95, 033115
Haugen, N. E. L., & Brandenburg, A. 2004, PhRvE, 70, 026405
Hughes, A. L. H., & Armitage, P. J. 2010, ApJ, 719, 1633
Hughes, A. L. H., & Armitage, P. J. 2012, MNRAS, 423, 389
Jacquet, E., Gounelle, M., & Fromang, S. 2012, Icar, 220, 162
Johansen, A., Klahr, H., & Mee, A. J. 2006, MNRAS, 370, L71
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Natur, 448, 1022
Knobloch, E. 1978, ApJ, 225, 1050
Lesur, G., Flock, M., Ercolano, B., et al. 2023, in ASP Conf. Ser. 534, Protostars

and Planets VII, ed. S.-I. Inutsuka et al. (San Francisco, CA: ASP), 465
Lin, D. N. C., & Bodenheimer, P. 1982, ApJ, 262, 768
Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603
Lyra, W. 2014, ApJ, 789, 77
Macías, E., Guerra-Alvarado, O., Carrasco-González, C., et al. 2021, A&A,

648, A33
Marcus, P. S., Pei, S., Jiang, C.-H., & Hassanzadeh, P. 2013, PhRvL, 111, 084501
Morfill, G. E. 1985, in Proc. of the Les Houches Summer School 41, Birth and

Infancy of Stars, ed. R. Lucas, A. Omont, & R. Sotra (Amsterdam: North-
Holland), 693

Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, MNRAS, 435, 2610
Ormel, C. W., & Cuzzi, J. N. 2007, A&A, 466, 413
Pencil Code Collaboration, Brandenburg, A., Johansen, A., et al. 2021, JOSS,

6, 2807
Pizzati, E., Rosotti, G. P., & Tabone, B. 2023, MNRAS, 524, 3184
Prendergast, K. H., & Burbidge, G. R. 1968, ApJL, 151, L83
Safronov, V. S. 1972, Evolution of the Protoplanetary Cloud and Formation of

the Earth and Planets (Jerusalem: Keter Publishing House), 212
Sekiya, M. 1998, Icar, 133, 298
Sengupta, D., Dodson-Robinson, S. E., Hasegawa, Y., & Turner, N. J. 2019,

ApJ, 874, 26
Sengupta, D., Estrada, P. R., Cuzzi, J. N., & Humayun, M. 2022, ApJ,

932, 82
Sengupta, D., & Umurhan, O. M. 2023, ApJ, 942, 74
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shakura, N. I., Sunyaev, R. A., & Zilitinkevich, S. S. 1978, A&A, 62, 179
Stamper, M. A., & Taylor, J. R. 2017, OcDyn, 67, 65
Stoll, M. H. R., & Kley, W. 2014, A&A, 572, A77
Stoll, M. H. R., & Kley, W. 2016, A&A, 594, A57
Teague, R., Henning, T., Guilloteau, S., et al. 2018, ApJ, 864, 133
Tennekes, H., & Lumley, J. L. 1972, First Course in Turbulence (Cambridge:

MIT Press)
Turner, N. J., Fromang, S., Gammie, C., et al. 2014, in Protostars and Planets

VI, ed. H. Beuther et al. (Tucson, AZ: Univ. of Arizona Press), 411
Umurhan, O. M., Estrada, P. R., & Cuzzi, J. N. 2020, ApJ, 895, 4
Villenave, M., Podio, L., Duchêne, G., et al. 2023, ApJ, 946, 70
Villenave, M., Stapelfeldt, K. R., Duchêne, G., et al. 2022, ApJ, 930, 11
Völk, H. J., Jones, F. C., Morfill, G. E., & Roeser, S. 1980, A&A, 85, 316
Weidenschilling, S. J. 1984, Icar, 60, 553
Weidenschilling, S. J. 1997, Icar, 127, 290
Weidenschilling, S. J., & Cuzzi, J. N. 1993, in Protostars and Planets III, ed.

E. H. Levy & J. I. Lunine (Tucson, AZ: Univ. of Arizona Press), 1031
Youdin, A. N., & Goodman, J. 2005, ApJ, 620, 459
Youdin, A. N., & Lithwick, Y. 2007, Icar, 192, 588
Zahn, J.-P. 1989, in Proc. of the Workshop Frontiers in Stellar Structure

Theory, Rotation and Mixing in Stellar Interiors, ed. M.-J. Goupil &
J.-P. Zahn (Berlin: Springer), 141

Zsom, A., & Dullemond, C. P. 2008, A&A, 489, 931
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. 2010,

A&A, 513, A57

13

The Astrophysical Journal, 966:90 (13pp), 2024 May 1 Sengupta et al.


