

Atomic-scale visualization of surface segregation and ordering of Pt in dilute Cu(Pt) alloy under hydrogen atmosphere

Zhilu Liang¹⁺, Dongxiang Wu¹⁺, Xianhu Sun¹, Xiaobo Chen¹, Dmitri N. Zakharov², Judith C Yang², Guangwen Zhou^{1*}

¹Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, USA

²Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA

ABSTRACT

14 Surface segregation is a common phenomenon in alloys exposed to reactive atmospheres, yet
15 the atomic mechanisms underlying surface structure and composition dynamics remains largely
16 unexplored. Using a combination of environmental transmission electron microscopy
17 observations and atomistic modeling, here we report the surface segregation process of Pt atoms
18 in a dilute Pt(Cu) alloy and determine the distribution of Pt atoms at both atomically flat and
19 stepped surfaces of the Pt(Cu) alloy at elevated temperature and in a hydrogen gas atmosphere.
20 Through directly probing Pt segregation, we find that Pt atoms segregated on the (100) surface
21 exhibit a $p(2\times 2)$ ordering, with ~25% Pt occupancy. In contrast, on the stepped (410) surface,
22 hydrogen adsorption induces Pt segregation, initially occurring at the step edges, which then
23 expands to the terrace sites upon increased hydrogen coverage, resulting in an ordered
24 distribution of segregated Pt atoms with ~22% occupancy. These observations offer
25 mechanistic insights into the structure and composition dynamics of the topmost atomic layer
26 of the alloy in response to environmental stimuli and hold practical implications for the design
27 and optimization of catalysts based on Pt group metals.

28

29

30 + These authors contributed equally to the work

31 *Corresponding author: gzhou@binghamton.edu

1 **1. INTRODUCTION**

2 Surface segregation in alloys is a critical phenomenon that profoundly influences the
3 performance and stability of materials across various industrial applications¹⁻³. Gaining a
4 fundamental understanding of the mechanisms driving surface segregation is essential for
5 optimizing material properties, particularly when exposed to reactive atmospheres. In binary
6 alloys, the segregation of one component to the surface can significantly affect catalytic activity,
7 corrosion resistance, and mechanical strength. The presence of reactive environments, such as
8 oxidizing or reducing gases, further complicates these dynamics by altering the stability and
9 distribution of alloying elements⁴⁻⁸. Despite its importance, achieving atomic-scale
10 understanding of surface segregation in alloys under reactive conditions is challenging due to
11 the limitations of most experimental tools in probing the topmost surface regions. Nevertheless,
12 this fundamental knowledge is crucial for advancing technologies in fields like heterogeneous
13 catalysis, where surface reactions are central to catalytic efficiency⁹⁻¹³, and materials science,
14 where alloy composition and structure dictate performance under operational conditions¹⁴⁻¹⁷.
15 Investigating these phenomena provides a deeper understanding of how to design and engineer
16 alloys with tailored properties, leading to more efficient, durable, and cost-effective materials
17 for a wide range of applications.

18 Bimetallic alloys often exhibit significantly enhanced catalytic performance and long-term
19 stability compared with their constituent metals due to ligand/electronic and geometric/strain
20 effects¹⁸⁻²⁰. For instance, one of the extreme cases is to disperse a catalytically active noble
21 metal (such as Pt) in more inert host metals (e.g., Cu, Ni, Fe) at the single-atom limit, creating
22 single atom alloys (SAAs)²¹⁻²⁹. For example, Sykes et al demonstrated that a low coverage
23 (<0.05 monolayer) of Pt or Pd deposited on Cu(111) forms a SAA that exhibits activity in
24 the dissociation of H₂ and the spillover of H to Cu sites for hydrogenation reactions³⁰⁻³¹.
25 Although such SAAs have been extensively studied³²⁻⁴³, there is still a lack of understanding
26 regarding how the alloy behaves dynamically under the reaction conditions of elevated
27 temperature and reactive gases. Additionally, the study of SAAs has predominantly focused on
28 well-defined single crystals⁴⁴⁻⁴⁵. However, even the surface of a single crystal is still far from
29 being perfect, containing numerous atomic defects. For instance, atomic steps, which are

1 common defects on crystal surfaces, may behave differently from a flat surface due to reduced
2 coordination at step sites, and significantly alter the surface distribution of noble metal atoms.

3 To evaluate the surface segregation phenomena in alloys, it is crucial to consider their
4 stability and response under reaction conditions. Factors such as the presence of gases and
5 elevated temperatures can induce elemental segregation, leading to changes in surface
6 composition as well as surface restructuring and redistribution of noble metal atoms⁴. Surface-
7 sensitive spectroscopic techniques like X-ray photoemission spectroscopy (XPS) are
8 commonly employed to investigate the surface composition of alloys⁴⁶⁻⁴⁸. However, these
9 techniques are not structure sensitive and cannot unambiguously differentiate between surface
10 and subsurface layers due to the temporal and spatial superposition of signals originating from
11 multiple atomic layers. Alternatively, surface science tools such as ion scattering spectroscopy
12 and low-energy electron diffraction provide surface-specific information on surface
13 composition and structure when working in tandem, However, they are limited to ultrahigh
14 vacuum (UHV) conditions, lack spatial resolution, and are prone to averaging information. On
15 the other hand, scanning tunneling microscopy is one of the few techniques capable of obtaining
16 atomic-site-selective quantitative information. Nevertheless, it cannot be readily used at
17 elevated temperatures and in reactive gas atmospheres, which are often required to drive surface
18 segregation and restructuring in catalytic reactions.

19 In contrast, transmission electron microscopy (TEM) overcomes many of the limitations
20 faced by traditional surface science tools, providing atomic-scale insights into surface
21 segregation phenomena. Recent advancements in TEM now allow for temperature-resolved,
22 pressure-resolved, and time-resolved imaging of gas-surface reaction dynamics. By introducing
23 reactive gases into the sample area in the TEM column, TEM can capture the atomic-scale
24 structural evolution from the outermost surface layer to deeper subsurface regions. This
25 capability is crucial for understanding alloy segregation dynamics, as the surface of the material
26 can undergo significant changes during interactions with reactive environments. The ability to
27 observe these dynamic processes in real time allows for a more comprehensive understanding

1 of how surface segregation evolves under practical conditions, enhancing our knowledge of
2 material behavior and performance.

3 In this work, we employ in situ environmental transmission electron microscopy (TEM)
4 to investigate the surface and composition dynamics within the topmost atomic layer of a dilute
5 Cu(Pt) alloy under reactive and high-temperature conditions. This approach leverages the
6 unique capabilities of environmental TEM to provide atomic-scale insights into surface
7 segregation dynamics. Complementing these observations, coordinated density-functional
8 theory (DFT) modeling is used to enhance the understanding of the experimental results by
9 offering mechanistic insights into the atomic processes observed. The synergy between in-situ
10 TEM imaging and DFT modeling allows for a detailed analysis of the dynamic segregation
11 behavior of the alloy, bridging the gap between the experimental observations and theoretical
12 predictions. The results reported here are highly relevant to a wide range of material systems,
13 properties, and reactions, including metallurgy, nanostructure synthesis, redox reactions, and
14 heterogeneous catalysis.

15

16 **2.EXPERIMENTAL AND COMPUTATIONAL METHODS**

17 **2.1 Sample preparation and in-situ TEM imaging**

18 Our in-situ TEM experiments were performed using a dedicated field-emission
19 environmental TEM (FEI Titan 80-300) equipped with an objective lens corrector and operated
20 at 300 kV. Cu-5at.% Pt(100) single-crystal thin films, with a normal thickness of ~50 nm, were
21 grown on NaCl(100) by electron beam co-evaporation of Cu and Pt. The alloy composition was
22 controlled by adjusting the evaporation rates of the two electron guns. The grown Cu(Pt) alloy
23 films were then transferred from the NaCl(100) substrate by floatation in deionized water,
24 washed, and mounted on a TEM grid, and loaded onto a TEM heating holder. The as-loaded
25 Cu(Pt) films underwent annealing inside the TEM at 600°C and under a H₂ gas flow of ~1×10⁻²
26 Torr to remove any native oxides present. The complete removal of oxide and surface
27 cleanliness was confirmed by electron diffraction and electron energy loss spectroscopy.
28 During annealing, holes and tears with faceted edges formed in the thin film, a process akin to

1 the mechanical cleavage of single crystals in vacuum. The freshly generated surface facets are
2 atomically clean and ideal for cross-sectional high-resolution TEM (HRTEM) observations of
3 Pt surface segregation induced structural changes in a H₂ gas atmosphere. To mitigate potential
4 artifacts from electron-beam irradiation that could affect TEM results, the electron beam was
5 blanked during the H₂ annealing process and unblanked only when acquiring TEM images.
6 Additionally, the electron beam effect was carefully assessed by adjusting imaging condition
7 in one area and then moving to a neighboring, fresh area for HRTEM imaging.

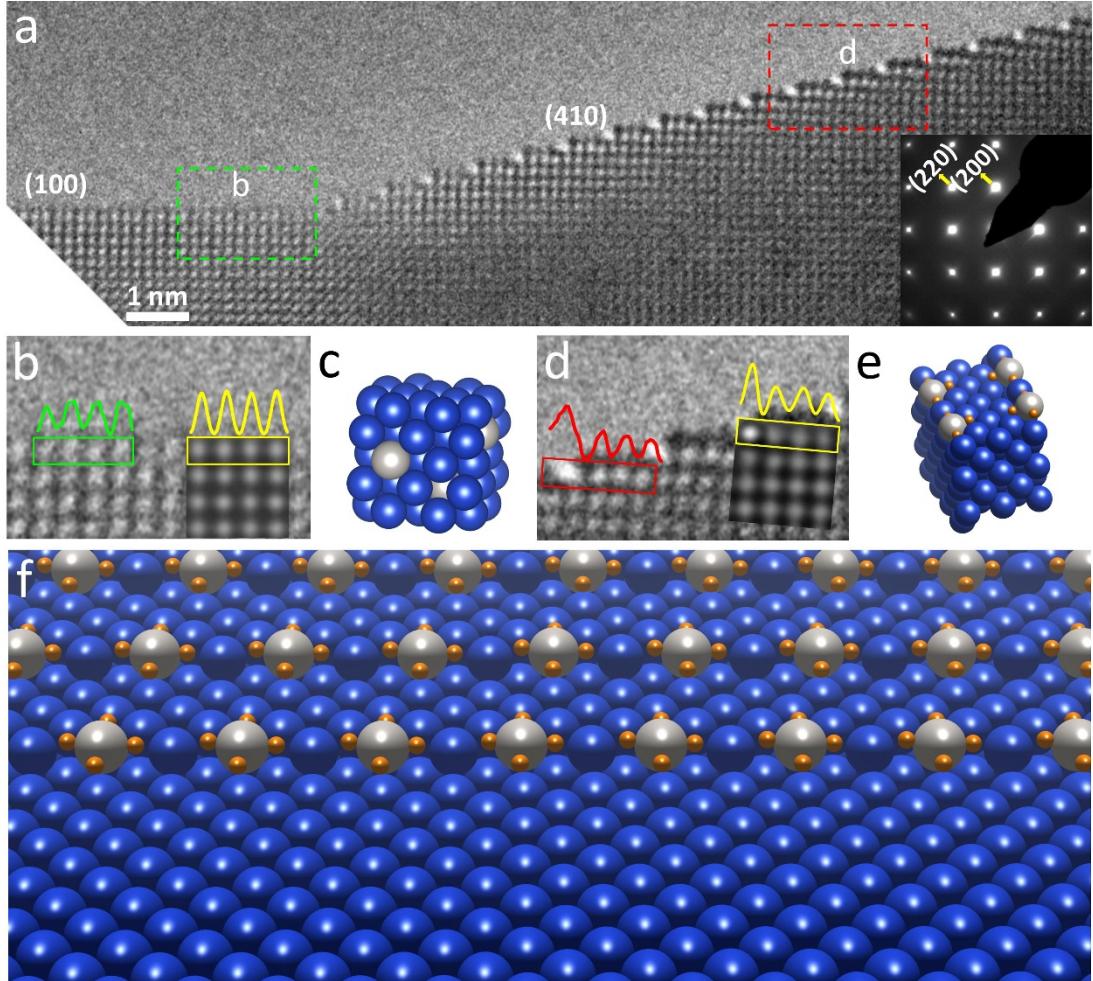
8 **2.2 HRTEM image simulations**

9 HRTEM image simulations were performed using the JEMS software with the multi-slice
10 method. The simulation parameters were carefully adjusted to match the experimental
11 conditions, including an accelerating voltage of 300 keV, spherical aberration of -0.03 mm,
12 defocus, and specimen thickness. Density functional theory (DFT)-relaxed atomic structure
13 models of the Cu(Pt) SAAs were used as the input files for HRTEM image simulations.

14 **2.3 DFT calculations**

15 DFT calculations were performed using the Vienna ab initio simulation package (VASP)⁴⁹-
16 ⁵¹ and PW91 Generalized Gradient Approximation (GGA)⁵². The projector-enhanced wave
17 (PAW) potential was used to describe electron-electron exchange and core-electron potential⁵³.
18 The cut-off energy of the plane wave was set to 400 eV for all the calculations. Based on the
19 Monkhorst-Pack grids, the (4×4×1) K-point meshes were applied to the integration of the
20 Brillouin area⁵⁴. The surface model was composed of five atomic layers of (2×2) repeated slabs,
21 in which the bottom two layers were fixed at their bulk crystal positions, and all the other atoms
22 were free to relax until the maximum force acting on each atom was less than 0.015 eV/Å.

23 The average binding energy of the surface as a function of H coverage was calculated
24 using $E = \frac{1}{N_H} (E_{\text{tot}} - E_p + N_{\text{Cu}}E_{\text{Cu}} - N_{\text{Pt}}E_{\text{Pt}} - N_{\text{H}}E_{\text{H}})$, where E_{tot} is the total energy of the
25 H/Cu(Pt) system, E_p is the energy of the pristine Cu structure, N_{Cu} , N_{Pt} and N_{H} are the
26 differences in the number of Cu, Pt, and H atoms, respectively, in the H/Cu(Pt) and pure Cu
27 systems, and E_{Cu} , E_{Pt} , and E_{H} are the energies of a single Cu, Pt, and H atom, respectively.
28 Furthermore, to enable a comparison of H adsorption of on both the terrace and steps, the H


1 adsorption energy, E_{ads} , is determined using the equation $E_{\text{ads}} = \frac{1}{N_{\text{H}}}(E_{\text{tot}} - E_0 - N_{\text{H}}E_{\text{H}})$,
2 where E_0 is the energy of the pristine surface. To describe the segregation energy of Pt at the
3 surface, the formula, $E_{\text{seg}} = \frac{1}{N_{\text{a}}}(E_{\text{sur}} - E_{\text{ref}})$, was used, where E_{sur} is the total energy of the
4 Cu(Pt) system with Pt segregation at the surface, E_{ref} is the system energy of the original Cu(Pt)
5 structure, and N_{a} is the number of Pt atoms segregated at the surface. All atomic structures
6 were visualized using the Visualization for Electronic and Structure Analysis (VESTA).

7

8 3. RESULTS

9 High-resolution (HR) TEM imaging mode was employed to image the segregation
10 phenomena within a dilute Cu(Pt) solid solution under the influence of a H₂ atmosphere and at
11 elevated temperatures. The presence of H₂ gas served a dual purpose: it prevented surface
12 oxidation of the alloy while also simulating conditions highly relevant to hydrogenation
13 reactions, crucial in the production of both bulk and fine chemicals. Pt-based catalysts are
14 commonly used in hydrogenation reactions to activate the chemical reaction between H₂ and
15 other compounds. Employing in-situ TEM enabled us to spatially resolve surface segregation
16 on both flat and stepped surfaces. Our observations reveal that surface segregation of Pt in the
17 Cu(Pt) solid solution, induced by H adsorption, leads to the formation of SAAs. Notably, this
18 mechanism diverges from the conventional surface deposition route for SAA formation⁵⁵⁻⁵⁶.
19 Additionally, our observations show the pronounced influence of atomic steps in promoting Pt
20 surface segregation, resulting in a higher surface concentration of Pt compared to atomically
21 flat surfaces.

22

Fig. 1: (a) HRTEM image of the intersection region comprising (100) and stepped (410) surface facets, obtained by annealing the Cu-5 at.%Pt(100) film at 600°C and 1×10^{-2} Torr of H₂ flow. The inset is an FFT diffractogram of the HRTEM. (b) Enlarged view and intensity profile along the topmost layer of the (100) surface region marked with the green dashed box in (a). The yellow inset is a simulated HRTEM image and intensity profile of the topmost layer based on the DFT-relaxed (100) structure model in (c). (d) Zoomed-in view and intensity profile along the topmost layer of the stepped (410) facet region marked by the red dashed box in (a). The yellow inset is a simulated HRTEM image and intensity profile of the topmost layer of the DFT-relaxed (410) structure model in (e). (f) Schematic illustrating the disparity between the (100) and (410) facets: the (100) facet exhibits an absence of H adsorption and Pt segregation, whereas the (410) facet shows preferential H adsorption and Pt segregation occurring at the step edge.

13

14 Practically relevant catalytically active surfaces often exhibit a high density of atomic
 15 defects that function as active sites for bond-breaking and bond-making. However,
 16 systematically examining such surface defects experimentally can be challenging, especially
 17 when they lack order or regularity. High Miller index surfaces, characterized by flat low-Miller-

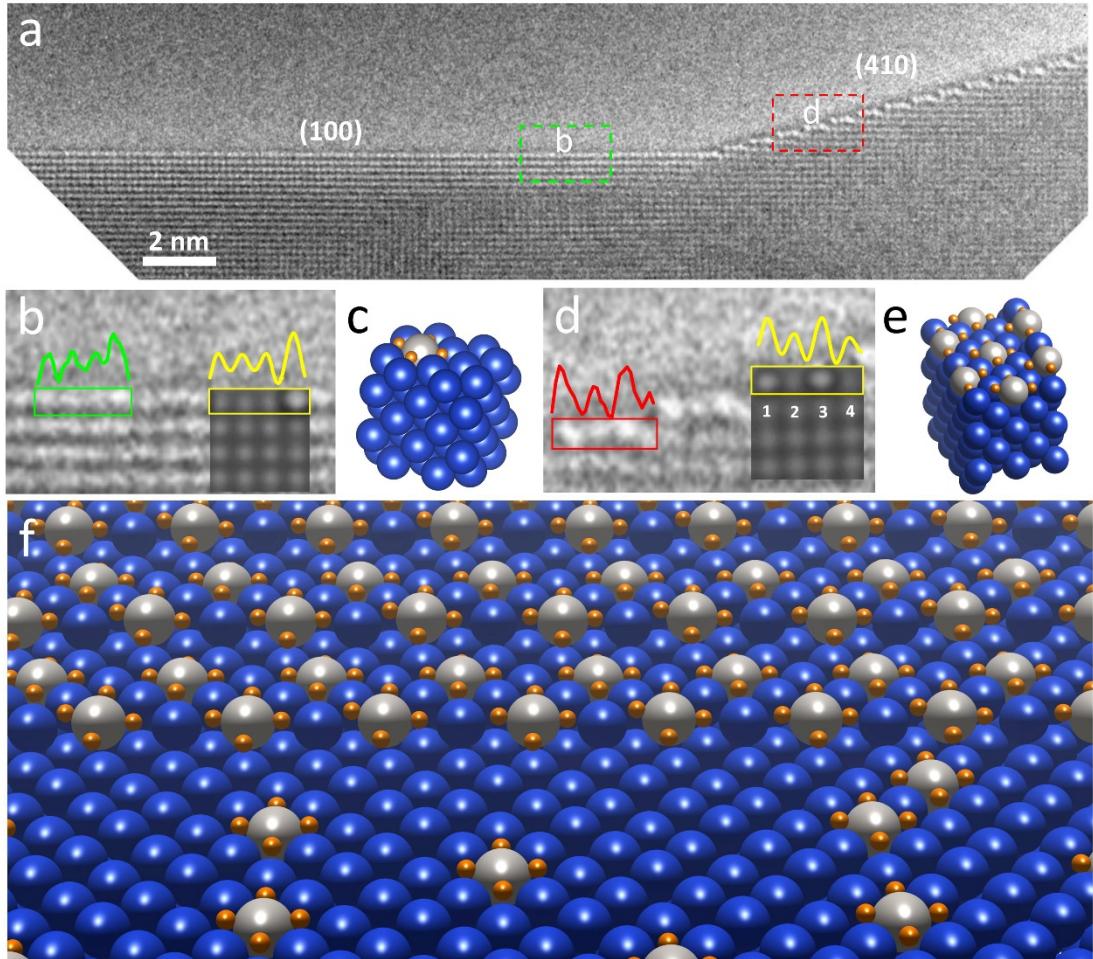
1 index terraces separated by atomic height steps, offer a pathway to explore these features. Fig.
2 1(a) illustrates an HRTEM image of the intersection region of the (100) and (410) facets. This
3 morphology is formed by annealing the Cu-5at.%Pt(100) film at 600°C under a H₂ flow of
4 1×10⁻² Torr. The (100) facet is atomically flat, while the (410) surface facet exhibits the stepped
5 morphology composed of a sequence of four-atom-wide (100) terraces separated by periodic
6 monoatomic steps with the (110) microfacet character. The bottom-right inset in Fig. 1(a) is a
7 fast Fourier transform (FFT) diffractogram of the HRTEM image, which can be indexed well
8 with the Cu lattice. This indicates the solid-solution nature of the Cu(Pt) alloy, confirming the
9 homogeneous distribution of Pt atoms within the bulk of the Cu film.

10 Fig. 1(b) is a zoom-in view of the (100) flat surface region marked by the green dashed
11 box in Fig. 1(a). The intensity profile along the topmost layer reveals relatively uniform image
12 contrast among the atom columns from the topmost surface layer to the deeper atom layers.
13 This uniform contrast suggests the absence of discernible surface segregation of Pt. This
14 observation is further supported by the simulated HRTEM image (inset in Fig. 1(b)), which was
15 obtained using a DFT-relaxed structure model of the Cu(Pt) solid solution (Fig. 1(c)). Fig. 1(d)
16 shows an enlarged HRTEM view of the (410) facet region, as delineated by the red dashed box
17 in Fig. 1(a). Here, the atom columns at the step edge exhibits ~50% stronger image intensity
18 compared to the adjacent atom columns in the terrace. This indicates the preferential
19 segregation of Pt atoms to the step edges rather than the terraces, as confirmed by image
20 simulations described later.

21 Prior investigations on single crystals of Cu-Pt alloys under UHV annealing conditions
22 have demonstrated a tendency for surface segregation of Cu induced by its lower surface energy
23 relative to Pt⁵⁷⁻⁶⁰. However, the observation of Pt atoms segregating to the step edges in the
24 (410) facet under the H₂ atmosphere represents a notable departure from the pristine surface
25 behavior of the Cu-Pt alloy. This difference points to the significant influence of H adsorption
26 in driving the segregation of Pt atoms towards the step edges, in line with the high dissociation
27 barriers of H₂ molecules on Cu surfaces⁶¹. Notably, atomic H bonds weakly to Cu surfaces and
28 desorbs from them at temperatures exceeding 80°C⁶². On the contrary, Pt surfaces are known

1 to facilitate the dissociation of H₂ molecules into atomic H, and Pt atoms exhibit a pronounced
2 affinity toward H⁶³⁻⁶⁵.

3 Fig. 1(e) depicts the DFT minimum-energy structure of a (410) surface model, comprising
4 alternate Cu and Pt atoms (i.e., 50% of Pt) at the step edge. Our DFT calculations reveal that H
5 atoms adsorb stably to the bridge sites adjacent to segregated Pt atoms in the step edge. The
6 inset in Fig. 1(d) presents a simulated HRTEM image obtained using the DFT-relaxed structure
7 model in Fig. 1(e). Intensity profile analysis of the simulated image indicate that the image
8 intensity for the Cu/Pt atom columns in the step edge is ~50% stronger than that of the adjacent
9 Cu atom columns in the terrace, consistent with the intensity profile of the experimental
10 HRTEM image. Therefore, H adsorption along the step edge results in Pt segregation at the
11 step edge with alternating occupation of Cu atoms by Pt atoms. Fig. 1(f) schematically
12 illustrates the key distinction between the (100) and (410) facets. The (100) facet lacks H
13 adsorption and Pt segregation, whereas the (410) facet displays the affinity for H adsorption
14 along with Pt segregation within the step edge.


15 Fig. 2(a) displays an HRTEM image of the intersection region of the (100) and (410) facets
16 following the continued H₂ annealing at 600°C under the H₂ flow of 1×10⁻² Torr. Notably,
17 certain atom columns within the outermost layer of the (100) facet exhibit brighter image
18 contrasts, indicating the segregation of Pt atoms to the topmost surface due to H adsorption.
19 Fig. 2(b) provides a zoomed-in view of the (100) region marked by the green dashed box in Fig.
20 2(a), where the intensity profile reveals the stronger image intensity of a single atom column
21 compared to its adjacent counterparts. The yellow inset in Fig. 2(b) is a simulated HRTEM
22 image derived from the DFT-relaxed structure (Fig. 2(c)), featuring a surface segregated Pt
23 atom with H adsorption occurring at the hollow sites adjacent to the segregated Pt. The intensity
24 profile analysis of the simulated image indicates that the image intensity for the atom column
25 containing the segregated Pt is ~50% stronger than that for the adjacent Cu atom columns,
26 consistent with the intensity profile observed in the experimental HRTEM image in Fig. 2(b).

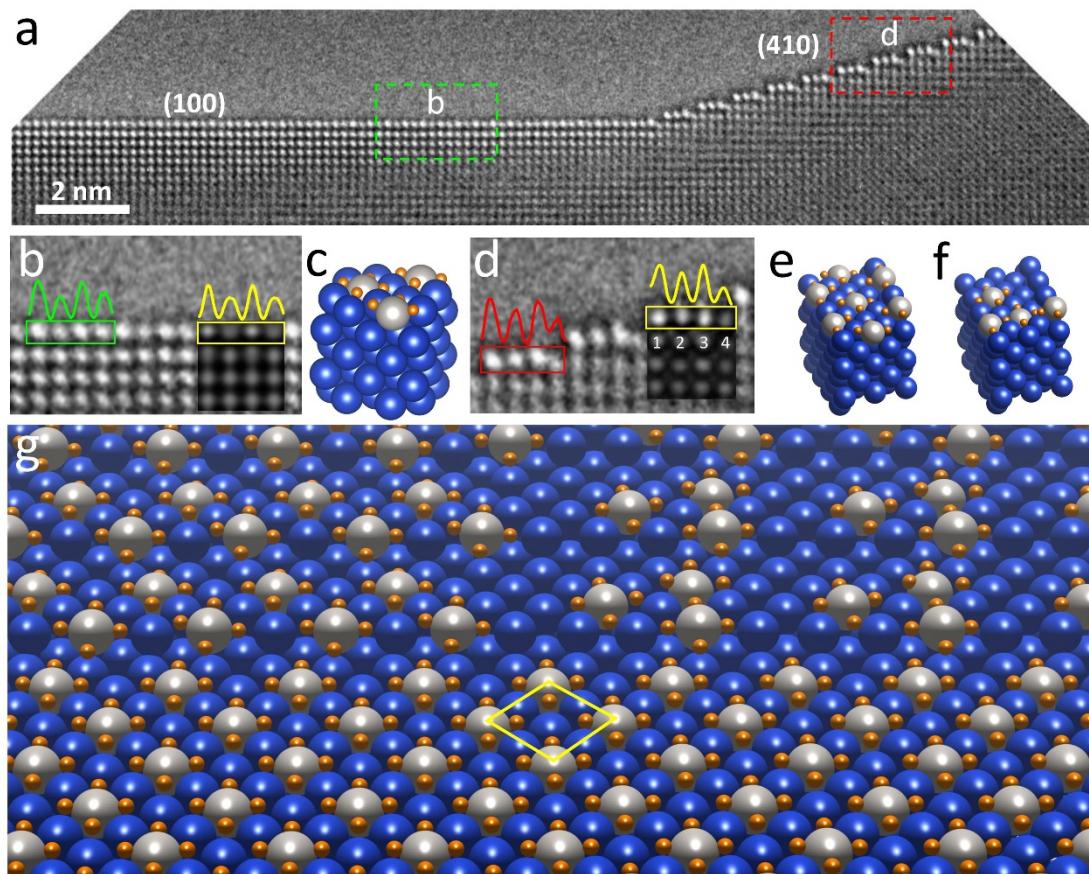
27 Fig. 2(d) presents a zoomed-in view of the (410) facet region marked by red dashed box
28 in Fig. 2(a). The intensity profile taken along the topmost terrace layer reveals that not only the

1 atom column at the step edge but also the atom column in the middle of the terrace exhibit
2 similarly stronger image intensity compared to the atom column in between. Their difference
3 in image intensity suggests the surface segregation of Pt atoms to every other atom column in
4 the stepped facet upon progressive H adsorption. Fig. 2(e) shows a DFT minimum-energy
5 structure of the (410) surface model, featuring an alternate substitution of Pt atoms (i.e., 50%
6 Pt) at both the step edge and the second nearest neighbors in the terrace. Our DFT calculations
7 show that the hollow and bridge sites adjacent to segregated Pt atoms in the step edge and the
8 hollow sites next to the segregated Pt in the terrace are favorable for stable H adsorption. The
9 yellow inset in Fig. 2(d) is a simulated HRTEM image obtained using the DFT-relaxed structure
10 model in Fig. 2(e). Both the experimental and simulated HRTEM images indicate that the image
11 intensity for the step-edge atom column (atom column 1) is ~50% stronger than atom column
12 2, as marked in Fig. 2(d). Furthermore, the images reveal the absence of Pt segregation to the
13 fourth atom column, which exhibits the weakest image intensity. This observation is also
14 consistent with the DFT modeling in Fig. 4(i), which suggests that Pt segregation to the fourth
15 atom column is energetically unfavorable due to its close proximity to the ascending step on
16 the right, already populated with segregated Pt and H.

17 Therefore, the progressive accumulation of adsorbed H along the step edge and in the
18 terrace results in Pt segregation not only at the step edge but also to the terrace region. Fig. 2(f)
19 schematically depicts this trend, where the H adsorption in the local areas of the (100) facet
20 results in the segregation of isolated Pt atoms in the surface. By contrast, the stronger H affinity
21 of the (410) facet results in the population of H adsorption from the step edge to the terrace
22 region. This leads to the expansion of Pt segregation from the step edge to certain areas within
23 the terrace.

24

Fig. 2: (a) HRTEM image of the (100) and (410) facets after a longer period of H_2 annealing of the Cu-5sat.%Pt alloy at 600°C and 1×10^{-2} Torr of H_2 flow. (b) Enlarged view and intensity profile along the topmost layer of the (100) surface region marked with the green dashed box in (a). The inset depicts a simulated HRTEM image and intensity profile of the topmost layer based on the DFT-relaxed (100) structure model in (c). (d) Zoomed-in view and intensity profile along the topmost layer of the stepped (410) facet region marked by the dashed red box in (a). The inset represents a simulated HRTEM image and intensity profile of the topmost layer. (e) DFT-relaxed (410) structures of H adsorption and Pt segregation along the step edge and within the terrace. (f) Schematic illustrating the difference between the (100) and (410) facets upon incremental H adsorption: H adsorption in local areas results in the surface segregation of isolated Pt atoms in the (100) facet, whereas on the (410), the accumulation of adsorbed H prompts Pt segregation to extend from the step edge to certain regions within the terrace.


Fig. 3(a) presents an HRTEM image of the (100) and (410) facets after an additional prolonged H_2 annealing period of at 600°C and 1×10^{-2} Torr H_2 . Notably, the entire outermost layer of the (100) facet has now transformed into a superlattice structure, exhibiting alternating strong and weak image contrasts among the atom columns. Fig. 3(b) shows a zoomed-in view of the (100) region marked by the green dashed box in Fig. 3(a). Here, the intensity profile

1 analysis reveals a roughly 50% difference in image intensity between adjacent atom columns.
2 In Fig. 3(b), the yellow inset depicts a simulated HRTEM image obtained using a DFT-relaxed
3 structure of the $p(2\times 2)$ ordering of segregated Pt atoms in the (100) surface. As depicted in Fig.
4 3(c), the $p(2\times 2)$ ordering involves H adsorption taking place at the hollow sites adjacent to
5 segregated Pt. Further intensity profile analysis of the simulated image indicates that the image
6 intensity of the Cu/Pt columns is ~50% stronger than that of the adjacent Cu atom columns,
7 matching the intensity profile observed in the experimental HRTEM image in Fig. 3(b).

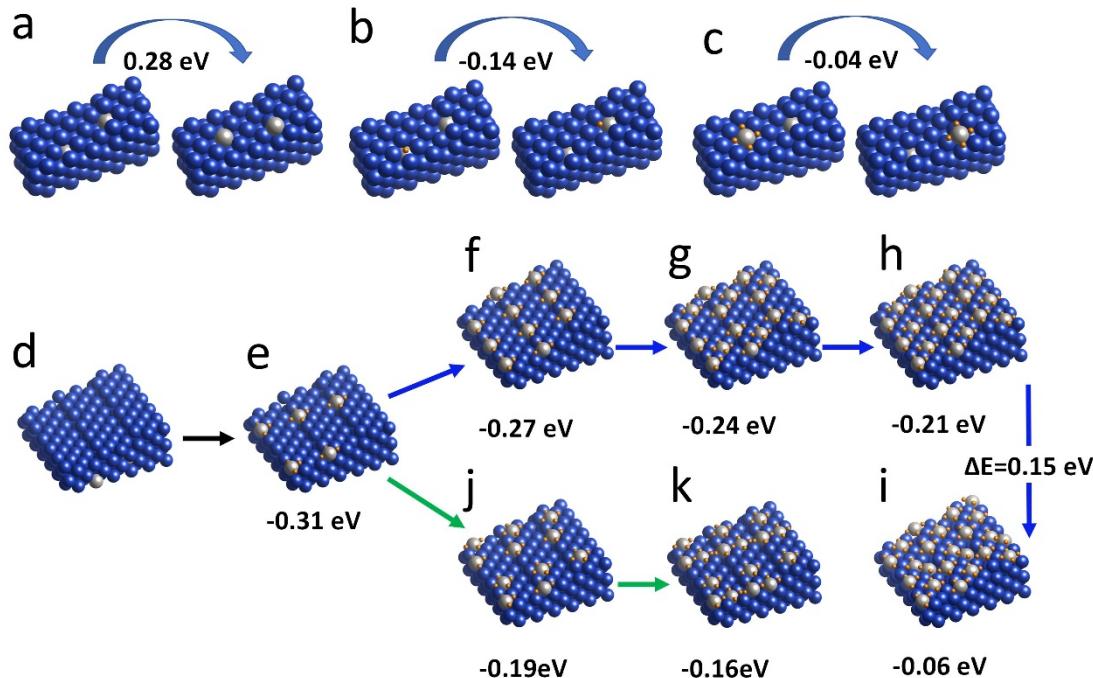
8 Fig. 3(d) illustrates a magnified view of the (410) stepped facet region marked with the
9 red dashed box in Fig. 3(a). The intensity profile analysis along the topmost terrace layer reveals
10 that the atom columns at the step edge and in the middle of the terrace (i.e., atom columns 1
11 and 3, as marked in Fig. 3(d)) exhibit similar image intensities, which are ~30% stronger than
12 the atom column 2. This observation suggests a surface segregation of more Pt atoms towards
13 atom column 2, as the difference in image intensity between atom columns 1-3 decreases to
14 ~20%, contrasting with that in Figs. 2(d, e). Notably, the image intensity for atom column 4
15 adjacent to the ascendant step edge is ~ 50% weaker than columns 1 and 3, akin to the difference
16 observed in Fig. 3(b) between the Cu/Pt and Cu columns, indicating the absence of Pt
17 segregation toward atom column 4. Fig. 3(e) corresponds to the DFT minimum-energy structure
18 of the (410) surface model, featuring ordered distribution of segregated Pt atoms in the terrace.
19 This arrangement entails alternating substitution of Pt atoms (i.e., 50% of Pt occupancy) at both
20 the step edge and the atom column situated in the middle of the terrace. Fig. 3(f) depicts an
21 alternative DFT-relaxed Pt-segregated structure of the (410) facet, featuring one Pt substitution
22 for every four Cu atoms (i.e., 25% Pt) in the step edge and adjacent two atom columns in the
23 terrace. Although this structure exhibits a slightly higher segregation energy compared to the
24 configuration in Fig. 3(e), the difference is minimal. Neither of these Pt-segregated structures
25 alone provides a satisfactory match with the experimental HRTEM image. This suggests the
26 expansion of the two Pt-segregated structures depicted in Figs. 3(e, f). The yellow inset in Fig.
27 3(d) depicts a simulated HRTEM image obtained using a 1:1 combination of the two Pt-
28 segregated structures depicted in Figs. 3(e, f). This combination results in ~ 22% Pt occupancy

1 within the stepped region by averaging the Pt content in all the four atom columns of the terrace
 2 and yields the best match with the experimental HRTEM images. Consequently, the increased
 3 coverage of adsorbed H within the terrace area of the stepped facet results in more Pt
 4 segregation to the terrace. Fig. 3(g) schematically illustrates the resulting Pt segregation:
 5 prolonged exposure to H₂ leads to increased H adsorption by the (100) facet, resulting in the
 6 formation of a p(2×2) pattern of segregated Pt atoms, occupying ~25% of the surface sites. In
 7 contrast, although the step edges in the (410) stepped facet are more favorable for H adsorption
 8 and Pt segregation compared to the flat (100) facet, the atom columns neighboring the
 9 ascending steps do not exhibit Pt segregation. This absence of Pt segregation is attributed to the
 10 high concentration of H and Pt along the ascending steps, thereby resulting in ~ 22% Pt
 11 occupancy of the surface sites within the (410) stepped facet, similar to that observed for the
 12 flat (100) facet.

13

14

15 **Fig. 3:** (a) HRTEM image of the (100) and (410) facets after an extend period of the H₂ annealing of the
 16 Cu-5at.%Pt alloy at 600°C and 1×10⁻² Torr of H₂ flow. (b) Enlarged view and intensity profile along the

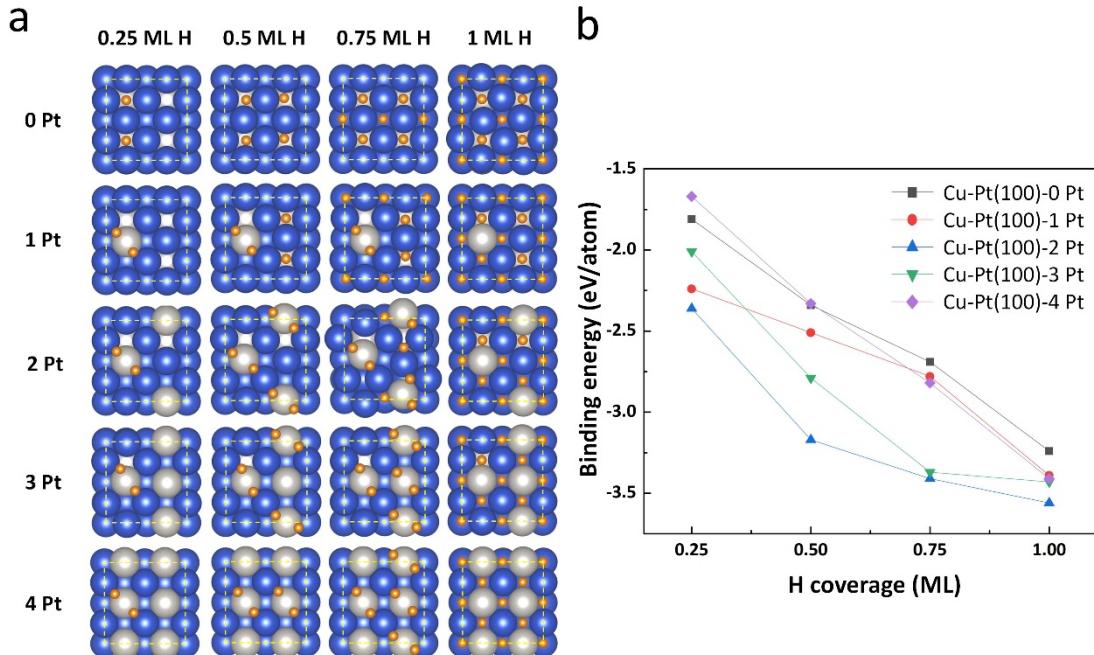

1 topmost layer of the (100) surface region marked with the green dashed box in (a). The inset is a simulated
2 HRTEM image and intensity profile of the topmost layer. (c) DFT-relaxed (100) structure consisting of
3 p(2×2) ordering of Pt atoms. (d) Zoomed-in view and intensity profile along the topmost layer of the
4 stepped (410) facet region marked by the dashed red box in (a). The inset is a simulated HRTEM image
5 and intensity profile of the topmost layer. (e, f) DFT-relaxed (410) structure models showing the two
6 competing surface structures from Pt segregation to the terrace. (g) Schematic illustrating the difference
7 between the (100) and (410) surfaces upon the population of adsorbed H: p(2×2) ordering (marked by
8 the yellow box) of the segregated Pt on the (100) facet, and the co-existing two ordering arrangements
9 of segregated Pt atoms within the terraces of the (410) stepped facet.

10

11 To provide further additional support to the in-situ TEM observations described above, we
12 performed DFT modeling to investigate the effect of H adsorption on inducing surface
13 segregation of Pt on both the (100) terrace and the step edge. As illustrated in Fig. 4(a), Pt atoms
14 are initially positioned at the lattice sites directly beneath the surface layer. Our DFT
15 calculations for the pristine surface reveal that the segregation of Pt to both the step edge and
16 the terrace leads to an increase in system energy. This suggests that Pt surface segregation is
17 energetically unfavorable, consistent with previous experimental measurements^{57, 59, 66} and
18 computational modeling results⁶⁷⁻⁶⁸. Subsequently, we compare H adsorption at the terrace and
19 step edge, revealing that H adsorption at the hollow site near the subsurface Pt along the step
20 edge is more energetically favorable than at the hollow site above the sub-surface Pt in the (100)
21 terrace, as depicted in Fig. 4(b). This trend is further supported by the DFT computation of Pt
22 surface segregation upon the adsorption of four H atoms at the hollow sites adjacent to the
23 segregated Pt within the terrace and the three hollow sites and one bridge site adjacent to the
24 segregated Pt in the step edge, as illustrated in Fig. 4(c). These calculations demonstrate the
25 initially preferred Pt segregation to the step edge over the terrace site, consistent with the
26 experimental observations shown in Figs. 1 and 2.

27

28


Fig. 4: DFT modeling of H adsorption-induced Pt segregation on a stepped (410) surface. (a) Energy difference between two Pt atoms located in the subsurface and their segregation to the step edge and terrace on the pristine surface. (b) Energy difference for H adsorption at the terrace hollow site right above the subsurface Pt, compared to the hollow site near subsurface Pt along the step edge. (c) Energy difference for Pt segregation to the terrace, with H adsorption at the four adjacent hollow sites of the segregated Pt atom, versus Pt segregation to the step edge, with H adsorption at the adjacent hollow and bridge sites of the segregated Pt atom. (d-k) Energy landscape illustrating the sequential process of H adsorption and resulting Pt segregation on the (410) facet, initially at the step edge, and subsequently propagating to sites within the terrace.

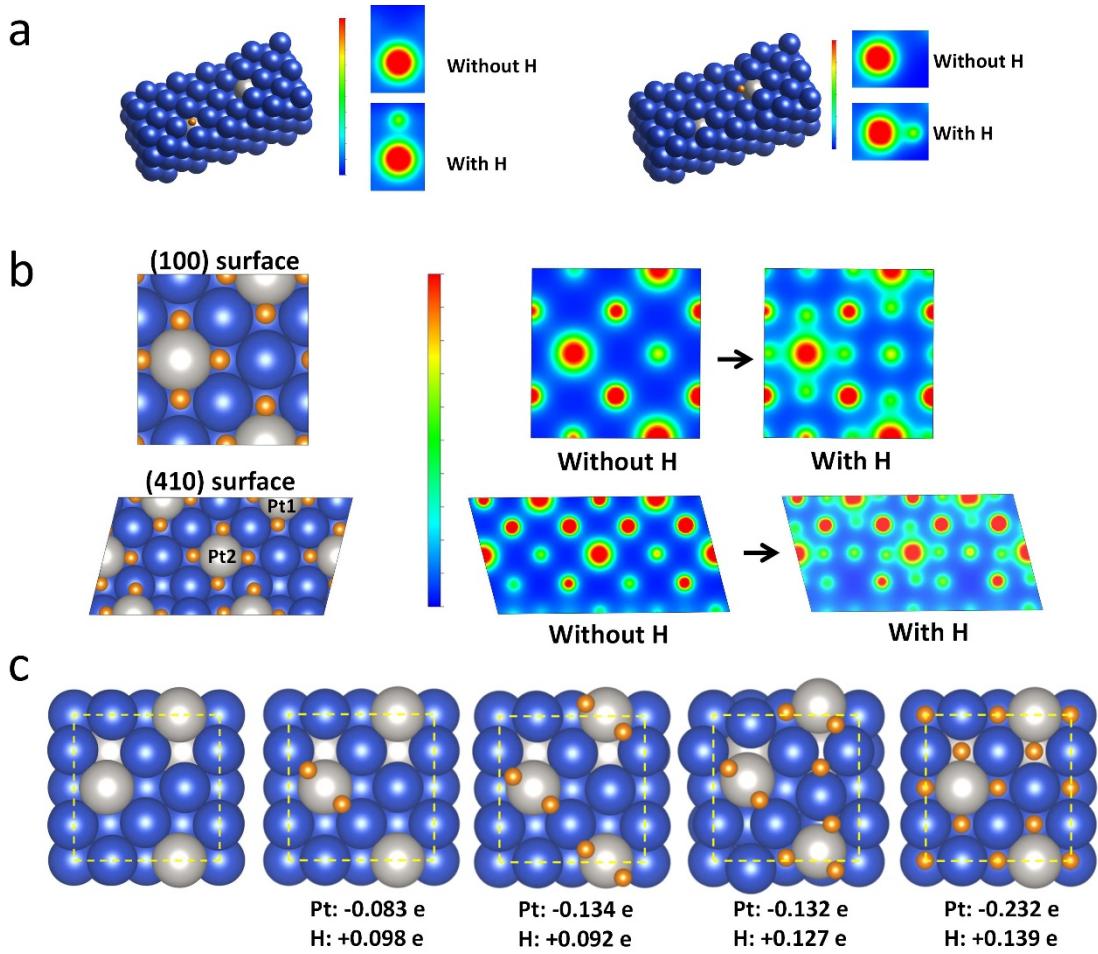
11

12 We then identify the pathway leading to the population of segregated Pt atoms from the
 13 step edge to the terrace region of the (410) facet. As presented in Figs. 4(d, e), segregation of
 14 the first Pt atom to the step edge along with H adsorption at the adjacent hollow and bridge sites
 15 is energetically favorable. After the first Pt atom, it is observed that its next nearest neighbor
 16 within the step edge is the most favorable site for H adsorption-induced segregation of the
 17 second Pt atom (Fig. 4(f)), resulting in 50% of Pt occupancy in the step edge and aligning with
 18 the simulated HRTEM image in Fig. 1(d). Subsequently, it is found that the H adsorption-
 19 induced segregation of the third and fourth Pt atoms occurs preferentially at the alternative
 20 lattice sites of the atom column in the middle of the terrace. This results in 50% Pt occupancy
 21 within the column (Figs. 4(h)) and corresponds to the Pt-segregated structure illustrated in Fig.
 22 2(e).

1 Alternatively, another Pt segregation pathway can be identified from the DFT modeling.
 2 As depicted in Fig. 4(j), the second Pt can also segregate to the atom column adjacent to the
 3 step edge. Subsequently, the third Pt segregates onto the next adjacent atom column, ultimately
 4 forming three Pt-containing neighboring atom columns with 25% Pt occupancy in each column
 5 (Fig. 4(k)), corresponding to the Pt-segregated structure illustrated in Fig. 3(f). The segregation
 6 energy calculations indicate that this Pt segregation path (Figs. 4(e, j, k) is slightly less favorable,
 7 but with a minimal difference, compared to the path depicted in Figs. 4(e-h). This leads to the
 8 coexistence of the two Pt-segregated structures depicted in Figs. 3(e, f), which aligns well with
 9 the simulated and experimental HRTEM images (Fig. 3(d)).

10

11


12 **Fig. 5:** DFT modeling of H adsorption-induced Pt segregation on the (100) surface. (a) Top view of the
 13 surface sites for H adsorption and the resulting Pt segregation at different H coverages. (b) Calculated
 14 binding energy per H atom at the most stable adsorption sites as a function of the H coverage and the
 15 number of segregated Pt atoms.

16

17 We then model the effect of H adsorption on Pt segregation to the flat (100) surface,
 18 resulting in the formation of the p(2×2) arrangement of segregated Pt atoms. As shown in Fig.
 19 5(a), the simulation supercells contain four Pt atoms initially positioned at the lattice sites in
 20 the second layer of the pristine Cu-terminated surface. We systematically assess the binding
 21 energy of H as a function of the surface coverage of both adsorbed H and segregated Pt,

1 including Cu(100)-0Pt, Cu(100)-1Pt, Cu(100)-2Pt, Cu(100)-3Pt, and Cu(100)-4Pt
2 configurations, with the H coverages of 0.25, 0.5, 0.75, and 1 monolayer (ML). Here, the terms
3 0Pt, 1Pt, 2Pt, 3Pt and 4Pt denote the number of segregated Pt atoms from the subsurface, while
4 the surface coverage of H is defined as the ratio of the number of adsorbed H atoms to all
5 potential adsorption sites within the unit cell. The computation results, displayed in Fig. 5(b),
6 reveal that the H binding energy becomes increasingly negative with higher H coverage,
7 indicating enhanced stability.

8 Notably, the Cu(100)-2Pt structure consistently exhibits the most negative H binding
9 energy across various H coverages up to 1 ML, indicating its preference as the most stable
10 configuration compared to others. This finding aligns with experimental result observed from
11 in-situ TEM imaging, as depicted in Figs. 3(b), where the detected p(2×2) ordering of
12 segregated Pt atoms on the (100) surface corresponds to the Cu(100)-2Pt structure with 25% of
13 Pt occupancy of the unit cell. Further analysis of the Cu(100)-2Pt configuration in Fig. 5(a)
14 reveals the evolution of surface adsorption sites for H. At H coverages of 0.25 and 0.5 ML, H
15 atoms tend to adsorb favorably at the bridge sites between the segregated Pt atom and its
16 adjacent Cu atoms. With an increase in H coverage to 0.75, some H atoms are observed to
17 adsorb at the shifted bridge sites formed between the segregated Pt atom and its two adjacent
18 Cu atoms. Finally, at a coverage of 1 ML H, all H atoms are found to adsorb onto the hollow
19 sites formed between the segregated Pt atoms and the surrounding Cu atoms. Fig. 5(b) displays
20 the corresponding H binding energy at the various surface sites, indicating that the Cu-Pt(100)-
21 2Pt surface structure exhibits the most negative binding energy for H adsorption. This makes it
22 the most stable configuration across the different surface coverages of adsorbed H.

1 **Fig. 6:** Electronic analysis of H-adsorption-induced surface segregation of Pt. (a) H adsorption at the
 2 terrace hollow site directly above the subsurface Pt and at the hollow site near the subsurface Pt along
 3 the step edge, accompanied by a comparison of the electron density maps with and without adsorbed H.
 4 (b) Top views of the most stable H-adsorbed structures for the (100) and (410) surfaces, including a
 5 comparison of the electron density maps for the structures with and without adsorbed H. Pt1 and Pt2
 6 correspond to the Pt atoms at the step edge and within the terrace of the (410) surface, respectively. (c)
 7 Top views of the (100)-2Pt structures, along with the average Bader charge of the segregated Pt as a
 8 function of the surface coverage of adsorbed H. The red and blue colors in (a, b) indicate the high and
 9 low electron density, respectively.
 10

11

12 Finally, we perform an electronic structure analysis to deepen our understanding of H-
 13 adsorption-induced surface segregation of Pt. Fig. 6(a) presents the structure and corresponding
 14 electron density maps of a single Pt atom with and without the adsorbed H on the terrace and
 15 along the step edge. At the terrace site, the electron density around the subsurface Pt shows
 16 little overlap with the adsorbed H at the hollow site right above it, indicating a weak interaction
 17 that does not significantly drive surface segregation of the subsurface Pt. In contrast, for the

1 subsurface Pt along the step edge, the electron density map reveals notable overlap with the
2 adsorbed H at the hollow site above it. This suggests a stronger bonding interaction between Pt
3 and H, resulting in a partial transfer of electrons from the Pt atom to adsorbed H. This electronic
4 interaction provides a greater driving force for surface segregation of the sub-surface Pt along
5 the step edge. This observation aligns with our HRTEM imaging (Figs. 1, 2), which shows that
6 Pt preferentially segregates along the step edges before migrating to the (100) terrace region.

7 Fig. 6(b) illustrates the surface structures and corresponding electronic density maps of the
8 most stable configurations of the Pt-segregated (100) and (410) surfaces at 1 ML surface
9 coverage of adsorbed H. For comparison, the electron density maps for the surfaces without
10 adsorbed H are also included to show the differences. In the absence of adsorbed H, the electron
11 density on both the (100) and (410) surfaces is mainly concentrated around the Pt atoms.
12 However, when H atoms are adsorbed onto the adjacent hollow sites, the electron density
13 around the Pt atoms spreads towards the adsorbed H atoms, showing significant overlap. This
14 indicates a transfer of electrons from the Pt atoms to the H atoms, leading to the stabilized
15 structures for the (100) and (410) with saturated Pt coverage, consistent with the TEM
16 observations shown in Fig. 3.

17 Fig. 6(c) presents the Bader charge analysis of the segregated Pt and H in the Cu-Pt(100)-
18 2Pt surface structure, which is the most stable configuration across various surface coverages
19 of adsorbed H (Fig. 5(b)). In this analysis, we do not consider the electron gain or loss of Cu,
20 as it does not interact significantly with H^{6,69}. The analysis reveals that the surface-segregated
21 Pt tends to lose more electrons as the surface coverage of adsorbed H increases. Specifically,
22 compared to the surface without adsorbed H, the average Bader charge of the Pt atoms
23 decreases by 0.232 e at 1 ML of H coverage. Furthermore, the Bader charge for each adsorbed
24 H is positive, indicating that the H atoms gain electrons when interacting with the segregated
25 Pt. For instance, at a coverage of 0.25 ML, the average Bader charge of the adsorbed H is 0.098
26 e, while at 1 ML coverage, each H gains an average of 0.139 e from the segregated Pt. This
27 trend aligns with the electron density maps (Fig. 6(b)), which shows the redistribution of the
28 electron density from the Pt atom toward the adjacent H atoms.

1

2 **4. DISCUSSION**

3 The E-TEM imaging, complemented by DFT modeling, provides atomic-scale insights
4 into the structure and composition dynamics in the topmost surface layer of a dilute Cu(Pt)
5 alloy under H₂ atmosphere and elevated temperatures. Here, the chemical affinity of H for Pt
6 not only drives the surface segregation of Pt but also promotes an ordered distribution of
7 segregated Pt atoms in the surface layer. Understanding such surface segregation in reactive
8 environments is crucial for various applications, particularly in heterogeneous catalysis, where
9 the distribution of surface elements can significantly influence reaction pathways and catalytic
10 efficiency. Additionally, the stability of alloys in these reactive environments is heavily
11 influenced by surface segregation. For instance, under corrosive or high-temperature conditions,
12 segregation can lead to the formation of unstable surface phases or deplete the alloy of crucial
13 components, thereby compromising its mechanical and chemical stability.

14 However, in-situ TEM is limited in its ability to measure the surface chemistry, as it cannot
15 distinguish between different chemical states of the alloy components simultaneously.
16 Furthermore, the sample size and geometry suitable for in-situ TEM may not fully represent
17 the behavior of bulk materials or complex surface morphologies seen in larger samples. To
18 achieve a comprehensive understanding of surface segregation, complementary techniques
19 such as XPS are necessary. XPS can provide detailed information on chemical states and
20 elemental composition at the surface. Nonetheless, integrating XPS with TEM is challenging
21 due to technical constraints, such as the need for extended single crystals for XPS or a collection
22 of nanoparticles. However, obtaining an extended dilute Cu-5at.%Pt(100) single crystal for
23 XPS measurements is not feasible. Additionally, the surface segregation phenomena observed
24 in our in-situ TEM experiments involve co-existing (100) and (410) facets, making it
25 challenging to correlate with XPS data obtained from a single surface orientation on extended
26 crystals. Similarly, nanoparticle samples typically lack well-developed facets, further hindering
27 meaningful comparison. Future studies bridging the material gap between E-TEM and
28 complementary techniques like XPS require advances in sample preparation, analysis

1 techniques, and instrument design for overcoming current limitations. Achieving this will
2 provide a more complete picture of material behavior under realistic conditions – such as high
3 temperatures and reactive gases – thereby enhancing our understanding of how alloys perform
4 in actual operating environments.

5

6 **5. CONCLUSIONS**

7 Using environmental TEM, we monitor H adsorption-induced surface segregation of Pt in
8 a dilute Cu(Pt) solid solution. Through direct comparison of the flat (100) and stepped (410)
9 surfaces under identical conditions of elevated temperature and H₂ atmosphere, we observed
10 that Pt segregation initially occurs at the step edges. Subsequently, it propagates to the terrace
11 sites, resulting in ~22% of Pt occupancy of the stepped facet as the H coverage increases. In
12 contrast, H adsorption-induced Pt segregation on the (100) surface initially manifests as isolated
13 Pt atoms, which then self-order into a p(2×2) structure with 25% of Pt occupancy of the surface
14 sites with the increased H coverage. These observations provide mechanistic insights into the
15 dynamic evolution of surface composition and structure of the Cu(Pt) alloy in response to
16 environmental stimuli. The results are of practical implications, especially in the field of
17 heterogeneous catalysis, where the formation of single-atom alloys is particularly attractive for
18 PGM catalysts. Understanding how these catalysts respond to environmental factors like H
19 adsorption and elevated temperatures aids in optimizing their performance and designing more
20 efficient catalytic systems.

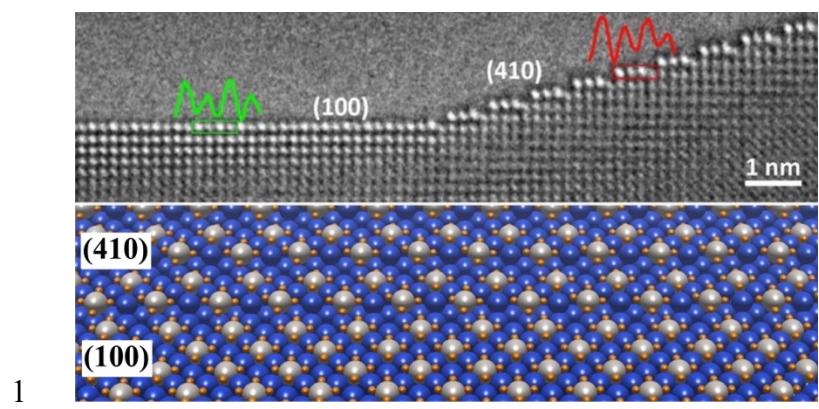
21

22 **Acknowledgements:** This work was supported by the National Science Foundation (NSF)
23 under the NSF Collaborative Research Award grant DMR 1905422 and 1905572. This research
24 used the Electron Microscopy Facilities and the Theory and Computation resources of the Center
25 for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven
26 National Laboratory under Contract No. DE-SC0012704.

27

28 **References:**

29


- 1 (1) Zafeiratos, S.; Piccinin, S.; Teschner, D. Alloys in Catalysis: Phase Separation
2 and Surface Segregation Phenomena in Response to the Reactive Environment. *Catal.*
3 *Sci. Technol.* **2012**, *2*, 1787–1801.
- 4 (2) Liao, H.; Fisher, A.; Xu, Z. J. Surface Segregation in Bimetallic Nanoparticles: A
5 Critical Issue in Electrocatalyst Engineering. *Small* **2015**, *11*, 3221–3246.
- 6 (3) Ferrari, A.; Körmann, F. Surface Segregation in Cr–Mn–Fe–Co–Ni High Entropy
7 Alloys. *Appl. Surf. Sci.* **2020**, *533*, 147471.
- 8 (4) Zou, L.; Yang, C.; Lei, Y.; Zakharov, D.; Wiezorek, J. M. K.; Su, D.; Yin, Q.; Li,
9 J.; Liu, Z.; Stach, E. A.; et al. Dislocation Nucleation Facilitated by Atomic
10 Segregation. *Nat. Mater.* **2018**, *17*, 56–63.
- 11 (5) Zou, L.; Saidi, W. A.; Lei, Y.; Liu, Z.; Li, J.; Li, L.; Zhu, Q.; Zakharov, D.; Stach,
12 E. A.; Yang, J. C.; et al. Segregation Induced Order-Disorder Transition in Cu(Au)
13 Surface Alloys. *Acta Mater.* **2018**, *154*, 220–227.
- 14 (6) Li, C.; Liu, Q.; Boscoboinik, J. A.; Zhou, G. Tuning the Surface Composition of
15 Cu₃Au Binary Alloy. *Phys. Chem. Chem. Phys.* **2020**, *22*, 3379–3389.
- 16 (7) Meng, J.; Zhu, B.; Gao, Y. Surface Composition Evolution of Bimetallic Alloys
17 under Reaction Conditions. *J. Phys. Chem. C* **2019**, *123*, 28241–28247.
- 18 (8) Wang, C.-M.; Genc, A.; Cheng, H.; Pullan, L.; Baer, D. R.; Bruemmer, S. M. In-
19 Situ TEM Visualization of Vacancy Injection and Chemical Partition During
20 Oxidation of Ni–Cr Nanoparticles. *Sci. Rep.* **2014**, *4*, 3683.
- 21 (9) van Spronsen, M. A.; Daunmu, K.; O’Connor, C. R.; Egle, T.; Kersell, H.;
22 Oliver-Meseguer, J.; Salmeron, M. B.; Madix, R. J.; Sautet, P.; Friend, C. M.
23 Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O₂. *J.*
24 *Phys. Chem. C* **2018**, *123*, 8312–8323.
- 25 (10) Boyes, E. D.; LaGrow, A. P.; Ward, M. R.; Mitchell, R. W.; Gai, P. L. Single
26 Atom Dynamics in Chemical Reactions. *Acc. Chem. Res.* **2020**, *53*, 390–399.
- 27 (11) Gao, W.; Hood, Z. D.; Chi, M. Interfaces in Heterogeneous Catalysts: Advancing
28 Mechanistic Understanding through Atomic-Scale Measurements. *Acc. Chem. Res.*
29 **2017**, *50*, 787–795.
- 30 (12) Taleblou, M.; Camellone, M. F.; Fabris, S.; Piccinin, S. Oxidation of Gas-Phase
31 and Supported Pt Nanoclusters: An Ab Initio Investigation. *J. Phys. Chem. C* **2022**,
32 *126*, 10880–10888.
- 33 (13) Zugic, B.; Wang, L.; Heine, C.; Zakharov, D. N.; Lechner, B. A.; Stach, E. A.;
34 Biener, J.; Salmeron, M.; Madix, R. J.; Friend, C. M. Dynamic Restructuring Drives
35 Catalytic Activity on Nanoporous Gold–Silver Alloy Catalysts. *Nat. Mater.* **2017**, *16*,
36 558–564.
- 37 (14) Li, X.; Zhao, J.; Su, D. Structural Changes of Intermetallic Catalysts under
38 Reaction Conditions. *Small Struct.* **2021**, *2*, 2100011.
- 39 (15) Pan, Y.-T.; Wu, J.; Yin, X.; Yang, H. In Situ ETEM Study of Composition
40 Redistribution in Pt–Ni Octahedral Catalysts for Electrochemical Reduction of
41 Oxygen. *AIChE J.* **2016**, *62*, 399–407.

- 1 (16)Liu, S.; Chen, Y.; An, Z.; Zhao, J.; Lu, H.; Jiao, Y.; Xie, L.; Li, A.; Han, X.
2 Microstructure and Oxidation of NiCr Alloys Studied by Analytical In Situ
3 Environmental TEM. *Corros. Sci.* **2023**, 224, 111525.
- 4 (17)Sun, X.; Wu, D.; Zou, L.; House, S. D.; Chen, X.; Li, M.; Zakharov, D. N.; Yang,
5 J. C.; Zhou, G. Dislocation-Induced Stop-and-Go Kinetics of Interfacial
6 Transformations. *Nature* **2022**, 607, 708-713.
- 7 (18)Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Jiang, Y.; Sun, S.
8 Engineering PtRu Bimetallic Nanoparticles with Adjustable Alloying Degree for
9 Methanol Electrooxidation: Enhanced Catalytic Performance. *Appl. Catal. B* **2020**,
10 263, 118345.
- 11 (19)Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent Progress on
12 Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. *ACS*
13 *Catal.* **2020**, 10, 13560-13583.
- 14 (20)Jo, D. Y.; Lee, M. W.; Kim, C. H.; Choung, J. W.; Ham, H. C.; Lee, K.-Y.
15 Interplay of Ligand and Strain Effects in CO Adsorption on Bimetallic Cu/M (M =
16 Ni, Ir, Pd, and Pt) Catalysts from First-Principles: Effect of Different Facets on
17 Catalysis. *Catal. Today* **2021**, 359, 57-64.
- 18 (21)Aich, P.; Wei, H.; Basan, B.; Kropf, A. J.; Schweitzer, N. M.; Marshall, C. L.;
19 Miller, J. T.; Meyer, R. Single-Atom Alloy Pd–Ag Catalyst for Selective
20 Hydrogenation of Acrolein. *J. Phys. Chem. C* **2015**, 119, 18140-18148.
- 21 (22)Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang,
22 B. W. L.; Mou, C.-Y. Promotional Effect of Pd Single Atoms on Au Nanoparticles
23 Supported on Silica for the Selective Hydrogenation of Acetylene in Excess Ethylene.
24 *New J. Chem.* **2014**, 38, 2043-2051.
- 25 (23)Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang,
26 X.; Wang, X.; Tai, Z.; et al. Ag Alloyed Pd Single-Atom Catalysts for Efficient
27 Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene. *ACS Catal.*
28 **2015**, 5, 3717-3725.
- 29 (24)Haruta, M. Size- and Support-Dependency in the Catalysis of Gold. *Catal. Today*
30 **1997**, 36, 153-166.
- 31 (25)Campbell, C. T.; Parker, S. C.; Starr, D. E. The Effect of Size-Dependent
32 Nanoparticle Energetics on Catalyst Sintering. *Science* **2002**, 298, 811-814.
- 33 (26)Li, W.; Guo, Z.; Yang, J.; Li, Y.; Sun, X.; He, H.; Li, S.; Zhang, J. Advanced
34 Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion.
35 *Electrochem. Energy Rev.* **2022**, 5, 9.
- 36 (27)Liu, L.; Chen, T.; Chen, Z. Understanding the Dynamic Aggregation in Single-
37 Atom Catalysis. *Adv. Sci.* **2024**, 11, 2308046.
- 38 (28)Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Supported Single-Atom Catalysts:
39 Synthesis, Characterization, Properties, and Applications. *Environ. Chem. Lett.* **2018**,
40 16, 477-505.
- 41 (29)Qin, R.; Liu, P.; Fu, G.; Zheng, N. Strategies for Stabilizing Atomically
42 Dispersed Metal Catalysts. *Small Methods* **2018**, 2, 1700286.

- 1 (30) Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber,
2 A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated Metal
3 Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations. *Science*
4 **2012**, *335*, 1209-1212.
- 5 (31) Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-
6 Stephanopoulos, M.; Sykes, E. C. H. Selective Hydrogenation of 1,3-Butadiene on
7 Platinum–Copper Alloys at the Single-Atom Limit. *Nat. Commun.* **2015**, *6*, 8550.
- 8 (32) Muir, M.; Trenary, M. Adsorption of CO to Characterize the Structure of a Pd/Ag
9 (111) Single-Atom Alloy Surface. *J. Phys. Chem. C* **2020**, *124*, 14722–14729.
- 10 (33) Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Single-Atom Alloy Catalysts:
11 Structural Analysis, Electronic Properties and Catalytic Activities. *Chem. Soc. Rev.*
12 **2021**, *50*, 569-588.
- 13 (34) Simonovis, J. P.; Hunt, A.; Palomino, R. M.; Senanayake, S. D.; Waluyo, I.
14 Enhanced Stability of Pt–Cu Single-Atom Alloy Catalysts: In Situ Characterization of
15 the Pt/Cu (111) Surface in an Ambient Pressure of CO. *J. Phys. Chem. C* **2018**, *122*,
16 4488–4495.
- 17 (35) Wang, Q.; Zhu, B.; Tielens, F.; Guesmi, H. Single Metal Atoms Embedded in the
18 Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure.
19 *Catalysts* **2022**, *12*, 1669.
- 20 (36) Liu, L.; Corma, A. Confining Isolated Atoms and Clusters in Crystalline Porous
21 Materials for Catalysis. *Nat. Rev. Mater.* **2021**, *6*, 244-263.
- 22 (37) Wang, L.; Wang, L.; Meng, X.; Xiao, F.-S. New Strategies for the Preparation of
23 Sinter-Resistant Metal-Nanoparticle-Based Catalysts. *Adv. Mater.* **2019**, *31*, 1901905.
- 24 (38) Kim, I. S.; Li, Z.; Zheng, J.; Platero-Prats, A. E.; Mavrandonakis, A.; Pellizzeri,
25 S.; Ferrandon, M.; Vjunov, A.; Gallington, L. C.; Webber, T. E.; et al. Sinter-
26 Resistant Platinum Catalyst Supported by Metal–Organic Framework. *Angew. Chem.*
27 *Int. Ed.* **2018**, *57*, 909-913.
- 28 (39) Lin, T.; Wang, H.; Cui, C.; Liu, W.; Li, G. Recent Advances on Confining Noble
29 Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions.
30 *Chem. Res. Chin. Univ.* **2022**, *38*, 1309-1323.
- 31 (40) Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang,
32 J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically Active Au-O (OH) x-
33 Species Stabilized by Alkali Ions on Zeolites and Mesoporous Oxides. *Science* **2014**,
34 *346*, 1498-1501.
- 35 (41) Shin, J.; Lee, Y. J.; Jan, A.; Choi, S. M.; Park, M. Y.; Choi, S.; Hwang, J. Y.;
36 Hong, S.; Park, S. G.; Chang, H. J.; et al. Highly Active and Thermally Stable Single-
37 Atom Catalysts for High-Temperature Electrochemical Devices. *Energy Environ. Sci.*
38 **2020**, *13*, 4903-4920.
- 39 (42) Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.;
40 Zhang, T. Single-Atom Catalysis of CO Oxidation Using Pt₁/FeO_x. *Nat. Chem.* **2011**,
41 *3*, 634-641.

- 1 (43) Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H.;
2 Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y.; et al. Tuning
3 Pt-CeO₂ Interactions by High-Temperature Vapor-Phase Synthesis for Improved
4 Reducibility of Lattice Oxygen. *Nat. Commun.* **2019**, *10*, 1358.
- 5 (44) Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H.
6 Single-Atom Alloy Catalysis. *Chem. Rev.* **2020**, *120*, 12044-12088.
- 7 (45) Lucci, F. R.; Lawton, T. J.; Pronschinske, A.; Sykes, E. C. H. Atomic Scale
8 Surface Structure of Pt/Cu (111) Surface Alloys. *J. Phys. Chem. C* **2014**, *118*, 3015-
9 3022.
- 10 (46) Zhang, L.; Long, R.; Zhang, Y.; Duan, D.; Xiong, Y.; Zhang, Y.; Bi, Y. Direct
11 Observation of Dynamic Bond Evolution in Single-Atom Pt/C₃N₄ Catalysts.
12 *Angew. Chem.* **2020**, *132*, 6283-6288.
- 13 (47) Chen, Z.; Zhang, P. Electronic Structure of Single-Atom Alloys and Its Impact on
14 the Catalytic Activities. *ACS Omega* **2022**, *7*, 1585-1594.
- 15 (48) Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando Techniques for
16 Characterization of Single-Atom Catalysts. *ACS Catal.* **2019**, *9*, 2521-2531.
- 17 (49) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. *Phys.
Rev. B* **1993**, *47*, 558.
- 18 (50) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-
19 Metal-Amorphous-Semiconductor Transition in Germanium. *Phys. Rev. B* **1994**, *49*,
20 14251.
- 21 (51) Kresse, G.; Furthmüller, J. Efficiency of Ab-initio Total Energy Calculations for
22 Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**,
23 *6*, 15-50.
- 24 (52) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation
25 Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.
- 26 (53) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector
27 Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758.
- 28 (54) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations.
29 *Phys. Rev. B* **1976**, *13*, 5188.
- 30 (55) Zhang, S.; Wang, R.; Zhang, X.; Zhao, H. Recent Advances in Single-Atom
31 Alloys: Preparation Methods and Applications in Heterogeneous Catalysis. *RSC Adv.*
32 **2024**, *14*, 3936-3951.
- 33 (56) Zhang, L.; Banis, M. N.; Sun, X. Single-Atom Catalysts by the Atomic Layer
34 Deposition Technique. *Natl. Sci. Rev.* **2018**, *5*, 628-630.
- 35 (57) Li, C.; Zhu, Y.; Wu, D.; Boscoboinik, J. A.; Zhou, G. Effect of Surface
36 Segregation on the Oxidation Resistance of Cu₃Pt(100). *Phys. Rev. Mater.* **2022**, *6*,
37 025801.
- 38 (58) Shen, Y. G.; O'Connor, D. J.; Wandelt, K.; MacDonald, R. J. Studies of Surface
39 Composition and Structure of Cu₃Pt(111) by Low Energy Alkali Ion Scattering. *Surf.
40 Sci.* **1995**, *328*, 21-31.

- 1 (59) Shen, Y. G.; O'Connor, D. J.; Wandelt, K. The Surface Composition, Structure
2 and Oxygen-Induced (2×1) Reconstruction of Cu₃Pt(110). *Surf. Sci.* **1998**, *410*, 1-14.
3 (60) Shen, Y. G.; O'Connor, D. J.; Wandelt, K. Composition and Structure of
4 Cu₃Pt(001): a (1×1) Cu Termination with c (2×2) Underlayer Ordering. *Surf. Sci.*
5 **1998**, *406*, 23-31.
6 (61) Greeley, J.; Mavrikakis, M. Surface and Subsurface Hydrogen: Adsorption
7 Properties on Transition Metals and Near-Surface Alloys. *J. Phys. Chem. B* **2005**,
8 *109*, 3460-3471.
9 (62) Yasumori, I.; Momma, N.; Kiyomiya, M. Mechanism of Hydrogen Adsorption
10 and Hydrogen-Deuterium Equilibration on Copper Surface. *Jpn. J. Appl. Phys.* **1974**,
11 *13*, 485.
12 (63) Poelsema, B.; Lenz, K.; Comsa, G. The Dissociative Adsorption of Hydrogen on
13 Pt(111): Actuation and Acceleration by Atomic Defects. *J. Chem. Phys.* **2011**, *134*,
14 074703.
15 (64) Christmann, K.; Ertl, G.; Pignet, T. Adsorption of Hydrogen on a Pt(111)
16 Surface. *Surf. Sci.* **1976**, *54*, 365-392.
17 (65) Groot, I. M. N.; Kleyn, A. W.; Juurlink, L. B. F. Separating Catalytic Activity at
18 Edges and Terraces on Platinum: Hydrogen Dissociation. *J. Phys. Chem. C* **2013**, *117*,
19 9266-9274.
20 (66) Simonovis, J. P.; Hunt, A.; Waluyo, I. In situ Ambient Pressure XPS Study of
21 Pt/Cu(111) Single-Atom Alloy in Catalytically Relevant Reaction Conditions. *J.*
22 *Phys. D: Appl. Phys.* **2021**, *54*, 194004.
23 (67) Andersson, K. J.; Calle-Vallejo, F.; Rossmeisl, J.; Chorkendorff, I. Adsorption
24 Driven Surface Segregation of the Less Reactive Alloy Component. *J. Am. Chem.*
25 *Soc.* **2009**, *131*, 2404-2407.
26 (68) Schurmans, M.; Luyten, J.; Creemers, C.; Declerck, R.; Waroquier, M. Surface
27 Segregation in CuPt Alloys by Means of an Improved Modified Embedded Atom
28 Method. *Phys. Rev. B* **2007**, *76*, 174208.
29 (69) Li, J.; Zhang, S.; Li, C.; Zhu, Y.; Boscoboinik, J. A.; Tong, X.; Sadowski, J. T.;
30 Wang, G.; Zhou, G. Coupling between Bulk Thermal Defects and Surface
31 Segregation Dynamics. *Phys. Rev. B* **2021**, *104*, 085408.
32
33
34 TOC Graphic

