

Surface self-diffusion induced sintering of nanoparticles

Xiaobo Chen,¹ Can Li,² Boyang Li,³ Yubin Ying,⁴ Shuonan Ye,¹ Dmitri N. Zakharov,⁵ Sooyeon Hwang,⁵ Jiye Fang,² Guofeng Wang,³ Yong-Jie Hu,⁴ Guangwen Zhou^{1*}

¹Materials Science and Engineering Program & Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States

²Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States

³Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

⁴Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

⁵Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States

Abstract

16 Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized
17 particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in
18 atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-
19 situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics
20 governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for
21 coalescence without significant particle movement. Real-time imaging reveals that thermally activated
22 surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The
23 kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the
24 nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering
25 process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle
26 migration and coalescence processes. The fundamental insights have practical implications for
27 manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-
28 diffusion processes.

Keywords: Surface self-diffusion, Neck initiation, Sintering, Pt-Fe nanoparticles, In-situ TEM

31 * Correspondence to: gzhou@binghamton.edu

32 **Introduction**

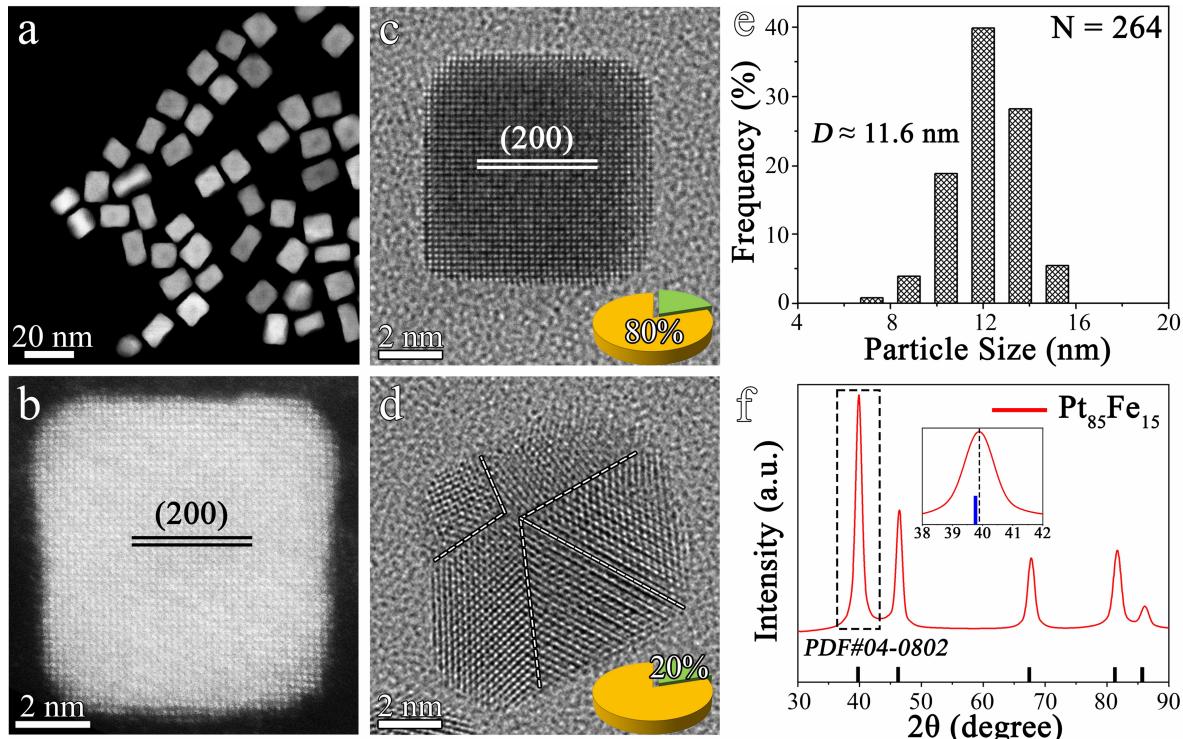
33 The size effect of nanomaterials is widely acknowledged across various technological applications,
34 including nanoscale electrics, optics, mechanics, and catalysts.¹⁻³ Nano-sized materials, characterized by a
35 multitude of low-coordination sites, exhibit significant alternation in their physical and chemical properties
36 compared to their bulk counterparts. However, the excessive surface free energy associated with these low
37 coordinated sites destabilizes dispersed nanoparticles (NPs), leading to a pronounced inclination toward
38 particle sintering.⁴⁻⁸ Despite the availability of diverse experimental approaches for synthesizing size- and
39 morphology-controlled NPs,^{1,2} the intrinsic tendency for sintering remains a substantial hurdle, particularly
40 concerning the long-term stability of NPs. Practical operation conditions, such as electrical, chemical, and
41 thermal stimuli, can significantly expedite property degradation due to NP sintering.^{5,6,9-12} To advance the
42 designs and utilization of NPs, a fundamental understanding of the microscopic mechanisms governing the
43 sintering behaviors of NPs is imperative.

44 The classic models of NP sintering have been largely based on post-mortem characterizations
45 involving ensemble averages, lacking real-time atomic observations of the dynamic behaviors. The
46 advancement of transmission electron microscopy (TEM) in recent years has enabled temperature- and
47 time-resolved imaging of the sintering processes at the atomic-scale.^{9,13-16} In-situ TEM observations have
48 provided fundamental insights into the sintering dynamics of various NPs, including Pt,¹⁷ Bi,¹² Au,¹⁸⁻²⁰
49 PdSi,¹¹ PbSe,¹⁰ Au/TiO₂,^{21,22} Pt/Al₂O₃,^{23,24} Pt/C,²⁵ Cu/SiO₂,²⁶ among others. Such in-situ observations along
50 with theoretical modeling have provided valuable insights into the mechanisms of sintering dynamics,
51 including neck formation and coalescence promoted by surface diffusion.²⁷ However, the atomic-level and
52 microscopic mechanisms underlying the neck initiation remains poorly understood. This knowledge gap
53 stems from the lack of atomic details regarding mass transport leading to the initiation of neck formation,
54 despite its critical importance for a comprehensive understanding of sintering kinetics.^{7,18,28} The classical
55 description of particle sintering primarily revolves around two proposed mechanisms: Ostwald ripening
56 (OR) and particle migration and coalescence (PMC).^{4,7} OR entails evaporation of atoms from small particles,
57 subsequently captured by large particles, thereby leading to the growth of the big particles at the expense

58 of smaller ones. In contrast, PMC involves the Brownian-like motion of particles, with subsequent
59 collisions leading to particle growth.

60 The majority of reported studies on sintering have focused on NPs with sizes < 10 nm and irregular
61 morphologies. For such small sizes, the sintering through OR or PMC can be readily activated thermally.
62 However, for larger particles (> 10 nm), NP migration becomes more sluggish due to the substantial
63 interfacial area between the NPs and the support.⁷ Additionally, the melting temperatures of NPs increase
64 significantly with size,²⁹ reducing the role of atomic evaporation for larger nanoparticles. Moreover, the
65 driving force behind the ripening and sintering of NPs is to minimize the overall surface energy within an
66 ensemble of NPs.^{17,30-32} However, this global energy minimization treatment does not fully consider the
67 evolving free energy landscape of individual NPs and its influence on specific sintering pathways.

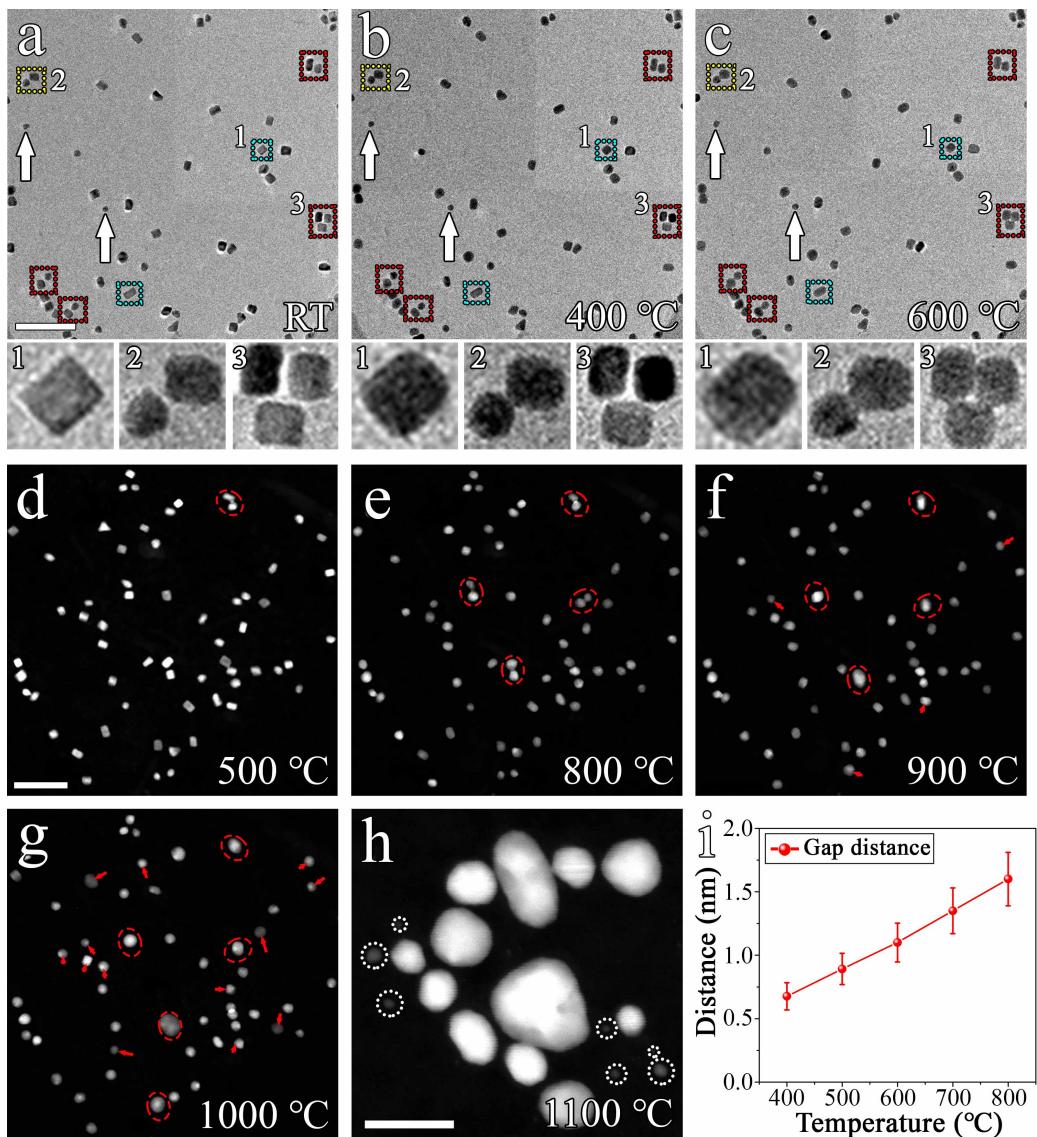
68 In this work, we investigate how the inherent tendency of individual NPs to minimize their surface
69 energy influences their morphological evolution and drives significant surface self-diffusion. This is
70 particularly relevant to the initiation of necking between NPs that are already in close proximity. We focus
71 on the sintering of NPs with relatively large sizes (> 10 nm) and well-developed crystal facets, at
72 temperatures prior to the activation of OR or PMC processes. We present an NP sintering process induced
73 by surface self-diffusion, resulting in neck initiation at inter-particle gaps. This process occurs in the
74 absence of adatom diffusion from smaller to larger particles and direct particle collisions. The surface self-
75 diffusion process reported here does not involve mass transfer between NPs, and thus, no diffusion occurs
76 on the surface of the support. Additionally, it is more readily activated thermally compared to the OR
77 process, which necessitates complete detachment/evaporation of atoms from NPs, and the PMC process,
78 which requires particle migration. The sintering controlled by this surface self-diffusion process
79 encompasses four key stages: i) proximity of NPs – This first step involves bringing NPs into close
80 proximity, achieved either through high loading of NPs on a support or through thermally driven random
81 migration of NPs under practically relevant thermal annealing conditions; ii) narrowing of the inter-particle
82 gap – surface self-diffusion induces surface morphology evolution, leading to the entrapment of self-
83 diffusing atoms in inter-particle gap regions; iii) neck initiation – this stage is characterized by the


84 nucleation and growth of atomic layers in the inter-particle gaps, initiating the formation of a neck; iv) neck
85 growth – this process is facilitated by surface and volume diffusion to lower the total system energy.
86 Atomic-scale observations and molecular dynamics (MD) simulations reveal that annealing temperature
87 and inter-particle spacing play a key role in controlling the NP sintering dynamics.

88 **Results**

89 Pt-Fe cubic NPs, synthesized through wet chemistry methods, serve as a model system due to their
90 well-controlled shape and size and their potential applications that demand magnetic and catalytic
91 properties.³³⁻³⁶ The well-defined facets and superior crystallinity of the NPs offer significant advantages for
92 assessing the sintering behaviors of NPs. Fig. 1a illustrates a low-magnification high-angle annular dark-
93 field (HAADF)-scanning TEM (STEM) image of the as-loaded nano-cube Pt₈₅Fe₁₅ NPs. These NPs are
94 drop-cast on an amorphous Si₃N₄ membrane, exhibiting relatively uniform size and morphology, with some
95 well dispersed and others in closer proximity to each other (more examples in Fig. S1). Fig. 1b displays a
96 representative atomic-scale HAADF image, showing the uniform image contrast of atomic columns. The
97 observation confirms the single-phase, random distribution of Pt and Fe atoms in the NP. Fig. 1c presents a
98 high-resolution TEM (HRTEM) image of a typical Pt₈₅Fe₁₅ NP, wherein the uniform image contrast of the
99 crystal lattice further verifies the random solid solution nature of the alloy. The measured interplanar
100 spacing in Figs. 1b and 1c matches well with alloyed Pt₈₅Fe₁₅(200) lattice planes. The as-prepared Pt₈₅Fe₁₅
101 NPs are predominantly square or rectangular in shape, with a small fraction exhibiting irregular
102 morphologies such as triangular or spherical forms. As depicted in the inset of Fig. 1c, nano-cube NPs
103 account for ~80% of the total NPs (N = 264) examined by TEM. A minor fraction of NPs displays extended
104 structure defects in the bulk, as exemplified by the five-fold twin boundaries in the HRTEM image of Fig.
105 1d (additional examples in Fig. S2). Both the HAADF and HRTEM images (Fig. 1 and S2) indicate that
106 the surfaces of the as-synthesized NPs are not atomically flat. Instead, they exhibit a high density of atomic
107 defects, such as atomic steps, kinks and adatoms, leading to variations in surface morphology at the atomic
108 scale. Importantly, it is worth noting that these surface defects serve as the source for surface self-diffusion
109 at elevated temperatures.

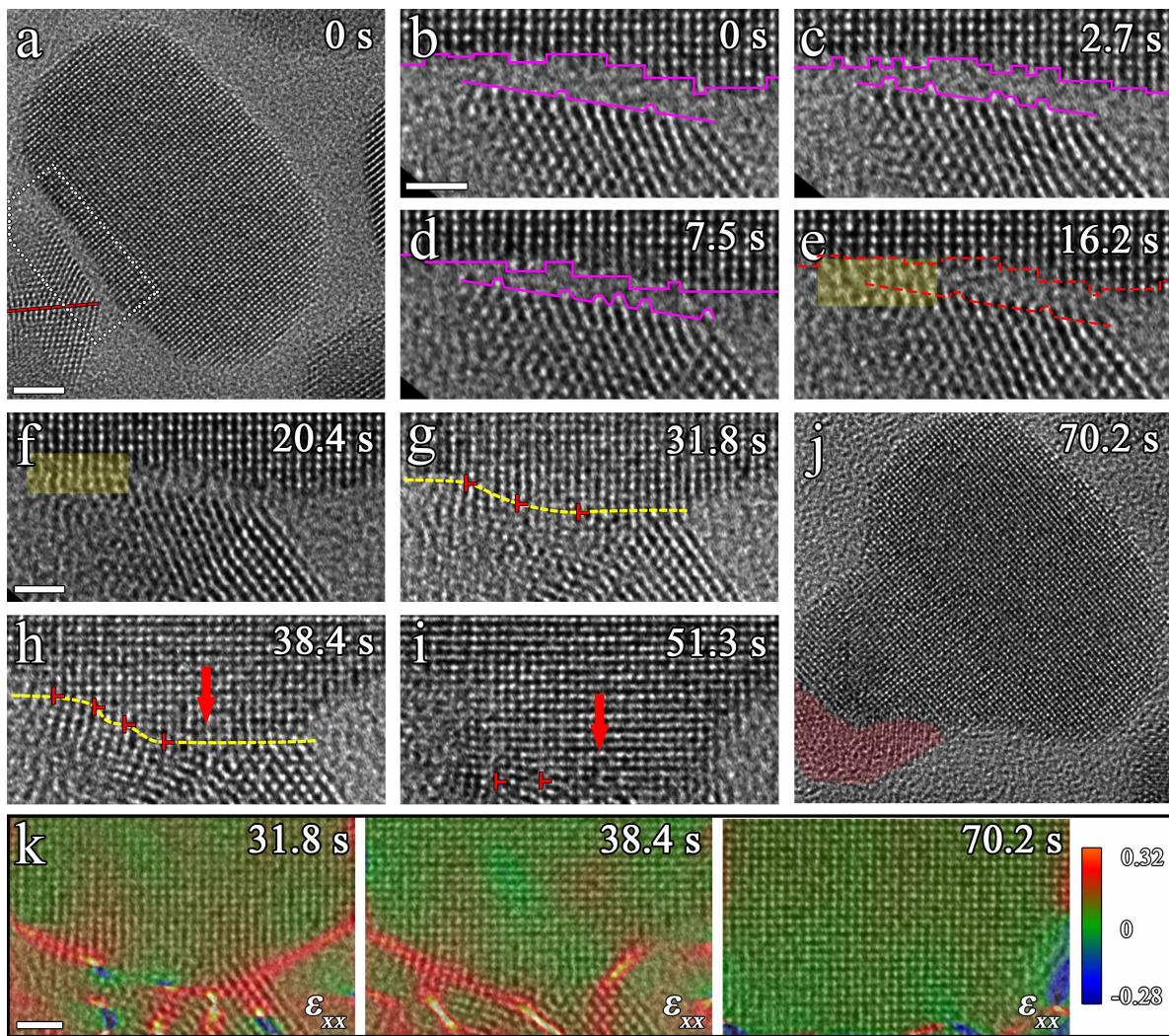
110 The size distribution of the as-loaded Pt-Fe NPs conforms to a Gaussian distribution with an
111 arithmetic mean value of ~11.6 nm and a full-width at half-maximum of 2.4 nm, as illustrated in Fig. 1e.
112 The average particle size is consistent with the estimate derived from the Debye-Scherer equation based on
113 the full-width at half-maximum of synchrotron X-ray diffraction (XRD) patterns, as depicted in Fig. 1f.


114 The XRD measurements also reveal smaller d-spacings of the Pt-Fe NPs compared to those for pure Pt
 115 (PDF #04-0802). This is well consistent with Vegard's law^{37,38} for the atomic composition of Pt₈₅Fe₁₅ NPs
 116 (composition measurements provided in Fig. S3). The absence of any superlattice lines in the XRD pattern
 117 confirms the random solid-solution nature of the Pt₈₅Fe₁₅ alloy NPs.

118 **Fig. 1. Characterization of as-synthesized Pt₈₅Fe₁₅ NPs.** **a** Low-magnification TEM image showing the well-
 119 dispersed NPs. **b** HAADF-STEM image displaying the single-phase, random solid-solution Pt₈₅Fe₁₅ alloy. **c, d**
 120 HRTEM images showing the representative single-crystal and defective NPs. **e** Particle size distribution of the as-
 121 prepared NPs. N indicates the number of included NPs. **f** Synchrotron X-ray diffraction pattern showing the peak shift
 122 with a smaller d-spacing of the Pt₈₅Fe₁₅ NPs compared to pure Pt. The inset is a zoomed-in view of the (111) peak and
 123 its comparison to the peak position (blue line) of Pt(111).
 124

125
 126 In-situ TEM annealing experiments are then performed to directly monitor the sintering process of
 127 Pt₈₅Fe₁₅ NPs. Figs. 2a-c present low-magnification TEM images of the same area of well-dispersed Pt₈₅Fe₁₅
 128 NPs at room temperature, 400 °C, and 600 °C during vacuum annealing, respectively, at a low electron
 129 beam dose rate (790 e/(Å² s)). The images illustrate the morphological evolution of individual NPs and the

130 merging of some closely neighboring NPs (additional examples in Figs. S4) on the ultra-thin carbon support.
131 As indicated by the white arrows in Figs. 2a-c, annealing does not induce obvious particle migration or size
132 changes in the relatively smaller particles. The observation therefore suggests the absence of OR and PMC
133 processes. The bottom panel of Figs. 2a-c provides an enlarged view of three representative regions
134 numbered 1, 2, 3, respectively. In the case of particle 1, its morphology evolves from a nano-cube shape
135 into a round one, driven by the reduction in surface energy through the thermally activated self-diffusion
136 of adatoms along the particle surface. Region 2 shows neck initiation between two closely neighboring NPs
137 at 400 °C, while the three NPs in region 3, with slightly larger inter-particle gaps, undergo neck formation
138 at 600 °C. This indicates that the temperature increase promotes more surface self-diffusion, leading to
139 morphology evolution and facilitating “bridge-like” neck formation at the inter-particle gap region.
140 Additional ex-situ annealing experiments are performed, confirming the neck formation between closely
141 neighboring NPs (Fig. S5).



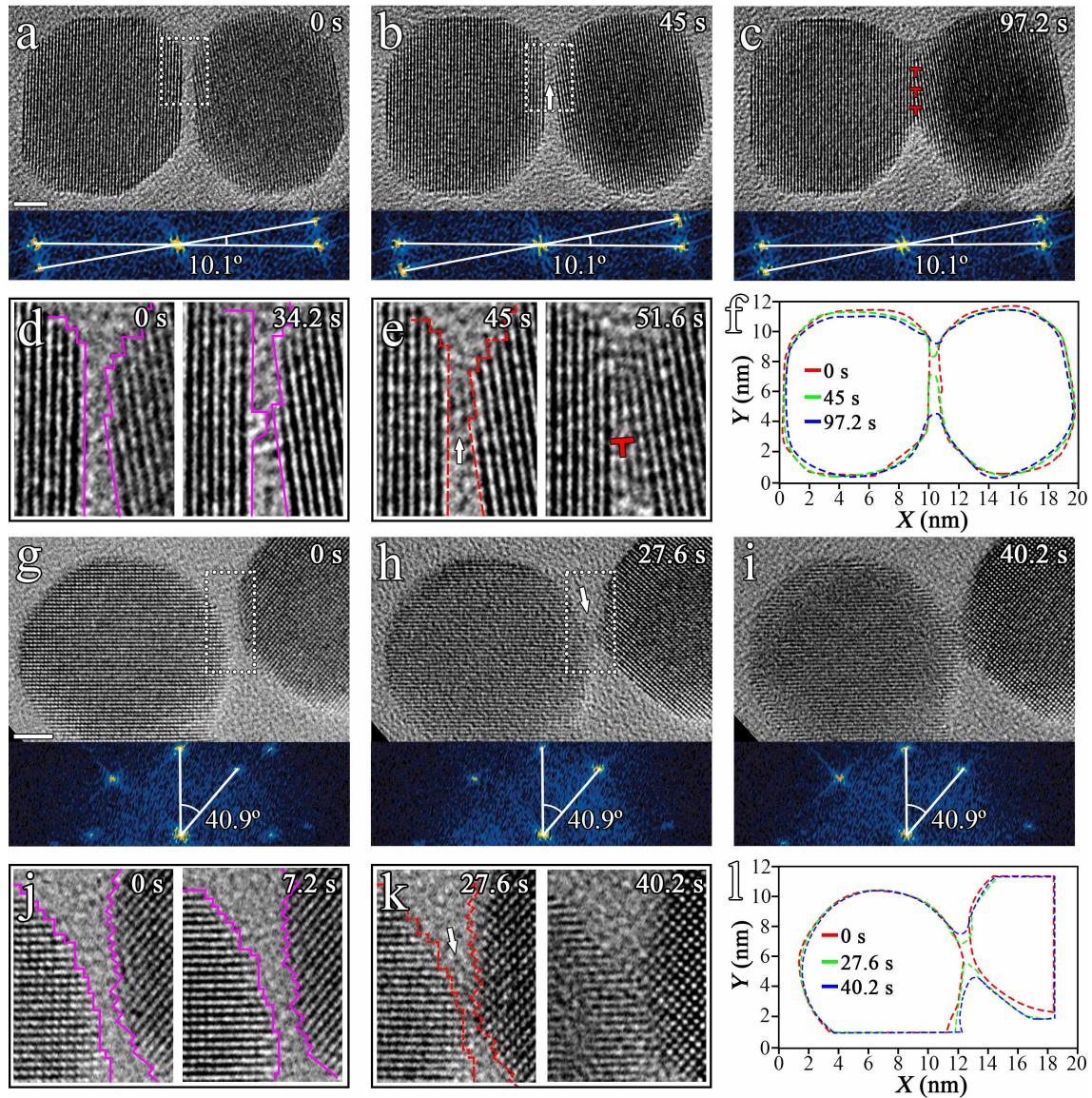
142

143 **Fig. 2. Low-magnification in-situ TEM/STEM imaging of the morphological evolution and sintering of Pt₈₅Fe₁₅**
144 **NPs during vacuum annealing.** **a-c** In-situ TEM images revealing the formation of necks between closely
145 neighboring NPs. The bottom panels show an enlarged view of three representative regions marked 1, 2, and 3. **d-g**
146 Time-sequence HAADF images displaying the morphological evolution of NPs as a function of vacuum annealing
147 temperature. The red dashed circles in **e-g** highlight the neck formation between NPs in close neighborhood and their
148 subsequent merging. The red arrows in **f, g** indicate the direction and distance of NP migration from their positions
149 shown in **e**. **h** HAADF image showing the shrinkage of small NPs to atomic clusters (marked by white dashed circles),
150 following vacuum annealing at 1100 °C. **i** Inter-particle spacings leading to neck formation at different annealing
151 temperatures. Scale bar, 50 nm **a-g**; 20 nm **h**.

152 Similar vacuum annealing experiments are also performed with STEM. Figs. 2d-g present in-situ
153 HAADF-STEM images of the same area at different annealing temperatures, using a significantly low
154 electron beam dose rate ($72 \text{ e}/(\text{\AA}^2 \text{ s})$). As indicated by the dashed circles in Figs. 2d and 2e, annealing at
155 500 °C and 800 °C results in neck formation between NPs in the close neighborhood, without inducing
156 significant changes in the particle size or particle migration on the SiN_x support. This is consistent with the
157 in-situ TEM observations in Figs. 2a-c, suggesting the negligible effect of the support on the observed
158 sintering behavior of the $\text{Pt}_{85}\text{Fe}_{15}$ NPs. Increasing the temperature to 900 °C and above leads to NP
159 migration, as indicated by the red arrows in Figs. 2f, g, where the tails of the arrows represent the positions
160 of the NPs at 800 °C while the heads indicate their new positions at the higher temperature. Sintering
161 becomes more obvious as the temperature is further increased to 1000 °C (Fig. 2g), resulting in both the
162 migration of more NPs and the size shrinkage of smaller particles (additional in-situ STEM observations in
163 Fig. S6). Fig. 2h corresponds to the HAADF image after the temperature is increased to 1100 °C, illustrating
164 the further shrinkage of smaller NPs (marked by dashed white circles), leading to the growth of the larger
165 NPs. The in-situ TEM observations indicate that the sintering behavior of NPs is temperature-dependent.
166 For annealing temperatures below 800 °C, sintering occurs only for closely neighboring NPs, leading to
167 neck initiation via the surface self-diffusion of adatoms on the NPs. The PMC mechanism is activated at
168 900 °C, as indicated by the observed particle migration. Further temperature increases to 1000 °C and above
169 activate the OR mechanism, evidenced by the size shrinkage of smaller NPs. The inter-particle spacing
170 plays a key role in neck formation between NPs at relatively low temperatures (≤ 800 °C). Fig. 2i shows
171 the measured average inter-particle spacings for neck formation among NPs at annealing temperatures
172 ranging from 400 to 800 °C (with inter-particle spacings measured at room temperature before heating).
173 The results indicate that higher annealing temperatures permit neck formation between NPs at a larger inter-
174 particle gap. This underscores the temperature effect on promoting the morphology evolution of the NPs
175 and facilitating neck formation via surface self-diffusion.

176 Surface self-diffusion is thermally activated due to the tendency to minimize surface energy, with
177 a higher rate at higher temperatures, regardless of the presence of a neighboring nanoparticle. This process
178 leads to surface morphology fluctuations through the formation and migration of atomic steps around the
179 nanoparticle. Notably, when nanoparticles are in the close proximity, the surface morphology fluctuations
180 contribute to the initiation of neck formation in the inter-particle gap region. Subsequently, self-sustained
181 neck growth occurs through surface self-diffusion. Fig. 3 presents in-situ HRTEM images (with an electron
182 beam dose rate of 8400 e/(Å² s)), capturing the atomic-scale process of the surface self-diffusion leading to
183 the neck formation between closely neighboring Pt₈₅Fe₁₅ NPs at 500 °C. Fig. 3a presents an HRTEM image
184 of two NPs separated by a visible inter-particle gap, as enclosed within the white dashed box. In this region,
185 one particle exhibits a single-crystalline structure, while the other one is defective with a twin boundary,
186 marked by the red line. Figs. 3b-e depict a time sequence of zoom-in HRTEM images focusing on the inter-
187 particle gap region, revealing the cumulative formation of atomic steps, represented by purple lines. This
188 process arises from surface self-diffusion of adatoms on the facing surfaces of the NPs. Consequently, the
189 inter-particle gap gradually narrows, leading to neck formation through the entrapment of self-diffusing
190 adatoms by the formed atomic steps. As illustrated by the shadowed yellow in Fig. 3e, f, the trapped adatoms
191 continuously self-organize into the crystal lattice that is epitaxial with the single-crystal Pt₈₅Fe₁₅ NP.
192 Notably, the neck initiation observed here does not involve the direct collision of the NPs, as suggested by
193 the PMC mechanism. Instead, the initiation of the bridge-like neck formation begins with the trapping of
194 the surface self-diffusing adatoms in the inter-particle gap region.

195 **Fig. 3. In-situ HRTEM imaging of the neck formation and growth between Pt₈₅Fe₁₅ NPs during the vacuum**
 196 **annealing at 500 °C. a** HRTEM image of two closely neighboring NPs, one exhibiting a single-crystalline structure,
 197 while the other is defective, including twin boundaries. **b-i** Time-sequence of HRTEM images (Supplementary Movie
 198 1) focusing on the inter-particle gap region, illustrating the trapping of surface self-diffusing adatoms. This process
 199 leads to the nucleation and growth of new atomic layers (marked in purple) on both facing facets, facilitating neck
 200 formation and growth. The red dashed lines in **e** are the superimposed trace of the position and profile of the facing
 201 facets at 0 s in **b**. Red arrows in **h** and **i** indicate the growth direction of the neck toward the defective NP. The red “T”
 202 corresponds to edge dislocations at the neck growth front toward the defective NP. **J** HRTEM image of the well
 203 sintered NP, showing the conversion of the initially defective NP into the single crystal via the epitaxial growth. The
 204 red-markred bottom-left region remains a defective region and has not undergone conversion into the single crystal. **k**


206 Time-sequence HRTEM images with overlapped GPA strain maps (ε_{xx}) of the neck area. Scale bar, 2 nm **a**,
207 **j**; 1 nm **b-k**.

208

209 The sintering process continues with the epitaxial growth of the contacting neck toward the
210 defective NP. This neck growth process involves recrystallization of the defective lattice regions of the NP.
211 This is evidenced by tracking the migration of the growth front of the neck region, forming a low-angle
212 grain boundary mediated by an array of edge dislocations (marked by the yellow dashed lines and red “T”
213 in Fig. 3g-j). The forward propagation of the low-angle grain boundary is accompanied by the retraction
214 motion and rearrangement of the edge dislocations, which requires significant bulk self-diffusion in the
215 defective NP to result in the rearrangement of atoms at the growth front. The epitaxial growth of the necked
216 region is energetically favorable as it results in the annihilation of high-energy structure defects in the
217 defective NP. This is also confirmed by the geometrical phase analysis (GPA) of the time-sequence
218 HRTEM images of the formed neck region in Fig. 3k, demonstrating the decreased strain as the progressive
219 annihilation of high-energy structure defects in the neck region. Fig. 3j provides a relatively lower
220 magnification HRTEM image, illustrating that most of the NP has converted into the single-crystal feature,
221 with the bottom-left region retaining its defective state.

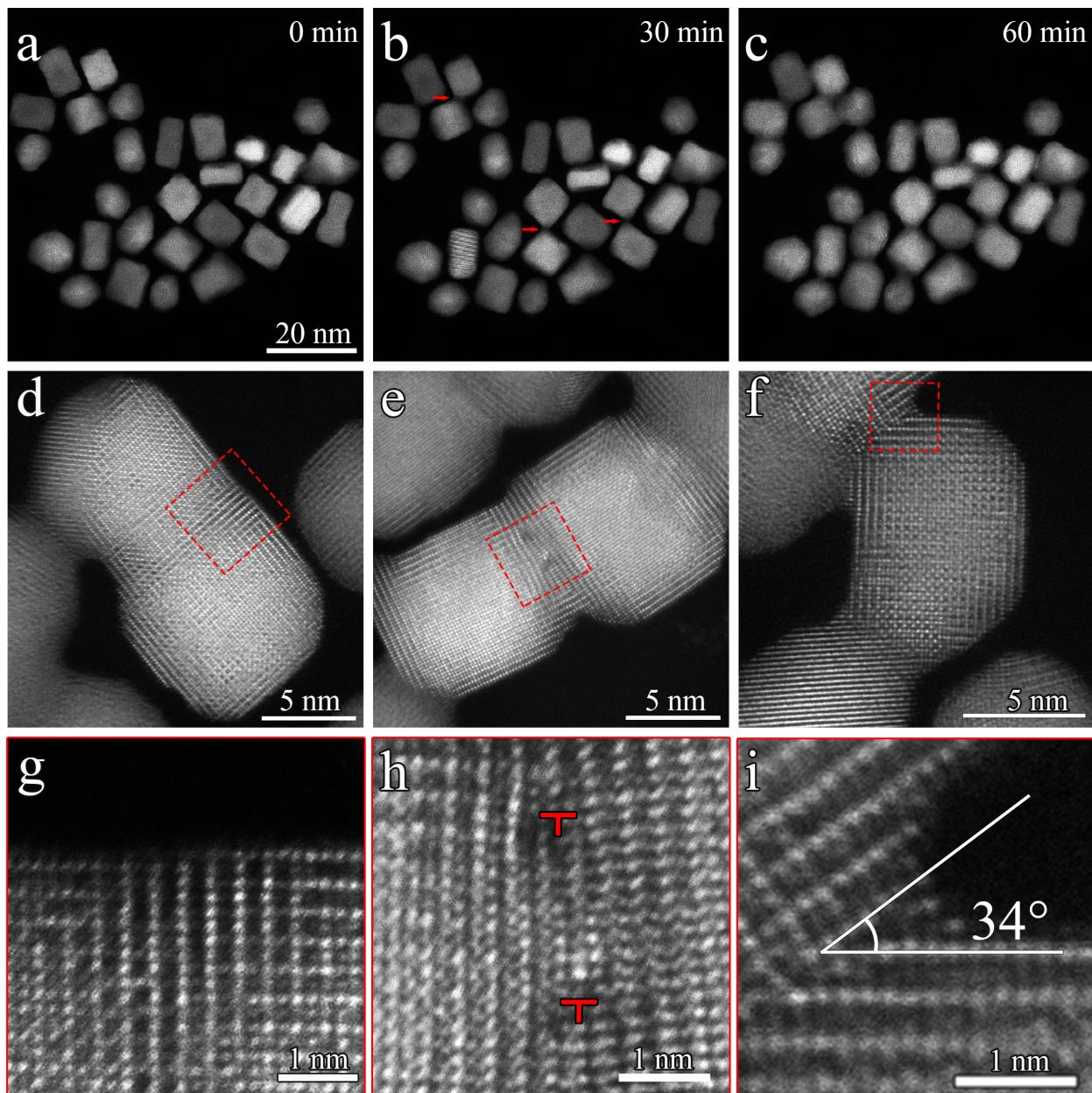
222 The observed neck formation induced by the surface self-diffusion also happens at the inter-particle
223 gap between defect-free NPs. Fig. 4 presents in-situ HRTEM image snapshots of the neck formation
224 dynamics of the nano-cubic $\text{Pt}_{85}\text{Fe}_{15}$ NPs during the vacuum annealing at 500 °C. The two NPs are defect-
225 free and separated by an inter-particle gap of ~ 1 nm with a face-to-face misalignment of $\sim 10.1^\circ$, as
226 indicated by the Fast Fourier Transformation (FFT) of the HRTEM image in Fig. 4a. Neck formation is
227 observed to take place by the formation of new atomic layers in the smallest inter-particle gap region (Fig.
228 4b). The newly formed atomic planes grow along the opposing facets of the two NPs, resulting in the
229 formation of a small-angle grain boundary with the presence of several edge dislocations to accommodate
230 their misalignment (marked by red “T” in Fig. 4c). Fig. 4d presents the time sequence of the enlarged views
231 of the inter-particle gap region, showing the atomic process leading to the neck initiation. The thermally

232 activated surface self-diffusion results in the accumulative trapping of adatoms in the smallest inter-particle
233 gap region (as traced by the purple lines in Fig. 4d), leading to the initiation of the neck formation between
234 the particles. Thereafter, the rearrangement of the trapped adatoms into the epitaxial growth happens on the
235 two closely facing facets (Fig. 4e), where the resulting low-angle grain boundary along with the presence
236 of edge dislocations in the fully merged region also confirms that there is no in-plane rotation of the two
237 NPs during the neck formation process. This lack of in-plane rotation is further supported by the FFTs of
238 the HRTEM images (bottom panel of Figs. 4(a-c)), indicating a consistent misalignment angle between the
239 two equivalent reflections associated with the two NPs throughout the neck formation process. A detailed
240 temporal evolution of the surface morphology for both NPs is presented in Fig. 4f. The surface profiles and
241 positions are compared, revealing a trend toward into a round shape due to thermally activated surface self-
242 diffusion. The accumulative trapping of adatoms at the inter-particle gap leads to the formation of neck
243 contact. Notably, the two single-crystal NPs in contact do not exhibit significant grain growth or shrinkage,
244 distinguishing this behavior from the case depicted in Fig. 3, where the defective NP is consumed through
245 the annihilation of defects in the bulk.

246

247 **Fig. 4. In-situ HRTEM imaging of the neck formation between single-crystal Pt₈₅Fe₁₅ NPs during vacuum**
 248 **annealing at 500 °C.** **a-c** Time-sequence HRTEM images (Supplementary Movie 2) showing the neck formation
 249 process between the two NPs with slight face-to-face misalignment in the inter-particle gap region. The bottom panel
 250 shows the FFTs of the HRTEM images. **d, e** Enlarged views of time-sequence HRTEM images displaying the trapping
 251 of self-diffusing adatoms leading to the formation of new atomic layers (marked in purple) on both the facing facets
 252 in the inter-particle gap. The red “T” marks the edge dislocations at the low-angle grain boundary. **f** Traces of the
 253 morphological evolution of the NPs at different times of the vacuum annealing. **g-i** In-situ HRTEM images
 254 (Supplementary Movie 3) illustrating the sintering process of two NPs with the facing vertices in the inter-particle gap
 255 region. The bottom panel shows the FFTs of the HRTEM images. **j, k** Enlarged views of the time-sequence HRTEM

256 images showing the extension of the lattice planes (marked in purple) on both the facing facets by the trapping of self-
257 diffusing adatoms in the inter-particle gap. The red dashed lines in **e** and **k** are the superimposed traces of the position
258 and profile of the facing facets at 0 s in **d** and **j**, respectively. **I** Traces of the morphological evolution of the NPs in
259 (g-i) at different annealing times. Scale bar, 2 nm **a-c, g-i**.

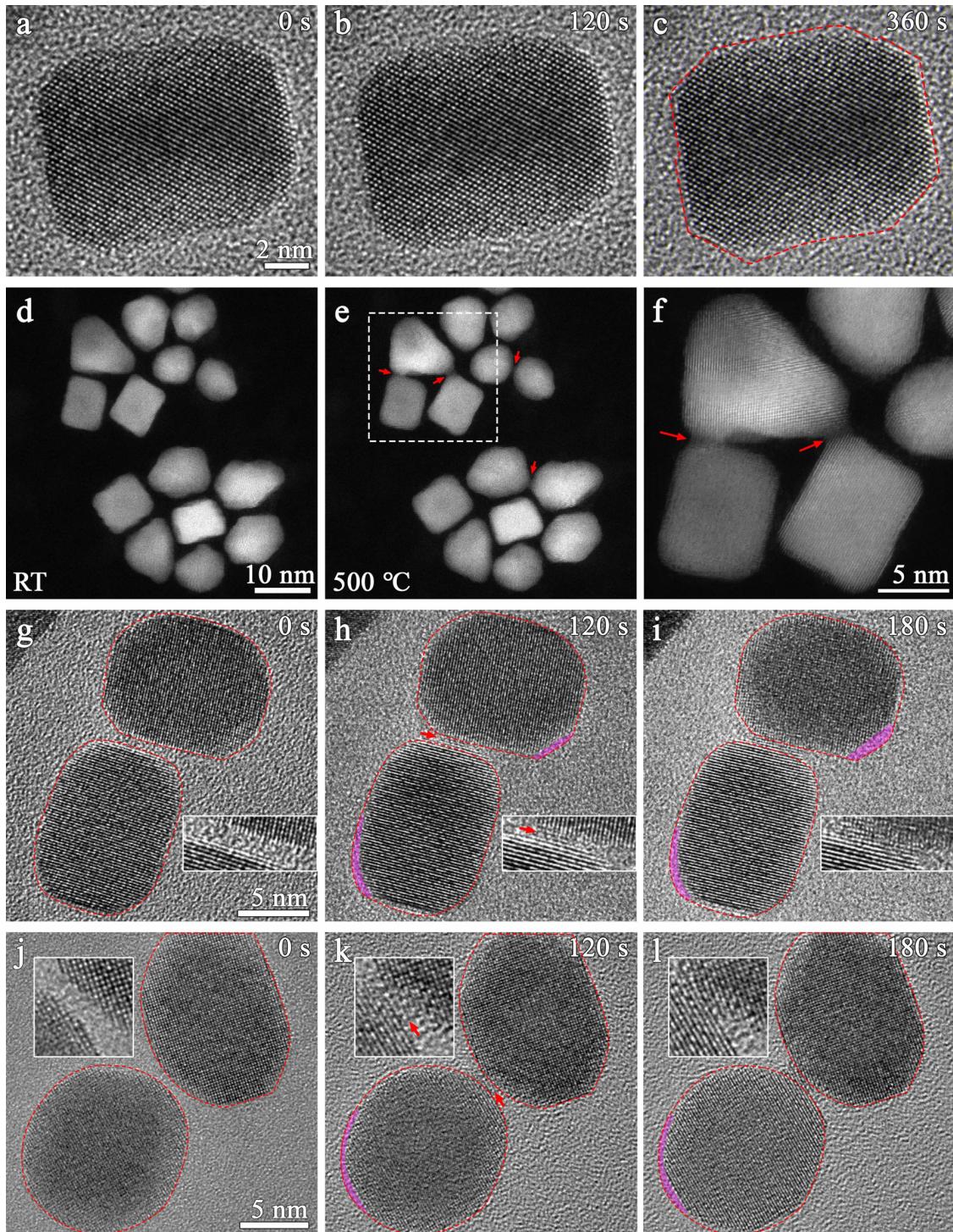

260

261 Figs. 4g-i present in-situ HRTEM imaging of the corner-to-corner neck formation between two
262 defect-free NPs featuring a large in-plane misorientation angle. The FFT of the HRTEM image (bottom
263 panel in Fig. 4(g)) confirms that both NPs are along the [100] zone axis but have an in-plane rotation
264 (misorientation) angle of $\sim 40.9^\circ$. As observed in Figs. 4g, i, the neck formation occurs in the corner-to-
265 corner region that has the shortest inter-particle gap of ~ 1 nm, resulting in a high-angle grain boundary in
266 the merged region. The FFT of the HRTEM images in Fig. 4g-i show the in-plane misorientation angle
267 between the NPs remains unchanged at 40.9° , confirming that there is no particle rotation during the neck
268 formation process. Fig. 4j depicts the time-sequence, enlarged views of the corner-to-corner region marked
269 by the white dashed rectangle in Fig. 4g, showing independent growth of lattice planes of the facing facets
270 of the two NPs, thereby resulting in a merged high-angle grain boundary (Fig. 4k). Detailed tracing of the
271 surface morphology evolution of the two NPs is depicted in Fig. 4l, showing the corner rounding by the
272 surface self-diffusion to result in the mass transfer to the neck region. Additional examples of the
273 morphology evolution of the Pt₈₅Fe₁₅ NPs, leading to the inter-particle neck and formation of various grain
274 boundaries during surface self-diffusion-induced sintering, are presented in Figs. S7.

275 The in-situ HRTEM imaging of the neck region shown in Figs. 3 and 4 demonstrates that the neck
276 formation occurs via the nucleation and growth of new atomic layers on the two facing facets of the adjacent
277 NPs as a result of the trapping of surface self-diffusing atoms in the inter-particle gap region. This contrasts
278 with the OR process, where the anticipated outcome involves the shrinkage (involving atomic evaporation
279 and/or detachment) of atomic layers on one facing facet and the nucleation/growth of new atomic layers on
280 the opposite facing facet due to the net mass transfer from the small particle to the larger one. The absence
281 of the OR process is also corroborated by the low-magnification TEM and STEM imaging in Fig. 2,

282 showing negligible changes in particle sizes, even for the smallest particles for the annealing at the relatively
283 lower temperature (≤ 600 °C). This suggests that the neck formation does not involve long-range diffusion
284 of atoms evaporating or detaching from smaller particles that are not within the close vicinity.

285 The in-situ TEM observations shown above are performed with Pt₈₅Fe₁₅ NPs that tend to develop
286 into the Pt₃Fe L1₂ ordered phase upon the vacuum annealing, as confirmed from our HAADF-STEM
287 imaging (Fig. S7). For comparison, in-situ STEM imaging of the sintering behavior of Pt₆₅Fe₃₅ NPs is also
288 performed. As shown in Fig. 5(a-c), the vacuum annealing of Pt₆₅Fe₃₅ NPs results in the neck formation
289 among closely neighbored NPs without significant changes in particle size and migration, similar to the
290 Pt₈₅Fe₁₅ NPs (Fig. 2). Atomic-scale HAADF-STEM images show that the vacuum annealing results in the
291 PtFe L1₀ ordering for Pt₆₅Fe₃₅ NPs (Figs. 5(d-i)) and the Pt₃Fe L1₂ ordering for Pt₈₅Fe₁₅ NPs (Fig. S7)
292 without obvious elemental surface segregation. The HAADF images of sintered Pt₆₅Fe₃₅ NPs also show the
293 formation of various microstructure features, including perfect lattice matching (Figs. 5(d, g)), and small-
294 angle grain boundary (Figs. 5(e, h)) and high-angle grain boundary (Figs. 5(f, i)) in the neck region, akin
295 to observations from the sintering of Pt₈₅Fe₁₅ NPs (Figs. 3 and 4). The small-angle grain boundary consists
296 of discrete dislocations, marked by the red 'T' in Fig. 5h, whereas the high-angle grain boundary is formed
297 between grains with a misorientation of 34° as shown in Fig. 5i. It is worth noting that Pt₃Fe L1₂ and PtFe
298 L1₀ ordered phases have Curie temperatures of approximately 70 °C and 400 °C, respectively.^{39,40} Beyond
299 these Curie temperatures, the NPs lose their magnetic properties. Given that our in-situ TEM imaging was
300 conducted at temperatures exceeding 400 °C, it is evident that the sintering observed is not attributable to
301 the magnetic attraction-induced motion of the NPs. Instead, the observed neck formation induced by surface
302 self-diffusion is dependent on the initial inter-nanoparticle gap. This gap is significantly influenced by the
303 dispersion of the NPs during the drop-cast process.



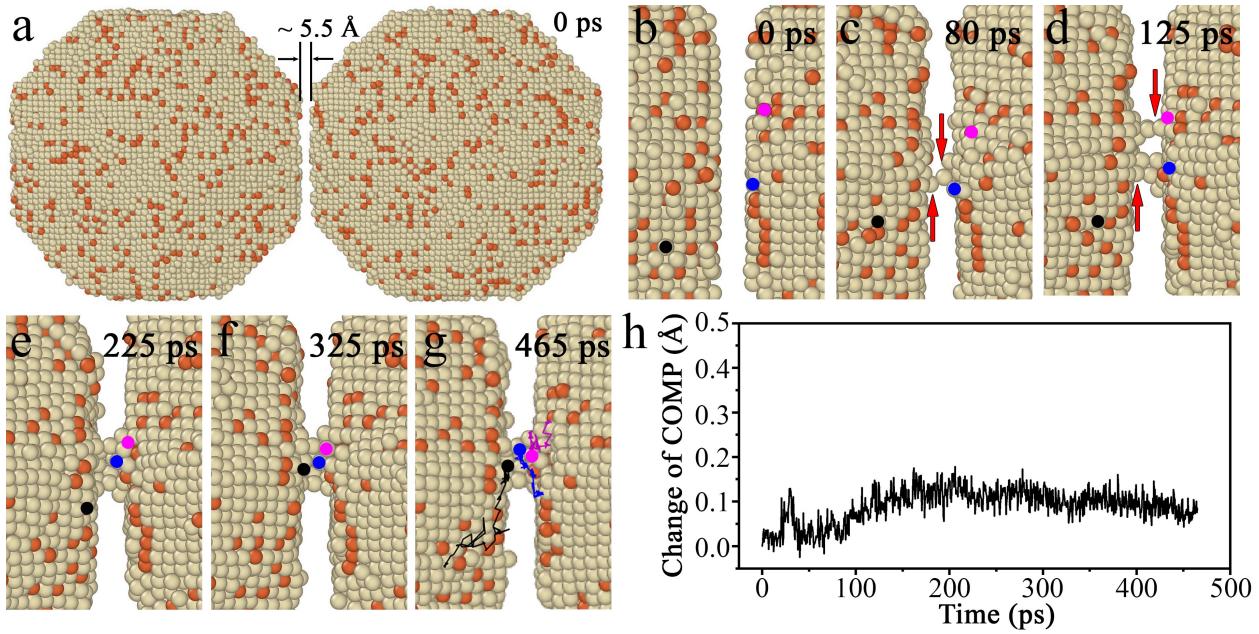
304 **Fig. 5. HAADF-STEM imaging of the sintering of Pt₆₅Fe₃₅ NPs under vacuum annealing at 600 °C. a-c** Time-
 305 **sequenced HAADF images showing the contacting neck formation among the NPs in the close neighborhood. d-h**
 306 **HAADF images showing the perfect merging of the lattice planes, low-angle, and high-angle grain boundaries in the**
 307 **neck region. Red “T” marks discrete dislocations within the low-angle grain boundary. g-i** Zoomed-in HAADF images
 308 **of the neck regions marked by the red dashed boxes in (d-f), respectively.**
 309
 310

311 When conducting in-situ TEM observations (Figs. 2-5), it is essential to carefully assess potential
312 effects from the electron beam irradiation, including radiolysis, atomic displacement and local heating, on
313 the sintering dynamics of NPs. Following established procedures,^{8,10,20} we performed thorough evaluation
314 of electron beam effects through "blank-beam" and controlled electron dose experiments. As depicted in
315 Figs. 6(a-c), real-time HRTEM images demonstrate the high stability and negligible morphology changes
316 of Pt₈₅Fe₁₅ NPs under continuous electron beam irradiation at a dose rate of 11200 e/(Å²·s) at room
317 temperature. This dose rate exceeds that used in the in-situ HRTEM observations shown in Figs. 3 and 4.
318 These findings confirm the occurrence of thermally activated surface self-diffusion, leading to the observed
319 rounding tendency of NPs at elevated temperatures. Furthermore, we evaluated the potential effects of
320 electron beam irradiation by comparing the sintering dynamics of Pt-Fe NPs exposed to the beam with
321 those that were not. The electron beam was unblanked for only a few seconds to capture time-sequenced
322 HRTEM and temperature-sequenced HAADF snapshots at the beginning and end of the sintering
323 experiments, minimizing e-beam exposure during imaging. Figs. 6(d-f) show the HAADF images of the
324 NPs at room temperature and after vacuum annealing to 500°C, illustrating the formation of necks between
325 the NPs during electron beam blanking.

326 Similarly, Figs. 6(g-i) and 6(j-l) present HRTEM image snapshots from two distinct vacuum
327 annealing experiments of NPs under the blanked electron beam. They illustrate neck formation within the
328 interparticle gap region – one due to the encounter of growing perpendicular lattice planes, and the other
329 due to slightly misaligned merging of the lattice planes, respectively. The zoomed-in views of the inter-
330 particle gap in Figs. 6(g-l) reveal that neck formation occurs through the nucleation and growth of new
331 atomic layers on the two opposing surfaces of the NPs. Concurrently, other surface regions of the NPs
332 experience gradual mass loss, as indicated by the purple markings in Figs. 6(h, i, k, l). This correlation
333 suggests that mass is transferred from these recessed surface areas to the inter-particle gap via the surface
334 self-diffusion, thereby facilitating neck formation. The observed necking formation under the blanked
335 electron beam (alongside additional examples in Figs. 5(a-c), S4 and S5) aligns consistently with in-situ

336 observations depicted in Figs. 3 and 4. Furthermore, the low-magnification in-situ observations shown in
337 Figs. 2(a-c), which involved significantly lower electron beam doses, illustrate morphology evolution and
338 subsequent NP sintering, corroborating well with the HRTEM observations. These findings further confirm
339 the minimal impacts of electron beam irradiation on the sintering dynamics in our study.

341 **Fig. 6. Evaluation of electron beam irradiation effects on sintering dynamics of Pt-Fe NPs. a-c** Time-sequence
342 HRTEM images demonstrating negligible effects of electron beam irradiation on Pt₈₅Fe₁₅ NPs at room temperature.
343 The red dashed line in **c** represents the superimposed traces of the position and profile of the surface at 0 s. **d, e**
344 HAADF images displaying the as-dispersed Pt₈₅Fe₁₅ NPs and after vacuum annealing to 500 °C with the electron
345 beam blanked. **f** Zoomed-in HAADF image of the region marked by the white dashed box in (**e**), showing the neck
346 formation in the inter-particle gap regions. **g-i** Time-sequence HRTEM images depicting neck formation through the
347 encounter of growing perpendicular lattice planes in the inter-particle gap region during vacuum annealing at 500 °C
348 with the electron beam blanked. **j-l** Time-sequence HRTEM images illustrating neck formation via merging of
349 growing slightly misaligned lattice planes of neighboring NPs during vacuum annealing at 500 °C with the electron
350 beam blanked. The electron beam was unblanked for ~ 1 s to capture image shots in (**g-l**). Red arrows in (**e-l**) highlight
351 the neck formation. The insets in (**g-l**) are zoomed-in views of the inter-particle gap regions. The red dashed lines in
352 (**g-l**) track the position and profile of the NP surface at 0 s. The regions marked by purple indicate mass loss associated
353 with neck formation in the inter-particle gap.

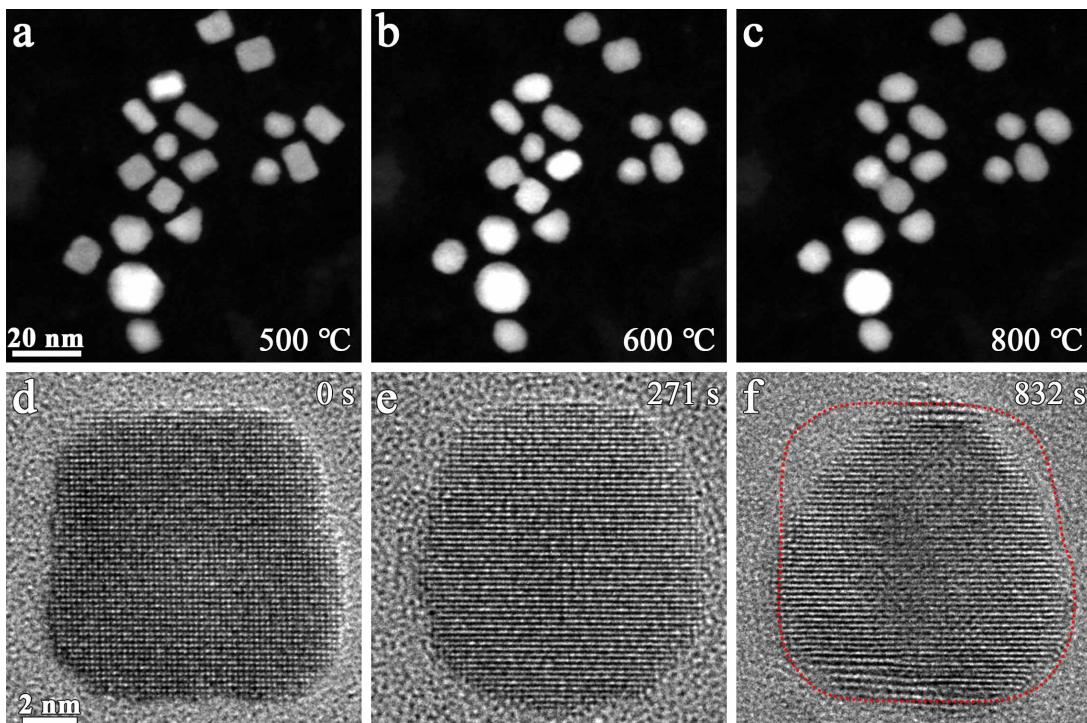

354

355 Atomistic simulations are then performed to further elucidate the microscopic processes underlying
356 the experimentally observed neck formation. We first examine the stability and mobility of surface atoms
357 using first-principles calculations based on density functional theory (DFT). The calculated energies for the
358 complete detachment of an atom from the flat surfaces (to form free atoms) are ~ 5.95 eV for (100) and ~
359 4.6 eV for (111). These values are significantly larger than the barriers for surface self-diffusion, which are
360 ~ 1.08 eV for (100) and ~ 0.60 eV for (111) (more details in Fig. S8). The substantial difference in the
361 activation energies suggests that the surface self-diffusion-induced neck formation is kinetically more
362 favorable and can be activated at a relatively lower temperature than the OR process that requires complete
363 detachment (evaporation) of atoms from the NPs.

364 Molecular dynamics (MD) simulations are then performed to elucidate the kinetic process of the
365 neck formation. Due to the large time-scale gap between experiments and MD simulations, a higher
366 annealing temperature of 1473 K is used to accelerate the MD simulations for better comparisons with the
367 experiments. Fig. 7(a) illustrates the structure model for the MD simulations, where the two NPs are

368 separated by an inter-particle gap of $\sim 5.5 \text{ \AA}$ (larger than the interaction cutoff distance of $\sim 4 \text{ \AA}$) between
369 the two facing facets. Figs. 7(b-g) capture the temporal evolution of the inter-particle gap region in Fig.
370 7(a). Consistent with the DFT prediction, the vacuum annealing does not induce evaporation of atoms from
371 the NPs, instead, it drives surface self-diffusion of adatoms as a result of the tendency toward the rounding
372 of the crystal facets of the NPs. As marked in black, blue, and purple, respectively, in Figs. 6(b-g), the path
373 trajectories for three representative adatoms are also traced to observe the surface self-diffusion of the
374 surface adatoms that results in their trapping at the inter-particle gap. The MD simulation snapshots visually
375 depict the sequence of events culminating in the reduction of the inter-particle gap. This reduction is driven
376 by the self-diffusion of adatoms to the inter-particle gap region, where they form single atomic steps (as
377 marked by the red arrows in Fig. 7(c, d)), subsequently trapping additional self-diffusing adatoms and
378 ultimately triggering neck formation. It is noteworthy that while surface morphology fluctuations also occur
379 at other surface facets, these fluctuations can quickly dissipate in the absence of neighboring NPs in close
380 proximity.

381 The MD simulations match well with the experimentally observed neck initiation and growth (Figs.
382 3, 4). To further confirm the atomic clustering-induced sintering, the time evolution of the center of mass
383 (COM) of the two NP system is followed using the MD simulation outcomes. As shown in Fig. 7(h), the
384 COM remains almost un-displaced throughout the merging process, confirming the absence of any mass
385 loss or mass transfer from one NP to the other one. This happens because no external forces act on the two
386 NPs, and the neck formation and growth are simply induced by the trapping of surface self-diffusing
387 adatoms in the inter-particle gap region. To further evaluate the temperature and inter-particle distance
388 effects, our MD simulations of annealing at the lower temperatures of 1073 K and 1273 K and a larger
389 inter-particle gap of 1 nm do not yield noticeable neck formation (Figs. S9 and S10). This is consistent with
390 the in-situ TEM and STEM results (Fig. 2) of the sufficiently high temperature and small inter-particle
391 distance required for the neck formation.


392

393 **Fig. 7. MD simulations of the neck dynamics during vacuum annealing at 1473 K.** **a** Structure model of two
 394 Pt₈₅Fe₁₅ NPs separated by 5.5 Å of the inter-particle gap. **b-g** Snapshots of the inter-particle gap region, showing the
 395 nucleation and growth of new atomic layers on the two facing facets by surface self-diffusing adatoms in the inter-
 396 particle gap region. The black, blue, and red lines correspond to the surface diffusion trajectories of the three adatoms
 397 marked in black, blue, and purple, respectively. **h** COM of the two NP system measured as a function of the simulation
 398 time.

399

400 The in-situ TEM and STEM observations indicate the negligible effect of the SiN_x and carbon
 401 support on the sintering behavior of the Fe-Pt NPs as a result of the surface self-diffusion process. However,
 402 it is worth mentioning that both the carbon and SiN_x are considered inert supports that do not interact
 403 strongly with the supported metal. By contrast, reducible oxide supports (such as ZnO, TiO₂) are known to
 404 interact strongly with supported metal to result in the encapsulation of the metal by a reduced thin oxide
 405 layer migrating from the oxide support,^{41,42} for which the surface self-diffusion of the NPs can be effectively
 406 suppressed. Therefore, the nanoparticle-support systems with the strong metal-support interaction (SMSI)
 407 effect are not expected to exhibit the sintering behavior as a result of the surface self-diffusion for the
 408 pristine NPs as shown above.

409 The driving force for the sintering of NPs is to reduce the overall surface energy of an ensemble of
410 NPs. However, this global energy consideration does not adequately account for the changes in the free
411 energy landscape of individual NPs and how these changes influence the specific sintering pathways such
412 as the classic OR and PMC processes. In contrast, our in-situ TEM observations and atomistic simulations
413 reveal that the tendency to assume a round shape to decrease the surface area of a single NP induces
414 significant surface self-diffusion. This rounding propensity is further illustrated by the low-magnification
415 in-situ STEM imaging conducted at a low electron beam dose rate ($34 \text{ e}/(\text{\AA}^2 \text{ s})$) (Fig. 8(a-c)), where the NPs
416 are exposed to the electron beam only during image capture (i.e., the beam is blanked for most of the
417 annealing process). The NPs, whether far apart or closely neighbored, exhibit notable morphological
418 changes. Similarly, the in-situ HRTEM image snapshots, acquired with the electron beam unblanked for \sim
419 1s at a dose rate of $5420 \text{ e}/(\text{\AA}^2 \text{ s})$, further demonstrate the morphological evolution while minimizing
420 electron beam exposure (Figs. 8(d-f)). This is evidenced by the observed growth along certain surface
421 regions, accompanied by mass transfer from receding surface regions (Figs. 8(d-f)). Such morphological
422 evolution involves surface self-diffusion, which in turn, facilitates the initiation of neck formation at inter-
423 particle gaps for closely neighboring NPs.

424

425 **Fig. 8. In-situ STEM and HRTEM imaging of the morphological evolution of annealed Pt-Fe NPs. a-c,** Time-
 426 sequence of low-magnification STEM-HAADF images showing the rounding tendency of $\text{Pt}_{85}\text{Fe}_{15}$ NPs. **d-f,** HRTEM
 427 images depicting growth along certain surface regions with mass transfer from the receding surface regions of an
 428 $\text{Pt}_{65}\text{Fe}_{35}$ NP annealed at 600 °C. The red dashed line in **f** represents the superimposed trace of the position and profile
 429 of the NP surface at 0 s. The electron beam was only unblanked to capture image shots.

430

431 **Discussion**

432 The necking phenomenon described above is based on shape-controlled Pt-Fe nano-cubes by taking
 433 advantage of their faceted surfaces and relatively uniform size distribution. These nano-cubes exhibit
 434 promising catalytic properties for oxygen reduction reaction (ORR) in electrocatalysis.¹ Ordered Pt-M NPs
 435 (where M = Fe, Ti, Cu, Co, etc.) have garnered significant interest due to their high stability and reactivity
 436 in ORR.^{1,34,35} Thermal annealing is a crucial step for achieving the ordered intermetallic phase and for
 437 controlling the shape and surface structure, both of which are vital for enhancing electrocatalytic
 438 performance. Therefore, a comprehensive understanding of the evolution of size, structure, and morphology
 439 during thermal annealing is essential for optimizing catalytic efficiency. The insights gained from in-situ

440 TEM imaging of the necking phenomenon offer practical implications for manipulating the morphology,
441 size distribution, and stability of NPs by leveraging surface self-diffusion processes.

442 It is crucial to clarify any potential effects of electron beam irradiation on the outcomes of our in-
443 situ TEM experiments. The e-beam dosing rate employed in our in-situ STEM/TEM imaging is
444 significantly higher than that used by Bredmose et al.,¹⁷ but comparable to that of Song et al.¹⁹ Our thorough
445 evaluation, which includes "blank-beam" and varying electron dose rates (Figs. 6, S4, S5 and S7), confirms
446 that the higher electron beam dose rates used in our experiments do not produce noticeable effects on the
447 sintering behavior of the Fe-Pt nanoparticles. Several factors contribute to the enhanced stability of the
448 nanoparticles against e-beam irradiation during our in-situ TEM experiments: 1) large particle sizes – the
449 particle sizes used in our experiments exceed ~ 11 nm, which is considerably larger than those (~ 3 nm or
450 smaller) typically used in other in-situ TEM studies; 2) alloying – Fe-Pt alloys exhibit a strong ordering
451 tendency (as illustrated in Fig. 5), leading to superior atomic bonding compared to pure metals utilized in
452 other research. This strong atomic arrangement enhances the stability and resistance of the NPs against
453 electron beam bombardment and sputtering. Consequently, Fe-Pt NPs are more resistant to changes induced
454 by high-energy electron exposure, which is crucial for in-situ TEM imaging.

455 In comparing data acquisition in TEM and STEM modes, the focused e-beam in STEM allows for
456 lower exposure at each point, as the beam is rapidly scanned across the specimen. Additionally, our in-situ
457 STEM observations prioritize low-magnification imaging (Figs. 2, 5, 8(a-c)), which further decreases the
458 electron dose rate. In contrast, the broader electron beam used in in-situ HRTEM imaging can lead to higher
459 overall electron doses over larger areas of the specimen. However, a comparison of our in-situ HRTEM
460 imaging results (Figs. 2, 3, 8(d-f)) with "blank-beam" HRTEM imaging (Figs. 6(g-l)) demonstrates similar
461 neck formation behavior. This consistency confirms that the electron dose rate during the in-situ HRTEM
462 imaging remains within a safe range, preventing any artifacts that could affect the sintering behavior of the
463 NPs.

464 The observed initiation of neck formation resulting from surface self-diffusion is therefore an
465 intrinsic behavior for closely neighboring NPs. This can happen particularly in high loading catalyst

466 scenarios where NPs are in close proximity. The surface self-diffusion mechanism is also relevant to the
467 PMC process, which relies on Brownian-like motion of NPs to bring NPs into proximity. However, the
468 microscopic mechanism for neck initiation is not fully explained by the conventional understanding of the
469 PMC process. As shown above, the arrest of surface self-diffusing atoms at the inter-particle gaps works as
470 the atomic origin of the neck initiation between closely neighboring NPs. Our in-situ TEM observations
471 (Fig. 2) further demonstrate that the neck initiation through surface self-diffusion is activated at a lower
472 temperature than the OR and PMC processes. The lower activation energy for surface self-diffusion
473 compared to atomic evaporation and particle migration contributes to this temperature dependency. The
474 study suggests that inhibiting surface self-diffusion, either by increasing activation energies or through the
475 SMSI effect, can effectively hinder the neck formation and thus prevent the NPs from sintering at elevated
476 temperatures.

477 Surface self-diffusion in the sintering of NPs has been previously described by Schested et al. as a
478 mechanism responsible for both particle migration and coalescence.²⁷ However, a key distinction in our
479 observations is the absence of net particle migration. Our in-situ TEM imaging (Figs. 2, 4, 5, 6, 8) indicates
480 that the drive to minimize the surface energy of individual particles results in significant surface self-
481 diffusion of atoms, leading to a more rounded shape without inducing noticeable migration of the NPs. This
482 lack of particle migration is further corroborated by our MD simulations, which show no change in the
483 center of mass of the particles (Fig. 7). This absence of migration can be attributed to the limited inter-
484 particle interactions among NPs of similar sizes. The kinetic entrapment of surface self-diffusing atoms in
485 the gaps between closely spaced NPs facilitates neck formation, allowing for coalescence without need for
486 significant particle movement.

487 The sintering mechanism observed in our case, driven by surface morphology evolution induced
488 by self-diffusing adatoms, also contrasts with the process of oriented attachment,⁴³⁻⁴⁵ which involves the
489 migration and alignment of crystallographic planes. The absence of the need for migration and rotation of
490 NPs for crystallographic alignment in our scenario is highlighted by the formation of low-angle and high-
491 angle grain boundaries in the merged NPs shown in Figs. 4 and 5. Nevertheless, the neck growth toward

492 the highly defective region of the merging nanoparticle leading to a single-crystal nature, as depicted in Fig.
493 3, shares the common driving force with oriented attachment in terms of minimizing interface energy.

494 Our in-situ TEM imaging and MD simulations reveal that the necking mechanism via surface self-
495 diffusion requires close proximity between NPs. Several processes can promote this proximity: 1) high
496 catalyst loading – increased catalyst loading increases the surface density of NPs on the support, enhancing
497 the likelihood of NPs being in close proximity. This high density fosters effective interactions that promote
498 neck formation and subsequent sintering. 2) Thermally driven Brownian migration – the random movement
499 of NPs due to thermal energy can draw NPs closer together, facilitating neck formation through surface
500 self-diffusion even before the NPs make physical contact.

501 Minimizing the surface free energy is the driving force for influencing the sintering behaviors of
502 nano catalysts. As well-documented in previous studies,^{10,11,13,20,46,47} the sintering by atomic evaporation
503 into the vacuum or diffusion across the substrate surface usually depends on the particle size. Specifically,
504 smaller particle sizes result in higher Laplace pressure for atomic evaporation or detachment. However, in
505 our study, the NPs have a relatively large size (> 10 nm), where the surface self-diffusion becomes more
506 readily activated compared to atomic evaporation, playing a key role in controlling the sintering behavior
507 of the NPs. The fundamental insights shown above could have broader applicability for the stability design
508 of nano-catalysts. The co-selection of a suitable size (~ 10 nm) and loading (inter-particle distance > 1 nm)
509 can be the strategy to achieve a balance between activity and stability in nano-catalysts. This approach aims
510 to prevent excessive sintering by promoting stable inter-particle distances and optimizing the overall
511 performance of the catalyst.

512 **Conclusions**

513 In conclusion, the study reveals a sintering phenomenon by which NPs merge through the trapping
514 of surface self-diffusing adatoms in the inter-particle gap region. This process is driven by the thermally
515 driven rounding of the crystal facets of the NPs, promoting the flux of self-diffusion of adatoms on the NP
516 surfaces. The entrapment of self-diffusing adatoms in the narrow inter-particle gap results in a higher
517 concentration of adatoms, facilitating collision interactions for the nucleation and growth of new atomic
518 layers, leading to neck formation between NPs. Importantly, this surface self-diffusion-driven sintering
519 process is activated at a relatively lower temperature compared to other sintering mechanisms such as OR
520 and PMC. The fundamental insights shown here are of wide relevance and considerable practical
521 importance for manipulating the morphology, size distribution, and stability of nanostructures using surface
522 self-diffusion processes.

523 **Experimental and modeling methods**

524 **Synthesis of Pt-Fe solid-solution alloy nanoparticles.** Pt-Fe cubic NPs were prepared using a modified
525 method reported previously.⁴⁸ Typically, for the synthesis of the Pt₈₅Fe₁₅ NPs, 0.05 mmol Pt(acac)₂ (\geq 99.9%, Alfa
526 Aesar) and 0.05 mmol FeCl₂·4H₂O (98%, Alfa, Aesar) were dissolved in 5.0 mL of octadecene (ODE, 90%, Sigma-
527 Aldrich), 4.0 mL of oleylamine (OAm, 70%, Sigma-Aldrich) and 1.0 mL of oleic acid (OA, 90%, Sigma-Aldrich) in
528 a 100 mL three-neck flask. The mixture was degassed under vacuum at 100 °C for 1 hour to eliminate moisture and
529 oxygen. Under Ar protection, the transparent yellowish solution was gradually heated to 130 °C for 3 min, followed
530 by rapid addition of 0.050 g of W(CO)₆ (97%, Sigma-Aldrich). The system was then sealed tightly, and the temperature
531 was raised to 230 °C within 15 min and held constant for 30 min. Subsequently, the flask was gradually cooled to
532 room temperature using air blowing, and the resulting products were purified through multiple cycles with 30.0 mL
533 mixture of hexane and ethanol in a 1:1 ratio. The Pt-Fe NPs were collected through centrifugation and ultimately
534 redispersed in hexane to achieve a uniform suspension.

535 To mitigate the potential impact of surface contamination on sintering behavior, several precautionary steps
536 were implemented in our experiments. A solution of 0.1 M NaOH (98%, Alfa Aesar) in anhydrous ethanol was utilized
537 to thoroughly wash the PtFe NPs multiple times, effectively eliminating most residual organic ligands covering the
538 surface. Subsequently, the NPs underwent plasma treatment before being loaded into the TEM for vacuum annealing.
539 This annealing process served to decompose and eliminate any remaining organic residues. As indicated by HRTEM
540 images (Figs. 3, 4) and atomic-scale HAADF images (Figs. 5 and S7), the annealed NPs exhibit pristine surfaces
541 without any noticeable capping layer.

542 **Materials Characterization.** To investigate potential support-induced effects on the sintering behavior of
543 Pt-Fe NPs, the as-prepared Pt-Fe NPs, subjected to 5 min of ultrasonication, were drop-cast onto SiN_x and carbon
544 films, respectively. In-situ TEM experiments were conducted using a DENSsolution heating holder and a Gatan
545 heating holder in an environmental TEM (FEI Titan 80-300) equipped with an objective-lens aberration corrector. The
546 Gatan Orius SC1000 (model 832) CCD camera was used to capture in-situ HRTEM videos at a frame rate of 14 fps.
547 The annealing processes were carried out with a heating rate set at 100 °C /min, and each temperature stage included
548 a 1-minute hold to minimize thermal drift before TEM observation. To mitigate potential electron beam-induced
549 artifacts, the sample underwent exposure to the e-beam solely during the acquisition of low-magnification TEM and
550 STEM images. Additionally, the sintering experiment was replicated with a complete blanking of the electron beam

551 during vacuum annealing, and HAADF images of sintered NPs were subsequently captured at room temperature. The
552 high melting temperature (~ 1500 °C) of the Fe-Pt alloy and the relatively large particle size (> 10 nm) of the Fe-Pt
553 NPs in our work contribute to minimizing any potential electron-beam induced damage. In-situ HRTEM movies were
554 captured to monitor structural and morphological evolution of the NPs during the annealing processes. Additionally,
555 in-situ HAADF-STEM imaging of NPs sintering at low magnification was performed with FEI Talos. Ex-situ
556 HAADF-STEM imaging was performed using a probe-corrected STEM (Hitachi 2700).

557 **Atomistic simulation.** MD simulations of the sintering of Pt₈₅Fe₁₅ NPs were performed using the LAMMPS
558 package.⁴⁹ The modified embedded atom method (MEAM) potential developed by Kim et al. was employed to
559 describe the interatomic interactions.⁵⁰ The initial atomic configurations of the NPs were generated through the Wulff
560 construction method using the Wulff Pack code.⁵¹ To simulate the surface self-diffusion of adatoms at high
561 temperature, a monolayer of atoms was initially introduced on the opposing (100) facets of two adjacent NPs.
562 Subsequently, 80% of the surface atoms were randomly removed to generate a configuration with adatoms randomly
563 distributed on the facets. The constructed NP consisted of a total of 30802 atoms, with 4620 Fe atoms distributed
564 randomly, achieving an overall composition close to the experimental ratio (Pt₈₅Fe₁₅). Prior to the sintering simulation,
565 individual NPs underwent isothermal equilibration at 1473 K for 465 ps in the canonical ensemble (NVT). After the
566 removal of the angular momentum, two NPs with the equilibrated structures were positioned within a single box,
567 aligning the (100) facet of one NP in parallel to the facing (100) facet of the other NP, with a separation distance of
568 5.5 Å. Visualization of simulation snapshots at various time points was carried out using the OVITO software.⁵¹ To
569 assess the temperature effect on neck initiation, MD simulations were also conducted at lower temperatures of 1073
570 K and 1273 K for 465 ps, providing comparative insights.

571 The energy for atomic detachment and the barrier for self-diffusion of a Pt adatom on the (001) and (111)
572 surfaces of a Pt₈₅Fe₁₅ alloy were predicted through first-principles calculations using DFT. The calculations were
573 performed using the Vienna Ab initio Simulation Package (VASP).⁵² The projector-augmented wave (PAW) method
574 was used with an energy cutoff of plane wave at 500 eV.⁵³ The exchange-correlation interactions were described by
575 the generalized gradient approximation (GGA) using the Perdew, Burke, and Ernzerhof (PBE) functional.⁵⁴ Brillouin
576 zone integration was performed using the first-order Methfessel-Paxton method with a smearing width of 0.2 eV. The
577 convergence criterion of the electronic self-consistent loop was set as 10⁻⁶ eV. Co-linear spin alignment was enabled
578 in the calculations to account for the possible ferromagnetic feature of a Pt₈₅Fe₁₅ alloy. The calculation supercell for

579 the bulk alloy adopted a special quasi-random structure (SQS) generated by the ATAT code^{55,56} to mimic the random
580 mixing of Fe and Pt atoms in an fcc lattice. Following full relaxation, a vacuum layer of 15 Å was introduced along
581 the c-axis of the bulk alloy supercell to create free surfaces of the (001) and (111) planes. The structure with free
582 surfaces underwent additional relaxation in terms of atomic positions before adatom calculations. The diffusion
583 barriers of the adatoms on the (001) and (111) surfaces were computed using the climbing image nudge elastic band
584 (CI-NEB) method as implemented in the VASP Transition State Tools (VTSV) code.⁵⁷

585

586 **ASSOCIATED CONTENT**

587 Supporting Information.

588 Supporting information is available free of charge on the ACS publication website:

589 Supplementary Figure 1: morphology of as-prepared Pt₈₅Fe₁₅ NPs.

590 Supplementary Figure 2: atomic-scale TEM/STEM images showing the presence of atomic defects along
591 the surface facets of as-synthesized Pt₈₅Fe₁₅ NPs.

592 Supplementary Figure 3: energy-dispersive X-ray spectrum (EDS) of Pt₃Fe NPs.

593 Supplementary Figure 4: HAADF images of NPs at various annealing temperatures.

594 Supplementary Figure 5: HAADF-STEM and SE images of formed necks.

595 Supplementary Figure 6: real-time observations of atomic evaporation-induced particle sintering.

596 Supplementary Figure 7: HAADF images of formed “bridge-like” necks.

597 Supplementary Figure 8: DFT calculations of energy barriers for surface detachment and surface diffusion.

598 Supplementary Figures 9, 10: MD simulations depicting the temperature and inter-particle distance
599 dependence of neck formation.

600 Supplementary Movie 1 (from which Fig. 3 is extracted): *In situ* HRTEM visualization of NP sintering at T ≈ 500 °C.

601 Supplementary Movie 2 (from which Fig. 4a-e is extracted): *In situ* HRTEM imaging of the formation of a low-angle
602 grain boundary in the necked region during NP sintering at T ≈ 500 °C.

603 Supplementary Movie 3 (from which Fig. 4g-k is extracted): *In situ* HRTEM imaging of the formation of a high-angle
604 grain boundary in the necked region during NP sintering at T ≈ 500 °C.

605 **AUTHOR INFORMATION**

606 **Corresponding Author**

607 * gzhou@binghamton.edu.

608 Notes

609 The authors declare no competing interests.

610

611 **Acknowledgement**

612 This work was supported by the National Science Foundation (NSF) under the NSF Collaborative Research
613 Award grant DMR 1905422 and 1905572. C.L. and J.F. acknowledge support by the NSF (DMR 1808383
614 and DMR-2347030) and S3IP/ADL at Binghamton University. Y.Y. and Y.J.H. acknowledge the startup
615 fund support from Drexel University. The computational simulations were carried out using the Drexel's
616 University Research Computing Facility and the Extreme Science and Engineering Discovery Environment
617 (XSEDE) Stampede2 at the TACC through allocation MAT220033 from the Advanced Cyberinfrastructure
618 Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science
619 Foundation Grants #2138259, #2138286, #2138307, #2137603, and #2138296. This research used Electron
620 Microscopy Facilities of the Center for Functional Nanomaterials, which is a US DOE Office of Science
621 User Facility at Brookhaven National Laboratory under contract DE-SC0012704.

622 **References**

623 (1) Zhou, M.; Li, C.; Fang, J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals:
624 Syntheses and Applications. *Chem. Rev.* **2021**, *121* (2), 736–795.

625 (2) Cao, S.; Tao, F. F.; Tang, Y.; Li, Y.; Yu, J. Size- and Shape-Dependent Catalytic Performances of
626 Oxidation and Reduction Reactions on Nanocatalysts. *Chem. Soc. Rev.* **2016**, *45* (17), 4747–4765.

627 (3) Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Shape-Control and Electrocatalytic Activity-Enhancement
628 of Pt-Based Bimetallic Nanocrystals. *Acc. Chem. Res.* **2013**, *46* (8), 1867–1877.

629 (4) Datye, A. K.; Xu, Q.; Kharas, K. C.; McCarty, J. M. Particle Size Distributions in Heterogeneous
630 Catalysts: What Do They Tell Us about the Sintering Mechanism? *Catal. Today* **2006**, *111* (1–2),
631 59–67.

632 (5) Campbell, C. T.; Parker, S. C.; Starr, D. E. The Effect of Size-Dependent Nanoparticle Energetics
633 on Catalyst Sintering. *Science* **2002**, *298* (5594), 811–814.

634 (6) Campbell, C. T. The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates
635 and Catalytic Activity. *Acc. Chem. Res.* **2013**, *46* (8), 1712–1719.

636 (7) Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of Catalytic Nanoparticles:
637 Particle Migration or Ostwald Ripening? *Acc. Chem. Res.* **2013**, *46* (8), 1720–1730.

638 (8) Li, J.; Deepak, F. L. In Situ Kinetic Observations on Crystal Nucleation and Growth. *Chem. Rev.*
639 **2022**, *122* (23), 16911–16982.

640 (9) Hwang, S.; Chen, X.; Zhou, G.; Su, D. In Situ Transmission Electron Microscopy on Energy-Related
641 Catalysis. *Adv. Energy Mater.* **2020**, *10* (11), 1902105.

642 (10) Van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.;
643 Vanmaekelbergh, D. Low-Temperature Nanocrystal Unification through Rotations and Relaxations
644 Probed by in Situ Transmission Electron Microscopy. *Nano Lett.* **2008**, *8* (11), 3959–3963.

645 (11) Tian, Y.; Jiao, W.; Liu, P.; Song, S.; Lu, Z.; Hirata, A.; Chen, M. Fast Coalescence of Metallic Glass
646 Nanoparticles. *Nat. Commun.* **2019**, *10*, 5249.

647 (12) Li, J.; Chen, J.; Wang, H.; Chen, N.; Wang, Z.; Guo, L.; Deepak, F. L. In Situ Atomic-Scale Study

648 of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase
649 Transformation. *Adv. Sci.* **2018**, *5* (6), 1700992.

650 (13) Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt,
651 M.; Yu, D.; Zachariah, M. R.; Wang, C.; Shahbazian-Yassar, R.; Li, J.; Hu, L. Carbothermal Shock
652 Synthesis of High-Entropy-Alloy Nanoparticles. *Science*. **2018**, *359* (6383), 1489–1494.

653 (14) DeLaRiva, A. T.; Hansen, T. W.; Challa, S. R.; Datye, A. K. In Situ Transmission Electron
654 Microscopy of Catalyst Sintering. *J. Catal.* **2013**, *308*, 291–305.

655 (15) Zhao, H.; Zhu, Y.; Ye, H.; He, Y.; Li, H.; Sun, Y.; Yang, F.; Wang, R. Atomic-Scale Structure
656 Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron
657 Microscopy. *Adv. Mater.* **2023**, *35* (50), 2206911.

658 (16) Boyes, E. D.; LaGrow, A. P.; Ward, M. R.; Martin, T. E.; Gai, P. L. Visualizing Single Atom
659 Dynamics in Heterogeneous Catalysis Using Analytical In Situ Environmental Scanning
660 Transmission Electron Microscopy. *Philos. Trans. R. Soc. A* **2020**, *378* (2186), 20190605.

661 (17) Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct
662 Observations of Oxygen-Induced Platinum Nanoparticle Ripening Studied by In Situ TEM. *J. Am.*
663 *Chem. Soc.* **2010**, *132* (23), 7968–7975.

664 (18) Yue, S.; Yuan, W.; Deng, Z.; Xi, W.; Shen, Y. In Situ TEM Observation of the Atomic Transport
665 Process during the Coalescence of Au Nanoparticles. *Nano Lett.* **2022**, *22* (20), 8115–8121.

666 (19) Song, M.; Zhou, G.; Lu, N.; Lee, J.; Nakouzi, E.; Wang, H.; Li, D. Oriented Attachment Induces
667 Fivefold Twins by Forming and Decomposing High-Energy Grain Boundaries. *Science*. **2020**, *367*
668 (6473), 40–45.

669 (20) Hussein, H. E. M.; Maurer, R. J.; Amari, H.; Peters, J. J. P.; Meng, L.; Beanland, R.; Newton, M.
670 E.; Macpherson, J. V. Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of
671 a Single Atom to a Crystalline Nanoparticle. *ACS Nano* **2018**, *12* (7), 7388–7396.

672 (21) Yuan, W.; Zhang, D.; Ou, Y.; Fang, K.; Zhu, B.; Yang, H.; Hansen, T. W.; Wagner, J. B.; Zhang,
673 Z.; Gao, Y.; Wang, Y. Direct In Situ TEM Visualization and Insight into the Facet-Dependent

674 Sintering Behaviors of Gold on TiO₂. *Angew. Chemie* **2018**, *130* (51), 17069–17073.

675 (22) Li, G.; Fang, K.; Chen, Y.; Ou, Y.; Mao, S.; Yuan, W.; Wang, Y.; Yang, H.; Zhang, Z. Unveiling
676 the Gas-Dependent Sintering Behavior of Au-TiO₂ Catalysts via Environmental Transmission
677 Electron Microscopy. *J. Catal.* **2020**, *388*, 84–90.

678 (23) Cabello Galisteo, F.; Mariscal, R.; López Granados, M.; Fierro, J. L. G.; Daley, R. A.; Anderson, J.
679 A. Reactivation of Sintered Pt/Al₂O₃ Oxidation Catalysts. *Appl. Catal. B Environ.* **2005**, *59* (3–4),
680 227–233.

681 (24) Tomita, A.; Miki, T.; Tai, Y. Effect of Water Treatment and Fe Doping on Pt Sintering and the
682 Propane Oxidation Activity of Pt/Al₂O₃. *Appl. Catal. A Gen.* **2016**, *522*, 138–144.

683 (25) Yin, P.; Hu, S.; Qian, K.; Wei, Z.; Zhang, L. Le; Lin, Y.; Huang, W.; Xiong, H.; Li, W. X.; Liang,
684 H. W. Quantification of Critical Particle Distance for Mitigating Catalyst Sintering. *Nat. Commun.*
685 **2021**, *12*, 4865.

686 (26) Qing, S.; Hou, X.; Li, L.; Feng, G.; Wang, X.; Gao, Z.; Fan, W. Deactivation Feature of Cu/SiO₂
687 Catalyst in Methanol Decomposition. *Int. J. Hydrogen Energy* **2019**, *44* (31), 16667–16674.

688 (27) Sehested, J.; Gelten, J. A. P.; Remediakis, I. N.; Bengaard, H.; Nørskov, J. K. Sintering of Nickel
689 Steam-Reforming Catalysts: Effects of Temperature and Steam and Hydrogen Pressures. *J. Catal.*
690 **2004**, *223* (2), 432–443.

691 (28) Jin, B.; Sushko, M. L.; Liu, Z.; Jin, C.; Tang, R. In Situ Liquid Cell TEM Reveals Bridge-Induced
692 Contact and Fusion of Au Nanocrystals in Aqueous Solution. *Nano Lett.* **2018**, *18* (10), 6551–6556.

693 (29) Schlexer, P.; Andersen, A. B.; Sebok, B.; Chorkendorff, I.; Schiøtz, J.; Hansen, T. W. Size-
694 dependence of the Melting Temperature of Individual Au Nanoparticles. *Part. Part. Syst. Charact.*
695 **2019**, *36* (3), 1800480.

696 (30) Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Helveg, S. Coarsening of Pd
697 Nanoparticles in an Oxidizing Atmosphere Studied by in Situ TEM. *Surf. Sci.* **2016**, *648*, 278–283.

698 (31) Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Ostwald
699 Ripening in a Pt/SiO₂ Model Catalyst Studied by in Situ TEM. *J. Catal.* **2011**, *281* (1), 147–155.

700 (32) Asoro, M. A.; Ferreira, P. J.; Kovar, D. In Situ Transmission Electron Microscopy and Scanning
701 Transmission Electron Microscopy Studies of Sintering of Ag and Pt Nanoparticles. *Acta Mater.*
702 **2014**, *81*, 173–183.

703 (33) Zhou, W. L.; He, J.; Fang, J.; Huynh, T. A.; Kennedy, T. J.; Stokes, K. L.; O'Connor, C. J. Self-
704 Assembly of FePt Nanoparticles into Nanorings. *J. Appl. Phys.* **2003**, *93* (10 2), 7340–7342.

705 (34) Kim, J.; Lee, Y.; Sun, S. Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for
706 Oxygen Reduction Reaction. *J. Am. Chem. Soc.* **2010**, *132* (14), 4996–4997.

707 (35) Li, Q.; Wu, L.; Wu, G.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Casimir, A.; Zhu, H.; Mendoza-Garcia,
708 A.; Sun, S. New Approach to Fully Ordered Fct-FePt Nanoparticles for Much Enhanced
709 Electrocatalysis in Acid. *Nano Lett.* **2015**, *15* (4), 2468–2473.

710 (36) Reiss, G.; Hütten, A. Applications beyond Data Storage. *Nat. Mater.* **2005**, *4* (10), 725–726.

711 (37) Chen, X.; Zhang, S.; Li, C.; Liu, Z.; Sun, X.; Cheng, S.; Zakharov, D. N.; Hwang, S.; Zhu, Y.; Fang,
712 J.; Wang, G.; Zhou, G. Composition-Dependent Ordering Transformations in Pt-Fe Nanoalloys.
713 *Proc. Natl. Acad. Sci. U. S. A.* **2022**, *119* (14), e2117899119.

714 (38) Ashcroft, N. W.; Denton, A. R. Vegard's Law. *Phys. Rev. A* **1991**, *43* (6), 3161–3164.

715 (39) Hovorka, O.; Devos, S.; Coopman, Q.; Fan, W. J.; Aas, C. J.; Evans, R. F. L.; Chen, X.; Ju, G.;
716 Chantrell, R. W. The Curie Temperature Distribution of FePt Granular Magnetic Recording Media.
717 *Appl. Phys. Lett.* **2012**, *101* (5), 052406.

718 (40) Rong, C. B.; Li, Y.; Liu, J. P. Curie Temperatures of Annealed FePt Nanoparticle Systems. *J. Appl.*
719 *Phys.* **2007**, *101* (9), 09K505.

720 (41) Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J. A.; Willinger, M. G. Dynamic Interplay between
721 Metal Nanoparticles and Oxide Support under Redox Conditions. *Science*. **2022**, *376* (6596), 982–
722 987.

723 (42) Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Formation of a ZnO
724 Overlayer in Industrial Cu/ZnO/Al₂O₃ Catalysts Induced by Strong Metal-Support Interactions .
725 *Angew. Chemie* **2015**, *127* (15), 4627–4631.

726 (43) Penn, R. L.; Banfield, J. F. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free
727 Nanocrystals. *Science*. **1998**, *281* (5379), 969–971.

728 (44) Bronstein, L. M.; Huang, X.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B.;
729 December, R. V.; Re, V.; Recei, M.; April, V.; Wang, F.; Richards, V. N.; Shields, S. P.; Buhro, W.
730 E.; Jin, Y.; Yi, Q.; Ren, Y.; Wang, X.; Ye, Z.; Chang, J.; Waclawik, E. R.; Zhong, X.; Feng, Y.;
731 Zhang, Y.; Lieberwirth, I.; Knoll, W.; Ito, D.; Yokoyama, S.; Zaikova, T.; Masuko, K.; Hutchison,
732 J. E.; Li, D.; Nielsen, M. H. M. H.; Lee, J. R. I. J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J.
733 J. Direction-Specific Interactions. *Science*. **2012**, *336* (6084), 1014–1018.

734 (45) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester,
735 D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum,
736 F. C.; Cölfen, H.; Dove, P. M. Crystallization by Particle Attachment in Synthetic, Biogenic, and
737 Geologic Environments. *Science*. **2015**, *349* (6247), aaa6760.

738 (46) Asoro, M. A.; Kovar, D.; Shao-Horn, Y.; Allard, L. F.; Ferreira, P. J. Coalescence and Sintering of
739 Pt Nanoparticles: In Situ Observation by Aberration-Corrected HAADF STEM. *Nanotechnology*
740 **2010**, *21* (2), 025701.

741 (47) Asoro, M. A.; Ferreira, P. J.; Kovar, D. In Situ Transmission Electron Microscopy and Scanning
742 Transmission Electron Microscopy Studies of Sintering of Ag and Pt Nanoparticles. *Acta Mater.*
743 **2014**, *81*, 173–183.

744 (48) Zhang, J.; Fang, J. A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni)
745 Nanocubes. *J. Am. Chem. Soc.* **2009**, *131* (51), 18543–18547.

746 (49) Kryuchkov, N. P.; Yurchenko, S. O.; Fomin, Y. D.; Tsiok, E. N.; Ryzhov, V. N. Complex
747 Crystalline Structures in a Two-Dimensional Core-Softened System. *Soft Matter*. **2018**, *14*, 2152–
748 2162.

749 (50) Kim, J.; Koo, Y.; Lee, B.-J. Modified Embedded-Atom Method Interatomic Potential for the Fe–Pt
750 Alloy System. *J. Mater. Res.* **2006**, *21* (1), 199–208.

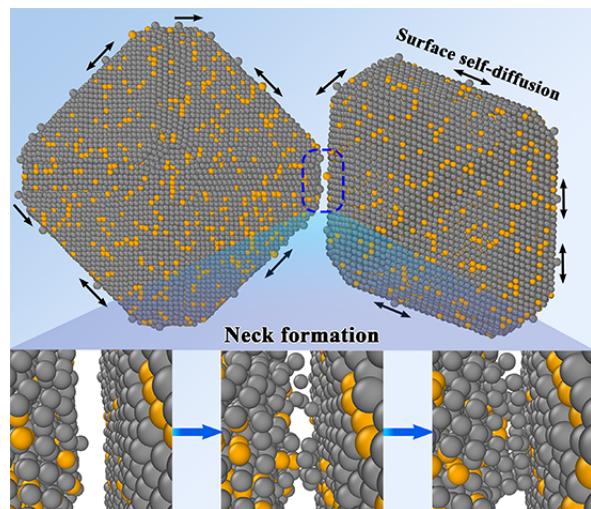
751 (51) Rahm, J. M.; Erhart, P. WulffPack: A Python Package for Wulff Constructions. *J. Open Source*

752 *Softw.* **2020**, *5* (45), 1944.

753 (52) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using
754 a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54* (16), 11169–11186.

755 (53) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **1994**, *50* (24), 17953–17979.

756 (54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys.*
757 *Rev. Lett.* **1996**, *77* (18), 3865–3868.


758 (55) Scott Weingarten, N.; Byrd, E. F. C. Special Quasirandom Structures of Alon. *Comput. Mater. Sci.*
759 **2015**, *96*, 312–318.

760 (56) Van De Walle, A.; Tiwary, P.; De Jong, M.; Olmsted, D. L.; Asta, M.; Dick, A.; Shin, D.; Wang,
761 Y.; Chen, L. Q.; Liu, Z. K. Efficient Stochastic Generation of Special Quasirandom Structures.
762 *Calphad Comput. Coupling Phase Diagrams Thermochem.* **2013**, *42*, 13–18.

763 (57) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Climbing Image Nudged Elastic Band Method for
764 Finding Saddle Points and Minimum Energy Paths. *J. Chem. Phys.* **2000**, *113* (22), 9901–9904.

765

766 **Table of contents**

767