

1 Emergent behaviors of buckling-driven 2 elasto-active structures

3 **Yuchen Xi^a, Tom Marzin^a, Richard B. Huang^a, Trevor J. Jones^{a,b}, and P.-T. Brun^a**

4 This manuscript was compiled on November 8, 2024

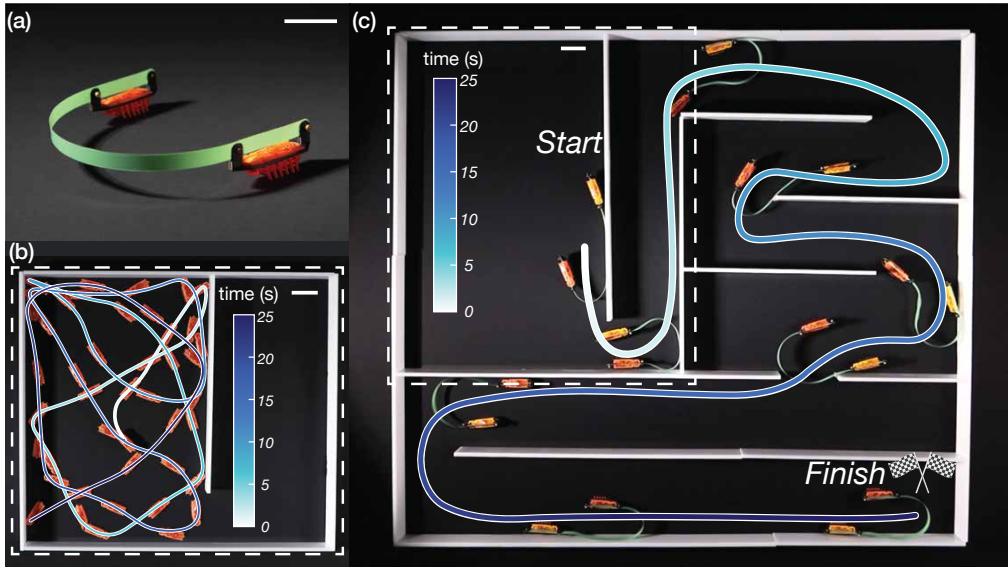
5 **Active systems of self-propelled agents, e.g., birds, fish, and bacteria, can organize their
6 collective motion into myriad autonomous behaviors. Ubiquitous in nature and across length
7 scales, such phenomena are also amenable to artificial settings, e.g., where brainless self-
8 propelled robots orchestrate their movements into spatial-temporal patterns via the application
9 of external cues or when confined within flexible boundaries. Like their natural counterparts,
10 these approaches typically require many units to initiate collective motion, so controlling the
11 ensuing dynamics is challenging. Here, we demonstrate a novel yet simple mechanism that
12 leverages nonlinear elasticity to tame near-diffusive motile particles in forming structures
13 capable of directed motion and other emergent behaviors. Our elasto-active system comprises
14 two centimeter-sized self-propelled microbots connected with elastic beams. These microbots
15 exert forces that suffice to buckle the beam and set the structure in motion. We first rationalize
16 the physics of the interaction between the beam and the microbots. Then we use reduced-order
17 models to predict the interactions of our elasto-active structures with boundaries, e.g., walls
18 and constrictions, and demonstrate how they can exhibit remarkable emergent behaviors such
19 as maze navigation. These findings demonstrate that allowing and understanding changes in
20 body morphology can enhance the capabilities of active matter systems and enable the design
21 of robotic materials capable of space exploration, adaptation, and complex interactions with
22 their surrounding environment.**

23 active matter | soft robotics | nonlinear elasticity | morphological computation

24 **T**he study of active matter, living or inert, focuses on understanding the
25 mechanical and statistical properties of systems comprising elements capable of
26 converting energy into movement. The field is particularly interested in identifying
27 the principles governing the emergence of self-organized spatio-temporal patterns
28 on scales larger than individual motile units. Examples range from liquid-crystalline
29 order in bacterial flocks to polar order in a school of fish(1). While common in
30 nature, active matter systems are also amenable to artificial laboratory settings(2–
31 4). Exploring model experimental systems allows a careful investigation of the
32 inner workings of active matter, particularly identifying the onset of collective
33 behaviors and rationalizing pattern formation within bulk ensembles of active
34 particles. Historically, the field has focused heavily on fluids and fluid-like systems(1),
35 making active elastic systems comparatively less explored(5).

36 In recent years, self-propelled microbots, e.g., Hexbug Nano®(6), have been
37 identified as a tunable and reliable means for developing active structures, e.g.,
38 oscillatory tails(7, 8) and active elastic solids(9). The motion of individual microbots
39 is understood as vibrating masses whose frictional contacts cause propulsion(10–12),
40 which can be modeled as self-propelled particles that follow Langevin dynamics on
41 timescales much longer than the vibration frequency of their body. This approach
42 allows for the modeling of microbots dynamics in confined geometries(13, 14) or in
43 a harmonic trap(15). Their collective behaviors and ensuing robotic structures have
44 received particular attention(13, 16–18). In bounded and crowded environments
45 these microbots can display a gas-like behavior(19, 20) or cluster around the
46 edges of boundaries(13, 16, 17). In addition, external cues such as light and
47 magnets(21, 22) can be used to control such robotic swarms, e.g., to form clusters
48 or direct movements. Finally, these robotic structures' physical morphology also
49 plays an important role in their functionality and collective behaviors(11). This
50 concept, formalized as morphological computation, relies on the changes in a soft
51 robot morphology to achieve predetermined and adaptive behaviors without relying
52 on the control algorithms typically found in conventional hard robots (23). While
53 deformability is, by definition, inherent to soft robots, our understanding of those
54 systems remains sparse, particularly in the context of active materials. Overall,
55 effectively and efficiently controlling microbot systems remains an ongoing effort

56 **Significance Statement**


57 Active matter is typically composed
58 of many agents, each consuming
59 energy to propel themselves and,
60 at times, display mesmerizing syn-
61 chronized motion. These spatial-
62 temporal patterns occur in flocks of
63 starlings and bacteria, schools of
64 fish, self-propelled colloids, swarm-
65 ing robots, etc. In these now classic
66 cases, each agent requires several
67 neighbors for self-organized collec-
68 tive behaviors to emerge. Here, we
69 introduce a system where complex
70 emergent behaviors appear with
71 only a pair of agents whose dynam-
72 ics are tuned thanks to the knowl-
73 edge we develop, e.g., allowing
74 them to solve a maze. Functionality
75 is mediated by the deformation of
76 our soft robotic contraptions when
77 interacting with their surroundings,
78 an example of morphological com-
79 putation that leverages elasticity to
80 augment the capabilities of brain-
81 less agents.

82 Author affiliations: ^aDepartment of Chemical and Bio-
83 logical Engineering, Princeton University, Princeton,
84 New Jersey 08540, USA; ^bDepartment of Mechanical
85 Engineering, Carnegie Mellon University Pittsburgh,
86 PA 15124, USA

87 PTB and TJJ designed the research, all authors
88 performed the research and analyzed the data, YX,
89 TM, TJJ and PTB wrote the manuscript.

90 Please declare any competing interests here.

91 ²To whom correspondence should be addressed. E-
92 mail: pbrun@princeton.edu

Fig. 1. From mindless particles to emergent behaviors (a) Photograph of the bucklebot, showing two microbots connected by a thin polyester beam. (b) Individual microbot trajectory in a confined space. (c) A bucklebot efficiently navigates a maze within 25 seconds. The dashed area in (c) matches the space shown in (b). (all scale bars are 50 mm in length, and trajectories are color-coded by time).

essential to designing robotic matter capable of achieving predictive and tunable motions. Here, we introduce a new form of autonomous physical behavior by coupling active particles with nonlinear elasticity. Fig. 1(a) illustrates our approach involving two self-propelled microbots connected by an elastic polyester beam. We operate in a regime where the active force exerted by the microbots is sufficient to buckle the connecting beam, thereby aligning the microbots and allowing this contraption, called *bucklebot*, to move across a flat substrate. While individual microbots remain trapped in a confined space for prolonged periods (Fig. 1(b)), a bucklebot manages to solve a maze efficiently, as evident in Fig. 1(c) and Movie S1. Combining experiments and theory, we elucidate the physics governing the dynamics of these bucklebots. We then explore the interaction of bucklebots with physical boundaries, e.g., plane walls and narrow constrictions. Finally, we leverage these quantitative results to elucidate how bucklebots can develop emergent intelligent behaviors such as solving a maze, probing a path, or organizing dispersed particles.

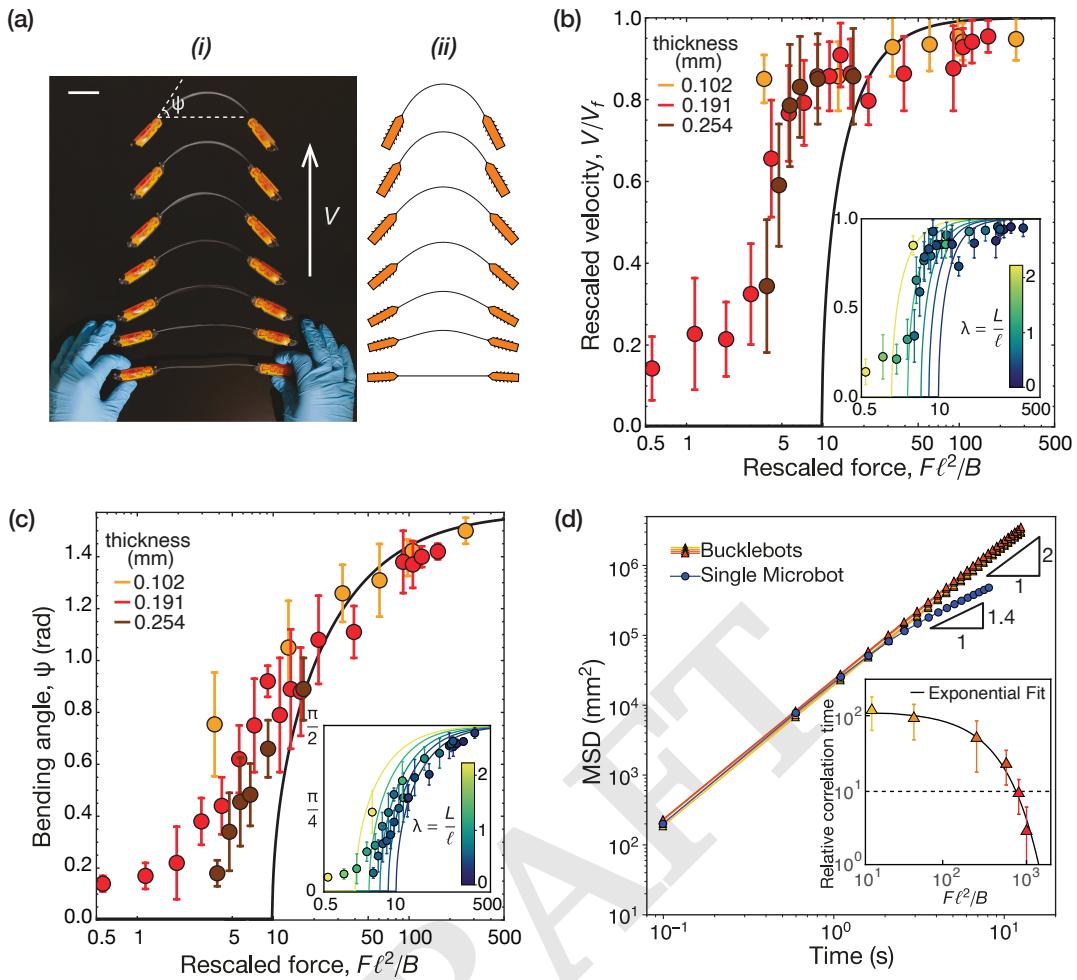
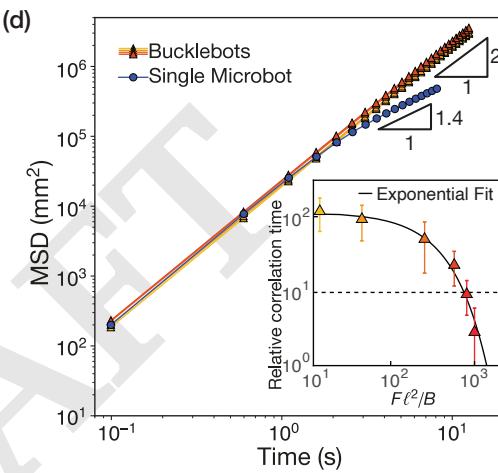
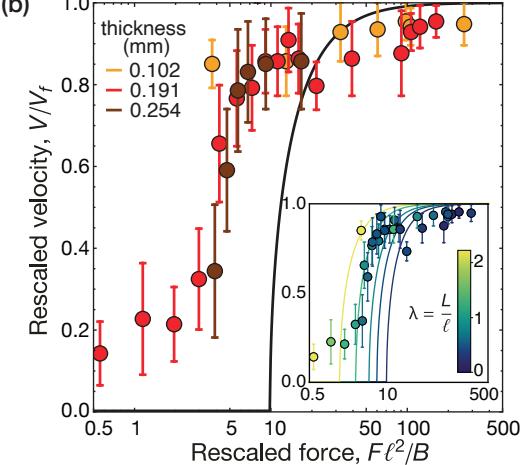

Results

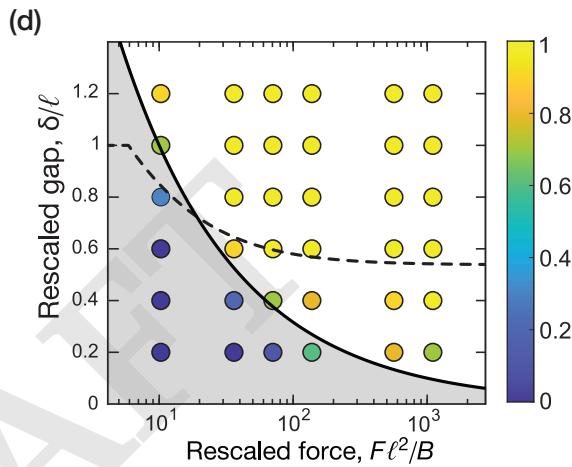
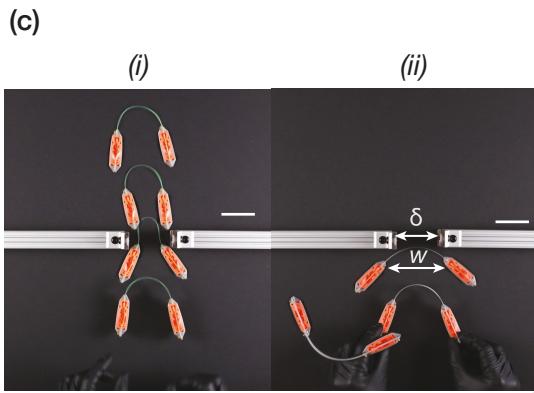
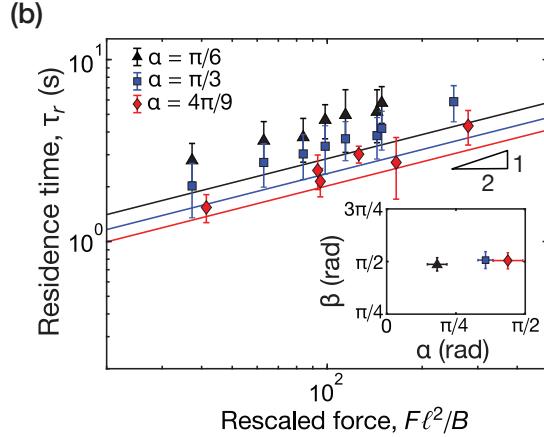
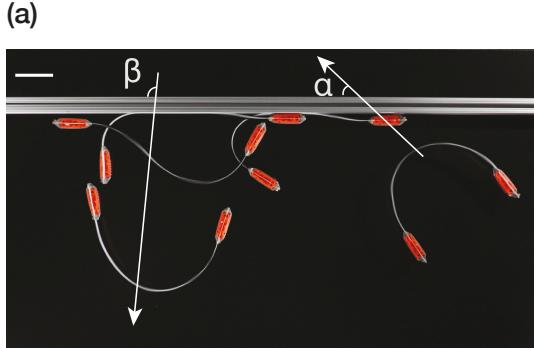
Figure 2 summarizes the main results pertaining to bucklebots evolving in free space. In Fig. 2(a), we show the onset of their motion. Namely, when released, the microbots progressively bend the beam that connects them before assuming a final steady-state configuration characterized by a bending angle ψ and a steady-state velocity V , reached after nearly a second. In Fig. 2(b)-(c), we show the variation of these observables when the length and thickness of the beam are varied. For relatively short and thick (thus stiff) beams, the angle ψ remains close to zero, and the structure barely moves. For longer and thinner (thus soft) beams, the force exerted by the microbots is sufficient to buckle the beam, increasing ψ until the limit value of $\pi/2$ is approached. At this point, the microbots are parallel, facing the same direction and moving

at a speed close to their free velocity V_f . The value of V_f is typically related to the force exerted by the microbots and the friction between the structure and the substrate, $V_f = F/\gamma$ where F is the microbot force and γ is the effective drag coefficient acting on the microbots(24).

We recast our experimental data in dimensionless form using V_f as our speed gauge and B/ℓ^2 as the force gauge that captures the beam resistance to bending, where B is the bending stiffness and ℓ is the length of the beam. In Fig. 2(b)-(c), we show that our data collapse to a single master curve, confirming the relevance of the rescaled force $F\ell^2/B$ in predicting the system behavior. Our experiments show a non-zero velocity and bending angle even for small values of $F\ell^2/B$. While the microbots cannot buckle the beam, the bucklebot slides or rotates slowly due to the vibrations from the motor. As $F\ell^2/B$ increases, both ψ and V increase until they reach a plateau around $F\ell^2/B \simeq 50$. Our model, which combines the Kirchhoff equations for elastic beams with a force and moment balance for microbots (see SI Eqn. 1-2), favorably recovers this transition and the overall variation in geometry and speed. The difference between experiment and theory is attributed to a finite size effect: the microbots are not point masses, so a third dimensionless number $\lambda = L/\ell$ is introduced to describe their length relative to that of the beam. In the limit case where $\lambda \simeq 0$, the transition between static and translation occurs at $F\ell^2/B \simeq 10$, in agreement with Euler's critical load for column ends with hinge-hinge boundary conditions(25).



In contrast, for larger values of λ , the microbots exert higher lever-arm torques onto the beam, diminishing the critical buckling load (See SI Section E). This effect is evident in the inset of Fig. 2(b)-(c), where theory curves and experimental data alike are staggered according to the value of λ . The fair agreement between data and model shows the validity of our simplified model. Reality is far more complex, as the twelve microbot legs repeatedly interact and exchange

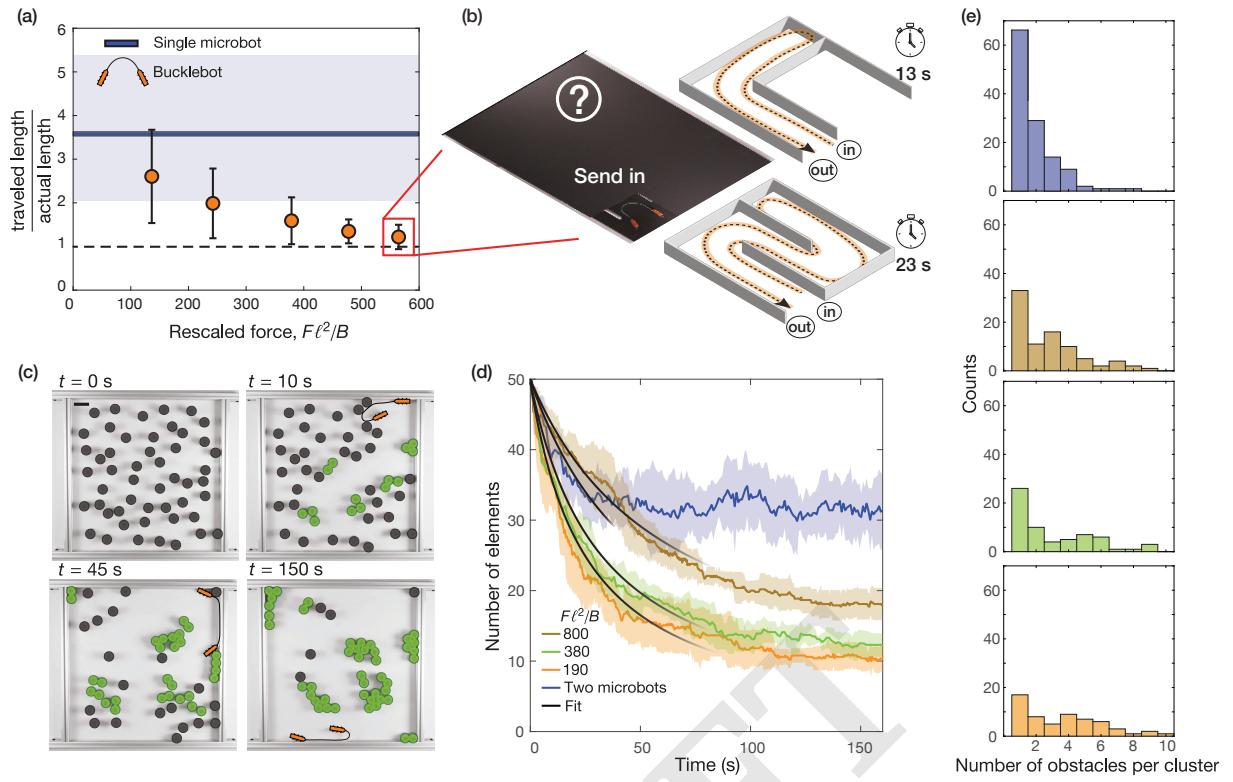
249
250
251
252
253
254
255
256
257
258
259
260
261
262





284 **Fig. 2. Dynamics and characterization of bucklebots:** (a) (i): Timelapse of a bucklebot with $\Delta t = 0.1\text{s}$ (scale bar=50 mm); (ii) Bucklebot dynamics obtained by integrating 285 our model (SI Section A-C). (b) Rescaled velocity V/V_f and (c) bending angle ψ versus rescaled force $F\ell^2/B$. The markers are color-coded by beam thicknesses. The 286 black line represents the predicted steady-state solution with $\lambda \simeq 0$ (SI Section D). Insets: same sets of experiment data color-coded by λ . Lines represent the steady-state 287 solutions when taking into account the finite-size effect ($\lambda > 0$). (d) Log-log plot of the mean squared displacement (MSD) versus time for a single microbot (blue), 288 bucklebots with $F\ell^2/B \simeq 10, 40, 240, 600$ (oranges from light to dark, respectively). Inset: estimated relative correlation time versus $F\ell^2/B$. The solid black line is an exponential fit 289 from the data points, and the dashed black line is the correlation threshold (10τ , with τ the single microbot reorientation time).

290 momentum with the substrate. The resulting center of friction 291 does not always align with the microbot center of mass. 292 Nevertheless, the so-called self-aligning torque (9, 15, 26) that 293 results from the discrepancy between those two points appears 294 to have a negligible effect on our system.

295 Having understood the shape and equilibrium velocity of 296 our bucklebots we move to describe their long-term behavior. 297 In Fig. 2(d) we calculate their mean square displacement $MSD = \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle$, where $\mathbf{r}(t)$ is the position vector at time 298 t , and $\langle \cdot \rangle$ denotes the average value over of all recorded 299 trajectories. In Fig. 2(d), we plot the MSD of bucklebots 300 with rescaled forces ranging from 10 to 600 together with 301 that of single microbots. Single microbots show diffusive-like 302 behavior resembling a noisy walker (27) with a reorientation 303 time $\tau \simeq 1.3\text{s}$ and long-term $MSD \propto t^{1.4}$. In contrast, 304 the bucklebots translate ballistically ($MSD \propto t^2$) in the 305 range of the time ($> 10\tau$) we probed. Bucklebots achieve 306 persistent directed motion despite the direction changes 307 typically observed in each unit. This result remains true 308

299 for $10 < F\ell^2/B < 600$. However, past this upper limit, the 300 diffusive nature and inevitable differences between the two 301 microbots become noticeable in experiments. In such high- 302 force regimes, the beam's internal resistance to bending is 303 negligible and thus insufficient to align with the motions 304 of the microbots. As evident from Fig. S4, bucklebots 305 with $F\ell^2/B \simeq 800$ form noticeably curved trajectories. At 306 even higher force regimes ($F\ell^2/B \simeq 1000$), the microbots 307 tend to buckle the beam to its second (and higher) buckling 308 modes, so the bucklebot rotates while slowly translating, 309 demonstrating slower movement and covering two orders 310 of magnitude smaller areas throughout the measurement 311 (see Fig. S4 and Movie S2). In the inset of Fig. 2(d), we 312 report the relative correlation time for bucklebots, defined 313 as the average time when the velocity vector first appears 314 opposite to its initial direction, rescaled by the reorientation 315 time of the single microbot. The inset shows the decay of 316 such time as $F\ell^2/B$ increases. Initially above 100 times the 317 reorientation time of single microbots, this timescale drops 318 to 319


Fig. 3. Bucklebots interacting with boundaries (a) Overlaid photographs of bucklebot with $F\ell^2/B \simeq 60$ approaching a flat wall with angle α , following the wall for some time τ_r , and bouncing off with a reflection angle β (scale bar=50 mm). (b) Residence time, τ_r versus $F\ell^2/B$ for three sets of α . Markers represent experiments (triangles: $\alpha = \pi/6$, squares: $\alpha = \pi/3$, diamonds: $\alpha = 4\pi/9$). Lines are the predictions from the self-oscillation model (see SI Section G). The error bars represent the standard deviation of τ_r for each bucklebot. The inset shows β versus α . (c) Snapshots of passage through a slit of width $\delta = 6$ cm. (i): a bucklebot with $F\ell^2/B \simeq 140$ and (ii) with $F\ell^2/B \simeq 13$ (scale bar=50 mm). (d) Success of passage rate of passage, shown as a function of rescaled gap size δ/ℓ and $F\ell^2/B$. The experiment data is color-coded by the success rate of passage, as shown by the right color bar. The dashed line indicates the equilibrium width of the free bucklebot (see SI Section D), and the solid line corresponds to our model (SI Eqn. 27). The shaded gray area is our prediction for the region where the bucklebots are expected to bounce off from the slit.

below 10τ beyond $F\ell^2/B \simeq 800$, and eventually reaches values close τ for $F\ell^2/B \simeq 1000$, confirming the negligible influence of the beam in this range. In the following, we focus on bucklebots with $F\ell^2/B$ ranging from 10 to 800 and probe their interactions with boundaries.

We first turn our attention to the interaction of a bucklebot with a plane boundary (see Fig. 3(a)). The bucklebot approaches the wall with an angle α and is found to follow the wall for some residence time τ_r before reflecting off with an angle β . In Fig. 3(b), we find that the reflection angles β are consistently around $\pi/2$, irrespective of the value of α . However, the residence time τ_r increases as α decreases. Shallower approaches stay longer along the wall than a direct hit. Additionally, we find that $\tau_r \propto \sqrt{F\ell^2/B}$. To rationalize such a scaling law, we observe that the microbot in contact with the wall is typically slower than the other one, presumably because of the added friction. As such, the faster outer microbot overtakes its slower counterpart and forces the beam to snap (See Movie S3). Inspired by such behavior, we introduce the limit case scenario, where one single microbot is attached to an elastic beam clamped on one end. We model

the ensuing oscillatory dynamics (See SI Eqns. 28-29) and recover the scaling law observed in experiments, as indicated by the solid lines in Fig. 3(b). Our model underpredicts our data since, in our experiment, the bucklebot at the wall is not clamped but instead slides, thereby delaying the beam's oscillation.

Next, we turn to study the passage of a bucklebot through constrictions. Figure 3(c)(i) illustrates the bucklebot ability to deform and pass a tight slit with opening $\delta < w$, with w the bucklebot width. If the beam is too stiff or the slit is too small, the buckle-bot will bounce off the constriction (See Figure 3(c)(ii)). Those results are formalized in Figure 3(d), where we report the probability of successful passage as a function of the gap size rescaled by the beam length, δ/ℓ , and the rescaled force, $F\ell^2/B$. As evident from the figure, larger slits, and larger forces correlate with a higher probability of successful passage. In red, we show the bucklebot equilibrium width w/ℓ . The region below (resp. above) w/ℓ indicates slits smaller (resp. larger) than the equilibrium width. All the trials above this curve have a 100% chance of passing (we send our robots straight onto the slit). However, a sizable region below the

Fig. 4. Leveraging bucklebot emergent behaviors: (a) Traveled length over actual path length is plotted for bucklebots with a wide range of $F\ell^2/B$. Error bars show the standard deviation of bucklebots' traveled lengths. The solid blue line shows the benchmark for a single microbot and the shaded blue area is its error range. (b) The left snapshot shows a probing experiment: a bucklebot with $F\ell^2/B \simeq 560$ is sent into a covered closed path. The schematic drawings show two paths (longer/shorter) the bucklebots can probe and differentiate. In 14 and 25 seconds, the bucklebot reappears at the starting point of the shorter and longer path, respectively. (c) Snapshots of the evolution of a confined room stored by a bucklebot with $F\ell^2/B \simeq 380$. The black circles denote isolated obstacles and the green boundaries correspond to formed clusters. (d) The number of elements representing single or connected obstacles is plotted against time in separate cases of two single microbots and three bucklebots with $F\ell^2/B \simeq 800$ (brown), 380 (green), and 190 (orange). Each shaded area denotes the standard deviation within 5 trials. Black lines fit the initial decay with a theory derived from the coagulation theory. (e) Size distribution of the formed cluster within the four cases.

curve also sees significant success. We rationalize this region boundary of such success by considering the minimal length the microbots can bend the structure, i.e., $\pi\sqrt{B/F}$, which coincides with the width of the smallest slits that bucklebots can pass.

Discussion

To summarize, our bucklebots, consisting of two self-propelled microbots coupled by a soft elastic beam, achieve persistent ballistic motions, follow walls, and squeeze their deformable structures through narrow constrictions. The combination of these unique capabilities allows them to perform tasks that individual microbots cannot achieve, such as solving a maze (Fig. 1(c)). In the remaining, we leverage these emergent abilities and demonstrate that the bucklebots can accomplish a broad range of tasks.

When sent into a closed path, a bucklebot will navigate to the closed end, bounce back, and reappear at the starting point (see Movie S4). In Fig. 4(a), we show that the ratio between the length traveled by the robots rescaled by the length of the path. While individual microbots travel on average nearly 4 times more than necessary (with nearly 100% variability between trials), we find that our bucklebots converge to the optimal path as $F\ell^2/B$ increases (while dramatically reducing variability). In this limit, our

bucklebots can be used to probe and classify simple structures (see Fig. 4(b), where the identification is achieved by recording the entry and exit times).

Likewise, bucklebots differ from the behavior of individual microbots when interacting with obstacles they can displace. In Fig. 4(c), we report a few snapshots of a bucklebot confined with initially dispersed cylindrical obstacles ($N_0 = 50$). The bucklebot ($F\ell^2/B \simeq 380$) pushes these light obstacles and assembles them into clusters. The number of elements saturates in about a minute. In Fig. 4(d), we report the cluster formation dynamics for this bucklebot, together with bucklebots with higher/lower rescaled forces, and contrast it with the situation where two microbots freely travel into a similar enclosure. In all cases, we observe an initial decrease in dispersed elements, N , before reaching saturation. All bucklebots store over 60% of obstacles into clusters, with the lower force bucklebot storing nearly 80%, while two microbots only store 38% of them. Decreasing the rescaled force decreases the final number of clusters and allows a faster initial decay, suggesting that low-force bucklebots can perform such tasks more efficiently. However, bucklebots with even lower rescaled forces ($F\ell^2/B < 190$) tend to get stuck at the enclosure's edges due to their rigidity. Further differences arise when fitting the initial decay with a Smoluchowski-like equation for coagulation (28), $N(t) = N_0/(1 + t/\tau_c)$. The

621 corresponding coagulation timescale τ_c indicates a faster
 622 decay for the relatively low-force bucklebots ($\tau_c = 28.5$ and
 623 $23.3s$ for $F\ell^2/B \simeq 380$ and 190 , respectively) than for single
 624 agents ($\tau_c = 49s$). Fig. 4(e) shows the difference in size
 625 distribution of the formed clusters. Single microbots form
 626 small clusters with only one or two obstacles. In contrast,
 627 bucklebots interact more gently with the clusters, preventing
 628 damage and thus facilitating the formation of larger clusters.
 629

630 We have shown that stochastic self-propelled active
 631 particles coupled with nonlinear elasticity can be tamed,
 632 forced into ballistic motion, and display various emergent
 633 abilities as they interact with different boundaries. These
 634 autonomous elasto-active structures carry out all these tasks
 635 without directed control. Instead, they do so through
 636 modulations of their morphology, which our elastic model
 637 captures. This newly gained understanding can be leveraged
 638 to achieve and control various tasks, such as maze navigation,
 639 probing the length of a path, and collecting cylinders,
 640 thereby demonstrating how morphological computing can
 641 help enhance the capabilities of simple robotic systems. To
 642 conclude, we note that we have developed our approach in
 643 idealized laboratory settings. Further work is needed to
 644 generalize these ideas to real-world environments, e.g., in
 645 rough terrain, and integrate such morphological computation
 646 into strategies that use higher-order external controls. From
 647 a formal standpoint, we have focused on beam-dominated
 648 regimes. Exploring softer systems where activity plays a
 649 more prominent role would be an exciting continuation of
 650 the present work where subtle effects, e.g., the self-aligning
 651 torque(26), would need to be accounted for.

652 Materials and Methods

653 **Bucklebot design and manufacturing.** Our active agents are
 654 commercially available battery-powered vibrating microbots (Hexbug
 655 Nano). Each microbot has a length of 45 mm, a width of 15 mm, a
 656 height of 15 mm, and a mass of 7.5 g. Its motion is generated from
 657 an internal vibration of a rotating motor transmitted to 12 soft
 658 rubber legs to achieve a speed of approximately 154 ± 15 mm/s.
 659 The beams are cut from shim stocks using a laser cutter (Epilog
 660 Helix-60 Laser engraver). The shim stocks are made of polyester
 661 with an elastic modulus of 2.9 GPa. The thickness and length
 662 of such elastic beams are well calibrated to ensure a variation of
 663 bending stiffness used in experiments. The collar that is used to
 664 connect microbots with elastic beams is designed by Rhino and 3D
 665

- 667 1. MC Marchetti, et al., Hydrodynamics of soft active matter. *Rev. modern physics* **85**, 1143
 (2013).
- 668 2. J Deseigne, S Léonard, O Dauchot, H Chaté, Vibrated polar disks: spontaneous motion,
 669 binary collisions, and collective dynamics. *Soft Matter* **8**, 5629–5639 (2012).
- 670 3. A Bricard, et al., Emergent vortices in populations of colloidal rollers. *Nat. Commun.* **6**, 7470
 (2015).
- 671 4. V Narayan, N Menon, S Ramaswamy, Nonequilibrium steady states in a vibrated-rod
 672 monolayer: tetric, nematic, and smectic correlations. *J. Stat. Mech. Theory Exp.* **2006**,
 P01005 (2006).
- 673 5. M Frucht, C Scheibner, V Vitelli, Odd viscosity and odd elasticity. *Annu. Rev. Condens.
 674 Matter Phys.* **14**, 471–510 (2023).
- 675 6. Hexbug is a toy automate brand developed and distributed by innovation first,
 http://www.hexbug.com. (year?).
- 676 7. E Zheng, et al., Self-Oscillation and Synchronization Transitions in Elastoactive Structures.
 677 *Phys. Rev. Lett.* **130**, 178202 (2023) Publisher: American Physical Society.
- 678 8. Y Xia, et al., Biomimetic synchronization in bilitiated robots. *Phys. Rev. Lett.* **133**, 048302
 (2024).
- 679 9. P Baconnier, et al., Selective and collective actuation in active solids. *Nat. Phys.* **18**,
 1234–1239 (2022).
- 680 10. G Cicconofri, A DeSimone, Motility of a model bristle-bot: A theoretical analysis. *Int. J.
 681 Non-Linear Mech.* **76**, 233–239 (2015).

682 printed by Prusa i3 printer using poly-lactic acid (PLA) (density
 683 $\rho = 1.2$ g/cm³ and elastic modulus $E = 5$ GPa). The beams are
 684 clamped to the collars using Dodge 0-80 .115 inch length inserts
 685 and corresponding screws.

686 **Experimental setups and bucklebot tracking.** The active force
 687 exerted by the microbot is estimated by measuring its pushing force
 688 via an Instron 10N load cell. The active force is measured to be
 689 20 ± 3 mN. We choose the microbot pairs with approximately
 690 the same free velocity and active force to ensure experiment
 691 consistency. It is worth noting that the microbot's manufacturing
 692 defects and component variabilities give rise to its biased motion.
 693 Experimentally, a biased microbot performs a circular motion,
 694 whose radius is given by $R = v_f/\omega_b$, where ω_b is the angular
 695 rotation rate. We adopt the criteria from Baconnier et al. (29)
 696 and choose the microbots that are not noticeably biased. All
 697 experiments are carried out on an acrylic surface. For bucklebots,
 698 we change the two microbots' batteries simultaneously to maintain
 699 their same relative battery level throughout the experiments. To
 700

701 capture the motion of the microbots and the bucklebots, a Canon
 702 EOS 80D camera is held by a frame looking down at a large white
 703 cast acrylic sheet from McMaster-Carr on top of the lab table. To
 704 track these robots while effectively differentiating each individual
 705 from one another, we use binary square fiducial markers, known as
 706 ArUco markers, which are synthetic square markers composed of a
 707 wide black border and an inner binary matrix that determines its
 708 identifier (id). We print out markers with different IDs and attach
 709 them to each microbot present in the experiments. With Python's
 710 Open Source Computer Vision (OpenCV) package(30), we post-
 711 process the recorded videos by tracking the attached markers'
 712 position data (x, y, t) with time. For example, our code detects the
 713 position (x, y) of the marker's four corners. We calculate the mid-
 714 point positions of opposite edges on each marker, which allows us
 715 to obtain the orientation vector of the microbots. In addition, the
 716 velocity of a single microbot is measured by multiplying its position
 717 displacement of consecutive frames with frames per second (fps),
 718 which allows us to further calculate the mean velocity by averaging
 719 the marker's velocities over time. We estimate a bucklebot's center
 720 of mass position as the line's center point that connects the two
 721 marker centers.

722 **ACKNOWLEDGMENTS.** This work was supported by NSF
 723 Grant CMMI 2343539 and NSF Future Manufacturing Grant
 724 CMMI 2037097.

- 725 11. MY Ben Zion, J Fersula, N Bredeche, O Dauchot, Morphological computation and
 726 decentralized learning in a swarm of sterically interacting robots. *Sci. Robotics* **8**, eab6140
 (2023) Publisher: American Association for the Advancement of Science.
- 727 12. D Kim, Z Hao, AR Mohazab, A Ansari, On the Forward and Backward Motion of
 728 Milli-Bristle-Bots. *Int. J. Non-Linear Mech.* **127**, 103551 (2020) arXiv:2002.10344 [cs, eess].
- 729 13. L Giomi, N Hawley-Weld, L Mahadevan, Swarming, swirling and stasis in sequestered
 730 bristle-bots. *Proc. Royal Soc. A: Math. Phys. Eng. Sci.* **469**, 20120637 (2013) Publisher:
 731 Royal Society.
- 732 14. M Leoni, et al., Surfing and crawling macroscopic active particles under strong confinement:
 733 Inertial dynamics. *Phys. Rev. Res.* **2**, 043299 (2020) Publisher: American Physical Society.
- 734 15. O Dauchot, V Démery, Dynamics of a self-propelled particle in a harmonic trap. *Phys.
 735 review letters* **122**, 068002 (2019).
- 736 16. JF Boudet, et al., From collections of independent, mindless robots to flexible, mobile, and
 737 directional superstructures. *Sci. Robotics* **6**, eabd0272 (2021) Publisher: American
 738 Association for the Advancement of Science.
- 739 17. A Deblais, et al., Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots.
 740 *Phys. Rev. Lett.* **120**, 188002 (2018) Publisher: American Physical Society.
- 741 18. C Scholz, M Engel, T Pöschel, Rotating robots move collectively and self-organize. *Nat.
 742 Commun.* **9**, 931 (2018) Number: 1 Publisher: Nature Publishing Group.
- 743 19. JF Boudet, et al., Effective temperature and dissipation of a gas of active particles probed
 744 by the vibrations of a flexible membrane. *Phys. Rev. Res.* **4**, L042006 (2022) Publisher:
 745

745	American Physical Society.	807
746	20. G DiBari, et al., Using Hexbugs™ to model gas pressure and electrical conduction: A pandemic-inspired distance lab. <i>Am. J. Phys.</i> 90 , 817–825 (2022).	808
747	21. N Sepulveda, et al., Bioinspired magnetic active matter and the physical limits of magnetotaxis (2021) arXiv:2111.04889 [cond-mat, physics:physics].	809
748	22. S Li, et al., Programming active cohesive granular matter with mechanically induced phase changes. <i>Sci. Adv.</i> 7 , eabe8494 (2021) Publisher: American Association for the Advancement of Science.	810
749	23. H Hauser, T Nanayakkara, F Forni, Leveraging morphological computation for controlling soft robots: Learning from nature to control soft robots. <i>IEEE Control. Syst. Mag.</i> 43 , 114–129 (2023).	811
750	24. CA Weber, et al., Long-range ordering of vibrated polar disks. <i>Phys. Rev. Lett.</i> 110 , 208001 (2013).	812
751	25. B Audoly, Y Pomeau, <i>Elasticity and geometry in Peyresq Lectures on Nonlinear Phenomena</i> . (World Scientific), pp. 1–35 (2000).	813
752	26. P Baconnier, et al., Self-aligning polar active matter (2024).	814
753	27. Étienne Fodor, M Cristina Marchetti, The statistical physics of active matter: From self-catalytic colloids to living cells. <i>Phys. A: Stat. Mech. its Appl.</i> 504 , 106–120 (2018) Lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics.	815
754	28. SK Friedlander, , et al., <i>Smoke, dust, and haze</i> . (Oxford university press New York) Vol. 198, (2000).	816
755	29. P Baconnier, “Active elastic solids : collective motion, collective actuation & polarization,” Theses, Université Paris sciences et lettres (2023). URL https://pastel.hal.science/tel-04081179 .	817
756	30. G Bradski, The OpenCV Library. <i>Dr. Dobb's J. Softw. Tools</i> (2000).	818
757		819
758		820
759		821
760		822
761		823
762		824
763		825
764		826
765		827
766		828
767		829
768		830
769		831
770		832
771		833
772		834
773		835
774		836
775		837
776		838
777		839
778		840
779		841
780		842
781		843
782		844
783		845
784		846
785		847
786		848
787		849
788		850
789		851
790		852
791		853
792		854
793		855
794		856
795		857
796		858
797		859
798		860
799		861
800		862
801		863
802		864
803		865
804		866
805		867
806		868