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Active systems of self-propelled agents, e.g., birds, fish, and bacteria, can organize their
collective motion into myriad autonomous behaviors. Ubiquitous in nature and across length
scales, such phenomena are also amenable to artificial settings, e.g., where brainless self-
propelled robots orchestrate their movements into spatial-temporal patterns via the application
of external cues or when confined within flexible boundaries. Like their natural counterparts,
these approaches typically require many units to initiate collective motion, so controlling the
ensuing dynamics is challenging. Here, we demonstrate a novel yet simple mechanism that
leverages nonlinear elasticity to tame near-diffusive motile particles in forming structures
capable of directed motion and other emergent behaviors. Our elasto-active system comprises
two centimeter-sized self-propelled microbots connected with elastic beams. These microbots
exert forces that suffice to buckle the beam and set the structure in motion. We first rationalize
the physics of the interaction between the beam and the microbots. Then we use reduced-order
models to predict the interactions of our elasto-active structures with boundaries, e.g., walls
and constrictions, and demonstrate how they can exhibit remarkable emergent behaviors such
as maze navigation. These findings demonstrate that allowing and understanding changes in
body morphology can enhance the capabilities of active matter systems and enable the design
of robotic materials capable of space exploration, adaptation, and complex interactions with
their surrounding environment.

active matter | soft robotics | nonlinear elasticity | morphological computation

The study of active matter, living or inert, focuses on understanding the
mechanical and statistical properties of systems comprising elements capable of

converting energy into movement. The field is particularly interested in identifying
the principles governing the emergence of self-organized spatio-temporal patterns
on scales larger than individual motile units. Examples range from liquid-crystalline
order in bacterial flocks to polar order in a school of fish(1). While common in
nature, active matter systems are also amenable to artificial laboratory settings(2–
4). Exploring model experimental systems allows a careful investigation of the
inner workings of active matter, particularly identifying the onset of collective
behaviors and rationalizing pattern formation within bulk ensembles of active
particles. Historically, the field has focused heavily on fluids and fluid-like systems(1),
making active elastic systems comparatively less explored(5).

In recent years, self-propelled microbots, e.g., Hexbug Nano®(6), have been
identified as a tunable and reliable means for developing active structures, e.g.,
oscillatory tails(7, 8) and active elastic solids(9). The motion of individual microbots
is understood as vibrating masses whose frictional contacts cause propulsion(10–12),
which can be modeled as self-propelled particles that follow Langevin dynamics on
timescales much longer than the vibration frequency of their body. This approach
allows for the modeling of microbots dynamics in confined geometries(13, 14) or in
a harmonic trap(15). Their collective behaviors and ensuing robotic structures have
received particular attention(13, 16–18). In bounded and crowded environments
these microbots can display a gas-like behavior(19, 20) or cluster around the
edges of boundaries(13, 16, 17). In addition, external cues such as light and
magnets(21, 22) can be used to control such robotic swarms, e.g., to form clusters
or direct movements. Finally, these robotic structures’ physical morphology also
plays an important role in their functionality and collective behaviors(11). This
concept, formalized as morphological computation, relies on the changes in a soft
robot morphology to achieve predetermined and adaptive behaviors without relying
on the control algorithms typically found in conventional hard robots (23). While
deformability is, by definition, inherent to soft robots, our understanding of those
systems remains sparse, particularly in the context of active materials. Overall,
effectively and efficiently controlling microbot systems remains an ongoing effort
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Fig. 1. From mindless particles to emergent behaviors (a) Photograph of the bucklebot, showing two microbots connected by a thin polyester beam. (b) Individual microbot
trajectory in a confined space. (c) A bucklebot efficiently navigates a maze within 25 seconds. The dashed area in (c) matches the space shown in (b). (all scale bars are 50
mm in length, and trajectories are color-coded by time).

essential to designing robotic matter capable of achieving
predictive and tunable motions. Here, we introduce a new
form of autonomous physical behavior by coupling active
particles with nonlinear elasticity. Fig. 1(a) illustrates our
approach involving two self-propelled microbots connected by
an elastic polyester beam. We operate in a regime where the
active force exerted by the microbots is sufficient to buckle
the connecting beam, thereby aligning the microbots and
allowing this contraption, called bucklebot, to move across a
flat substrate. While individual microbots remain trapped
in a confined space for prolonged periods (Fig. 1(b)), a
bucklebot manages to solve a maze efficiently, as evident
in Fig. 1(c) and Movie S1. Combining experiments and
theory, we elucidate the physics governing the dynamics
of these bucklebots. We then explore the interaction of
bucklebots with physical boundaries, e.g., plane walls and
narrow constrictions. Finally, we leverage these quantitative
results to elucidate how bucklebots can develop emergent
intelligent behaviors such as solving a maze, probing a path,
or organizing dispersed particles.

Results

Figure 2 summarizes the main results pertaining to bucklebots
evolving in free space. In Fig. 2(a), we show the onset of their
motion. Namely, when released, the microbots progressively
bend the beam that connects them before assuming a final
steady-state configuration characterized by a bending angle ψ
and a steady-state velocity V , reached after nearly a second.
In Fig. 2(b)-(c), we show the variation of these observables
when the length and thickness of the beam are varied. For
relatively short and thick (thus stiff) beams, the angle ψ
remains close to zero, and the structure barely moves. For
longer and thinner (thus soft) beams, the force exerted by
the microbots is sufficient to buckle the beam, increasing ψ
until the limit value of π/2 is approached. At this point, the
microbots are parallel, facing the same direction and moving

at a speed close to their free velocity Vf . The value of Vf is
typically related to the force exerted by the microbots and the
friction between the structure and the substrate, Vf = F/γ
where F is the microbot force and γ is the effective drag
coefficient acting on the microbots(24).

We recast our experimental data in dimensionless form
using Vf as our speed gauge and B/ℓ2 as the force gauge
that captures the beam resistance to bending, where B is
the bending stiffness and ℓ is the length of the beam. In Fig.
2(b)-(c), we show that our data collapse to a single master
curve, confirming the relevance of the rescaled force Fℓ2/B
in predicting the system behavior. Our experiments show a
non-zero velocity and bending angle even for small values of
Fℓ2/B. While the microbots cannot buckle the beam, the
bucklebot slides or rotates slowly due to the vibrations from
the motor. As Fℓ2/B increases, both ψ and V increase until
they reach a plateau around Fℓ2/B ≃ 50. Our model, which
combines the Kirchhoff equations for elastic beams with a
force and moment balance for microbots (see SI Eqn. 1-2),
favorably recovers this transition and the overall variation in
geometry and speed. The difference between experiment and
theory is attributed to a finite size effect: the microbots are
not point masses, so a third dimensionless number λ = L/ℓ
is introduced to describe their length relative to that of the
beam. In the limit case where λ ≃ 0, the transition between
static and translation occurs at Fℓ2/B ≃ 10, in agreement
with Euler’s critical load for column ends with hinge-hinge
boundary conditions(25).

In contrast, for larger values of λ, the microbots exert
higher lever-arm torques onto the beam, diminishing the
critical buckling load (See SI Section E). This effect is evident
in the inset of Fig. 2(b)-(c), where theory curves and
experimental data alike are staggered according to the value
of λ. The fair agreement between data and model shows the
validity of our simplified model. Reality is far more complex,
as the twelve microbot legs repeatedly interact and exchange
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Fig. 2. Dynamics and characterization of bucklebots: (a) (i): Timelapse of a bucklebot with ∆t = 0.1s (scale bar=50 mm); (ii) Bucklebot dynamics obtained by integrating
our model (SI Section A-C). (b) Rescaled velocity V/Vf and (c) bending angle ψ versus rescaled force Fℓ2/B. The markers are color-coded by beam thicknesses. The
black line represents the predicted steady-state solution with λ ≃ 0 (SI Section D). Insets: same sets of experiment data color-coded by λ. Lines represent the steady-state
solutions when taking into account the finite-size effect (λ > 0). (d) Log-log plot of the mean squared displacement (MSD) versus time for a single microbot (blue), bucklebots
with Fℓ2/B ≃ 10, 40, 240, 600 (oranges from light to dark, respectively). Inset: estimated relative correlation time versus Fℓ2/B. The solid black line is an exponential fit
from the data points, and the dashed black line is the correlation threshold (10τ , with τ the single microbot reorientation time).

momentum with the substrate. The resulting center of friction
does not always align with the microbot center of mass.
Nevertheless, the so-called self-aligning torque(9, 15, 26) that
results from the discrepancy between those two points appears
to have a negligible effect on our system.

Having understood the shape and equilibrium velocity of
our bucklebots we move to describe their long-term behavior.
In Fig.2(d) we calculate their mean square displacement MSD
= ⟨|r(t) − r(0)|2⟩, where r(t) is the position vector at time
t, and ⟨·⟩ denotes the average value over of all recorded
trajectories. In Fig. 2(d), we plot the MSD of bucklebots
with rescaled forces ranging from 10 to 600 together with
that of single microbots. Single microbots show diffusive-like
behavior resembling a noisy walker(27) with a reorientation
time τ ≃ 1.3 s and long-term MSD ∝ t1.4. In contrast,
the bucklebots translate ballistically (MSD ∝ t2) in the
range of the time (>10τ) we probed. Bucklebots achieve
persistent directed motion despite the direction changes
typically observed in each unit. This result remains true

for 10 < Fℓ2/B < 600. However, past this upper limit, the
diffusive nature and inevitable differences between the two
microbots become noticeable in experiments. In such high-
force regimes, the beam’s internal resistance to bending is
negligible and thus insufficient to align with the motions
of the microbots. As evident from Fig. S4, bucklebots
with Fℓ2/B ≃ 800 form noticeably curved trajectories. At
even higher force regimes (Fℓ2/B ≃ 1000), the microbots
tend to buckle the beam to its second (and higher) buckling
modes, so the bucklebot rotates while slowly translating,
demonstrating slower movement and covering two orders
of magnitude smaller areas throughout the measurement
(see Fig. S4 and Movie S2). In the inset of Fig. 2(d), we
report the relative correlation time for bucklebots, defined
as the average time when the velocity vector first appears
opposite to its initial direction, rescaled by the reorientation
time of the single microbot. The inset shows the decay of
such time as Fℓ2/B increases. Initially above 100 times the
reorientation time of single microbots, this timescale drops
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Fig. 3. Bucklebots interacting with boundaries (a) Overalyed photographs of bucklebot with Fℓ2/B ≃ 60 approaching a flat wall with angle α, following the wall for some
time τr , and bouncing off with a reflection angle β (scale bar=50 mm). (b) Residence time, τr versus Fℓ2/B for three sets of α. Markers represent experiments (triangles:
α = π/6, squares: α = π/3, diamonds: α = 4π/9). Lines are the predictions from the self-oscillation model (see SI Section G). The error bars represent the standard
deviation of τr for each bucklebot. The inset shows β versus α. (c) Snapshots of passage through a slit of width δ = 6 cm. (i): a bucklebot with Fℓ2/B ≃ 140 and (ii) with
Fℓ2/B ≃ 13 (scale bar=50 mm). (d) Success of passage through the slits over ten launches, shown as a function of rescaled gap size δ/ℓ and Fℓ2/B. The experiment
data is color-coded by the success rate of passage, as shown by the right color bar. The dashed line indicates the equilibrium width of the free bucklebot (see SI Section D),
and the solid line corresponds to our model (SI Eqn. 27). The shaded gray area is our prediction for the region where the bucklebots are expected to bounce off from the slit.

below 10τ beyond Fℓ2/B ≃ 800, and eventually reaches
values close τ for Fℓ2/B ≃ 1000, confirming the negligible
influence of the beam in this range. In the following, we focus
on bucklebots with Fℓ2/B ranging from 10 to 800 and probe
their interactions with boundaries.

We first turn our attention to the interaction of a bucklebot
with a plane boundary (see Fig. 3(a)). The bucklebot
approaches the wall with an angle α and is found to follow
the wall for some residence time τr before reflecting off with
an angle β. In Fig. 3(b), we find that the reflection angles
β are consistently around π/2, irrespective of the value of
α. However, the residence time τr increases as α decreases.
Shallower approaches stay longer along the wall than a
direct hit. Additionally, we find that τr ∝

√
Fℓ2/B. To

rationalize such a scaling law, we observe that the microbot
in contact with the wall is typically slower than the other one,
presumably because of the added friction. As such, the faster
outer microbot overtakes its slower counterpart and forces the
beam to snap (See Movie S3). Inspired by such behavior, we
introduce the limit case scenario, where one single microbot
is attached to an elastic beam clamped on one end. We model

the ensuing oscillatory dynamics (See SI Eqns. 28-29) and
recover the scaling law observed in experiments, as indicated
by the solid lines in Fig. 3(b). Our model underpredicts our
data since, in our experiment, the bucklebot at the wall is
not clamped but instead slides, thereby delaying the beam’s
oscillation.

Next, we turn to study the passage of a bucklebot through
constrictions. Figure 3(c)(i) illustrates the bucklebot ability
to deform and pass a tight slit with opening δ < w, with w the
bucklebot width. If the beam is too stiff or the slit is too small,
the buckle-bot will bounce off the constriction (See Figure
3(c)(ii)). Those results are formalized in Figure 3(d), where
we report the probability of successful passage as a function of
the gap size rescaled by the beam length, δ/ℓ, and the rescaled
force, Fℓ2/B. As evident from the figure, larger slits, and
larger forces correlate with a higher probability of successful
passage. In red, we show the bucklebot equilibrium width w/ℓ.
The region below (resp. above) w/ℓ indicates slits smaller
(resp. larger) than the equilibrium width. All the trials above
this curve have a 100% chance of passing (we send our robots
straight onto the slit). However, a sizable region below the
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Fig. 4. Leveraging bucklebot emergent behaviors: (a) Traveled length over actual path length is plotted for bucklebots with a wide range of Fℓ2/B. Error bars show the
standard deviation of bucklebots’ traveled lengths. The solid blue line shows the benchmark for a single microbot and the shaded blue area is its error range. (b) The left
snapshot shows a probing experiment: a bucklebot with Fℓ2/B ≃ 560 is sent into a covered closed path. The schematic drawings show two paths (longer/shorter) the
bucklebots can probe and differentiate. In 14 and 25 seconds, the bucklebot reappears at the starting point of the shorter and longer path, respectively. (c) Snapshots of the
evolution of a confined room stored by a bucklebot with Fℓ2/B ≃ 380. The black circles denote isolated obstacles and the green boundaries correspond to formed clusters.
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curve also sees significant success. We rationalize this region
boundary of such success by considering the minimal length
the microbots can bend the structure, i.e., π

√
B/F , which

coincides with the width of the smallest slits that bucklebots
can pass.

Discussion

To summarize, our bucklebots, consisting of two self-propelled
microbots coupled by a soft elastic beam, achieve persistent
ballistic motions, follow walls, and squeeze their deformable
structures through narrow constrictions. The combination of
these unique capabilities allows them to perform tasks that
individual microbots cannot achieve, such as solving a maze
(Fig. 1(c)). In the remaining, we leverage these emergent
abilities and demonstrate that the bucklebots can accomplish
a broad range of tasks.

When sent into a closed path, a bucklebot will navigate
to the closed end, bounce back, and reappear at the starting
point (see Movie S4). In Fig. 4(a), we show that the
ratio between the length traveled by the robots rescaled
by the length of the path. While individual microbots
travel on average nearly 4 times more than necessary (with
nearly 100% variability between trials), we find that our
bucklebots converge to the optimal path as Fℓ2/B increases
(while dramatically reducing variability). In this limit, our

bucklebots can be used to probe and classify simple structures
(see Fig. 4(b), where the identification is achieved by
recording the entry and exit times).

Likewise, bucklebots differ from the behavior of individual
microbots when interacting with obstacles they can displace.
In Fig. 4(c), we report a few snapshots of a bucklebot confined
with initially dispersed cylindrical obstacles (N0 = 50). The
bucklebot (Fℓ2/B ≃ 380) pushes these light obstacles and
assembles them into clusters. The number of elements
saturates in about a minute. In Fig. 4(d), we report the
cluster formation dynamics for this bucklebot, together with
bucklebots with higher/lower rescaled forces, and contrast it
with the situation where two microbots freely travel into a
similar enclosure. In all cases, we observe an initial decrease
in dispersed elements, N , before reaching saturation. All
bucklebots store over 60% of obstacles into clusters, with
the lower force bucklebot storing nearly 80%, while two
microbots only store 38% of them. Decreasing the rescaled
force decreases the final number of clusters and allows a
faster initial decay, suggesting that low-force bucklebots can
perform such tasks more efficiently. However, bucklebots with
even lower rescaled forces (Fℓ2/B < 190) tend to get stuck at
the enclosure’s edges due to their rigidity. Further differences
arise when fitting the initial decay with a Smoluchowski-like
equation for coagulation(28), N(t) = N0/(1 + t/τc). The
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corresponding coagulation timescale τc indicates a faster
decay for the relatively low-force bucklebots (τc = 28.5 and
23.3s for Fℓ2/B ≃ 380 and 190, respectively) than for single
agents (τc = 49s). Fig. 4(e) shows the difference in size
distribution of the formed clusters. Single microbots form
small clusters with only one or two obstacles. In contrast,
bucklebots interact more gently with the clusters, preventing
damage and thus facilitating the formation of larger clusters.

We have shown that stochastic self-propelled active
particles coupled with nonlinear elasticity can be tamed,
forced into ballistic motion, and display various emergent
abilities as they interact with different boundaries. These
autonomous elasto-active structures carry out all these tasks
without directed control. Instead, they do so through
modulations of their morphology, which our elastic model
captures. This newly gained understanding can be leveraged
to achieve and control various tasks, such as maze navigation,
probing the length of a path, and collecting cylinders,
thereby demonstrating how morphological computing can
help enhance the capabilities of simple robotic systems. To
conclude, we note that we have developed our approach in
idealized laboratory settings. Further work is needed to
generalize these ideas to real-world environments, e.g., in
rough terrain, and integrate such morphological computation
into strategies that use higher-order external controls. From
a formal standpoint, we have focused on beam-dominated
regimes. Exploring softer systems where activity plays a
more prominent role would be an exciting continuation of
the present work where subtle effects, e.g., the self-aligning
torque(26), would need to be accounted for.

Materials and Methods

Bucklebot design and manufacturing. Our active agents are com-
mercially available battery-powered vibrating microbots (Hexbug
Nano). Each microbot has a length of 45 mm, a width of 15 mm, a
height of 15 mm, and a mass of 7.5 g. Its motion is generated from
an internal vibration of a rotating motor transmitted to 12 soft
rubber legs to achieve a speed of approximately 154 ± 15 mm/s.
The beams are cut from shim stocks using a laser cutter (Epilog
Helix-60 Laser engraver). The shim stocks are made of polyester
with an elastic modulus of 2.9 GPa. The thickness and length
of such elastic beams are well calibrated to ensure a variation of
bending stiffness used in experiments. The collar that is used to
connect microbots with elastic beams is designed by Rhino and 3D

printed by Prusa i3 printer using poly-lactic acid (PLA) (density
ρ = 1.2 g/cm3 and elastic modulus E = 5 GPa). The beams are
clamped to the collars using Dodge 0-80 .115 inch length inserts
and corresponding screws.

Experimental setups and bucklebot tracking. The active force
exerted by the microbot is estimated by measuring its pushing force
via an Instron 10N load cell. The active force is measured to be
20 ± 3 mN. We choose the microbot pairs with approximately
the same free velocity and active force to ensure experiment
consistency. It is worth noting that the microbot’s manufacturing
defects and component variabilities give rise to its biased motion.
Experimentally, a biased microbot performs a circular motion,
whose radius is given by R = vf /ωb, where ωb is the angular
rotation rate. We adopt the criteria from Baconnier et al. (29)
and choose the microbots that are not noticeably biased. All
experiments are carried out on an acrylic surface. For bucklebots,
we change the two microbots’ batteries simultaneously to maintain
their same relative battery level throughout the experiments. To

capture the motion of the microbots and the bucklebots, a Canon
EOS 80D camera is held by a frame looking down at a large white
cast acrylic sheet from McMaster-Carr on top of the lab table. To
track these robots while effectively differentiating each individual
from one another, we use binary square fiducial markers, known as
ArUco markers, which are synthetic square markers composed of a
wide black border and an inner binary matrix that determines its
identifier (id). We print out markers with different IDs and attach
them to each microbot present in the experiments. With Python’s
Open Source Computer Vision (OpenCV) package(30), we post-
process the recorded videos by tracking the attached markers’
position data (x, y, t) with time. For example, our code detects the
position (x, y) of the marker’s four corners. We calculate the mid-
point positions of opposite edges on each marker, which allows us
to obtain the orientation vector of the microbots. In addition, the
velocity of a single microbot is measured by multiplying its position
displacement of consecutive frames with frames per second (fps),
which allows us to further calculate the mean velocity by averaging
the marker’s velocities over time. We estimate a bucklebot’s center
of mass position as the line’s center point that connects the two
marker centers.
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18. C Scholz, M Engel, T Pöschel, Rotating robots move collectively and self-organize. Nat.
Commun. 9, 931 (2018) Number: 1 Publisher: Nature Publishing Group.

19. JF Boudet, et al., Effective temperature and dissipation of a gas of active particles probed
by the vibrations of a flexible membrane. Phys. Rev. Res. 4, L042006 (2022) Publisher:

6 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Xi et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

American Physical Society.
20. G DiBari, et al., Using Hexbugs™ to model gas pressure and electrical conduction: A

pandemic-inspired distance lab. Am. J. Phys. 90, 817–825 (2022).
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