| 1  |                                                                                             |
|----|---------------------------------------------------------------------------------------------|
| 2  | Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across              |
| 3  | Microbial Communities and their Enumeration During 1,4-Dioxane Biodegradation               |
| 4  |                                                                                             |
| 5  |                                                                                             |
| 6  |                                                                                             |
| 7  |                                                                                             |
| 8  | Zohre Eshghdoostkhatami and Alison M. Cupples*                                              |
| 9  |                                                                                             |
| 10 |                                                                                             |
| 11 |                                                                                             |
| 12 |                                                                                             |
| 13 |                                                                                             |
| 14 | Department of Civil and Environmental Engineering, Michigan State University, East Lansing, |
| 15 | Michigan, USA                                                                               |
| 16 | ORCID record: https://orcid.org/0009-0006-5508-1102                                         |
| 17 |                                                                                             |
| 18 |                                                                                             |
| 19 | *Corresponding Author:                                                                      |
| 20 | Alison M. Cupples                                                                           |
| 21 | A135, 1449 Engineering Research Court, Michigan State University, East Lansing, MI 48824,   |
| 22 | cupplesa@msu.edu                                                                            |
| 23 |                                                                                             |
| 24 |                                                                                             |
| 25 |                                                                                             |
| 26 |                                                                                             |
| 27 |                                                                                             |
| 28 |                                                                                             |
| 29 |                                                                                             |
| 30 |                                                                                             |
| 31 |                                                                                             |

### **Abstract** 32 1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent 33 34 contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. 35 An important step towards this involves examining the occurrence of the functional genes 36 associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers 37 for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, 38 impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by 39 quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the 40 genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane 41 monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To 42 investigate this further, qPCR primers and probes were designed, and the assays were used to 43 enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA 44 were detected in all three, while gene copies of *Rhodococcus jostii* RHA1 prmA were detected in 45 two of the three sample types (except impacted site sediment). Further, there was a statistically 46 47 significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-48 49 dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of *Rhodococcus* associated *prmA*, compared to other 1,4-dioxane degrading 50 associated biomarkers, in three different microbial communities. Also, the newly designed qPCR 51 assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed 52 53 communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach. 54 55 56 **Keywords** 1,4-dioxane, propane monooxygenases, qPCR, Rhodococcus jostii RHA1 prmA, Rhodococcus 57 sp. RR1 prmA 58 59 60

61

#### 1. Introduction

- 64 1,4-Dioxane, a likely human carcinogen, has been detected at many chlorinated solvents
- contaminated sites (particularly 1,1,1-trichloroethane) because of its widespread use as a
- stabilizer (Adamson et al., 2015, Adamson et al., 2014, EPA, 2013, EPA, 2014, Mohr et al.,
- 67 2010, Mohr, 2001). There is no federal 1,4-dioxane drinking water Maximum Contaminant
- 68 Level, however, federal screening levels, state health-based drinking water guidance values and
- 69 federal occupational exposure limits have been established (EPA, 2014). A major challenge for
- 70 1,4-dioxane remediation concerns chemical characteristics that result in migration and
- 71 persistence (Adamson et al., 2015, Mohr et al., 2010). Due to its physical and chemical
- characteristics, 1,4-dioxane is not effectively removed by conventional groundwater treatment
- 73 technologies such as air stripping, carbon adsorption, air sparging or in-well stripping (Chiang et
- al., 2016, Mohr, 2010, Zenker et al., 2003). Ex-situ oxidation methods including ozone and
- 75 hydrogen peroxide (Adams et al., 1994) or hydrogen peroxide and ultraviolet light (Stefan et al.,
- 76 1998) have been commercially applied, but can be costly at high concentrations (Steffan et al.,
- 77 2007). Full-scale treatment relying on aerobic 1,4-dioxane biodegradation has been effective
- 78 (Bell et al., 2022). In contrast, there is limited evidence for anaerobic 1,4-dioxane biodegradation
- 79 (Ramalingam et al., 2020).
- 80 In light of the potential to use bioremediation, many researchers have identified the
- 81 microorganisms responsible for 1,4-dioxane metabolism and co-metabolism. A number of
- microorganisms can use 1,4-dioxane as a sole source for carbon and energy, including
- 83 Pseudonocardia dioxanivorans CB1190 (Mahendra et al., 2005, Parales et al., 1994),
- 84 Pseudonocardia benzenivorans B5 (Mahendra et al., 2006), Rhodococcus ruber 219 (Bernhardt
- et al., 1991), Pseudonocardia dioxanivorans D17, Afipia broomeae D1 (Isaka et al., 2016, Sei et
- al., 2013), Xanthobacter flavus DT8 (Chen et al., 2016) and Mycobacterium sp. PH-06 (Kim et
- al., 2009). Rhodanobacter AYS5 can use 1,4-dioxane as a sole carbon source (Pugazhendi et al.,
- 88 2015). Other strains, such as *Pseudonocardia* sp. strain ENV478, *Mycobacterium vaccae* JOB5
- and *Rhodococcus jostii* RHA1 can degrade 1,4-dioxane following growth on other carbon
- 90 sources (Burback et al., 1993, Hand et al., 2015, Vainberg et al., 2006). Co-metabolic 1,4-
- 91 dioxane degradation, with growth supporting substrates such as tetrahydrofuran, propane,

- toluene or ethanol, has previously been observed (Burback et al., 1993, Hand et al., 2015,
- Solution States Williams 18 Wi
- There has also been significant progress towards identifying the functional genes associated with
- 95 1,4-dioxane biodegradation (Deng et al., 2018, Gedalanga et al., 2014, Hatzinger et al., 2017, He
- 96 et al., 2017, Li et al., 2017, Ramalingam et al., 2020, Rolston et al., 2019). Many researchers
- 97 have noted the importance of soluble di-iron monooxygenases (SDIMOs) for the transformation
- 98 of 1,4-dioxane (Deng et al., 2018, Deng et al., 2020, Gedalanga et al., 2014, Li et al., 2014,
- 99 Yamamoto et al., 2018). In general, SDIMOs have been divided into six groups (Coleman et al.,
- 2006, He et al., 2017). Given the importance of biomarkers for understanding 1,4-dioxane
- removal, a number of quantitative PCR (qPCR) or reverse transcriptase qPCR (RT-qPCR)
- methods have been developed to enumerate their occurrence in environmental samples. For
- example, a qPCR assay was designed to target the large hydroxylase subunit of
- tetrahydrofuran/dioxane monooxygenases (thmA/dxmA) using gene alignments from
- 105 Pseudonocardia dioxanivorans CB1190, Pseudonocardia tetrahydrofuranoxydans K1,
- 106 Pseudonocardia sp. ENV478 and Rhodococcus sp. YYL (Li et al., 2014) (group 5 SDIMOs).
- Assays have also been developed for thmB/dxmB from Pseudonocardia dioxanivorans CB1190
- 108 (Gedalanga et al., 2014), thmC from Pseudonocardia sp. strain D17 (Yamamoto et al., 2018),
- prmA (propane monooxygenase, prmABCD gene cluster, group 6 SDIMO) from Mycobacterium
- dioxanotrophicus PH-06 (Deng et al., 2018) and tmoA (toluene monooxygenase, tmoABCDEF
- gene cluster, group 2 SDIMO) from *Azoarcus* sp. strain DD4 (Deng et al., 2020). Assays have
- also been designed towards the genes encoding propane monooxygenase from *Rhodococcus*
- jostii RHA1 prmA and Rhodococcus sp. RR1 prmA (group 5 SDIMOs) to examine
- nitrosodimethylamine (NDMA) biodegradation (Sharp et al., 2010, Sharp et al., 2007).
- Here, the overall objectives were 1) to determine which 1,4-dioxane degrading functional genes
- were present in three mixed microbial communities and 2) to develop qPCR assays to determine
- their abundance. Three different mixed microbial communities were investigated to provide a
- potentially diverse set of biomarkers. The newly designed qPCR assays were used to quantify the
- identified functional genes during 1,4-dioxane biodegradation in microcosms inoculated with
- sediment from an impacted site. The newly developed assays will be beneficial to those
- investigating the potential for 1,4-dioxane bioremediation at contaminated sites.

#### 2. Methods

122

152

2.1. Incubation Conditions and Analytical Methods 123 124 The biodegradation of 1,4-dioxane, with and without the addition of 1-propanol, was examined in sediment from an impacted site in California (West Coast Naval Station). 1-Propanol was 125 selected as an amendment because previous research indicated this substrate enhanced 1,4-126 dioxane removal (Deng et al., 2022). Microcosms were established in triplicate, with the 127 following treatments: 1) with 1,4-dioxane and 1-propanol, 2) with 1,4-dioxane and without 1-128 propanol, 3) without 1,4-dioxane and without 1-propanol, and 4) without 1,4-dioxane and with 1-129 propanol. Also, for the treatments amended with 1,4-dioxane, three abiotic controls were 130 included (autoclaved consequently for three days). The microcosms were set up in 160 mL 131 serum bottles with 10 grams of sediment and 30 mL of media. The media recipe was as 132 previously reported (Parales et al., 1994), but without nitrilotriacetic acid, included 100 mL of 133 buffer stock [K<sub>2</sub>HPO<sub>4</sub> (32.4 g/L), KH<sub>2</sub>PO<sub>4</sub> (10 g/L), NH<sub>4</sub>Cl (20 g/L)], 100 mL of trace metal 134 stock [MgSO<sub>4</sub>·7H<sub>2</sub>O (2 g/L), FeSO<sub>4</sub>·7H<sub>2</sub>O (0.12 g/L), MnSO<sub>4</sub>·H<sub>2</sub>O (0.03 g/L), ZnSO<sub>4</sub>·7H<sub>2</sub>O 135 (0.03 g/L), and CoCl<sub>2</sub>·6H<sub>2</sub>O (0.01 g/L)] and water to a final volume of 1L, then the pH was 136 adjusted to 7.4. Both 1,4 dioxane (99.8%) and 1-propanol were purchased from Sigma-Aldrich 137 (MO, USA). The final concentrations of 1-propanol and 1,4-dioxane were 120 mg/L and 3 mg/L, 138 139 respectively. The microcosms were incubated at room temperature, sealed with rubber seal and aluminum crimp cap and set on a shaker (110 rpm) at 21°C. The microcosms were opened for 140 one hour every five days to maintain aerobic conditions. Liquid samples (0.7 mL) were 141 withdrawn (sterilized disposable needles and a 1 mL syringe), filtered (0.22 mm, 4 mm nylon 142 syringe filter, Thomas Scientific, New Jersey) and then injected (1 µL) into a gas chromatograph 143 with a flame ionization detector (Hewlett Packard 5890) equipped with a capillary column 144 145 (Restek, Stabilwax-DB, 30 m, 0.53 mm ID, 1 m) (Myers et al., 2018). Nitrogen was the carrier gas (purity > 99%). The injector temperature was maintained at 220°C and the detector 146 temperature was maintained at 250°C. Initially, the oven's temperature was programmed at 80°C 147 for one minute, then it incrementally increased to 140°C with a ramp of 20°C/minute. The 148 retention time was approximately 1.5 min. 149 150 151

### 2.2. DNA Extraction and Amplicon Sequencing 153 DNA was extracted (triplicate DNA extracts from each microcosm) from the impacted sediment 154 microcosms before and after 1,4-dioxane biodegradation in all treatments (except the abiotic 155 controls) (1 g dry or wet weight) using the DNA extraction kit (DNeasy PowerLyzer PowerSoil 156 Kit, Mo Bio, USA) according to the manual protocol. DNA was also extracted from two other 157 sample types, not previously exposed to 1,4-dioxane. One sample was agricultural soil was 158 collected from six replicate plots of the Main Cropping System Experiment at the Kellogg 159 Biological Station Long-Term Ecological Research (KBS LTER), in southwest Michigan. More 160 details can be found at https://lter.kbs.msu.edu/research/long-term-experiments/main-cropping-161 system-experiment. The other sample, wetland sediments, were collected from the surface (top 5 162 inches) of Lake Lansing (Mi). The concentration of DNA in each extract was quantified using 163 the Quant-iT<sup>TM</sup> dsDNA High-Sensitivity Assay Kit. For the DNA extracts from the three sample 164 types (site sediment, agricultural soil, wetland sediment), one DNA extract for each was 165 submitted in triplicate for sequencing and the other extracts were used for qPCR (as described 166 167 below). The DNA extracts from the 1,4-dioxane biodegradation experiment were only subject to qPCR. 168 169 170 For sequencing, a two-step library preparation first involved PCR with target-specific primers with tags on the 5 prime ends (Fluidigm common oligos CS1/CS2) to facilitate the second PCR 171 172 for barcoding. The target-specific primers were two degenerate primers (NVC57 and NVC66, target size 420 bp, Supplementary Table 1) previously designed to target conserved regions in 173 174 the SDIMO alpha subunit gene (Coleman et al., 2006). The second PCR step, as well as the sequencing itself, was performed by the Genomics Core at the Research Technology Support 175 176 Facility at Michigan State University (MSU). For the second PCR, triplicate PCR reactions were performed for each, to ensure enough total product was available for the next step. Amplicons 177 178 were batch-normalized using Invitrogen SequalPrep DNA Normalization plates and recovered product was pooled. The pool was QC'd and quantified using a combination of Qubit dsDNA 179 180 HS, Agilent 4200 TapeStation HS DNA1000 and Invitrogen Collibri Library Quantification qPCR assays. This pool was loaded onto one (1) Illumina MiSeq v2 Standard flow cell and 181 sequencing was carried out in a 2x250bp paired end format using a MiSeq v2 500 cycle reagent 182 cartridge. Custom sequencing and index primers complementary to the Fluidigm CS1 and CS2 183

oligomers were added to appropriate wells of the reagent cartridge. Base calling was done by
Illumina Real Time Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and
converted to FastQ format with Illumina Bcl2fastq v2.20.0.

## 2.3. Sequencing Data Processing and Analysis

The sequencing files were processed using usearchv11 (Edgar, 2010) on the High Performance Computing Cluster (HPCC) at MSU. This involved an inspection of the quality data and using the commands -fastx\_info and fastq\_eestats2. Sequencing triplicates were pooled using -fastq\_mergepairs. Quality filtering, with a maximum expected error threshold set to 1.0, was achieved using -fastq\_filter. The sequences were then dereplicated using the -fastx\_uniques command. The cluster\_otus command was used to perform 97% operational taxonomic units (OTU) clustering using the UPARSE-OTU (Edgar, 2013) algorithm and to filter chimeras. OTU tables with OTU abundance values were created using the -otutab command. The sequences of twelve genes previously associated with 1,4-dioxane metabolism and co-metabolism, as previously summarized (He et al., 2017) were obtained from NCBI. Each sequence was then uploaded for a nucleotide-nucleotide blastn search to find highly similar sequences to create a blast database for each (Altschul et al., 1990). The resulting databases were filtered using a percent identity and query length threshold of greater than or equal to 95% to ensure only highly similar sequences were selected. The occurrence of each gene in the files generated by usearch were determined using blastn (BLAST/2.10.0-Linux\_x86\_64 on HPCC).

The results from the blastn search for the twelve target genes were filtered to include matches of > 90% sequence identity (the sequence identity was reduced to capture a wide diversity of gene matches) and alignment length of more than 400 bps. The number of OTUs aligning to each gene for each sample was determined and the data were used to construct the phylogenetic trees discussed below. As only two of the twelve genes (*Rhodococcus jostii* RH1 *prmA* and *Rhodococcus* sp. RR1 *prmA*) were detected in the three sample types, only two trees were produced. A blastn search was also conducted against the nt database from NCBI. For this, the formatted database was downloaded to the HPCC and the resulting files were analyzed with R

| 215 | (Version 4.2.1) (R Core Team, 2018) in RStudio (Version 2022.12.0) (RStudio_Team, 2020).          |
|-----|---------------------------------------------------------------------------------------------------|
| 216 | The data were filtered using a >95% sequence identity and an alignment length of more than 400    |
| 217 | bps. The data were analyzed (in RStudio) to determine which gene matches aligned to the           |
| 218 | greatest number of OTUs. The data were ranked and the sequences of the twenty most abundant       |
| 219 | were collected for inclusion in the phylogenetic trees. The protein ID numbers for each were      |
| 220 | obtained from NCBI. The sequences of the most abundant OTUs were also obtained from the           |
| 221 | blastn output file for inclusion into the phylogenetic trees.                                     |
| 222 |                                                                                                   |
| 223 | The output files from the blastn analysis of the twelve genes and the nt database were            |
| 224 | downloaded from the HPCC directory for data manipulation with R (Version 4.2.1) (R Core           |
| 225 | Team, 2018) in RStudio (Version 2022.12.0) (RStudio_Team, 2020). For this, the following R        |
| 226 | packages were utilized: tidyverse (Version 1.3.1) (Wickham et al., 2019), ampir (Version 1.1.0)   |
| 227 | (Fingerhut L. et al., 2021), writexl (Version 1.4.2) (Ooms, 2023), readxl (Version 1.4.2)         |
| 228 | (Wickham et al., 2023), writexl (Ooms, 2023), ggplot2 (Wickham, 2016) and phylotools              |
| 229 | (Version 0.2.2) (Zhang, 2017).                                                                    |
| 230 |                                                                                                   |
| 231 | 2.4. Phylogenetic Trees                                                                           |
| 232 | Sequences were submitted for MAFFT (multiple alignment using fast Fourier transform)              |
| 233 | alignment using an online server (https://mafft.cbrc.jp/alignment/server/) (Katoh et al., 2019)   |
| 234 | (Version 7). The alignments (obtained using the Neighbor-Joining method and Jukes-Cantor          |
| 235 | model) were exported in Newick format. The downloaded tree files were uploaded to the             |
| 236 | Interactive Tree of Life (https://itol.embl.de) (Letunic et al., 2021) (Version 6.7.2). OTU       |
| 237 | abundance values were added to the trees using the datasets function called multi value bar chart |
| 238 | Presence and absence values were added using the datasets function called binary.                 |
| 239 |                                                                                                   |
| 240 | 2.5. Quantitative PCR                                                                             |
| 241 | Gene copies of Rhodococcus sp. RR1 prmA, Rhodococcus jostii prmA, Mycobacterium                   |
| 242 | dioxanotrophicus PH06 prmA and the Bacterial 16S rRNA gene were determined using qPCR.            |
| 243 | Although Mycobacterium dioxanotrophicus PH06 prmA was not detected in the amplicon                |
| 244 | sequencing data, it was investigated with qPCR as it represents another propane monooxygenase     |
| 245 | associated with 1,4-dioxane biodegradation (He et al., 2017). Gene copies were investigated in    |

246 the three sample types (impacted site sediment, agricultural soil and wetland sediment) as well as 247 before and after 1,4-dioxane biodegradation in the impacted site inoculated microcosms, in all 248 treatments. Both previously designed primers/probes and newly designed primers/probe were used (Supplementary Table 1). Primers and probes for the two *Rhodococcus prmA* gene targets 249 were designed using Primer-BLAST (Ye et al., 2012) and the PrimerQuest™ Tool from 250 Integrated DNA Technologies. The specificities of the primers and probe were investigated using 251 252 blastn (Altschul et al., 1990). For this, sequences with more than 95% sequence identity to the standard plasmid insert for RR1 prmA were downloaded from blastn and were then aligned in 253 MEGA X (version 10.1.8) (Kumar et al., 2018) to determine the number of mismatches to the 254 primers and probe. In addition, seven sequences previously classified in the same group as 255 Rhodococcus sp. RR1 prmA (group 5 large hydroxylase of SDIMO) (He et al., 2017, Li et al., 256 2014) were also aligned to the target sequences. 257 258 Quantitative PCR was conducted with the CFX96<sup>TM</sup> Real-Time PCR System (Bio-Rad, Hercules, 259 CA) with 20 µL total volume containing 10 µL PrimeTime<sup>TM</sup> Gene Expression Master Mix, 0.3 260 μM of each primer (IDT Integrated DNA Technologies, Coralville, IA), 0.2 μg/mL bovine serum 261 albumin (Thermo Fisher Scientific), 0.15 μM of the probe (IDT Integrated Technologies), 6.4 μL 262 263 of PCR grade water (IDT Integrated DNA Technologies), and 2 µL DNA extract or PCR grade water (for the negative controls). BSA was added as it has been shown to mitigate inhibition in 264 265 environmental samples (Gedalanga et al., 2014, Kreader, 1996, Wang et al., 2007). The thermal cycler program was an initial activation at 95°C for 10 minutes, followed by 40 cycles of 266 267 denaturation at 95°C for 15 seconds, then annealing at 60°C for 1 minute. Each target gene was incorporated into a plasmid for use as qPCR standards (GenScript Biotech Corporation). Each 268 269 qPCR assay was performed in triplicate with DNA templates, no template controls (NTCs), and 5-fold serial dilutions of the standards to create calibration curves. DNA extract concentrations 270 (Supplementary Table 2), as well as data concerning the qPCR assays (e.g. dilution range, qPCR 271 efficiency, as suggested by MIQE guidelines) (Bustin et al., 2009) (Supplementary Table 3) has 272 273 been summarized.

274

275

276

### 3. Results

### 3.1. SDIMO Amplicon Sequencing

| 277 | The BLAST analysis of the amplicon sequencing data detected only two of the twelve genes               |
|-----|--------------------------------------------------------------------------------------------------------|
| 278 | previously associated (He et al., 2017) with 1,4-dioxane metabolism or co-metabolism (Figure           |
| 279 | 1). Both genes, detected in all three sample types, were associated with <i>Rhodococcus</i> species,   |
| 280 | namely Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA. The alignments of the                |
| 281 | two Rhodococcus prmA genes were further investigated (Figure 2). The largest number of OTUs            |
| 282 | for the Rhodococcus jostii RHA1 prmA database aligned with Rhodococcus jostii RHA1 prmA                |
| 283 | and functional genes associated with Rhodococcus imtechensis strain RKJ300 and Rhodococcus             |
| 284 | sp. SMV152 (Figure 2A). The OTU alignments to the <i>Rhodococcus</i> sp. RR1 <i>prmA</i> database were |
| 285 | primarily to Rhodococcus sp. RR1 prmA and functional genes associated with Rhodococcus sp.             |
| 286 | 11-3, Rhodococcus sp. DMU1, Rhodococcus sp. M8, Rhodococcus sp. PSBB049, Rhodococcus                   |
| 287 | aetherivorans isolate PSBB011, Rhodococcus sp. PSBB066, Rhodococcus aetherivorans strain               |
| 288 | N1 and Rhodococcus sp. WB1 (Figure 2B). For both alignments, the OTUs from the wetland                 |
| 289 | soils illustrated the largest number of alignments and the impacted site samples illustrated the       |
| 290 | lowest number.                                                                                         |
|     |                                                                                                        |

291

292

# 3.2. Quantitative PCR Assay Design

- Based on the amplicon sequencing results, two qPCR assays were designed towards
- 294 Rhodococcus sp. RR1 prmA (hereafter called RR1 prmA) and Rhodococcus jostii RHA1 prmA
- 295 (hereafter called RHA1 prmA) (Figure 3). The RR1 prmA primers and probe illustrated five or
- 296 more mismatches to group five large hydroxylases of SDIMOs (Figure 3B). One sequence
- matched the forward primer completely, however, had five mismatches to the probe and reverse
- 298 primer. The RHA1 prmA primers and probe illustrated two or more mismatches to this group of
- sequences (Figure 3C). The closest match was to *Gordonia* sp. TY-5 *prmA* with two mismatches
- in the forward primer. The newly designed primers and probe exhibited between 29 and 30
- mismatches (RR1 prmA assay) and between 26 and 28 mismatches (RHA1 prmA assay) to
- 302 Pseudonocardia dioxanivorans CB1190 thmA, Pseudonocardia tetrahydrofuranoxydans K1
- thmA and Pseudonocardia sp. ENV478 thmA and Rhodococcus sp. YYL thmA.

304

305

## 3.3. Quantitative PCR Results in Three Sample Types

- 306 Copy numbers for the three target genes, as well as the Bacterial 16S rRNA gene, were
- determined in DNA extracted from the three sample types. Only two of the three functional

genes were detected (Figure 4). Gene copies from the RR1 prmA assay were highest for the 308 309 agricultural soil samples, followed by the wetland samples, then the impacted site samples. No 310 amplification was observed from the RHA1 prmA assay in the impacted site samples. However, amplification occurred in the other two sample types, with the agricultural soil producing the 311 highest levels. Notably, gene copies were higher for RR1 prmA assay compared to the RHA1 312 prmA assay. Mycobacterium dioxanotrophicus PH06 prmA was only detected in two DNA 313 extracts (each in one of three replicates) with cycle threshold values below the lowest plasmid 314 standard. Copy numbers of the Bacterial 16S rRNA gene were similar for the agricultural soil 315 and wetland soil, but lower for the impacted site samples (Figure 4). 316 317 3.4. Quantitative PCR Following 1,4-Dioxane Biodegradation 318 The biodegradation of 1,4-dioxane appeared to occur in two phases in the impacted site 319 microcosm study, with an initial lag phase followed by a rapid decline (Figure 5). This pattern is 320 perhaps suggestive of growth-related biodegradation. From the data collected, the addition of 1-321 propanol did not appear to impact removal trends. Gene copies of *Rhodococcus* sp. RR1 prmA, 322 323 Rhodococcus jostii RHA1 prmA, Mycobacterium dioxanotrophicus PH06 prmA and the Bacterial 16S rRNA gene were investigated following 1,4-dioxane biodegradation, for each treatment. 324 325 Only the RR1 prmA and Bacterial 16S rRNA assays produced cycle thresholds above the lowest 326 327 plasmid standards. When the gene ratios (prmA/16S rRNA) were determined for each treatment, several interesting trends were observed (p < 0.05, multiple pairwise comparisons of means using 328 329 least significant differences test) (Figure 6). There was a statistically significant increase in the gene ratio between the initial conditions and the microcosms amended with 1,4-dioxane (no 1-330 331 propanol), a trend suggestive of growth related 1,4-dioxane biodegradation. Other trends 332 concerned the differences between the microcosms amended with and without 1,4-dioxane. Specifically, the microcosms amended with 1-propanol and 1,4-dioxane illustrated significantly 333 higher gene ratios compared to those amended with 1-propanol, but without 1,4-dioxane. A 334 similar trend (higher gene ratio) was noted for the microcosms amended with 1,4-dioxane, 335 336 without 1-propanol and those amended without 1,4-dioxane or 1-propanol. Further, the gene ratios of both sets of microcosms without 1,4-dioxane were not statistically significantly 337 different from the ratios at the initial conditions. The gene copy numbers for both RR1 prmA and 338

339 Bacterial 16S rRNA gene assays have also been summarized (Supplementary Figure 1). When detected (one or two extracts, in only one of three replicates), cycle threshold values for both 340 Rhodococcus jostii RHA1 prmA and Mycobacterium dioxanotrophicus PH06 prmA after 1,4-341 dioxane biodegradation in the impacted site microcosm study were at or below the lowest 342 plasmid standard. 343 344 3.4. Amplicon Sequencing Matches to nt Database 345 346 The closest matches from the nt database to the amplicon sequences from the impacted site sediment primarily included those classifying as propane monooxygenase hydroxylase large 347 subunit from Mycobacterium hodleri strain B, aromatic/alkene/methane monooxygenase 348 hydroxylase/oxygenase alpha subunits from *Bradyrhizobium japonicum*, B. barranii and B. 349 septentrionale as well as those classifying as SDIMOs from enrichment culture clones (Figure 350 7). The closest matches to the amplicon sequences from the wetland sediment primarily included 351 those classifying as methane monooxygenases from *Rhodococcus opacus* strains. Similar to the 352 impacted site, some sequences classified similar to SDIMOs from enrichment culture clones 353 354 (Figure 8). Functional genes associated with *Mycobacterium hodleri* strain B, *Mycobacterium* sp. JS623 and Methylibium sp. Pch-M were also among the top alignments for the wetland 355 356 amplicons. The largest number of matches were found for propane monooxygenase hydroxylase large subunit from Mycobacterium hodleri strain B. The trend for the agricultural soil amplicons 357 358 was similar to that from the impacted site, including similar Bradyrhizobium species and enrichment clones (Figure 9). The agricultural soil amplicons also illustrated matches to 359 360 functional genes from *Mycobacterium hodleri* strain B (propane monooxygenase hydroxylase large subunit) and Amycolatopsis sp. DAM 110486 (aromatic/alkene/methane 361 362 hydroxylase/oxygenase subunit alpha monooxygenase). 363 4. Discussion 364 An understanding of the *in-situ* capabilities of bacteria to biodegrade 1,4-dioxane at 365 contaminated sites is important for effective and timely remediation. Towards this goal, the 366 current study utilized monoxygenase targeted amplicon based sequencing to investigate 1,4-367 dioxane associated functional genes in three mixed microbial communities. Following the 368 369 detection of two genes (*Rhodococcus prmA*, group 5 SDIMOs) previously associated with 1,4370 dioxane biodegradation (Hand et al., 2015, Mahendra et al., 2006), qPCR assays were developed. 371 These genes were selected not only because of their detection in the current work, but also 372 because other recent sequencing studies also indicated their common occurrence in mixed communities during 1,4-dioxane biodegradation (Inoue et al., 2022, Inoue et al., 2020, 373 374 Ramalingam et al., 2020). New primers and probes were designed towards these biomarkers as previous assays targeting these genes generated a short gene product (64 bp) or did not include a 375 probe (Supplementary Table 4) (Sharp et al., 2010, Sharp et al., 2007). Also, previous assays 376 were tested during NDMA biodegradation (Sharp et al., 2010, Sharp et al., 2007). 377 378 Other researchers have also investigated biomarkers for 1,4-dioxane biodegradation using the 379 same monooxygenase targeted degenerate primers (NVC57, NVC66) (Coleman et al., 2006) 380 used in the current study. For example, using all four SDIMO degenerate primers (NVC65, 381 NVC58, NVC57, NVC66) (Coleman et al., 2006) on two 1,4-dioxane degrading consortia, the 382 majority of SDIMO genes in one consortia corresponded to group 6 SDIMOs, while the majority 383 in the other consortia aligned with both groups 5 and 6 (He et al., 2018). When the same primers 384 385 (NVC57, NVC66) were used on 1,4-dioxane degrading enrichment cultures from landfill leachate, the resulting OTUs were classified into three group 5 SDIMOs subclusters (Inoue et al., 386 387 2020). These included subcluster A containing *prm/mmo* genes in Gram-positive bacteria (e.g. Pseudonocardia sp. CB1190, Rhodococcus sp. RR1), subcluster B containing prm/mmo genes in 388 389 Gram-negative bacteria (e.g. Methylibium sp. PM1, Rhodobacter sp. MBTLJ-13), and subcluster C containing thm/dxm genes (e.g. Rhodococcus sp. T1, Rhodococcus sp. YYL) (Inoue et al., 390 391 2020). They reported the dominance of group 5 SDIMO subcluster C and smaller proportions of group 5 subclusters A and B in 1,4-dioxane and tetrahydrofuran enrichment cultures (Inoue et 392 393 al., 2020). The same group classified OTUs, this time from a 1,4-dioxane enrichment culture 394 inoculated with activated sludge, within group 5 subcluster A, aligning close to *Rhodococcus* 395 jostii RHA1 prmA, Rhodococcus sp. RR1 prmA and Gordonia sp. TY-5 prmA (Inoue et al., 2022). 396 397 From the SDIMO degenerate primer amplicon based studies discussed above, it appears the 398 genes encoding for group 5 SDIMOs are present and/or dominant in many 1,4-dioxane degrading 399 400 communities. These results are consistent with the current study. Specifically, from the

401 comparison of OTUs from all three sample types to the twelve genes previously associated with 1,4-dioxane metabolism and co-metabolism (He, Mathieu, Yang, Yu, da Silva, et al., 2017), 402 403 only those aligning with Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA were detected. These trends are also consistent with previous research in our group (using shotgun 404 sequencing) that reported the importance of *Rhodococcus* sp. RR1 prmA and Rhodococcus jostii 405 RHA1 prmA over other known 1,4-dioxane degrading genes in 1,4-dioxane degrading mixed 406 communities inoculated with uncontaminated and contaminated soils (Ramalingam et al., 2020). 407 408 The qPCR assays developed in the current study add to the toolbox of qPCR or reverse 409 transcriptase (RT) qPCR assays already developed for other 1,4-dioxane degrading functional 410 genes. A summary of these qPCR assays has been provided (Supplementary Table 4). The 411 summary includes a qPCR assay targeting the large hydroxylase subunit of 412 tetrahydrofuran/dioxane monooxygenases, developed using gene alignments from 413 Pseudonocardia dioxanivorans CB1190, Pseudonocardia tetrahydrofuranoxydans K1, 414 Pseudonocardia sp. ENV478 and Rhodococcus sp. YYL (Li et al., 2014) (group 5 SDIMOs). 415 416 The researchers observed an increase in thmA/dxmA copy numbers during 1,4-dioxane biodegradation in groundwater samples from five different dioxane-impacted sites, indicating 417 418 growth of 1,4-dioxane degraders. Another qPCR assay targets dxmB/thmB within the gene cluster of the metabolic 1,4-dioxane degrader, Pseudonocardia dioxanivorans CB1190, referred 419 420 to as dioxane monooxygenase (DXMO) (Gedalanga et al., 2014). A third qPCR assay targets thmC from Pseudonocardia sp. strain D17, a strain capable of constitutively degrading 1,4-421 422 dioxane, using it as a carbon and energy source (Yamamoto et al., 2018). The authors in silico analysis suggested the assay would also produce amplicons of the same size from strain 423 424 Pseudonocardia dioxanivorans CB1190, Pseudonocardia sp. ENV478, Pseudonocardia sp. K1, and *Rhodococcus* sp. YYL (Yamamoto et al., 2018). The primers and probe developed in the 425 426 current study were designed to select against *Pseudonocardia dioxanivorans* CB1190 thmA, Pseudonocardia tetrahydrofuranoxydans K1 thmA, Pseudonocardia sp. ENV478 thmA and 427 428 Rhodococcus sp. YYL thmA. Specifically, the newly designed primers and probe exhibited 429 between 29 and 30 mismatches (RR1 assay) and between 26-28 mismatches (RHA1 assay) to 430 these four group 5 SDIMOs.

432 Other quantitative assays have targeted group 6 SDIMOs associated with 1,4-dioxane biodegradation (Supplementary Table 4). One RT qPCR assay targeted prmA (encoded by the 433 434 propane monooxygenase prmABCD gene cluster) in Mycobacterium dioxanotrophicus PH-06 (Deng et al., 2018), an organism able to use 1,4-dioxane as a sole source of carbon and energy 435 (Kim et al., 2009). This gene cluster exhibits a low level of amino acid sequence identity (< 40%) 436 for α subunits) with tetrahydrofuran/dioxane monooxygenases (Deng et al., 2018) discussed 437 above and is not expected to be amplified with the newly developed RR1 and RHA1 assays. As 438 discussed above, in the current study, using the previously designed qPCR assay (Deng et al., 439 2018), cycle threshold values for Mycobacterium dioxanotrophicus PH06 prmA were at or below 440 the lowest plasmid standard. A RT-qPCR assay was also developed for a 1,4-dioxane degrading 441 isolate containing a group 2 SDIMO (Deng et al., 2020) (Supplementary Table 4). The assay was 442 designed towards a toluene monooxygenase (encoded by tmoABCDEF gene cluster) in Azoarcus 443 sp. strain DD4, a Gram-negative propanotroph, capable of 1,4-dioxane co-metabolism (Deng et 444 al., 2020). 445 446 447 Here, following the design of the two new qPCR assays, the assays were used to quantify genes in three mixed communities and in a microcosm study, inoculated with sediment from an 448 449 impacted site, following 1,4-dioxane biodegradation. The highest RR1 prmA gene copy numbers were detected in the agricultural soil, followed by the wetland sediments and then the impacted 450 451 site samples. Gene copies of RHA1 prmA were only detected in the agricultural soil and wetland samples and these values were lower than those of RR1 prmA. It is of interest to note that 452 453 although amplicon sequencing detected RHA1 prmA in the impacted site sediment, qPCR did not. It is likely the amplicon sequences detected (detection threshold was > 90% sequence 454 455 identity to each target gene) included mismatches to the *prmA* sequence targeted via qPCR. 456 457 An interesting trend was the statistically significant increase in RR1 prmA gene copies in the impacted site inoculated microcosms following 1,4-dioxane biodegradation compared to the 458 459 control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Such a 460 trend is perhaps indicative of growth of the microorganism harboring RR1 prmA on 1,4-dioxane. When the amplicons from the current study were compared to sequences similar to *Rhodococcus* 461 462 sp. RR1 prmA, there were close matches to several Rhodococcus aetherivorans strains,

463 significant because *Rhodococcus aetherivorans* JCM 14343(T) is able to use 1,4-dioxane as a sole source of carbon and energy (Inoue et al., 2016). Also, 1,4-dioxane removal in the current 464 study occurred in two phases, an initial lag phase followed by a rapid decline, a pattern typical of 465 growth related metabolism. However, contrary to the results here, others have previously 466 reported co-metabolic 1,4-dioxane biodegradation by *Rhodococcus* sp. RR1 (Mahendra et al., 467 2006). More research is needed to establish if growth related 1,4-dioxane metabolism by 468 Rhodococcus sp. RR1 is indeed occurring. 469 470 When the SDIMO sequencing amplicons in the current study were blasted against the entire nt 471 database from NCBI, matches to propane monooxygenase hydroxylase large subunit, 472 aromatic/alkene/methane monooxygenase hydroxylase/oxygenase alpha subunits, methane 473 monooxygenases or SDIMOs were observed. The top matching taxa for each sample type 474 included Mycobacterium hodleri strain B, enrichment culture clones and the genera Rhodococcus 475 and Bradyrhizobium. It is not known if the enzymes encoded by these genes are capable of 1,4-476 dioxane biodegradation. However, future studies could target these sequences to determine if 477 478 gene copy numbers are correlated to 1,4-dioxane removal. 479 480 5. Conclusions Monooxygenase targeted amplicon based sequencing highlighted the importance of group 5 481 482 SDIMOs in three mixed microbial communities. Building on these results, two qPCR assays were developed to quantify these genes. The assays targeted *Rhodococcus jostii* RHA1 prmA and 483 484 Rhodococcus sp. RR1 prmA, both found within SDIMO subcluster 5A. Gene copies of Rhodococcus RR1 prmA were detected in all three mixed communities examined, while gene 485 486 copies of *Rhodococcus jostii* RHA1 *prmA* were detected in two of the three of the three sample types (except impacted site sediment). There was a statistically significant increase in RR1 prmA 487 gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane 488 489 biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy 490 numbers before incubation. Such a trend is perhaps indicative of growth of the microorganism harboring RR1 prmA on 1,4-dioxane, however, more research is needed to confirm this. The 491 newly designed qPCR assays should be of interest to those involved in the remediation of 1,4-492

dioxane contaminated sites.

| 494        | Funding                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 495        | Thanks to Stacey VanderWulp (Michigan State University, MSU) for providing the agricultural                                                                                                               |
| 496        | soil samples from Kellogg Biological Station (KBS, MSU) and to Anthony Danko and Michael                                                                                                                  |
| 497        | Pound (NAVFAC) for providing the sediment samples from the impacted site. This research was                                                                                                               |
| 498        | supported by a grant from NSF (Award Number 1902250). Support was also provided by the                                                                                                                    |
| 499        | NSF Long-term Ecological Research Program (DEB 1832042) at KBS and by MSU                                                                                                                                 |
| 500        | AgBioResearch.                                                                                                                                                                                            |
| 501        |                                                                                                                                                                                                           |
| 502        | CRediT authorship contribution statement                                                                                                                                                                  |
| 503        | ZE: Writing – original draft, Formal analysis, Investigation, Methodology, Data curation.                                                                                                                 |
| 504        | AMC: Writing – review & editing, Supervision, Funding acquisition, Conceptualization                                                                                                                      |
| 505        |                                                                                                                                                                                                           |
| 506        | <b>Declaration of Competing Interest</b>                                                                                                                                                                  |
| 507        | The authors declare that they have no conflicts of interests.                                                                                                                                             |
| 508        |                                                                                                                                                                                                           |
| 509        | Data Availability                                                                                                                                                                                         |
| 510        | NCBI BioSample accession numbers: SAMN38186925 to SAMN38186933.                                                                                                                                           |
| 511        |                                                                                                                                                                                                           |
| 512        |                                                                                                                                                                                                           |
| 513<br>514 | References                                                                                                                                                                                                |
| 515        | Adams, C.D., Scanlan, P.A., Secrist, N.D., 1994. Oxidation and biodegradability enhancement of 1,4-                                                                                                       |
| 516        | dioxane using hydrogen peroxide and ozone. Environmental Science & Technology. 28, 1812-1818.                                                                                                             |
| 517<br>518 | Adamson, D.T., Anderson, R.H., Mahendra, S., Newell, C.J., 2015. Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. Environmental Science & |
| 519        | Technology. 49, 6510-6518.                                                                                                                                                                                |
| 520        | Adamson, D.T., Mahendra, S., Walker, K.L., Rauch, S.R., Sengupta, S., Newell, C.J., 2014. A multisite                                                                                                     |
| 521        | survey to identify the scale of the 1,4-dioxane problem atcontaminated groundwater sites. Environ Sci                                                                                                     |
| 522<br>523 | Tech Let. 1, 254-258. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J                                                                         |
| 524        | Mol Biol. 215, 403-410.                                                                                                                                                                                   |
| 525        | Bell, C.H., Wong, J., Parsons, K., Semel, W., McDonough, J., Gerber, K., 2022. First Full-Scale In Situ                                                                                                   |
| 526        | Propane Biosparging for Co-Metabolic Bioremediation of 1, 4-Dioxane. Groundwater Monitoring &                                                                                                             |
| 527<br>528 | Remediation. 42, 54-66.  Bernhardt, D., Diekmann, H., 1991. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by                                                                            |
| 529        | an environmental <i>Rhodococcus</i> strain. Appl Microbiol Biot. 36, 120-123.                                                                                                                             |
| 530<br>531 | Burback, B.L., Perry, J.J., 1993. Biodegradation and biotransformation of groundwater pollutant mixtures by <i>Mycobacterium yaccae</i> . Applied and Environmental Microbiology, 59, 1025-1029.          |

- Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl,
- 533 M.W., Shipley, G.L., 2009. The MIQE guidelines: minimum information for publication of quantitative
- real-time PCR experiments, Oxford University Press.
- 535 Chen, D.Z., Jin, X.J., Chen, J., Ye, J.X., Jiang, N.X., Chen, J.M., 2016. Intermediates and substrate
- 536 interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8. Int
- 537 Biodeter Biodegr. 106, 133-140.
- 538 Chiang, S.Y., Anderson, R., Wilken, M., Walecka-Hutchison, C., 2016. Practical perspectives of 1, 4-
- 539 dioxane investigation and remediation. Remediation Journal. 27, 7-27.
- 540 Coleman, N.V., Bui, N.B., Holmes, A.J., 2006. Soluble di-iron monooxygenase gene diversity in soils,
- sediments and ethene enrichments. Environ Microbiol. 8, 1228-1239.
- 542 Coleman, N.V., Bui, N.B., Holmes, A.J., 2006. Soluble di-iron monooxygenase gene diversity in soils,
- sediments and ethene enrichments. Environmental Microbiology. 8, 1228-1239.
- Deng, D., Li, F., Li, M., 2018. A novel propane monooxygenase initiating degradation of 1,4-dioxane by
- 545 Mycobacterium dioxanotrophicus PH-06. Environmental Science and Technolology Letters. 5, 86-91.
- Deng, D., Li, F., Li, M., 2018. A novel propane monooxygenase initiating degradation of 1, 4-dioxane by
- 547 Mycobacterium dioxanotrophicus PH-06. Environmental Science & Technology Letters. 5, 86-91.
- Deng, D., Ngoc Pham, D., Li, F., Lia, M., 2020. Discovery of an inducible toluene monooxygenase that
- 549 pooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic Azoarcus sp. Strain DD4. Applied and
- 550 Environmental Microbiology. 86, e01163-01120
- 551 Deng, D.Y., Pham, D.N., Li, M.Y., 2022. Emerging investigator series: environment-specific auxiliary
- substrates tailored for effective cometabolic bioremediation of 1,4-dioxane. Environmental Science:
- Water Research & Technology. 8, 2521-2530.
- Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-
- 555 2461.
- Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods.
- 557 10, 996-998.
- EPA, E.P.A., 2013. 1,4-Dioxane. <a href="https://www.clu-in.org/contaminantfocus/default.focus/sec/1,4-">www.clu-in.org/contaminantfocus/default.focus/sec/1,4-</a>
- 559 <u>Dioxane/cat/Overview/.</u>
- 560 EPA, E.P.A., 2014. Technical fact sheet -1,4-dioxane. Office of Solid Waste and Emergency Response
- 561 (5106P). EPA 505-F-14-011.
- 562 Fingerhut L., I., C., 2021. ampir Predict Antimicrobial Peptides\_. R package version 1.1.0.
- 563 < <a href="https://CRAN.R-project.org/package=ampir">https://CRAN.R-project.org/package=ampir</a>>.
- Gedalanga, P.B., Pornwongthong, P., Mora, R., Chiang, S.Y., Baldwin, B., Ogles, D., Mahendra, S., 2014.
- 565 Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol. 80,
- 566 3209-3218.
- Gedalanga, P.B., Pornwongthong, P., Mora, R., Chiang, S.Y.D., Baldwin, B., Ogles, D., Mahendra, S., 2014.
- 568 Identification of Biomarker Genes To Predict Biodegradation of 1,4-Dioxane. Applied and Environmental
- 569 Microbiology. 80, 3209-3218.
- Hand, S., Wang, B., Chu, K.H., 2015. Biodegradation of 1,4-dioxane: effects of enzyme inducers and
- trichloroethylene. Sci Total Environ. 520, 154-159.
- Hand, S., Wang, B.X., Chu, K.H., 2015. Biodegradation of 1,4-dioxane: Effects of enzyme inducers and
- 573 trichloroethylene. Science of the Total Environment. 520, 154-159.
- Hatzinger, P.B., Banerjee, R., Rezes, R., Streger, S.H., McClay, K., Schaefer, C.E., 2017. Potential for
- 575 cometabolic biodegradation of 1, 4-dioxane in aquifers with methane or ethane as primary substrates.
- 576 Biodegradation. 28, 453-468.
- 577 He, Y., Mathieu, J., da Silva, M.L.B., Li, M., Alvarez, P.J.J., 2018. 1,4-Dioxane-degrading consortia can be
- 578 enriched from uncontaminated soils: prevalence of *Mycobacterium* and soluble di-iron monooxygenase
- 579 genes. Microbial Biotechnology. 11, 189-198.

- 580 He, Y., Mathieu, J., Yang, Y., Yu, P., da Silva, M.L.B., Alvarez, P.J.J., 2017. 1,4-Dioxane biodegradation by
- 581 Mycobacterium dioxanotrophicus PH-06 is associated with a group-6 soluble di-iron monooxygenase.
- 582 Environmental Science and Technolology Letters. 4, 494–499.
- 583 He, Y., Mathieu, J., Yang, Y., Yu, P.F., da Silva, M.L.B., Alvarez, P.J.J., 2017. 1,4-Dioxane Biodegradation by
- Mycobacterium dioxanotrophicus PH-06 Is Associated with a Group-6 Soluble Di-Iron Monooxygenase.
- 585 Environ Sci Tech Let. 4, 494-499.
- He, Y., Wei, K., Si, K., Mathieu, J., Li, M., Alvarez, P.J.J., 2017. Whole-genome sequence of the 1, 4-
- 587 dioxane-degrading bacterium Mycobacterium dioxanotrophicus PH-06. Genome Announcements. 5, 10-
- 588 1128.
- Inoue, D., Hisada, K., Ike, M., 2022. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane
- 590 degradation ability of activated sludge lacking prior exposure to 1,4-dioxane. Water Science and
- 591 Technology. 86, 1707-1718.
- Inoue, D., Hisada, K., Okumura, T., Yabuki, Y., Yoshida, G., Kuroda, M., Ike, M., 2020. Carbon sources that
- 593 enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate. Biodegradation. 31, 23-34.
- Inoue, D., Tsunoda, T., Sawada, K., Yamamoto, N., Saito, Y., Sei, K., Ike, M., 2016. 1,4-Dioxane
- degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation. 27,
- 596 277-286.
- 1597 Isaka, K., Udagawa, M., Sei, K., Ike, M., 2016. Pilot test of biological removal of 1,4-dioxane from a
- chemical factory wastewater by gel carrier entrapping *Afipia* sp strain D1. J Hazard Mater. 304, 251-258.
- 599 Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment,
- interactive sequence choice and visualization. Brief Bioinform. 20, 1160-1166.
- 601 Kim, Y.M., Jeon, J.R., Murugesan, K., Kim, E.J., Chang, Y.S., 2009. Biodegradation of 1,4-dioxane and
- transformation of related cyclic compounds by a newly isolated Mycobacterium sp PH-06.
- 603 Biodegradation. 20, 511-519.
- Kim, Y.M., Jeon, J.R., Murugesan, K., Kim, E.J., Chang, Y.S., 2009. Biodegradation of 1,4-dioxane and
- transformation of related cyclic compounds by a newly isolated *Mycobacterium* sp. PH-06.
- 606 Biodegradation. 20, 511-519.
- Kohlweyer, U., Thiemer, B., Schrader, T., Andreesen, J.R., 2000. Tetrahydrofuran degradation by a newly
- 608 isolated culture of *Pseudonocardia* sp strain K1. Fems Microbiol Lett. 186, 301-306.
- 609 Kreader, C.A., 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32
- 610 protein. Applied and Environmental Microbiology. 62, 1102-1106.
- 611 Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics
- analysis across computing platforms. Mol Biol Evol. 35, 1547-1549.
- 613 Letunic, I., Bork, P., 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display
- and annotation. Nucleic Acids Res. 49, W293-W296.
- 615 Li, M., Liu, Y., He, Y., Mathieu, J., Hatton, J., DiGuiseppi, W., Alvarez, P.J.J., 2017. Hindrance of 1, 4-
- dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates.
- 617 Water research. 112, 217-225.
- 618 Li, M., Mathieu, J., Liu, Y., Tess Van Orden, E., Yang, Y., Fiorenza, S., Alvarez, P.J.J., 2014. The abundance
- of tetrahydrofuran/dioxane monooxygenase genes (thmA/dxmA) and 1,4-dioxane degradation activity
- are significantly correlated at various impacted aquifers. Environmental Science and Technolology
- 621 Letters. 1, 122-127.
- 622 Mahendra, S., Alvarez-Cohen, L., 2005. Pseudonocardia dioxanivorans sp nov., a novel actinomycete that
- 623 grows on 1,4-dioxane. Int J Syst Evol Micr. 55, 593-598.
- Mahendra, S., Alvarez-Cohen, L., 2006. Kinetics of 1,4-dioxane biodegradation by monooxygenase-
- expressing bacteria. Environ Sci Technol. 40, 5435-5442.
- Mahendra, S., Alvarez-Cohen, L., 2006. Kinetics of 1,4-dioxane biodegradation by monooxygenase-
- 627 expressing bacteria. Environ Sci Technol. 40, 5435-5442.

- 628 Mohr, T., 2010. Environmental Investigation and Remediation 1,4 Dioxane and Other Solvent Stabilizers
- 629 Introduction.
- 630 Mohr, T., Stickney, J., DiGuiseppi, W., 2010. Environmental Investigation and Remediation: 1,4-Dioxane
- and Other Solvent Stabilizers, CRC Press, Boca Raton, ML.
- Mohr, T.K.G., 2001. 1, 4-Dioxane and other solvent stabilizers. White Paper. Santa Clara Valley Water
- 633 District.
- Myers, M.A., Johnson, N.W., Marin, E.Z., Pornwongthong, P., Liu, Y., Gedalanga, P.B., Mahendra, S.,
- 635 2018. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-
- contaminated water. Environmental Pollution. 240, 916-924.
- 637 Ooms, J., 2023. writexl: Export Data Frames to Excel 'xlsx' Format . R package version 1.4.2.
- 638 < <a href="https://CRAN.R-project.org/package=writexl">https://CRAN.R-project.org/package=writexl</a>>.
- Parales, R.E., Adamus, J.E., White, N., May, H.D., 1994. Degradation of 1,4-dioxane by an actinomycete
- in pure culture. Applied and Environmental Microbiology. 60, 4527-4530.
- 641 Pugazhendi, A., Banu, J.R., Dhavamani, J., Yeom, I.T., 2015. Biodegradation of 1,4-dioxane by
- 642 Rhodanobacter AYS5 and the role of additional substrates. Ann Microbiol. 65, 2201-2208.
- R Core Team, 2018. R: A language and environment for statistical computing, R Foundation for Statistical
- 644 Computing, Vienna, Austria. .
- Ramalingam, V., Cupples, A.M., 2020. Anaerobic 1,4-dioxane biodegradation and microbial community
- analysis in microcosms inoculated with soils or sediments and different electron acceptors. Applied
- 647 Microbiology and Biotechnology. 104, 4155-4170.
- 648 Ramalingam, V., Cupples, A.M., 2020. Enrichment of novel Actinomycetales and the detection of
- 649 monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated
- 650 inocula. Appl Microbiol Biotechnol. 104, 2255-2269.
- Rolston, H.M., Hyman, M.R., Semprini, L., 2019. Aerobic cometabolism of 1, 4-dioxane by isobutane-
- utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms:
- 653 Experimental and modeling study. Science of The Total Environment. 694, 133688.
- 654 RStudio\_Team, 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA pp. URL
- 655 <a href="http://www.rstudio.com/">http://www.rstudio.com/</a>.
- 656 Sei, K., Miyagaki, K., Kakinoki, T., Fukugasako, K., Inoue, D., Ike, M., 2013. Isolation and characterization
- of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source.
- 658 Biodegradation. 24, 665-674.
- 659 Sharp, J.O., Sales, C.M., Alvarez-Cohen, L., 2010. Functional characterization of propane-enhanced N-
- nitrosodimethylamine degradation by two actinomycetales. Biotechnol Bioeng. 107, 924-932.
- 661 Sharp, J.O., Sales, C.M., LeBlanc, J.C., Liu, J., Wood, T.K., Eltis, L.D., Mohn, W.W., Alvarez-Cohen, L., 2007.
- An inducible propane monooxygenase is responsible for n-nitrosodimethylamine degradation by
- 663 Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology. 73, 6930-6938.
- 664 Stefan, M.I., Bolton, J.R., 1998. Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution
- using the UV hydrogen peroxide process. Environmental Science & Technology. 32, 1588-1595.
- Steffan, R.J., McClay, K.R., Masuda, H., Zylstra, G.J., 2007. Biodegradatdion of 1,4-dioxane. Strategic
- 667 Environmental Research and Development Program: ER-1422 Final Report.
- Vainberg, S., McClay, K., Masuda, H., Root, D., Condee, C., Zylstra, G.J., Steffan, R.J., 2006.
- Biodegradation of ether pollutants by *Pseudonocardia* sp strain ENV478. Applied and Environmental
- 670 Microbiology. 72, 5218-5224.
- Wang, M.Y., Olson, B.H., Chang, J.S., 2007. Improving PCR and qPCR detection of hydrogenase A (hydA)
- associated with Clostridia in pure cultures and environmental sludges using bovine serum albumin. Appl
- 673 Microbiol Biot. 77, 645-656.
- 674 Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
- 675 https://ggplot2.tidyverse.org.

- 676 Wickham, H., , , Bryan, J., 2023. readxl: Read Excel Files\_. R package version 1.4.2,. < <a href="https://cran.r-">https://cran.r-</a>
- 677 project.org/package=readxl>.
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D.A., François, R., Grolemund, G., Hayes, A.,
- Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D.,
- Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H., 2019. Welcome to the
- Tidyverse. Journal of Open Source Software. 4(43), 1686,.
- Yamamoto, N., Inoue, D., Sei, K., Saito, Y., Ike, M., 2018. Field test of on-site treatment of 1,4-dioxane-
- 683 contaminated groundwater using *Pseudonocardia* sp. D17. Journal of Water and Environment
- 684 Technology. 16, 256-268.

- Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T.L., 2012. Primer-BLAST: a tool to
- design target-specific primers for polymerase chain reaction BMC Bioinformatics. 18, 134.
- Zenker, M.J., Borden, R.C., Barlaz, M.A., 2003. Occurrence and treatment of 1, 4-dioxane in aqueous
- 688 environments. Environmental Engineering Science. 20, 423-432.
- Zhang, J., 2017. phylotools: Phylogenetic Tools for Eco-Phylogenetics\_. R package version 0.2.2.
- 690 <a href="https://CRAN.R-project.org/package=phylotools">https://CRAN.R-project.org/package=phylotools</a>.