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Abstract—Restoring missing data holds paramount importance 

in power system analysis. Traditional recovery methods typically 

offer only a singular solution, lacking adaptability and depth. To 

bridge this gap, we introduce BERT-PIN, a pioneering approach 

harnessing Bidirectional Encoder Representations from 

Transformers for Profile Inpainting. This innovative technique 

enables the recovery of multiple segments of missing data by 

leveraging power system load and temperature profiles. Our 

findings demonstrate that BERT-PIN enhances accuracy by 5%-

30% compared to existing techniques, showcasing its ability to 

restore numerous missing data segments across extended periods. 

We have successfully applied BERT-PIN in two critical power 

system applications: recovering missing data segments and 

estimating Conservation Voltage Reduction baselines. Serving as 

a versatile pre-trained model, BERT-PIN supports various 

downstream tasks, including classification and super-resolution, 

thereby reducing the necessity for extensive training data, and 

minimizing training time. 

 
Index Terms— Bidirectional Encoder Representations from 

Transformers, Conservation Voltage Reduction, Machine learning, 

Missing data restoration, Power System, Transformer. 

NOMENCLATURE 

Scalar 

𝑒   Threshold for selecting the fork points 

N   The length of the time series load profile 

𝑁𝐴𝑔𝑔   Aggregation Level 

𝑁𝑚   Number of MDS in a load profile 

𝑃𝑀𝐴𝑋   Peak power of aggregated load profile 

𝑡𝑠𝑡𝑎𝑟𝑡  Start time of MDSs 

𝑡𝑒𝑛𝑑    End time of MDSs 

Vector/Matrix 

𝑫   Probability distribution matrix 

𝑴   Masking vector 

𝑿   A time series load profile 

𝑿̃   Non-missing part in 𝑿 

𝑿𝑚
⬚    A missing data segment in 𝑿  

𝑿̂𝑚,𝑖
⬚    Estimated missing data in 𝑿 

𝑿𝑚   Masked load profile 

𝑶   Output of BERT model 
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   Temperature profile 

Abbreviations 

BERT Bidirectional Encoder Representations from 

Transformers 

CV Computer Vision 

CVR   Conservation Voltage Reduction 

DR   Demand Response 

EGYE  Energy Error 

FCE   Frequency Component Error 

GAN  Generative Adversarial Network 

LSTM  Long Short-Term Memory Network 

MDS  Missing Data Segment 

MPE   Mean Percentage Error 

NLP   Natural Language Processing 

PIN   Profile Inpainting Network 

PoCP  Percentage of Closer Points 

PKE   Peak Error 

RMSE  Root Mean Square Error 

SAE   Sparse Autoencoder 

ViT   Vision Transformer 

VLE   Valley Error 

I.  INTRODUCTION 

HE restoration of missing data holds significant importance 

in power system analysis. In power system load profiles, 

two types of missing data exist. First, temporary equipment 

malfunctions or communication losses result in missing data, 

adversely affecting data quality. This impedes various data-

related tasks such as load forecasting, load disaggregation, and 

anomaly detection. Second, demand response (DR) or 

conservation voltage reduction (CVR) baseline presents a 

unique case of missing data. For instance, utilities widely 

employ CVR for peak load reduction, where system voltage at 

the substation bus is decreased by 2-4% during a CVR event to 

achieve load reduction. However, the original load profile 

during a CVR event (the baseline), assuming no voltage 

reduction, remains unknown. Accurately estimating this 

baseline is crucial for load service providers to quantify the load 

reduction caused by CVR. 

Current techniques for recovering missing data fall into two  
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TABLE I 
COMPARISON OF EXISTING POWER SYSTEM LOAD PROFILE INPAINTING METHODS 

 Description Advantages Disadvantages 

Model-based methods 

[1]-[5] 

Use physical system models to simulate responses to 

external disturbances for restoring missing data segments. 

Explainable as the models 

reflect the laws of physics. 

Require accurate distribution 

system model. 

Data-

driven 

methods 

Similarity-based 

[6]-[9] 

Group load profiles by day type, weather conditions, and 

shape characteristics of load profiles. The missing data 

segments are restored by referencing to the data on the load 

profiles having the best similarity match. 

Easy to implement and 

explainable. 

Accuracy of the method 

dependent on selections of 

similarity metrics and 

weights. 

Regression-

based  

(the benchmark 

method) 

Use models including linear regression [10], Long Short 

Term Memory (LSTM) [11][12], Autoencoders [13][14], 

Gaussian Regression [15], Support Vector Regression 

(SVR) [16][17], etc. Or combine multiple regression models 

[18]-[21]. 

Provide transparent insights 

into the relationships between 

input and output. More 

efficient for small to medium-

sized datasets. 

Limited complexity and 

Limited contextual 

understanding. Require 

manual feature engineering. 

GAN-based 

[22]-[27] 

Use Generative Adversarial Nets solve the missing data 

restoration problems in power system. 

Discover underlying patterns 

in the data without explicit 

supervision. 

Training instability, mode 

collapse, and hard to 

evaluate. 

Load-PIN [28] 

(the benchmark 

GAN-based 

method) 

Combine Generative Adversarial Nets with Convolutional 

layers and multi-head self-attention blocks to improve 

accuracy. 

More accurate than model-, 

similarity-, regression-, and 

other GAN based models. 

Computationally expensive 

and require large amount of 

data. Produce only 1 

restoration candidate. 

BERT-PIN  

(the proposed 

method) 

Bidirectional Encoder can capture long-range dependencies 

though self-attention mechanisms. 

The most accurate method 

and can produce multiple 

restoration candidates.  

 

Computationally expensive 

and require large amount of 

data. 

categories: model-based and data-driven methods. Table I 

provides a comprehensive overview and comparison of existing 

missing data restoration methods in power systems. Notably, 

Load-PIN [28], a GAN-based approach, outperforms model-

based, similarity-based, regression-based, and other GAN-

based methods in restoring missing data segments (MDSs) of 

fixed length. 

However, existing inpainting techniques typically offer only 

a single solution. As illustrated in Fig. 1, we observed that 

MDSs can be analogized to missing words in sentences, thus 

equating the restoration process to recovering missing words in 

sentences or paragraphs. In the word completion task depicted 

in Fig. 1, if someone is fluent in French, "France" might emerge 

as the most probable choice. However, "Quebec" and 

"Cameroon" also represent viable alternatives, as they are 

regions where French is an official language. Similarly, when 

restoring an MDS, it's essential to provide multiple patching 

options, each with comparable likelihoods of being the best 

match. 

Inspired by this observation, we use advanced Natural 

Language Processing (NLP) techniques to solve missing data 

restoration problem in power system domain. One of the 

advantages of employing NLP models is their capability to 

generate multiple alternatives for a missing word, each 

accompanied by a confidence level. 

 
Fig. 1.   An illustration of the load profile inpainting problem. 

Since 2017, the Transformer model [29] and its variants, 

such as Bidirectional Encoder Representations from 

Transformers (BERT) [30], and Vision Transformer (ViT) [31], 

achieved remarkable success in NLP and computer vision (CV). 

They excel at handling sequential data and capturing extensive 

long-range dependencies by employing self-attention 

mechanisms that allow simultaneous consideration of all 

positions in a sequence. This introduction of self-attention 

empowers models to discern the importance of individual 

elements within input data, facilitating the understanding of 

intricate dependencies, relationships, and contextual 

information, ultimately leading to enhanced performance. It's 

important to clarify that the "Transformer" referred to in this 

context is an advanced machine learning model and not the 

transformer device used in power systems, to avoid any 

potential misunderstanding. 

Therefore, we introduce the BERT-based Profile Inpainting 

Network (BERT-PIN), a flexible framework designed 

specifically for restoring multiple missing data segments within 

power system load profiles. To adapt the standard Transformer 

model structure for profile inpainting, we divide the load and 

temperature profiles into line segments, treating each segment 

as a word, the daily profile as a sentence, and the 

weekly/monthly load profile as a paragraph comprising 

multiple sentences. Furthermore, we integrate a top candidate 

selection process into BERT-PIN, allowing it to generate a 

series of probability distributions. Based on these distributions, 

users can produce multiple plausible imputed datasets, each 

reflecting varying confidence levels. 

Although many machine-learning methods exist for restoring 

missing data, we selected the BERT-based model for three 

primary reasons. First, BERT's bidirectional nature makes it 

adept at capturing contextual information within time-series 

load profiles. Second, leveraging self-attention mechanisms 

enables BERT to effectively capture long-range dependencies, 
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I lived in France before, so I can speak fluent French. 
I lived in Quebec before, so I can speak fluent French. 

I lived in Cameroon before, so I can speak fluent French. 
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enhancing its performance in processing sequential data. Third, 

BERT's architecture outputs a sequence of probability 

distributions, enabling the generation of multiple results. 

Our contributions are summarized as following:  

• First, to our knowledge, we are the first to introduce a 

BERT-based approach for power system load profile 

inpainting. BERT-PIN surpasses the state-of-the-art by 

approximately 5%-30%. 

• Second, unlike existing methods, BERT-PIN can produce 

multiple data restoration candidates with varying 

confidence levels. This feature is particularly valuable 

when exploring all potential options is necessary to ensure 

algorithm robustness. 

• Third, BERT-PIN can restore multiple MDSs within long-

time windows. This flexibility allows BERT-PIN to be 

used in Demand Response baseline estimation, as well as 

various downstream tasks, such as load profile 

disaggregation [32] and super resolution [33]. 

The rest of the paper is organized as follows. Section II 

introduces the methodology, Section III introduces the 

simulation results in different cases, and Section IV concludes 

the paper. 

II.  METHODOLOGY 

In this section, we first introduce the load profile inpainting 

problem formulation. Then, the BERT-PIN model architecture 

is illustrated in detail. Finally, the performance evaluation 

metrics are defined. 

A.  BERT-PIN Problem Formulation 

Define 𝑿𝑚
⬚  as a MDS (the green segment in Fig. 2) in a time 

series load profile, 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑁], where 𝑁  denotes the 

length of the time series.  

 
Fig. 2.   Illustration of missing data segments and masking methods. 

As shown in Fig. 2, if 𝑿  contains 𝑁𝑚  MDSs, i.e., 

[𝑿𝑚,1
⬚ , 𝑿𝑚,2

⬚ , … 𝑿𝑚,𝑖
⬚ , … , 𝑿𝑚,𝑁𝑚

⬚ ], the objective of the inpainting 

problem is to find a set of model parameters, 𝜃, to recover all 

MDSs using the non-missing data 𝑿̃  in 𝑿  and the 

corresponding ambient temperature profile, 𝑻 = [𝑥1, 𝑥2, … , 𝑥𝑁] 
as inputs. So, the problem can be formulated as 

[𝑿̂𝑚,1
⬚ , 𝑿̂𝑚,2

⬚ , … , 𝑿̂𝑚,𝑖
⬚ , … , 𝑿̂𝑚,𝑁𝑚

⬚ ] = 𝑓𝜃(𝑇, 𝑿̃ )                (1) 

where 𝑿̂𝑚,𝑖
⬚  is the ith recovered MDS. 

Next, we will introduce the design of the proposed BERT-

PIN model to address the problem formulated above. 

 
Fig. 3.   An overview of the overall modeling framework. The illustration of the BERT was inspired by [29]. It’s an example of sequence length 𝑁 = 5. 
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B.  BERT-PIN Model Architecture Overview 

As illustrated in Fig. 3, the proposed BERT-PIN model 

comprises three fundamental processes: input data adaptation, 

BERT model for recovering MDSs, and top candidate selection. 

Given the established efficacy of the BERT model structure 

in addressing NLP tasks, our intention is not to alter the original 

BERT model architecture. However, as the BERT model is 

initially designed for processing NLP problems, its inputs are a 

sequence of word tokens. Therefore, in the Input Data 

Adaptation process, we first align the load profile with its 

corresponding temperature profile. Then, we divide the two 

aligned time-series profiles into segments to generate the load 

and temperature embeddings, respectively. As depicted in Figs. 

1 and 3, each of these segments resembles a missing word in a 

sentence, thus rendering the task of restoring missing data akin 

to recovering missing words within sentences or paragraphs. 

During the Top Candidates Selection process, our objective 

is not to merely choose a single candidate with the highest 

likelihood. Instead, we aim to generate multiple candidates that 

meet predetermined confidence thresholds. This functionality 

enables BERT-PIN to generate an ensemble of patching options 

for a MDS. This feature proves especially critical when 

confronted with MDSs where several candidates display similar 

probabilities of being potential outcomes. 

In the following sections, we will introduce those three main 

components in detail. 

C.  Data Adaptation 

    1)  Preparation of Ground Truth Load Profiles 

To prepare the training data, we collected smart meter data 

at 15-minute interval over a three-year period (2018-2020) from 

8000 customers in North Carolina. Let 𝑃𝑖
⬚be the load profile 

for the ith user containing 𝑁 data points. Initially, we select a 

starting time (𝑡𝑠𝑡𝑎𝑟𝑡) and calculate the end time (𝑡𝑒𝑛𝑑) of the 

time series by 𝑡𝑒𝑛𝑑 = 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑁 − 1. Next, we randomly draw 

𝑁𝐴𝑔𝑔 (ranges from 10 to 5000) load profiles (𝑃) from the pool 

of 8000 load profiles and aggregate them into one load profile. 

This step is repeated for 200 times to ensure diversity in the 

training data. Finally, we normalize the aggregated load profile 

by its peak power (𝑃𝑀𝐴𝑋) to create the ground truth load profile 

(𝑋). This normalization ensures that 𝑋 falls within the range of 

[0, 1]. This process can be summarized as 

𝑋 =
1

𝑃𝑀𝐴𝑋

∑ 𝑃𝑖
⬚

𝑁𝐴𝑔𝑔

𝑖=1

(𝑡𝑠𝑡𝑎𝑟𝑡: 𝑡𝑒𝑛𝑑)                      ( ) 

𝑃𝑀𝐴𝑋 = max
⬚

∑ 𝑃𝑖
⬚

𝑁𝐴𝑔𝑔

𝑖=1

(0: 𝑁)                      (3) 

    2)  Preparation of Load Profiles with Missing Data  

To generate the time series data with 𝑁𝑚 MDSs, we create a 

mask vector M for each X, so that 

𝑴 = [𝑚𝑖  𝑓𝑜𝑟 𝑖 = 1:𝑁],𝑚𝑖 = {
0, 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 

Then, the masked load profile, 𝑿𝑚, can be represented as 

𝑿𝑚 = 𝑿 ∙ 𝑴    (5) 

Note that we set all missing data segments to be 0 kW 

because all the aggregated power values are greater than 0 kW, 

making it a unique value to be distinguishable.  

    3)  Input Data Adaptation Layer 

To align the BERT-PIN inputs with the BERT required 

format, we map the values in 𝑿𝑚 to integers between 0 to 200. 

Note that we chose 200 because it strikes a balance between the 

model’s size and resolution. In our dataset with 2000 

aggregation level, the power range is [210, 1751] kW, as shown 

in Fig. 4. So, the mapping provides a resolution of 8.755 kW. 

The mapped load profile is embedded into a 𝑁 ×  00  

matrix, represented by the load embeddings (yellow boxes) in 

Fig. 3. This data adaptation process allows the model to 

generate a probability distribution for each data point, making 

it possible to generate an ensemble of candidates. This 

transforms the missing data restoration problem, which is 

usually a regression problem, into a classification problem. 

To address the influence of temperature on load [34], we 

include the normalized ambient temperature profile data, 

designated as 𝑇, as an additional modality input to assist in the 

recovery of missing load data. 𝑇 is subjected to normalization 

based on the highest and lowest annual temperatures, ensuring 

that the normalized temperature values also range from 0 to 1. 

Then, 𝑇  is rescaled to the [0, 200] range using the same 

approach employed for load embedding. 

Lastly, we combine 𝑿𝑚 and 𝑇  embeddings together by 

element-wise addition to obtain the final input matrix, the 

dimension of which is 𝑁 ×  00.  As an illustration, we show 

the input data adaptation process when 𝑁 = 5 in Fig. 3. 

D.  BERT Model 

The combined embeddings of load and temperature can be 

directly fed into the BERT model using its original model 

architecture introduced in [30]. Represent a data sequence as 

𝑫 = {{𝒌1, 𝒗1}, … {𝒌𝑁 , 𝒗𝑁}} , where 𝒌  and 𝒗  are 𝑁  tuples of 

keys and values, respectively. For a query 𝒒, the attention [35] 

over 𝑫 in the BERT model is formulated as  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒒, 𝑫) = ∑ 𝛼(𝒒, 𝒌𝑖)
𝑁
𝑖=1 𝒗𝑖   (6) 

where 𝛼(𝒒, 𝒌𝑖) ∈ ℝ (𝑖 = 1,… , 𝑁) are scalar values calculated 

through the dot product of the query vector and each key vector. 

These weights, referred to as attention scores, are normalized to 

ensure a sum of 1. This calculation is performed for every 

element in the input sequence. The output vectors are combined 

to form the final output of the model.  

When processing sequential data, using self-attention can 

selectively attend to different parts of the input sequence based 

on their relevance to the given query vector. Thus, the BERT 

model can effectively capture long-range dependencies to form 

a context for the sequence. This significantly facilitates the 

recovery of the missing data because the context reflects the 

relevance of all known data points from all modalities (e.g., 

load and temperature) with the missing data points in those 

time-series profiles.  

In the training, we use  𝑿̂⬚
𝟏  to calculate the cross-entropy 
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losses [36] as 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑁
∑ ∑ 𝑥𝑜,𝑐log (𝑑𝑜,𝑐) 

𝐶
𝑐=1

𝑁
𝑜=1     (7) 

where C  is the number of classes,  𝑥𝑜,𝑐  is the truth label 

denoting the power consumption value for observation 𝑜, and 

𝑑𝑜,𝑐  is the predicted probability observation 𝑜  belonging to 

class 𝑐. 𝑁 is the length of the sequence. 

Note that the objective of BERT-PIN is to effectively restore 

the missing segments in a load profile, so we need to train the 

network to place more focus on restoring the MDSs. Thus, we 

construct the loss function as 

𝐿𝑜𝑠𝑠 = (1 − 𝜆) ∗ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑿, 𝑿̂⬚
𝟏 ) 

+𝜆 ∗ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑿𝑚, 𝑿̂𝒎
𝟏 )      (8) 

where 𝜆 is a hyper parameter for balancing between the global 

and local losses. Thus, (1 − 𝜆) ∗ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑿, 𝑿̂⬚
𝟏 ) 

represents the global loss for assessing how well the whole load 

profile can be restored, and 𝜆 ∗ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑿𝑚, 𝑿̂𝒎
𝟏 ) 

represents the local loss for assessing how well the MDSs are 

restored. 

E.  Top Candidates Selection Layer 

As illustrated in Fig. 3, we add a Top Candidates Selection 

process. Define the output of the BERT model, O, as: 

𝑶 = 𝐵𝐸𝑅𝑇(𝑿𝑚, 𝑻)                                        (9) 

where O is an 𝑁 ×  00 matrix.  

We feed O into a classification layer, which comprises a fully 

connected layer followed by a SoftMax layer, to obtain an 

𝑁 ×  00 probability distribution matrix, 𝑫. Note that the 𝑖th 

column of 𝑫  represents the probability distribution function 

(PDF) of the value of the 𝑖th data point falling within the range 

of 1 to 200. 

𝑫 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑶)                                 (10) 

Using 𝑫, we can generate an ensemble of curves for patching 

an MDS rather than outputting just a single curve with the 

highest likelihood. 

The conventional method for restoring the MDS from 𝑫 is 

to use an argmax layer as illustrated as the orange boxes in Fig. 

3 by  

𝑿̂⬚
𝟏 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑫)                (11) 

where 𝑿̂⬚
𝟏  is considered as the top-1 candidate. 

Nevertheless, it is often necessary to explore the top-2 or 

even the top-3 candidates as potential patching options to 

enhance the inclusion. As depicted in Fig. 1, a single blank in a 

sentence can have multiple possible words (i.e., "France", 

"Quebec" and "Cameroon") that fit the context of the original 

sentence. When used for nationality identification, it becomes 

imperative to supply a list of regions where French is spoken as 

an official language, ranked in order of population size.  

Similarly, there may exist multiple plausible curves for 

patching an MDS. The top-1 method depicted in (11) selects the 

candidate with the highest probability for each missing data 

point. If the PDF of the missing data has a higher peak or are 

more narrowly concentrated around a particular value (see the 

red PDF in Fig. 4), this method may have a higher accuracy in 

selecting the best candidate. However, when the PDF curve is a 

somewhat flattened one (see the green distribution in Fig. 4), 

selecting only the best candidate will greatly limit the inclusion 

of the original missing data point. 

 

 
Fig. 4. Illustration of the probability distribution in D. 

 
Fig. 5. Illustration of the top-2 candidate selection process. 

Therefore, we extend the top-1 method to the top-2 method, 

by comparing two selection approaches. Note that this approach 

can be readily extended to top-X candidate selection by 

repeatedly applying the same selection criterion.  

Method 1: The simplest approach involves selecting the 

candidate with the second-highest probability from each 

probability distribution to create an additional set of profiles. 

As illustrated in Fig. 5, the solid blue curve connecting the blue 

circles represents the curve generated by the top-1 candidates, 

while the dashed blue curve connecting the blue triangles 

represents the patching curve generated by directly selecting the 

top-2 candidates using Method 1. 

However, Method 1 suffers from a significant drawback: it 

ignores the autocorrelation among adjacent data points. In 

practical terms, selecting the second candidate may lead to 

shifts in the probability density functions (PDFs) of subsequent 

missing data points. 

Method 2: To overcome the inherent limitation of Method 1, 

we propose an iterative selection approach centered on the 

initial identification of "fork points". By using the identified 

fork points as reference pivots, we can create the top-2 

candidate curve accounting for the autocorrelation among the 

subsequent data points. 

Define the "right-side" (or "left-side") fork point as the first 

point, counting from the rightmost (or leftmost) side of the 

MSD, where the probability difference between the top-1 and 

top-2 candidates is less than 𝑒 . As depicted in Fig. 5, after 

identifying the fork points, we can start an iterative process to 

estimate the top-1 values for the remaining missing data points, 

one at a time, by shifting the load profile either forward or 

backward. This method ensures that the shifted load profile 

maintains the same masking position as the original one, 

effectively capturing the shift in PDFs for subsequent data 
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points. 

The resultant top-2 curve is shown by the red continues line 

in Fig. 5 and the detailed algorithm description is depicted in 

Algorithm 1. 

Algorithm 1 Iterative Top Candidates Selection.  

Given the output of BERT-PIN 𝑫, find the fork points located on both the 

left and right sides of the top-1 curve. Next, replace the top-1 values at the 

fork points with the top-2 values. Then, iteratively generate the remaining 

missing data using top-1 values. Note that 𝑒 is the threshold for selecting 

the fork points. 

Let 𝑙 = (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡)/  

for 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡: 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑙 do 

# find the left fork point. 

if 𝑡𝑜𝑝1(𝑫𝑡) − 𝑡𝑜𝑝 (𝑫𝑡) < 𝑒 do 

        𝑓𝑜𝑟𝑘𝑙𝑒𝑓𝑡 = 𝑡 

             𝑥𝑡
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝 (𝑫𝑡) 

        break 

else 

        𝑥𝑡
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝1(𝑫𝑡) 

end for 

for 𝑡 = 𝑡𝑒𝑛𝑑: 𝑡𝑒𝑛𝑑 − 𝑙 do 

# find the right fork point. 

if 𝑡𝑜𝑝1(𝑫𝑡) − 𝑡𝑜𝑝 (𝑫𝑡) < 𝑒 do 

        𝑓𝑜𝑟𝑘𝑟𝑖𝑔ℎ𝑡 = 𝑡 

        𝑥𝑡
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝 (𝑫𝑡) 

        Break 

else 

        𝑥𝑡
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝1(𝑫𝑡) 

end for 

 

for 𝑘 = 𝑓𝑜𝑟𝑘𝑙𝑒𝑓𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡: 𝑙 do 

• shift the daily profile by 𝑘 steps to the left. 

• feed shifted data into the BERT-PIN model. 

                  𝑫′ = 𝐵𝐸𝑅𝑇(𝑿𝑠ℎ𝑖𝑓𝑡𝑒𝑑, 𝑻𝒔𝒉𝒊𝒇𝒕𝒆𝒅) 

• update the first unknown value in 𝑿𝑚𝑎𝑠𝑘𝑒𝑑 

             𝑥𝑡𝑠𝑡𝑎𝑟𝑡+𝑘
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝1(𝑫′

𝑡𝑠𝑡𝑎𝑟𝑡) 

  end for 

 

  for 𝑘 = 𝑡𝑒𝑛𝑑 − 𝑓𝑜𝑟𝑘𝑟𝑖𝑔ℎ𝑡: 𝑙 do 

• shift the daily profile by 𝑘 steps to the right. 

• feed shifted data into the BERT-PIN model. 

                  𝑫′ = 𝐵𝐸𝑅𝑇(𝑿𝑠ℎ𝑖𝑓𝑡𝑒𝑑, 𝑻𝒔𝒉𝒊𝒇𝒕𝒆𝒅) 

• update the last unknown value in 𝑿𝑚𝑎𝑠𝑘𝑒𝑑 

             𝑥𝑡𝑒𝑛𝑑−𝑘
𝑚𝑎𝑠𝑘𝑒𝑑 = index of 𝑡𝑜𝑝1(𝑫′

𝑡𝑒𝑛𝑑) 

  end for 

 

  Use the final 𝑿𝑚𝑎𝑠𝑘𝑒𝑑 as the restored top-2 load profile, 𝑿̂. 

F.  Performance Metrics 

The performance metrics used for evaluating the accuracy of 

the restored data segments are calculated as 

𝑀𝑃𝐸 =
1

𝐾
 ∑

|𝑥𝑡
𝑚−𝑥𝑡

𝑚|

𝑥𝑡
𝑒𝑣𝑒𝑛𝑡

𝐾
𝑡=1    (12) 

𝑅𝑀𝑆𝐸 = √
1

𝐾
 ∑ (𝑥̂𝑡

𝑚 − 𝑥𝑡
𝑚)2𝐾

𝑡=1   (13) 

𝑃𝐾𝐸 =
|𝑥𝑀𝐴𝑋−𝑥𝑀𝐴𝑋|

𝑥𝑀𝐴𝑋      (14) 

𝑉𝐿𝐸 =
|𝑥𝑀𝐼𝑁−𝑥𝑀𝐼𝑁|

𝑥𝑀𝐼𝑁      (15) 

𝐸𝐺𝑌𝐸 =
|∑ 𝑥𝑡

𝑚𝐾
𝑡=1 −∑ 𝑥𝑡

𝑚𝐾
𝑡=1 |

∑ 𝑥𝑡
𝑒𝑣𝑒𝑛𝑡𝐾

𝑡=1
    (16) 

𝐹𝐶𝐸 =
1

𝐾
 ∑

|𝐹𝐹𝑇(𝑥𝑡
𝑚)−𝐹𝐹𝑇(𝑥𝑡

𝑚)|

𝐹𝐹𝑇(𝑥𝑡
𝑚)

𝐾
𝑡=1    (17) 

where 𝐾  is the total number of data points in the MDS, 𝑥̂ 

represents the restored data segment, 𝑥𝑀𝐴𝑋  and 𝑥𝑀𝐼𝑁 are the 

maximum and minimum power values in the MDS, 

respectively, and 𝐹𝐹𝑇 stands for Fast Fourier Transform. These 

indices offer insights into different aspects of errors, including 

point-to-point errors, inaccuracies in peak and valley points, 

discrepancies in total energy consumption, and errors within the 

frequency domain components. 

III.  SIMULATION RESULTS 

In this section, we evaluate BERT-PIN’s capability to 

recover varying numbers of MDSs in different scenarios and 

compare it with three benchmark methods: LSTM [11], SAE 

[13], and Load-PIN [28]. The evaluation encompasses various 

aggregation levels and training data volumes. Additionally, we 

assess the efficacy of the top-1 and top-2 candidate methods in 

CVR baseline estimation to highlight the benefits of having 

several restoration alternatives at our disposal.  

A.  Data Preparation 

The load profiles used in this study consists of 15-minute 

resolution smart meter data obtained from 8,000 users 

(including residential, commercial, and industrial users) in 

North Carolina between 2018 and 2020. The corresponding 

temperature data is downloaded from the National Oceanic and 

Atmospheric Administration (NOAA) [37] website and is used 

as a second modality input. 

We randomly select a group of users from the pool of 8,000 

and combine their data to form aggregated load profiles. The 

selected group size ranges from 10 to 5000, to show the model’s 

capability to deal with different scenarios. An example of the 

distribution of load values and daily peak values in 2000 user 

aggregation level is shown in Fig. 6. Moreover, to increase the 

data diversity, the selection is repeated for multiple times. 

These aggregated load profiles are aligned with the temperature 

profile and then normalized based on the annual load and 

temperature peaks, respectively. Then, we partition the profiles 

into either daily (96 data points) or weekly profiles (672 data 

points). Each missing load data segment is consistently set at 4 

hours (16 data points), a choice guided by the observation that 

around 70% of missing load data segments in actual utility data 

are less than 4 hours in duration. It's important to note that there 

are no missing data segments in the temperature profile.  The 

dataset is divided into an 80% training set and a 20% testing set.  

The hyperparameters and simulation platform information 

are summarized in Appendix Table A.I for reference. In the next 

sections, we will show the simulation results. 

 
Fig. 6. Distribution of the 2000 users aggregated load values and daily peak 

values. 
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B.  Restoration of One MDS 

In this base case, we aggregate randomly selected 2000 users 

for 200 times. Our objective is to evaluate the performance of 

BERT-PIN when restoring a single 4-hour MDS. The daily load 

profile, with a 4-hour gap, together with the temperature data of 

the same day is used as input. And BERT-PIN restores the 

MDS. Several restored daily load profiles are shown in Fig. 7, 

while the corresponding performance metrics are depicted in 

Fig. 8 and summarized in Table II. It is evident from the 

outcomes that BERT-PIN (represented by the red lines) exhibits 

the smallest medians and ranges in this case. Furthermore, 

Table II provides the mean errors for each distribution shown 

in Fig. 7. The results clearly indicate that BERT-PIN achieves 

the lowest errors and outperforms the benchmark methods by 

5%-27% across all six indexes. This demonstrates that our 

model consistently outperforms the existing approaches by 

higher missing data patching accuracy.  

 
Fig. 7. Examples of missing data restoration with central-mask using different 

models: SAE (blue), LSTM (yellow), Load-PIN (magenta), BERT-PIN (red), 

and ground truth (green). 

 
Fig. 8. Error distributions of different models: SAE (blue), LSTM (yellow), 

Load-PIN (magenta), BERT-PIN (red). 

TABLE II 
ERRORS OF SINGLE MDS INPAINTING  

 
SAE 

(%) 

LSTM 

(%) 

Load-

PIN (%) 

BERT-

PIN (%) 
Improvement 

MPE 2.231 2.414 1.670 1.523 8.80% 

RMSE 1.035 1.112 0.7951 0.7404 6.88% 

PKE 1.065 0.8491 0.6183 0.5130 17.10% 

VLE 0.8687 0.8991 0.6185 0.5870 5.09% 

EGYE 1.525 1.762 1.165 0.8410 27.81% 

FCE 2.138 2.046 1.615 1.509 6.56% 

C.  Expand the Simulation to Different Aggregation Levels 

and Different Data Sizes 

    1)  Accuracy vs. Aggregation Level 

In the preceding section, we maintained a fixed aggregation 

level of 2000. However, we now extend the aggregation level 

range from 10 to 5000 to demonstrate BERT-PIN's ability to 

handle diverse datasets. 

The findings are illustrated in Fig. 9. As the aggregation level 

rises, errors diminish. A lower aggregation level typically 

implies greater randomness in the aggregated load profile, 

posing challenges for MDS restoration by the models. 

Moreover, irrespective of the aggregation level, BERT-PIN 

consistently demonstrates higher accuracy compared to the 

other three methods. This showcased BERT-PIN's 

effectiveness across various load aggregation levels. 

    2)  Accuracy vs. Data Size 

In this section, we assess how the size of the dataset affects 

training precision, taking the aggregation of 2000 loads as a 

case study. The model is trained with datasets ranging from 10 

to 400 sets of load profiles. As illustrated in Fig. 10, a clear 

reduction in error rates is observed as the dataset size expands 

from 10 to 50 sets of load profiles, after which the 

improvements plateau. This suggests that aggregating data from 

2000 randomly selected users and replicating this aggregation 

200 times to generate 200 aggregated load profiles yields 

adequate outcomes. Expanding the dataset beyond this point 

does not significantly enhance model performance but results 

in disproportionately extended training durations.

 
Fig. 9. Errors with different aggregation levels. 
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TABLE III 
ERRORS OF TOP-1 CANDIDATE, TOP-2 CANDIDATES AND COMBINED OUTPUTS (%) 

 
BERT-

PIN 

BERT-
PIN_2 

BERT-PIN_2i 
Combine 

e=0.8 e=0.5 e=0.3 e=0.1 e=0.05 e=0.02 

MPE 1.523 1.744 2.556 2.433 2.407 2.138 1.87 1.761 1.211 

RMSE 0.7404 0.9144 1.317 1.173 1.211 1.071 0.896 0.899 0.577 

PKE 0.5130 0.5917 1.044 0.939 0.927 0.871 0.665 0.663 0.426 

VLE 0.5870 0.9260 0.827 0.617 0.817 0.573 0.543 0.669 0.407 

EGYE 0.8410 0.9582 1.618 1.441 1.412 1.301 1.043 0.986 0.633 

FCE 1.509 1.942 2.447 2.18 2.273 2.007 1.727 1.78 1.209 

PoCP - 45.12% 23.88% 24.40% 22.94% 17.29% 12.25% 6.29% - 

 
Fig. 10. BERT-PIN errors with different training data sizes. 

D.  Top-2 Candidate Selection 

As described in section II, BERT-PIN has the capability to 

generate multiple restored load profiles using Top Candidate 

Selection methods. In this section, we compare the two 

Selection methods discussed in section II.D, taking the 

selection of the top-2 candidates as an illustrative example. It's 

important to note that this method can be employed iteratively 

to choose the top-X candidates.  

The result is presented in Fig. 11. BERT-PIN is the default 

top-1 candidate where the candidate with the highest 

probability value is selected. BERT-PIN_2 results are obtained 

using Method 1, where candidates having the second highest 

probability is selected.  BERT-PIN_2i results are obtained 

using method 2, where an iterative method is used to select a 

fork point, based on which, subsequent restoration candidates 

are selected. 

The errors of top-1 candidate and top-2 candidate with 

different parameters are computed and presented in Table III. 

 

Fig. 11. Examples of top-1 and top-2 restored MDSs. 

Given that the process can be repeated for generating an 

ensemble of candidates for MDS restoration, we proceed to 

assess the quality of the top-2 results by calculating the 

"percentage-of-closer-points" (PoCP). This metric signifies the 

percentage of estimated points that are closer to the ground truth 

when compared to those estimated using the top-1 method, 

indicating the potential expansion of inclusion through the 

incorporation of the top-2 restored MDS. 

From the results shown in Table III, we made the following 

observations: 

• As expected, the result accuracy of the top-1 method is 

higher than the top-2 method.  

• Nevertheless, the top-2 method can generate points that 

are closer to the ground truth. This is because the BERT 

output is generated based on probabilities, and the 

second-best candidate could also be close to the actual 

missing data, just with reduced likelihood. 

• Compared with the direct top-2 candidate selection 

method, iterative top-2 candidate selection method has 

lower PoCP. However, since the points selected 

independently lack autocorrelation among adjacent 

points, we consider the results to be less valuable for 

time-series MDS. 

• Among all iterative top-2 methods, when 𝑒 = 0.5 

(column highlighted in yellow), the PoCP is the highest. 

This demonstrates that the fork point selection influences 

the range of inclusion. When 𝑒  becomes smaller, the 

iterative top candidate selection algorithm tends to 

identify a fork point later.  Consequently, the top-2 

candidate curve closely resembles the top-1 candidate, 

leading to identification of fewer “better” points.  

• When we merge the top-1 and top-2 candidate by 

selecting the best value for each timestamp (column 

highlighted in gray), the errors are even smaller than the 

top-1 result. This demonstrates the benefit of 

incorporating both candidates when performing 

downstream tasks. This advantage is reflected in the 

wider range of data encompassed because, with both 

curves, we capture data points closer to the original 

missing data points.  

 

Although the top-1 candidate delivers the highest accuracy, 

integrating either direct or iterative approaches with top-2 

candidates broadens the inclusiveness of missing data 

estimation. Combining the top-1 and top-2 candidates enhances 

the robustness of our simulations beyond what's achievable 

with only the top-1 candidate. This approach also showcases 

BERT-PIN's capability to generate an ensemble of data 

segments for more comprehensive missing data restoration. 

E.  Restoration of Multiple MDSs 

In this section, we showcase the performance of BERT-PIN 

for restoring multiple MDSs within a weekly load profile. This 

use case is essential for Conservation Voltage Reduction (CVR) 
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baseline estimation. CVR is a frequently adopted strategy 

among utility companies to manage peak loads. During CVR 

events, the voltage on a distribution feeder is deliberately 

decreased by 2-4% over a period ranging from 1 to 4 hours. 

CVR can be executed on multiple days in a hot summer week 

or a cold winter week. As depicted in Fig. 12, accurately 

assessing the actual load reduction achieved through CVR often 

involves estimating the baseline energy consumption (indicated 

by the red lines) that would occur in the absence of CVR 

implementation. 

 
Fig. 12. An illustration of the CVR baseline estimation 

To train BERT-PIN for CVR baseline estimation, we apply 

4-hour masks targeting the peak load periods within weekly 

load profiles. The number of masks is randomly selected 

between 1 and 7, thereby representing different numbers of 

CVR event days. The hyperparameters of the BERT-PIN model 

remain consistent with those employed in the single-event 

scenario. As can be seen from Fig. 13 and Table IV, BERT-PIN 

outperforms all existing methods by a large margin. 

  
Fig. 13. Missing data restoration examples: SAE (blue), LSTM (yellow), Load-

PIN (magenta), BERT-PIN (red), and ground truth (green).  

TABLE IV 

ERRORS OF MULTIPLE MDSS INPAINTING 

 
SAE 
(%) 

LSTM 
(%) 

Load-PIN 
(%) 

BERT-

PIN (%) 
Improvement 

MPE 7.615 6.389 5.168 4.837 6.40% 

RMSE 3.310 2.848 2.301 2.221 3.48% 

PKE 3.362 2.193 1.769 1.746 1.30% 

VLE 2.697 2.407 1.691 1.627 3.78% 

EGYE 4.874 3.822 3.257 2.699 17.13% 

FCE 6.828 5.601 4.808 4.501 6.39% 

 

This section demonstrates that BERT-PIN can effectively 

restore multiple missing data segments and accurately estimate 

the baseline of demand response programs with CVR baseline 

estimation serving as a practical case study. 

IV.  CONCLUSION 

In this study, we introduced a cutting-edge framework called 

BERT-PIN (Bidirectional Encoder Representations from 

Transformers-based Profile Inpainting Network), leveraging 

the advanced capabilities of the BERT model to restore multiple 

missing data segments within load profiles. Our contributions 

can be summarized in three main aspects. First, to the best of 

our knowledge, we are the first to introduce a BERT-based 

approach for power system load profile inpainting, leading to 

higher accuracy. Second, unlike existing methods, BERT-PIN 

can produce multiple data restoration candidates with varying 

levels of confidence, offering enhanced flexibility in data 

recovery. Third, BERT-PIN can restore multiple missing data 

segments (MDSs) within very long-time windows. 

We tested our BERT-PIN model on different datasets from 

North Carolina, covering various scenarios like different levels 

of data aggregation and dataset sizes. The results show that 

BERT-PIN outperforming other methods by 5%-30% in 

accuracy for filling in both single and multiple gaps in the data. 

Moreover, using a combination of the top-1 and top-2 

predictions allows us to predict missing data more 

comprehensively. Overall, BERT-PIN proved effective in 

specific tasks like filling in weekly data gaps and demand 

response baseline estimation, outperforming traditional 

methods in accuracy. 

In our future research endeavors, we intend to apply the 

BERT model, already pre-trained, to a variety of downstream 

tasks such as Super Resolution, Load Disaggregation, Anomaly 

Detection, and Energy Forecasting. Our goal is to investigate 

how the attention mechanism and contextual capabilities of 

BERT can enhance both the precision and reliability of these 

specific tasks. 

APPENDIX 

To facilitate easy replication, we have made our source code 

accessible at: https://github.com/hughwln/BERT-PIN_public  

TABLE A.I 

SYSTEM PARAMETERS SELECTED FOR BERT-PIN 

Parameters Values 

Learning rate 1e-4 

Local loss weight λ  0.8 

Batch size 16 

Training epochs 100  

Number of heads 2 

Number of transformer layers l 2 

Training platform NVIDIA GeForce RTX 4090 

Training time 6 hours 

Programing environment Python 3.8 + PyTorch 2.1.0 
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