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Abstract—Restoring missing data holds paramount importance
in power system analysis. Traditional recovery methods typically
offer only a singular solution, lacking adaptability and depth. To
bridge this gap, we introduce BERT-PIN, a pioneering approach
harnessing Bidirectional Encoder Representations from
Transformers for Profile Inpainting. This innovative technique
enables the recovery of multiple segments of missing data by
leveraging power system load and temperature profiles. Our
findings demonstrate that BERT-PIN enhances accuracy by 5%-
30% compared to existing techniques, showcasing its ability to
restore numerous missing data segments across extended periods.
We have successfully applied BERT-PIN in two critical power
system applications: recovering missing data segments and
estimating Conservation Voltage Reduction baselines. Serving as
a versatile pre-trained model, BERT-PIN supports various
downstream tasks, including classification and super-resolution,
thereby reducing the necessity for extensive training data, and
minimizing training time.

Index Terms— Bidirectional Encoder Representations from
Transformers, Conservation Voltage Reduction, Machine learning,
Missing data restoration, Power System, Transformer.

NOMENCLATURE
Scalar
e Threshold for selecting the fork points
N The length of the time series load profile
Nygg Aggregation Level
Np, Number of MDS in a load profile
Pyax Peak power of aggregated load profile
tstart Start time of MDSs
tend End time of MDSs
Vector/Matrix

Probability distribution matrix
Masking vector

A time series load profile
Non-missing part in X

A missing data segment in X
Estimated missing data in X
Masked load profile

Output of BERT model
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Abbreviations
BERT Bidirectional Encoder Representations from

Transformers

Ccv Computer Vision

CVR Conservation Voltage Reduction
DR Demand Response

EGYE Energy Error

FCE Frequency Component Error
GAN Generative Adversarial Network
LSTM Long Short-Term Memory Network
MDS Missing Data Segment

MPE Mean Percentage Error

NLP Natural Language Processing
PIN Profile Inpainting Network
PoCP Percentage of Closer Points
PKE Peak Error

RMSE Root Mean Square Error

SAE Sparse Autoencoder

ViT Vision Transformer

VLE Valley Error

I. INTRODUCTION

HE restoration of missing data holds significant importance
in power system analysis. In power system load profiles,
two types of missing data exist. First, temporary equipment
malfunctions or communication losses result in missing data,
adversely affecting data quality. This impedes various data-
related tasks such as load forecasting, load disaggregation, and
anomaly detection. Second, demand response (DR) or
conservation voltage reduction (CVR) baseline presents a
unique case of missing data. For instance, utilities widely
employ CVR for peak load reduction, where system voltage at
the substation bus is decreased by 2-4% during a CVR event to
achieve load reduction. However, the original load profile
during a CVR event (the baseline), assuming no voltage
reduction, remains unknown. Accurately estimating this
baseline is crucial for load service providers to quantify the load
reduction caused by CVR.
Current techniques for recovering missing data fall into two
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TABLEI

COMPARISON OF EXISTING POWER SYSTEM LOAD PROFILE INPAINTING METHODS

Description Advantages Disadvantages
Model-based methods Use physical system models to simulate responses to | Explainable as the models | Require accurate distribution
[1]-[5] external disturbances for restoring missing data segments. reflect the laws of physics. system model.
Group load profiles by day type, weather conditions, and Accuracy of the method
Similarity-based | shape characteristics of load profiles. The missing data | Easy to implement and | dependent on selections of
[6]-[9] segments are restored by referencing to the data on the load | explainable. similarity ~ metrics  and
profiles having the best similarity match. weights.
Regression- Use models including linear regression [10], Long Short | Provide transparent insights Limited  complexity and
basge d Term Memory (LSTM) [11][12], Autoencoders [13][14], | into the relationships between Limited P cor}lltextual
Gaussian Regression [15], Support Vector Regression | input and output. More . .
(the benchmark . . . . . understanding. Require
(SVR) [16][17], etc. Or combine multiple regression models | efficient for small to medium- . b
method) . manual feature engineering.
Data [18]-[21]. sized datasets.
driven GAN-based Use Generative Adversarial Nets solve the missing data Dlscover under.lylng P attep‘{s Training _instability, mode
. . in the data without explicit | collapse, and hard to
methods | [22]-[27] restoration problems in power system. .
supervision. evaluate.
Load-PIN [28] Combine Generative Adversarial Nets with Convolutional | More accurate than model-, Comp uta.tlonally Cexpensive
(the benchmark . . . o . and require large amount of
layers and multi-head self-attention blocks to improve | similarity-, regression-, and
GAN-based accurac other GAN based models data.  Produce ~only 1
method) ¥ ) restoration candidate.
BERT-PIN s . The most accurate method . .
Bidirectional Encoder can capture long-range dependencies . Computationally expensive
(the proposed . : and can produce multiple .
though self-attention mechanisms. . ; and require large amount of
method) restoration candidates. data

categories: model-based and data-driven methods. Table I
provides a comprehensive overview and comparison of existing
missing data restoration methods in power systems. Notably,
Load-PIN [28], a GAN-based approach, outperforms model-
based, similarity-based, regression-based, and other GAN-
based methods in restoring missing data segments (MDSs) of
fixed length.

However, existing inpainting techniques typically offer only
a single solution. As illustrated in Fig. 1, we observed that
MDSs can be analogized to missing words in sentences, thus
equating the restoration process to recovering missing words in
sentences or paragraphs. In the word completion task depicted
in Fig. 1, if someone is fluent in French, "France" might emerge
as the most probable choice. However, "Quebec" and
"Cameroon" also represent viable alternatives, as they are
regions where French is an official language. Similarly, when
restoring an MDS, it's essential to provide multiple patching
options, each with comparable likelihoods of being the best
match.

Inspired by this observation, we use advanced Natural
Language Processing (NLP) techniques to solve missing data
restoration problem in power system domain. One of the
advantages of employing NLP models is their capability to
generate multiple alternatives for a missing word, each
accompanied by a confidence level.

Missing Data Segment

S

Power

P Time

I lived in France before, so I can speak fluent French.
I lived in Quebec before, so I can speak fluent French.
I lived in Cameroon before, so I can speak fluent French.

Fig. 1. An illustration of the load profile inpainting problem.

Since 2017, the Transformer model [29] and its variants,
such as Bidirectional Encoder Representations from
Transformers (BERT) [30], and Vision Transformer (ViT) [31],
achieved remarkable success in NLP and computer vision (CV).
They excel at handling sequential data and capturing extensive
long-range dependencies by employing self-attention
mechanisms that allow simultaneous consideration of all
positions in a sequence. This introduction of self-attention
empowers models to discern the importance of individual
elements within input data, facilitating the understanding of
intricate  dependencies, relationships, and contextual
information, ultimately leading to enhanced performance. It's
important to clarify that the "Transformer" referred to in this
context is an advanced machine learning model and not the
transformer device used in power systems, to avoid any
potential misunderstanding.

Therefore, we introduce the BERT-based Profile Inpainting
Network (BERT-PIN), a flexible framework designed
specifically for restoring multiple missing data segments within
power system load profiles. To adapt the standard Transformer
model structure for profile inpainting, we divide the load and
temperature profiles into line segments, treating each segment
as a word, the daily profile as a sentence, and the
weekly/monthly load profile as a paragraph comprising
multiple sentences. Furthermore, we integrate a top candidate
selection process into BERT-PIN, allowing it to generate a
series of probability distributions. Based on these distributions,
users can produce multiple plausible imputed datasets, each
reflecting varying confidence levels.

Although many machine-learning methods exist for restoring
missing data, we selected the BERT-based model for three
primary reasons. First, BERT's bidirectional nature makes it
adept at capturing contextual information within time-series
load profiles. Second, leveraging self-attention mechanisms
enables BERT to effectively capture long-range dependencies,



enhancing its performance in processing sequential data. Third,
BERT's architecture outputs a sequence of probability
distributions, enabling the generation of multiple results.
Our contributions are summarized as following:
First, to our knowledge, we are the first to introduce a
BERT-based approach for power system load profile
inpainting. BERT-PIN surpasses the state-of-the-art by
approximately 5%-30%.
Second, unlike existing methods, BERT-PIN can produce
multiple data restoration candidates with varying
confidence levels. This feature is particularly valuable
when exploring all potential options is necessary to ensure
algorithm robustness.
Third, BERT-PIN can restore multiple MDSs within long-
time windows. This flexibility allows BERT-PIN to be
used in Demand Response baseline estimation, as well as
various downstream tasks, such as load profile
disaggregation [32] and super resolution [33].
The rest of the paper is organized as follows. Section II
introduces the methodology, Section III introduces the
simulation results in different cases, and Section IV concludes
the paper.

II. METHODOLOGY

In this section, we first introduce the load profile inpainting
problem formulation. Then, the BERT-PIN model architecture
is illustrated in detail. Finally, the performance evaluation
metrics are defined.

Top Candidates Selection

A. BERT-PIN Problem Formulation

series load profile, X = [xy, x5, ..., xy], where N denotes the
length of the time series.
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Fig. 2. Illustration of missing data segments and masking methods.

As shown in Fig. 2, if X contains N, MDSs, i.e.,

problem is to find a set of model parameters, 6, to recover all
MDSs using the non-missing data X in X and the
corresponding ambient temperature profile, T = [xy, x5, ..., Xy]
as inputs. So, the problem can be formulated as
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Next, we will introduce the design of the proposed BERT-
PIN model to address the problem formulated above.
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Fig. 3. An overview of the overall modeling framework. The illustration of the BERT was inspired by [29]. It’s an example of sequence length N = 5.



B. BERT-PIN Model Architecture Overview

As illustrated in Fig. 3, the proposed BERT-PIN model
comprises three fundamental processes: input data adaptation,
BERT model for recovering MDSs, and top candidate selection.

Given the established efficacy of the BERT model structure
in addressing NLP tasks, our intention is not to alter the original
BERT model architecture. However, as the BERT model is
initially designed for processing NLP problems, its inputs are a
sequence of word tokens. Therefore, in the Input Data
Adaptation process, we first align the load profile with its
corresponding temperature profile. Then, we divide the two
aligned time-series profiles into segments to generate the load
and temperature embeddings, respectively. As depicted in Figs.
1 and 3, each of these segments resembles a missing word in a
sentence, thus rendering the task of restoring missing data akin
to recovering missing words within sentences or paragraphs.

During the Top Candidates Selection process, our objective
is not to merely choose a single candidate with the highest
likelihood. Instead, we aim to generate multiple candidates that
meet predetermined confidence thresholds. This functionality
enables BERT-PIN to generate an ensemble of patching options
for a MDS. This feature proves especially critical when
confronted with MDSs where several candidates display similar
probabilities of being potential outcomes.

In the following sections, we will introduce those three main
components in detail.

C. Data Adaptation

1) Preparation of Ground Truth Load Profiles
To prepare the training data, we collected smart meter data
at 15-minute interval over a three-year period (2018-2020) from

8000 customers in North Carolina. Let P;“be the load profile
for the i user containing N data points. Initially, we select a
starting time (ts4,+) and calculate the end time (t,,4) of the
time series by teng = tseare + N — 1. Next, we randomly draw
Nygg (ranges from 10 to 5000) load profiles (P) from the pool
of 8000 load profiles and aggregate them into one load profile.
This step is repeated for 200 times to ensure diversity in the
training data. Finally, we normalize the aggregated load profile
by its peak power (Py4x) to create the ground truth load profile
(X). This normalization ensures that X falls within the range of

[0, 1]. This process can be summarized as
Nagg

X = P Pl (tstart: tena) 2
MAX =1
Nagg
Pyax = max Z Pl (0: N) 3)
ok i:1

2) Preparation of Load Profiles with Missing Data
To generate the time series data with N,,, MDSs, we create a
mask vector M for each X, so that

0, missing data
1, otherwise

M = [m; fori= 1:N],m; ={ 4)

Then, the masked load profile, X™, can be represented as

4

X"=X-M (5)

Note that we set all missing data segments to be 0 kW
because all the aggregated power values are greater than 0 kW,
making it a unique value to be distinguishable.

3) Input Data Adaptation Layer

To align the BERT-PIN inputs with the BERT required
format, we map the values in X" to integers between 0 to 200.
Note that we chose 200 because it strikes a balance between the
model’s size and resolution. In our dataset with 2000
aggregation level, the power range is [210, 1751] kW, as shown
in Fig. 4. So, the mapping provides a resolution of 8.755 kW.

The mapped load profile is embedded into a N X 200
matrix, represented by the load embeddings (yellow boxes) in
Fig. 3. This data adaptation process allows the model to
generate a probability distribution for each data point, making
it possible to generate an ensemble of candidates. This
transforms the missing data restoration problem, which is
usually a regression problem, into a classification problem.

To address the influence of temperature on load [34], we
include the normalized ambient temperature profile data,
designated as T, as an additional modality input to assist in the
recovery of missing load data. T is subjected to normalization
based on the highest and lowest annual temperatures, ensuring
that the normalized temperature values also range from 0 to 1.
Then, T is rescaled to the [0, 200] range using the same
approach employed for load embedding.

Lastly, we combine X™ and T embeddings together by
element-wise addition to obtain the final input matrix, the
dimension of which is N X 200. As an illustration, we show
the input data adaptation process when N = 5 in Fig. 3.

D. BERT Model

The combined embeddings of load and temperature can be
directly fed into the BERT model using its original model
architecture introduced in [30]. Represent a data sequence as
D = {{ky, v}, ...{ky,vy}}, where k and v are N tuples of
keys and values, respectively. For a query q, the attention [35]
over D in the BERT model is formulated as

Attention(q,D) = Y, a(q, k) v; (6)

where a(q, k;) € R (i =1, ..., N) are scalar values calculated
through the dot product of the query vector and each key vector.
These weights, referred to as attention scores, are normalized to
ensure a sum of 1. This calculation is performed for every
element in the input sequence. The output vectors are combined
to form the final output of the model.

When processing sequential data, using self-attention can
selectively attend to different parts of the input sequence based
on their relevance to the given query vector. Thus, the BERT
model can effectively capture long-range dependencies to form
a context for the sequence. This significantly facilitates the
recovery of the missing data because the context reflects the
relevance of all known data points from all modalities (e.g.,
load and temperature) with the missing data points in those
time-series profiles.

In the training, we use X to calculate the cross-entropy



losses [36] as

CrossEntropy = — S8, 5, x, clog (o) (7)

where C is the number of classes, x,. is the truth label
denoting the power consumption value for observation o, and
d, . is the predicted probability observation o belonging to
class c. N is the length of the sequence.

Note that the objective of BERT-PIN is to effectively restore
the missing segments in a load profile, so we need to train the
network to place more focus on restoring the MDSs. Thus, we
construct the loss function as

Loss = (1 — A) * CrossEntropy(X, XL

+1 * CrossEntropy (X,,, X5) (8)

where A is a hyper parameter for balancing between the global
and local losses. Thus, (1—2)xCrossEntropy(X, X%
represents the global loss for assessing how well the whole load
profile can be restored, and A * CrossEntropy(X,, XL)
represents the local loss for assessing how well the MDSs are

restored.

E. Top Candidates Selection Layer

As illustrated in Fig. 3, we add a Top Candidates Selection
process. Define the output of the BERT model, O, as:

0 = BERT(X™,T) 9)

where O is an N X 200 matrix.

We feed O into a classification layer, which comprises a fully
connected layer followed by a SoftMax layer, to obtain an
N X 200 probability distribution matrix, D. Note that the i*!
column of D represents the probability distribution function
(PDF) of the value of the i™ data point falling within the range
of 1 to 200.

D = Classification(0) (10)

Using D, we can generate an ensemble of curves for patching
an MDS rather than outputting just a single curve with the
highest likelihood.

The conventional method for restoring the MDS from D is
to use an argmanx layer as illustrated as the orange boxes in Fig.
3 by
an

Nevertheless, it is often necessary to explore the top-2 or
even the top-3 candidates as potential patching options to
enhance the inclusion. As depicted in Fig. 1, a single blank in a
sentence can have multiple possible words (i.e., "France",
"Quebec" and "Cameroon") that fit the context of the original
sentence. When used for nationality identification, it becomes
imperative to supply a list of regions where French is spoken as
an official language, ranked in order of population size.

Similarly, there may exist multiple plausible curves for
patching an MDS. The top-1 method depicted in (11) selects the
candidate with the highest probability for each missing data
point. If the PDF of the missing data has a higher peak or are
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more narrowly concentrated around a particular value (see the
red PDF in Fig. 4), this method may have a higher accuracy in
selecting the best candidate. However, when the PDF curve is a
somewhat flattened one (see the green distribution in Fig. 4),
selecting only the best candidate will greatly limit the inclusion
of the original missing data point.

Probability

0 Date Value 200
Fig. 4. llustration of the probability distribution in D.
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Fig. 5. Illustration of the top-2 candidate selection process.

Therefore, we extend the top-1 method to the top-2 method,
by comparing two selection approaches. Note that this approach
can be readily extended to top-X candidate selection by
repeatedly applying the same selection criterion.

Method 1: The simplest approach involves selecting the
candidate with the second-highest probability from each
probability distribution to create an additional set of profiles.
As illustrated in Fig. 5, the solid blue curve connecting the blue
circles represents the curve generated by the top-1 candidates,
while the dashed blue curve connecting the blue triangles
represents the patching curve generated by directly selecting the
top-2 candidates using Method 1.

However, Method 1 suffers from a significant drawback: it
ignores the autocorrelation among adjacent data points. In
practical terms, selecting the second candidate may lead to
shifts in the probability density functions (PDFs) of subsequent
missing data points.

Method 2: To overcome the inherent limitation of Method 1,
we propose an iterative selection approach centered on the
initial identification of "fork points". By using the identified
fork points as reference pivots, we can create the top-2
candidate curve accounting for the autocorrelation among the
subsequent data points.

Define the "right-side" (or "left-side") fork point as the first
point, counting from the rightmost (or leftmost) side of the
MSD, where the probability difference between the top-1 and
top-2 candidates is less than e. As depicted in Fig. 5, after
identifying the fork points, we can start an iterative process to
estimate the top-1 values for the remaining missing data points,
one at a time, by shifting the load profile either forward or
backward. This method ensures that the shifted load profile
maintains the same masking position as the original one,
effectively capturing the shift in PDFs for subsequent data



points.

The resultant top-2 curve is shown by the red continues line
in Fig. 5 and the detailed algorithm description is depicted in
Algorithm 1.

Algorithm 1 Iterative Top Candidates Selection.
Given the output of BERT-PIN D, find the fork points located on both the
left and right sides of the top-1 curve. Next, replace the top-1 values at the
fork points with the top-2 values. Then, iteratively generate the remaining
missing data using top-1 values. Note that e is the threshold for selecting
the fork points.
Letl = (teng = tseart)/2
for t = tgqpe topare + L do

# find the left fork point.

if top1(D,) — top2(D,) < e do

forkps =t
xmasked = jndex of top2(D,)
break

else
xmasked — index of top1(D,)
end for
fort = t,ng: tong — L do
# find the right fork point.
if top1(D,) — top2(D,) < e do

forkn'ght =t
xmasked = index of top2(D,)
Break

else
xmasked = index of top1(D,)
end for

for k = forkiepr — tyqre: L do
o shift the daily profile by k steps to the left.
o feed shifted data into the BERT-PIN model.
D = BERT(XSMftEd, Tshifted)
o update the first unknown value in X™masked
x{?t“‘fr’:i‘f( = index of top1(D',,,,..)

end for

for k = tong — forkyign: L do
o shift the daily profile by k steps to the right.
o feed shifted data into the BERT-PIN model.
D = BERT(XShifwd, Tshifted)
o update the last unknown value in X™asked
xrasked — index of top1(D’y,,,)
end for

Use the final X™%%¢¢ a5 the restored top-2 load profile, X.

F. Performance Metrics

The performance metrics used for evaluating the accuracy of
the restored data segments are calculated as

|2t —xt"|

MPE = — o S (12)
RMSE = |2 S, G - 31 (13)
pE = 2 (14)
VLE = 7|’?MZVA;,’,‘VMIN| (15)
EGYE = Et=a 22 1| (16)

K event
Ye=1X¢

|FFT (£ —FFT (x{™)|
FFT(x{™)

FCE = % K (17)

where K is the total number of data points in the MDS, X
represents the restored data segment, x™4X and x™!N are the
maximum and minimum power values in the MDS,
respectively, and FFT stands for Fast Fourier Transform. These
indices offer insights into different aspects of errors, including
point-to-point errors, inaccuracies in peak and valley points,
discrepancies in total energy consumption, and errors within the
frequency domain components.

III. SIMULATION RESULTS

In this section, we evaluate BERT-PIN’s capability to
recover varying numbers of MDSs in different scenarios and
compare it with three benchmark methods: LSTM [11], SAE
[13], and Load-PIN [28]. The evaluation encompasses various
aggregation levels and training data volumes. Additionally, we
assess the efficacy of the top-1 and top-2 candidate methods in
CVR baseline estimation to highlight the benefits of having
several restoration alternatives at our disposal.

A. Data Preparation

The load profiles used in this study consists of 15-minute
resolution smart meter data obtained from 8,000 users
(including residential, commercial, and industrial users) in
North Carolina between 2018 and 2020. The corresponding
temperature data is downloaded from the National Oceanic and
Atmospheric Administration (NOAA) [37] website and is used
as a second modality input.

We randomly select a group of users from the pool of 8,000
and combine their data to form aggregated load profiles. The
selected group size ranges from 10 to 5000, to show the model’s
capability to deal with different scenarios. An example of the
distribution of load values and daily peak values in 2000 user
aggregation level is shown in Fig. 6. Moreover, to increase the
data diversity, the selection is repeated for multiple times.
These aggregated load profiles are aligned with the temperature
profile and then normalized based on the annual load and
temperature peaks, respectively. Then, we partition the profiles
into either daily (96 data points) or weekly profiles (672 data
points). Each missing load data segment is consistently set at 4
hours (16 data points), a choice guided by the observation that
around 70% of missing load data segments in actual utility data
are less than 4 hours in duration. It's important to note that there
are no missing data segments in the temperature profile. The
dataset is divided into an 80% training set and a 20% testing set.

The hyperparameters and simulation platform information
are summarized in Appendix Table A.I for reference. In the next
sections, we will show the simulation results.

Load Values |

Daily Peak Values - I

250 5(‘)0 75'0 10b0 12‘50 15‘00 17‘50

Power (kw)
Fig. 6. Distribution of the 2000 users aggregated load values and daily peak
values.



B. Restoration of One MDS

In this base case, we aggregate randomly selected 2000 users
for 200 times. Our objective is to evaluate the performance of
BERT-PIN when restoring a single 4-hour MDS. The daily load
profile, with a 4-hour gap, together with the temperature data of
the same day is used as input. And BERT-PIN restores the
MDS. Several restored daily load profiles are shown in Fig. 7,
while the corresponding performance metrics are depicted in
Fig. 8 and summarized in Table II. It is evident from the
outcomes that BERT-PIN (represented by the red lines) exhibits
the smallest medians and ranges in this case. Furthermore,
Table II provides the mean errors for each distribution shown
in Fig. 7. The results clearly indicate that BERT-PIN achieves
the lowest errors and outperforms the benchmark methods by
5%-27% across all six indexes. This demonstrates that our
model consistently outperforms the existing approaches by
higher missing data patching accuracy.

— SAE

—— Load-PIN 7 SAE

—— BERT-PIN LS
GT —— Load-PIN

\\‘\I’/J —— BERT-PIN

— GT

— SAE — SAE
LSTM LST™M

— Load-PIN | — Load-PIN J\/\‘\Jf\\
—— BERT-PIN

—— BERT-PIN
— GT

— GT

Fig. 7. Examples of missing data restoration with central-mask using different
models: SAE (blue), LSTM (yellow), Load-PIN (magenta), BERT-PIN (red),
and ground truth (green).
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Fig. 8. Error distributions of different models: SAE (blue), LSTM (yellow),
Load-PIN (magenta), BERT-PIN (red).

TABLE Il
ERRORS OF SINGLE MDS INPAINTING
SAE | LSTM | Load- | BERT- Improvement
(%) (%) PIN (%) | PIN (%)
MPE | 2231 | 2414 | 1.670 1.523 8.80%
RMSE | 1.035 | 1112 | 0.7951 | 0.7404 6.88%
PKE | 1.065 | 0.8491 | 0.6183 | 0.5130 17.10%
VLE | 0.8687 | 0.8991 | 0.6185 | 0.5870 5.09%
EGYE | 1.525 | 1762 | 1.165 0.8410 27.81%
FCE | 2.138 | 2.046 | 1.615 1.509 6.56%

C. Expand the Simulation to Different Aggregation Levels
and Different Data Sizes

1) Accuracy vs. Aggregation Level

In the preceding section, we maintained a fixed aggregation
level of 2000. However, we now extend the aggregation level
range from 10 to 5000 to demonstrate BERT-PIN's ability to
handle diverse datasets.

The findings are illustrated in Fig. 9. As the aggregation level
rises, errors diminish. A lower aggregation level typically
implies greater randomness in the aggregated load profile,
posing challenges for MDS restoration by the models.
Moreover, irrespective of the aggregation level, BERT-PIN
consistently demonstrates higher accuracy compared to the
other three methods. This showcased BERT-PIN's
effectiveness across various load aggregation levels.

2) Accuracy vs. Data Size

In this section, we assess how the size of the dataset affects
training precision, taking the aggregation of 2000 loads as a
case study. The model is trained with datasets ranging from 10
to 400 sets of load profiles. As illustrated in Fig. 10, a clear
reduction in error rates is observed as the dataset size expands
from 10 to 50 sets of load profiles, after which the
improvements plateau. This suggests that aggregating data from
2000 randomly selected users and replicating this aggregation
200 times to generate 200 aggregated load profiles yields
adequate outcomes. Expanding the dataset beyond this point
does not significantly enhance model performance but results
in disproportionately extended training durations.

30 4 5
25
g 20 S F3
w 15 w2 o
a
S 10 2 €2
5 ! 1
0 0 0
10 50 100 500 1000 2000 3000 5000 10 50 100 500 1000 2000 3000 5000 10 50 100 500 1000 2000 3000 5000
Agg Levels (number of users) Agg Levels (number of users) Agg Levels (number of users)
SAE LSTM =e—Load-PIN —e=BERT-PIN SAE LSTM —e—Load-PIN —e—=BERT-PIN SAE LSTM =e—Load-PIN —e=BERT-PIN
4 12 8
10
3 . 6
g g8 g
w2 w6 T4
s @ 2 2
1 2
2
0 0 0
10 50 100 500 1000 2000 3000 5000 10 50 100 500 1000 2000 3000 5000 10 50 100 500 1000 2000 3000 5000
Agg Levels (number of users) Agg Levels (number of users) Agg Levels (number of users)
SEA LSTM —e—Load-PIN —e=BERT-PIN SAE LSTM —e—Load-PIN —e=BERT-PIN SAE LSTM —e—Load-PIN —e=BERT-PIN

Fig. 9. Errors with different aggregation levels.



TABLE III
ERRORS OF TOP-1 CANDIDATE, TOP-2 CANDIDATES AND COMBINED OUTPUTS :%:
PIN PIN_2 e=0.8 e=0.5 e=0.3 e=0.1 e=0.05 e=0.02
MPE 1.523 1.744 2.556 2.433 2.407 2.138 1.87 1.761 1.211
RMSE 0.7404 0.9144 1.317 1.173 1.211 1.071 0.896 0.899 0.577
PKE 0.5130 0.5917 1.044 0.939 0.927 0.871 0.665 0.663 0.426
VLE 0.5870 0.9260 0.827 0.617 0.817 0.573 0.543 0.669 0.407
EGYE 0.8410 0.9582 1.618 1.441 1.412 1.301 1.043 0.986 0.633
FCE 1.509 1.942 2.447 2.18 2.273 2.007 1.727 1.78 1.209
PoCP - 45.12% 23.88% 24.40% 22.94% 17.29% 12.25% 6.29% -
5 incorporation of the top-2 restored MDS.
4 From the results shown in Table III, we made the following
£3 \ observations:
2 e As expected, the result accuracy of the fop-1 method is
“a higher than the top-2 method.
0 e Nevertheless, the fop-2 method can generate points that
1o 50 100 200 300 400 are closer to the ground truth. This is because the BERT
Training set size (times of aggregation) output is generated based on probabilities, and the
—~e—MPE —e—RMSE —e—PKE —s—VLE —s—EGYE —e—FCE second-best candidate could also be close to the actual

Fig. 10. BERT-PIN errors with different training data sizes.

D. Top-2 Candidate Selection

As described in section II, BERT-PIN has the capability to
generate multiple restored load profiles using Top Candidate
Selection methods. In this section, we compare the two
Selection methods discussed in section II.D, taking the
selection of the top-2 candidates as an illustrative example. It's
important to note that this method can be employed iteratively
to choose the top-X candidates.

The result is presented in Fig. 11. BERT-PIN is the default
top-1 candidate where the candidate with the highest
probability value is selected. BERT-PIN_2 results are obtained
using Method 1, where candidates having the second highest
probability is selected. BERT-PIN 2i results are obtained
using method 2, where an iterative method is used to select a
fork point, based on which, subsequent restoration candidates
are selected.

The errors of top-1 candidate and top-2 candidate with
different parameters are computed and presented in Table II1.
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Fig. 11. Examples of top-1 and top-2 restored MDSs.
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Given that the process can be repeated for generating an
ensemble of candidates for MDS restoration, we proceed to
assess the quality of the top-2 results by calculating the
"percentage-of-closer-points" (PoCP). This metric signifies the
percentage of estimated points that are closer to the ground truth
when compared to those estimated using the top-1 method,
indicating the potential expansion of inclusion through the

missing data, just with reduced likelihood.

e Compared with the direct fop-2 candidate selection
method, iterative fop-2 candidate selection method has
lower PoCP. However, since the points selected
independently lack autocorrelation among adjacent
points, we consider the results to be less valuable for
time-series MDS.

e Among all iterative top-2 methods, when e = 0.5
(column highlighted in yellow), the PoCP is the highest.
This demonstrates that the fork point selection influences
the range of inclusion. When e becomes smaller, the
iterative top candidate selection algorithm tends to
identify a fork point later. Consequently, the top-2
candidate curve closely resembles the top-1 candidate,
leading to identification of fewer “better” points.

e When we merge the top-1 and top-2 candidate by
selecting the best value for each timestamp (column
highlighted in gray), the errors are even smaller than the
top-1 result. This demonstrates the benefit of
incorporating both candidates when performing
downstream tasks. This advantage is reflected in the
wider range of data encompassed because, with both
curves, we capture data points closer to the original
missing data points.

Although the top-1 candidate delivers the highest accuracy,
integrating either direct or iterative approaches with top-2
candidates broadens the inclusiveness of missing data
estimation. Combining the top-1 and top-2 candidates enhances
the robustness of our simulations beyond what's achievable
with only the top-1 candidate. This approach also showcases
BERT-PIN's capability to generate an ensemble of data
segments for more comprehensive missing data restoration.

E. Restoration of Multiple MDSs

In this section, we showcase the performance of BERT-PIN
for restoring multiple MDSs within a weekly load profile. This
use case is essential for Conservation Voltage Reduction (CVR)



baseline estimation. CVR is a frequently adopted strategy
among utility companies to manage peak loads. During CVR
events, the voltage on a distribution feeder is deliberately
decreased by 2-4% over a period ranging from 1 to 4 hours.
CVR can be executed on multiple days in a hot summer week
or a cold winter week. As depicted in Fig. 12, accurately
assessing the actual load reduction achieved through CVR often
involves estimating the baseline energy consumption (indicated
by the red lines) that would occur in the absence of CVR
implementation.
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Time'
Fig. 12. An illustration of the CVR baseline estimation
To train BERT-PIN for CVR baseline estimation, we apply

4-hour masks targeting the peak load periods within weekly
load profiles. The number of masks is randomly selected
between 1 and 7, thereby representing different numbers of
CVR event days. The hyperparameters of the BERT-PIN model
remain consistent with those employed in the single-event
scenario. As can be seen from Fig. 13 and Table IV, BERT-PIN
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Transformers-based Profile Inpainting Network), leveraging
the advanced capabilities of the BERT model to restore multiple
missing data segments within load profiles. Our contributions
can be summarized in three main aspects. First, to the best of
our knowledge, we are the first to introduce a BERT-based
approach for power system load profile inpainting, leading to
higher accuracy. Second, unlike existing methods, BERT-PIN
can produce multiple data restoration candidates with varying
levels of confidence, offering enhanced flexibility in data
recovery. Third, BERT-PIN can restore multiple missing data
segments (MDSs) within very long-time windows.

We tested our BERT-PIN model on different datasets from
North Carolina, covering various scenarios like different levels
of data aggregation and dataset sizes. The results show that
BERT-PIN outperforming other methods by 5%-30% in
accuracy for filling in both single and multiple gaps in the data.
Moreover, using a combination of the top-1 and top-2
predictions allows us to predict missing data more
comprehensively. Overall, BERT-PIN proved effective in
specific tasks like filling in weekly data gaps and demand
response baseline estimation, outperforming traditional
methods in accuracy.

In our future research endeavors, we intend to apply the
BERT model, already pre-trained, to a variety of downstream
tasks such as Super Resolution, Load Disaggregation, Anomaly
Detection, and Energy Forecasting. Our goal is to investigate
how the attention mechanism and contextual capabilities of
BERT can enhance both the precision and reliability of these
specific tasks.

APPENDIX

To facilitate easy replication, we have made our source code
accessible at: https://github.com/hughwin/BERT-PIN public

\_j \f\ f"\f\ A A TABLEA.I
\w' ' fM‘W \\ | —— Load-PIN SYSTEM PARAMETERS SELECTED FOR BERT-PIN
\“/ U — = Parameters Values
Fig. 13. Missing data restoration examples: SAE (blue), LSTM (yellow), Load- Learning rate led
PIN (magenta), BERT-PIN (red), and ground truth (green). Local loss weight A 0.8
TABLE IV Batch size 16
ERRORS OF MULTIPLE MDSS INPAINTING Training epochs 100
N fh 2
SAE LSTM Load-PIN BERT" 1 1 provement Number gr:tlz:;:foniiisla ers ¢ 2
©%) | (%) (%) PIN (%) | "P - Y
MPE 7615 6.389 5.168 4.837 6.40% Training platform NVIDIA GeForce RTX 4090
RMSE | 3.310 2.848 2.301 2.221 3.48% Training time 6 hours
PKE 3.362 2.193 1.769 1.746 1.30% Programing environment Python 3.8 + PyTorch 2.1.0
VLE 2.697 2.407 1.691 1.627 3.78%
EGYE | 4.874 3.822 3.257 2.699 17.13%
FCE 6.828 5.601 4.808 4.501 6.39%

This section demonstrates that BERT-PIN can effectively
restore multiple missing data segments and accurately estimate
the baseline of demand response programs with CVR baseline
estimation serving as a practical case study.

IV. CONCLUSION

In this study, we introduced a cutting-edge framework called
BERT-PIN (Bidirectional Encoder Representations from
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