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ABSTRACT

Social network analysis provides an important framework for studying the causes, consequences, and structure of so-
cial ties. Standard self-report measures—e.g., as collected through the popular ‘name-generator’ method—however,
do not provide an impartial representation of transfers, interactions, or social relationships. At best, they represent per-
ceptions filtered through the cognitive biases of respondents. Individuals may, for example, report transfers that did not
really occur, or forget to mention transfers that really did. The propensity to make such reporting inaccuracies is both
an individual-level and item-level characteristic—variable across members of any given group. Past research has high-
lighted that many network-level properties are highly sensitive to such reporting inaccuracies. However, there remains
a dearth of easily deployed statistical tools that account for such biases. To address this issue, we introduce a latent
network model that allows us to jointly estimate parameters measuring both reporting biases and a latent, underlying
social network. Building upon past research, we conduct several simulation experiments in which network data are
subject to various reporting biases, and find that these reporting biases strongly impact our ability to accurately infer
fundamental network properties. These impacts are not adequately addressed using standard approaches to network
reconstruction (i.e., treating either the union or the intersection of double-sampled data as the true network), but are
appropriately resolved through the use of our latent network models. To make implementation of our models easier for
end-users, we provide a fully-documented R package, STRAND, and include a tutorial illustrating its functionality when
applied to empirical food/money sharing data from a rural Colombian population.
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1. Introduction

Social network analysis has become a popular frame-
work for representing the social relationships that occur
within diverse and complex social systems. From school
classrooms across North America and the Netherlands
(Dijkstra et al. 2015; Harris 2013), to rural villages in In-
dia (Power and Ready 2018), and small-scale subsistence
communities in Latin America (Koster and Leckie 2014;
Pisor et al. 2020; Redhead and von Rueden 2021), the use
of social network analysis allows researchers to examine
the relationships and interactions (i.e., ties or links) be-
tween individuals (i.e., nodes) within bounded or closed
communities (i.e., networks). The rich structure of so-
cial relationships that characterizes humans—and many
other socially-living species (Krause et al. 2009; Pinter-
Wollman et al. 2014)—constitutes an important force in
shaping individuals’ perceptions of, beliefs about, and
positions within, their wider communities. The structure
of these relationships can guide a plethora of important
social (Lin 2002; Redhead and Power 2021), economic
and financial (Banerjee et al. 2013; Jackson et al. 2017),
epidemiological and health-related (Bansal et al. 2010;
Holt-Lunstad et al. 2010; Smith and Christakis 2008;
Ready et al. 2020), and evolutionary (Kurvers et al.
2014) outcomes.

The important roles that network structure and so-
cial position have for understanding many social and
behavioral phenomena (Borgatti et al. 2009; Buyalskaya
et al. 2021), and the biases that shape an individuals’
perceptions of their social relationships (e.g. Bernard
et al. 1979; Killworth and Bernard 1976, 1979)—and
thus influence conventional self-report measures of so-
cial networks—have frequently been noted across the
social sciences. This work has inspired a great deal of
effort to reduce such biases through research design and
sampling (e.g. Marsden 2005). However, there remains a
paucity of models and applications that correct for these
biases (but see Butts 2003; Young et al. 2020).

Social network data are typically collected via elic-
itation of self-report nominations; respondents provide
the names of other individuals with whom they have
specific kinds of interactions or relationships (this self-
report method is often referred to as ‘the name generator
method’; Marsden 1990). Such data, however, cannot be
considered impartial accounts of the true state of social
ties. Rather, they reflect individuals’ subjective percep-
tions of their own social realities (Krackhardt 1987).
Importantly, the perceptions of two individuals about a
single relationship can conflict with one another. For ex-
ample, one person may report giving a loan to a second
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person, but that second person might not report having
ever received a loan from the first person. In such cases,
it is not immediately clear how researchers should code
the resulting social network. Should a directed tie be
coded as present if either respondent reports it? Or only
if both do?

There has been a wealth of empirical evidence sug-
gesting that non-trivial amounts of bias and measurement
error characterize self-reported social network data (e.g.,
Bernard et al. 1979; Bell et al. 2007; Campbell and Lee
1991; Eagle and Proeschold-Bell 2015; Kossinets 2006;
Marin 2004; Pustejovsky and Spillane 2009). However,
most contemporary research still firmly relies on the use
of self-report instruments to collect such data. It is also
standard practice to use statistical models that do not
control for reporting accuracy; the mainstream statisti-
cal tools used in the social sciences (e.g., exponential
random graph models (Lusher et al. 2013), stochastic
actor-oriented models (Snijders 2017), and social rela-
tions models (Kenny and La Voie 1984)) treat reported
data as if it were ground-truth.

We begin our paper by reviewing the literature con-
cerning the most likely sources of bias in data collected
using the name generator method, with a specific focus
on recall, frequency, attribute-related, and question order
biases. Following this, we present a latent network mod-
eling framework that extends tools introduced by Butts
(2003) and Young et al. (2020) to assess and account for
these biases. To allow end-users to easily implement our
models, we have organized our simulation and analysis
tools into a fully-documented R package, STRAND, avail-
able at: https://github.com/ctross/STRAND. We
then conduct several simulation experiments to examine
the accuracy and robustness of our modeling frame-
work. Finally, we apply our latent network models to an
empirical data-set, provide end-users with a set-by-step
tutorial for using STRAND, and highlight the potential use
of latent network models across the social sciences.

1.1. The (noisy) measurement of social networks

Social network analysis allows researchers to parse the
potential mechanisms that influence social relationships
at different levels—i.e., the individual level (e.g., popu-
larity), dyadic level (e.g., attribute-similarity), or higher-
order levels (e.g., the formation of transitive groups
where ‘friends of friends become friends’). Given the
promise of such an approach, network-based frame-
works are now widely used for assessing the formation
and maintenance of friendships (Ball and Newman 2013;
Krackhardt and Kilduff 1999; Selfhout et al. 2010), ex-
amining theories of social support/cooperation (Koster
and Leckie 2014; Lakey and Cohen 2000; Nolin 2012;
Power 2017; von Rueden et al. 2019; Zhu et al. 2013)
and/or animus (Gervais 2017; Pisor and Ross 2021), de-
scribing the dynamics of drug and alcohol use (Knecht
et al. 2011; Ready et al. 2020), and measuring interaction
rates, spatial proximity, and tolerance in human and non-
human animals (Crofoot et al. 2011; Farine et al. 2016;
Eagle et al. 2009; DeTroy et al. 2021).

It is common for social networks to be measured
using free-list self-report nominations (i.e., in ‘name

generator’ designs; Marin and Hampton 2007), or self-
reports of the relationship between every potential dyad
in which the respondent could appear (i.e., in roster-
based designs; Marsden 2005). While social relation-
ships can be captured using several different measure-
ment instruments (see Marsden 2005; Ross and Redhead
2021, for reviews), the most popular questionnaire-based
approaches fall into two broad categories: event-recall
questions and perceptual questions.

With event-recall questions, researchers attempt to
record specific relationships based on time- or frequency-
anchored recall of specific events. For example, to record
food sharing partnerships, participants may be asked to:
“Name the individuals who have given you at least 1kg
of meat at any point in the last three months”. With
perceptual questions, researchers attempt to character-
ize more qualitative or hypothetical relationships. For
example, respondents might be asked to: “Name the in-
dividuals who you could go to for emotional support
during a time of hardship”. This second category of
question is generally used to measure broader, relatively
qualitative and emotive relationships, the most popu-
lar of which is friendship (Furman 1996). Many view
these different approaches as examining conceptually
distinct entities. The first approach—often referred to
as the ‘classical’ or ‘objectivist’ framework—attempts
to evaluate relationships based on observable quantities.
The latter approach—sometimes called the ‘cognitivist’
framework—assesses looser, cognitive constructs, and
does not consider self-report networks as representations
of anything other than the participants’ perceptions of
network structure, which have no ‘true’ or correct form
(Bernard et al. 1979; Krackhardt 1987; Marsden 1990).

Examining the overall accuracy of network mea-
surements is an important and straightforward endeavor
through an ‘objectivist’ lens—as one may consider a
self-report data-set about transfers of tangible goods, for
example, to be an approximation of the ‘true’, underlying
network of transfers. The use of recall-based measure-
ment instruments lends itself to such a perspective, as
these kinds of questionnaires aim to roughly capture ac-
tual, observable interactions. That is, an individual may
report having loaned money to another individual within
their group, and that report can, in principle, be validated
by actual observations of financial exchanges. Conse-
quently, a fundamental aim of the objectivist approach is
to reduce the influence of measurement error on resultant
inferences (Bernard et al. 1979). In ideal cases, this goal
can be accomplished at the level of research design—
for example, by implementing data collection methods
that make use of objective information, rather than self-
reports (e.g., Koster et al. 2013)—in other cases, it can
be accomplished statistically (Butts 2003; Young et al.
2020).

The idea of accounting for measurement error and
variation in respondent accuracy is, however, compli-
cated when considering questions about qualitative or
counterfactual relationships as these constructs might
not have quantifiable ‘true’ states. Thus, the relevance of
possible ‘inaccuracies’ in such forms of data has been
subject to enduring debate. Several classical papers have
recommended that researchers focus on determining the
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cognitive structures that guide reports of such relation-
ships, rather than attempting to characterize the accuracy
of responses (Freeman 1992; Freeman et al. 1987; Ham-
mer 1980). Nonetheless, empirical network data on such
relationships almost universally feature anomalous pat-
terns of responses. For example, respondents on opposite
ends of a dyad have a tendency to disagree about the sim-
ple presence or absence of a dyadic tie, as there is rarely
ever perfect (or even moderate) reciprocity in friendship
nominations (Ball and Newman 2013). If researchers
have questions about the roles that friendship ties have
on other dyadic characteristics, then the inability to de-
fine if a given tie exists remains a serious methodologi-
cal problem—and one that can be addressed statistically
without having to treat differential perceptions of social
connections as ‘inaccurate’ in any philosophical sense.

By adopting a Bayesian latent network approach, we
gain the ability to build a more realistic characterization
of social relationships that balances the weight given
to different reports of the same tie, based on the extent
to which each person’s reports are generally in concor-
dance or discordance with the reports of others in their
own community. Our latent network approach combines
estimation of standard social network parameters (e.g.,
stochastic block structure, in- and out-degree distribu-
tions, and dyad-level random effects) with estimation of
parameters that measure individual-specific propensities
to over-nominate ties that others in the community do
not acknowledge as existing, or under-nominate ties that
others in the community do acknowledge as existing.
Because the latent network approach provides posterior
estimates of tie probability for each dyad, un-ambiguous
ties will have narrower posterior distributions, and thus
contribute more information to downstream analyses,
than ties which are ambiguous.

In what remains of this section, we overview the most
salient biases that may impact the quality of self-report
social network data. Although we will generally frame
our examples using ‘objectivist’ language, we do this
only for expositional clarity; our approach is useful for
both event-recall and perceptual network questions, but
fewer linguistic acrobatics are needed when referencing
event-recall data.

1.1.1. Cognition, recall, and frequency biases

The factors that shape and constrain an individual’s
memory and perceptions of social relations have been
a central focus in the design of survey and interview
methods across the social sciences. Research on social
cognition has highlighted a diversity of ways in which
individuals process social information, contrasting the
differential effects of variation in perception and re-
sponse accuracy (Bandura 2002; Fiske and Taylor 1991).
Individual differences (Marin 2004), context variation
(Casciaro 1998), and question content and framing (Ko-
govšek and Ferligoj 2005) can all cause individuals to
respond in inconsistent ways about their social relation-
ships.

Classical studies in social network analysis propose
that humans use schemata and cognitive social structures
to recall their relationships (Carley 1986; Fiske 1995;

Freeman 1992; Krackhardt 1987; Lewin 1951). These
mental representations of social relationships produce a
non-random pattern in free-response network data (see
Brands 2013; Smith et al. 2020, for reviews). For ex-
ample, there is evidence that individuals’ perceptions of
their social networks are shaped by their own relative po-
sition within a social hierarchy (Walker 1976). Addition-
ally, responses may be impacted by desires for structural
balance—i.e., if individual i is friends with individual j,
but is hostile with individual k, then i may be inclined to
perceive individual j as also being hostile with individ-
ual k (Crockett 1982; De Soto 1960; Heider 1982). Social
identities, or affiliations with specific social groups, have
also been shown to pattern responses (Freeman 1992)—
e.g., by causing individuals to structure their responses
based on a given attribute, such as occupation or ethnic-
ity.

Self-report social network data may also be shaped
by other cognitive processes. For example, individuals
are generally prone to forget a non-trivial proportion of
their ties. There is also individual-level variation in the
rate of forgetting events or relations as a function of the
amount of time that has elapsed between a given inter-
action and the point of measurement, even across rel-
atively short timescales (Brewer 2000). Alongside this,
an individual’s memory and perception of a social rela-
tionship is likely structured by the overall frequency of
interactions that they have with a given individual (Ham-
mer 1984). In an effort to fully collect network data, re-
searchers sometimes prompt respondents, asking if there
is anyone else that they have forgotten to mention. This
method may increase the number of ties within a reported
network (i.e., network density), but the strength or nature
of connections to individuals mentioned after prompting
may be different than those mentioned without prompt-
ing (Marin 2004).

1.1.2. Attribute-related biases

A number of individual attributes and characteristics are
associated with variation in perceptions of network struc-
ture (Casciaro 1998; Flynn et al. 2006). Such percep-
tual differences can cause self-report network data to di-
verge from a true underlying network of interest. Here,
we focus on the biases in nomination caused by attributes
related to social status, because these biases are most
salient in the extant literature (e.g., Redhead and Power
2021). There are, however, likely to be a multitude of
other individual-level attributes that may create analo-
gous biases across a broad range of research settings.

Specific attributes may influence an individual’s abil-
ity to accurately recall their own social ties. Individuals
in positions of high power or status (i.e., group mem-
bers who are conferred disproportionate social influence,
authority, and esteem relative to other group members:
Redhead et al. 2018) often have less precise percep-
tions of social relationships than those lower in power
or status (Freeman 1992; Keltner et al. 2003; Press et al.
1969). High status individuals may likely operate within
dense local network neighbourhoods, and interact or
have relationships with a large number of individuals.
By having such a high number of ties, these individuals
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may be prone to forget—and thus not report—a signifi-
cant proportion of their true ties relative to individuals of
lower status. For example, across a series of experiments,
Simpson et al. (2011) found that undergraduate students
who had been ‘primed’ with high power were less able
to recall the true state of a hypothetical vignette network
than those with low power. Similar findings have been
shown in real-world groups and organizations, where
individuals who occupy positions near the top of a social
hierarchy (Shakya et al. 2017) or are more central within
a network (Grippa and Gloor 2009) have more asymmet-
rical incoming and outgoing ties, and, more generally,
are less accurate in their reports of social ties.

Alongside this, individual-level attributes may bias
the reports of others about their social ties. That is, in-
dividuals may be more likely to be nominated as friends
by others within the group, even if they are not really
connected in the ‘true’ network. Empirical evidence sug-
gests that individuals are also more likely to report inter-
actions and relationships with community members high
in social status and power than others with lower status
or power (Marineau et al. 2018). Likewise, at a dyadic
level, individuals may be more inclined to recall or report
connections based on shared attributes (i.e., homophily),
such as gender or ethnicity, which may in turn inflate the
levels of homophily observed in self-reported network
data (Flynn et al. 2010).

1.1.3. The effects of question order

The order in which a researcher asks social network
questions within a given survey or interview can have
striking effects on reported outcomes. Researchers typ-
ically ask multiple name generator questions during a
given interview in order to measure social relationships
across different network layers. There are two issues to
consider. First, eliciting data across multiple network
layers is time consuming and often induces participant
fatigue, with participant responsiveness declining with
each question asked (Pustejovsky and Spillane 2009;
Tourangeau and Rasinski 1988; Yousefi-Nooraie et al.
2019). Second, the names elicited in earlier questions
may prime responses in subsequent questions.

Regarding the first issue, participant fatigue can in-
flate the level of ‘false negative’ non-nominations in a
reported network and may result in biased estimates of
network-relevant statistics. A well-known example of
this effect is the controversial ‘shrinking’ of friendship
networks among United States citizens between 1985
and 2004, where there was a downward secular trend
in the average number of reported confidants within a
nationally-representative sample of participants in the
General Social Survey (McPherson et al. 2006). Re-
examinations of the data have since revealed that this
finding was likely an artifact produced by participant
fatigue due to survey design and interviewer effects (Fis-
cher 2009; Paik and Sanchagrin 2013).

Concerning the second issue, evidence suggests
that there are contamination effects that result from
earlier questions influencing nomination decisions in
subsequent questions (Tourangeau and Rasinski 1988;
Schwarz 1999). These contamination effects can pro-

duce response patterns where participants erroneously
duplicate names from a previous question (see Ready
and Power 2021). Antithetically, participants can some-
times modify their nominations to reduce redundancy in
naming (i.e., purposely failing to mention names from a
previous question; Pustejovsky and Spillane 2009).

Question order effects may likely be compounded by
research designs that double sample social network data.
Double-sampled designs ask all participants to report
both directions of a given tie, providing information that
can help verify the accuracy of reported relationships
(Nolin 2008). For example, within such a design, indi-
viduals may be asked who they have given advice to,
and who they have received advice from. It seems rea-
sonable to assume that there should be a high correlation
between an individual’s report of who they give advice
to and corresponding reports of who has received advice
from them. However, this correlation may be considered
somewhat spurious if, for instance, these double-sampled
questions are asked in a fixed order, and more-so if they
are asked in direct succession (Ready and Power 2021).
Participants may be primed to mentally ‘copy and paste’
their responses, or even respond by directly stating “the
same people as before” instead of listing individuals.

1.2. Incorporating measurement error

In recent years, applied mathematicians have developed
a multitude of statistical frameworks for analyzing social
network data. In the social and behavioural sciences, re-
searchers have advanced methods that parse variation in
node-level degree distributions, dyadic-level characteris-
tics, and higher-order structures (Van Duijn and Vermunt
2006). These approaches have been built upon in psy-
chology and psychometrics, with researchers incorporat-
ing item response theory (De Ayala 2013) into dyadic
models with multiple indicators (e.g., the social relations
model; Gin et al. 2020). However, these methods gener-
ally assume that the observed or reported data represent
the ‘true’ structure of relationships, in spite of the fact
that such measurements may be biased or internally in-
consistent (Ball and Newman 2013). Such an approach
is thus likely to generate inaccurate estimates of network
structure, and cause misleading conclusions to be drawn
about key phenomena (Kossinets 2006; Newman 2018).

To resolve these issues, social scientists can draw
upon recent work in statistical physics and complexity
science, where several approaches have been developed
to estimate underlying network structure from unreli-
able and noisy data (Butts 2003; Clauset et al. 2008;
Guimerà and Sales-Pardo 2009; Peixoto 2018; Young
et al. 2020). These approaches generally involve a hier-
archical Bayesian framework, consisting of a joint model
of the data generating process for a latent, unobserved
network, and a set of parameters that measure and adjust
for response reliability. The model that we introduce be-
low builds upon the architecture introduced in these past
approaches, but integrates a more realistic generative
model of human social network data, and adds param-
eters for response biases that have not previously been
accounted for.
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2. A latent network modeling framework

Here, we introduce a latent network approach to estimate
a set of parameters governing both true network con-
nections and the reporting biases of respondents. In an
attempt to balance clarity and insight, we keep the model
of “true” network connections as simple as possible,
while ensuring that it remains empirically realistic. The
generative model that we use is the union of a Stochastic
Block Model (SBM; Peixoto 2019) with discrete, non-
overlapping blocks to generate gross-level sub-structure,
and a Social Relations Model (SRM; Kenny and La Voie
1984) to characterize individual-level variation in in-
degree and out-degree (i.e., the frequency of making
and receiving ties), and capture reciprocal dyadic rela-
tionships. Any implementation of our approach would
need to consider if these generative model parameters are
sufficient for that given application, or whether further
generalizations of our model are necessary.

2.1. A model of ‘true’ network connections

2.1.1. Block or community structure

Let the adjacency matrix, y, denote the true (unobserved)
network; the elements y[i, j] ∈ {0, 1} reflect the presence or
absence of directed ties (e.g., resource transfers) between
pairs of individuals. The community of N individuals is
assumed to be divided into K non-overlapping blocks, or
sub-communities. We further assume that each individ-
ual belongs to only one block, that the block of type k
has sample size Nk, and that the block of individual i is
returned by the function b(i). We let the elements of the
square matrix, B, denote the log-odds of a tie between in-
dividuals in various blocks. For example, suppose there
are K = 3 blocks. The B matrix is then:

B =

β1→1 β1→2 β1→3
β2→1 β2→2 β2→3
β3→1 β3→2 β3→3

 (1)

where the parameters on the diagonal control the prob-
abilities of within-group ties, and the parameters on the
off-diagonals control the probabilities of between-group
ties. For instance, if ties tend to flow in one direction—
e.g., from individuals in group 1 to individuals in group
2—then the parameters in one triangle may be larger than
in the opposite triangle—e.g., β1→2 > β2→1. If desired,
the parameters in B can be made a function of other pa-
rameters and covariate data, or be constrained in various
ways (e.g., forcing B = BT if transfers between blocks
are equally likely in both directions).

Assuming only a block-induced sub-structure, the
generative model for y[i, j] may then be written as:

y[i, j] ∼ Bernoulli
(
Logistic(B[b(i),b( j)])

)
(2)

where the probability of a tie from individual i in block
b(i) to individual j in block b( j) is controlled by the cor-
responding entry in the square matrix, B[b(i), b( j)].

In typical cases, the diagonal elements of B, which
control the frequency of ties within a block, will have
higher prior weight than the off-diagonal elements. Priors

should also depend on sample size, N, so that the resul-
tant network density approximates empirical networks.
Basic priors could be:

βk→k ∼ Normal
(
Logit

( 0.1
√

Nk

)
, 1.5

)
(3)

βk→k̃ ∼ Normal
(
Logit

(
0.01

0.5
√

Nk+0.5
√

Nk̃

)
, 1.5

)
(4)

where k → k indicates a diagonal element and k → k̃
indicates an off-diagonal element.

Empirical accounts of real-world social networks,
however, indicate that there is substantially more structure—
e.g., individual-level variation in in- and out-degree, and
dyad-level effects—that should be incorporated to pro-
duce realistic social networks (Carrington et al. 2005;
Doreian and Conti 2012; Snijders et al. 2006). As such,
we integrate the insights from the SRM approach (Kenny
and La Voie 1984) and its extensions (e.g., Koster and
Leckie 2014; Pisor et al. 2020) into Eq. 2.

2.1.2. The social relations model

In the SRM, individuals have random effects that control
their propensity to send outgoing, and receive incoming,
ties. Similarly, specific dyads may be more or less likely
than chance to share reciprocal ties. Thus, in the SRM,
dyadic random effects are also included to capture this
tendency. By integrating the SRM and the SBM, Eq. 2
may be replaced by Eq. 5:

y[i, j] ∼ Bernoulli
(
Logistic(φ[i, j])

)
(5)

where:

φ[i, j] = B[b(i),b( j)] + λ[i] + π[ j] + δ[i, j] + . . . (6)

Here, B is the SBM intercept matrix, λ is a vector
of individual-specific sender/nominator effects govern-
ing out-degree, π is a vector of individual-specific re-
ceiver/target effects governing in-degree, δ is a matrix
of dyadic effects governing dyadic reciprocity, and the
ellipse signifies any linear model of coefficients and fo-
cal, recipient, or dyadic covariates. For example, if S is
a person-specific measure, like social status, and Q is
a dyad-specific measure, like a network of kinship ties,
then the ellipse may be replaced with: κ[1]S [i] + κ[2]S [ j] +
κ[3]Q[i, j], to give the effects of social status on both send-
ing and receiving transfers and the effects of kinship on
transfers in either direction.

To complete the SRM definition, we model the
sender and receiver effects jointly using a multivariate
normal distribution. This allows for generalized correla-
tions at the individual level—e.g., if individuals who tend
to support others are also more likely to be supported by
others: (

λ[i]
π[i]

)
∼ MV Normal

((
0
0

)
,
(

σ2
λ σπσλρ

σλσπρ σ2
π

))
(7)

For computational reasons (Stan Development Team
2021b; Lewandowski et al. 2009), it is better to imple-
ment Eq. 7 by defining:(

λ[i]
π[i]

)
=

( σλ
σπ

)
◦
(
L ∗

(
λ̂[i]
π̂[i]

))
(8)
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where L is a Cholesky factor from the decomposition of
the 2 × 2 correlation matrix with ρ on the off-diagonal,
and λ̂[i] ∼ Normal(0, 1) and π̂[i] ∼ Normal(0, 1) are unit-
normal random effects. Weak priors may then be inde-
pendently specified on the variance and correlation terms
(Lewandowski et al. 2009):

σλ ∼ Exponential(1.5) (9)
σπ ∼ Exponential(1.5) (10)

L ∼ LKJ Cholesky(2.0) (11)

We also use the above approach to define the dyad-
level random effects:(

δ[i, j]
δ[ j,i]

)
=

( σδ
σδ

)
◦

(
Lδ ∗

(
δ̂[i, j]

δ̂[ j,i]

))
(12)

where δ̂[i, j] ∼ Normal(0, 1) have unit-normal priors, and
the variance and correlation terms have weak priors:

σδ ∼ Exponential(1.5) (13)
Lδ ∼ LKJ Cholesky(2.0) (14)

Under this model, ρ provides an indication of gener-
alized reciprocity—i.e., whether those who give more (to
anyone) also receive more (from anyone)—and ρδ pro-
vides a measure of dyadic reciprocity—i.e., whether the
probability of focal i giving to alter j, increases with the
probability that focal j gives to alter i.

2.1.3. The observation model

Following previous latent network modelling frame-
works (e.g., Butts 2003; Young et al. 2020), the matrix
of true ties, y[i, j], is assumed to generate a tensor of ob-
servable variables x[i, j,q,t], where q is an index for the
specific type of question or observable variable and t is
a time point. These x variables can have any arbitrary
distribution and relation to the ties represented by y[i, j].
Here, we consider two types of ties:

1. Survey data for which each i nominates a set of alters
indexed by j. For example, in question/layer q = 1 at
time point t = T , the variable x[i, j,q=1,t=T ] might repre-
sent a binary nomination by individual i of a resource
transfer from i to j, and, at the same point in time, in
question/layer q = 2, the variable x[i, j,q=2,t=T ] might
represent a binary nomination by individual i of a
resource transfer from j to i. Such self-report data,
however, may be unreliable. Individuals i and j vary
in the extent to which they recall true transfers and/or
falsely report non-existent transfers. Likewise, even
for a single focal respondent, the reliability may vary
by the direction of nomination, i → j versus j → i.
Most critically, i’s report of j’s aid may disagree with
j’s report of the same directed relationship.

2. Observable data on directed exchanges or interac-
tions between individuals i and j, such as transfers
of gifts or resources, which flow/occur at average
rate γ[q,t]. These data—possibly documented by fo-
cal follows or by GPS tagging—may be more reli-
able than self-reports, but constraints (e.g., resource
constraints) may also make it impossible for focal

respondents to actually share with all social ties in a
given time period, and data collection may be much
more onerous.

For simplicity, we assume binary outcome data
across all network layers, and model x[i, j,q,t] using a
Bernoulli distribution:

x[i, j,q,t] ∼ Bernoulli(ψ[i, j,q]) (15)
ψ[i, j,q] = α[i,q](1 − y[i, j]) + β[i,q]y[i, j] (16)

Here, α[i,q] gives the probability of individual i re-
porting a tie in network layer q when no such tie exists
in the true network (i.e., when y[i, j] = 0). We refer to this
loosely as a ‘false positive rate’. Likewise, β[i,q] gives the
probability of individual i reporting a tie in network layer
q when such a tie does exist in the true network (i.e.,
when y[i, j] = 1). We refer to this loosely as a ‘true-tie re-
call rate’. Because α and β vary by person and layer, our
approach allows some individuals and network layers to
provide more accurate information about the underlying
true network than others.

The α[i,q] and β[i,q] parameters can also be constructed
as functions of covariates specific to individuals, blocks,
or network types. For example, if the social status, S [i],
of each individual influences reporting accuracy, then we
might define the accuracy parameters as:

logit(α[i,q]) = logit(µα[q] ) + σα[q] α̂[i,q] + ηα[q] S [i] + ...

(17)

logit(β[i,q]) = logit(µβ[q] ) + σβ[q] β̂[i,q] + ηβ[q] S [i] + ...

(18)

where µα[q] and µβ[q] give the average false positive and
true-tie recall rates when the contribution of individual-
level effects is null, and σα[q] and σβ[q] scale the variation
in false positive and true tie-recall rates resulting from
individual-level unit-normal random effects. Alongside
this, ηα[q] and ηβ[q] control the effects of some covariate—
e.g., S [i] or social status—on false positive and true-tie
recall rates in network layer q.

Higher order priors for this model might be:

µα[q] ∼ Beta(1.0, 12.0) (19)

σα[q] ∼ Exponential(1.0) (20)

ηα[q] ∼ Normal(0.0, 1.0) (21)

µβ[q] ∼ Beta(12.0, 1.0) (22)

σβ[q] ∼ Exponential(1.0) (23)

ηβ[q] ∼ Normal(0.0, 1.0) (24)

2.2. Question order effects

In addition to overall false positive and true-tie re-
call rates, practitioners often report that when double
sampled social networks are collected using the name-
generator method, some respondents have a strong ten-
dency to report ties that are reciprocal, even when the
other half of the dyad does not report the same bidi-
rectional connection (Ready and Power 2021). In other
words, for many individuals, the names nominated in

For peer review only, page 6 of 21



question q = 1 (e.g., who did you provide financial aid to
in the last 30 days?) may be repeated in question q = 2
(e.g., who gave you financial aid over the last 30 days?)
due to a kind of question-order effect. This effect may
result from a cognitive bias to view social relationships
as reciprocal, or may arise simply from priming. What-
ever the cause, it can obscure many important network
characteristics, especially reciprocity (see, Ready and
Power 2021, for an in-depth discussion).

To measure and account for this potential bias, we
can modify Eq. 15 slightly to represent responses in the
second name-generator question as a mixture of pro-
cesses. In the first of two cases, if x[i, j,q=1,t] = 0, then we
model x[i, j,q=2,t] exactly as in Eq. 15. In other words, if
a name was not mentioned in the first name-generator
question, then it cannot be copied blindly into the second
response. However, in the second case, if x[i, j,q=1,t] = 1,
and a name was mentioned in the first name-generator
question, then, with probability θ[i], we assume that the
same name is erroneously copied into the second name-
generator response, and with probability θ̇[i] = 1 − θ[i],
we assume that the response is not erroneously copied
but arises under the probability model given by ψ[i, j,q=2,t]:

x[i, j,q=2,t] ∼


Bernoulli(ψ[i, j,q=2,t]), if x[i, j,q=1,t] = 0
θ[i]Bernoulli(1.0) +

θ̇[i]Bernoulli(ψ[i, j,q=2,t]), if x[i, j,q=1,t] = 1
(25)

As before, we assume that the extent of this question-
order response bias is an individual-level characteristic:

logit(θ[i]) = logit(µθ) + σθθ̂[i] + ηθS [i] + ... (26)

where µθ controls the average rate of response dupli-
cation when the contribution of individual-level effects
is null, σθ scales the variation in individual-level unit-
normal random effects, and ηθ controls the effects of
some covariate—e.g., S [i] or social status—on the re-
sponse duplication rate.

Higher order priors may be specified as:

µθ ∼ Beta(3.0, 12.0) (27)
σθ ∼ Exponential(1.0) (28)
ηθ ∼ Normal(0.0, 1.0) (29)

2.3. Recency and frequency biases

Another source of methodological noise that researchers
may wish to examine and account for relates to the re-
cency of interactions, as well as their number. For exam-
ple, imagine that network layers q = 1 and q = 2 are
self-report nominations as described above, and that net-
work layer q = 3 is an adjacency matrix derived from
observations of transfers of material goods (such as food
or money) from i to j, over a total of t ∈ (1, . . . ,T ) time-
points. Then, at time-point T , individual i may be more
likely to recall a true tie to an alter j in the self-report
question layer q = 1 if there were many (or quite recent)
observed resource transfers from i to j over the period
from t = 1 to t = T . Specifically, let us assume that the
variables x[i, j,q=3,t] have been realized for t ∈ (1, . . . ,T ),
as:

x[i, j,q,t] ∼ Bernoulli(ψ[i, j,q,t]) (30)
ψ[i, j,q,t] = α[i,q](1 − y[i, j]) + β[i,q]y[i, j]γ[q,t] (31)

and we are modelling the self-report data, x[i, j,q=1,t=T ].
We assume that the log-odds of a reported transfer in
x[i, j,q=1,t=T ] can be affected by the real observed trans-
fers in x[i, j,q=3,t]. We first assume that the increment in
log-odds, ω, due to a single observed transfer follows an
exponential decay function with time:

ω[t] = ζ exp(−ξ(T − t)) (32)
where ζ gives the increment in log-odds to the true-tie
recall rate when t = T (i.e., when there was a very recent
observed transfer), and ξ controls the rate at which the
increment in log-odds declines with time.

Weak, positive constrained, priors can be specified on
ζ and ξ:

ζ ∼ Gamma(3, 1) (33)
ξ ∼ Exponential(2) (34)

Then, in the first layer, q = 1, for each directed dyad,
we can sum over the relevant values in ω (i.e., the ones
corresponding to x[i, j,q=3,t] = 1):

Ω[i, j,q=1] =

T∑
t=1

{
ω[t], if x[i, j,q=3,t] = 1
0, otherwise

(35)

Likewise, for the second network layer, q = 2, we
start by defining a log-odds offset, but this time we need
to use the values in layer q = 3 corresponding to transfers
from j to i (i.e., where x[ j,i,q=3,t] = 1):

Ω[i, j,q=2] =

T∑
t=1

{
ω[t], if x[ j,i,q=3,t] = 1
0, otherwise

(36)

Finally, for q ∈ {1, 2} and t = T , we integrate these
offsets into the outcome models (e.g., Eqs. 15 or 25), by
writing:
x[i, j,q,t] ∼ Bernoulli(ψ[i, j,q,t]) (37)

ψ[i, j,q,t] = α[i,q](1 − y[i, j]) + logistic
(
logit(β[i,q]) + Ω[i, j,q]

)
y[i, j]

(38)

2.4. Computing the posterior

To compute probabilities of observed variables, x, we
marginalize over the unknown discrete variables, y.
Specifically, the probability of x[i, j,q,t] is given by linking
the model of the ‘true’ latent network and the observation
model as follows:
Pr(x[i, j,q,t]|Θ,Φ) = Pr(y[i, j] = 1|Φ) Pr(x[i, j,q,t]|Θ, y[i, j] = 1)

+ Pr(y[i, j] = 0|Φ) Pr(x[i, j,q,t]|Θ, y[i, j] = 0)
(39)

where Θ is the list of all relevant parameters in the obser-
vation model and Φ is the list of all relevant parameters
in the model of the ‘true’ latent network.

Then, after sampling, we can recover the posterior
probability of y[i, j] = 1 given x using Bayes’ rule:

Pr(y[i, j] = 1|x,Θ,Φ) =
Pr(y[i, j] = 1|Φ) Pr(x|Θ, y[i, j] = 1)

Pr(x|Θ,Φ)
This can be calculated using MCMC samples of the

parameters in Θ and Φ.
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3. Model validation

To validate our approach, we first implement our model
of network connections generatively to simulate a real-
istic ‘true’ network (see Figure 1a). Next, we simulate
double-sampled self-reporting from this ‘true’ network,
subject to individual-level reporting biases. Then, we ap-
ply standard methods to convert these double-sampled,
self-report networks into single-layer networks (see Fig-
ures 1c and 1d). Finally, we fit our Bayesian latent net-
work model to the reported data, and attempt to recover
the ‘true’ underlying network (see Figure 1b). At this
point, we evaluate the performance of each network re-
construction approach by assessing: 1) graph-level met-
rics (see sections 3.1 and 3.2), and 2) node-level met-
rics (see supplementary section 5.3). Each time, we con-
trast the inferred networks with the true network. Addi-
tionally, we evaluate the performance of our model by:
3) ensuring that generative parameter values can be re-
covered (see supplementary section 5.1), and 4) ensur-
ing that node-level attributes in the inferred network are
correlated with the node-level attributes in the generative
model (see supplementary section 5.2).

3.1. Simulation experiments with the base model

Figure 2 displays the results of the base model. Data
were simulated such that the only source of bias was in
reporting rates (i.e., the recall rate of true ties, and the
false positive rate). Each sub-figure illustrates a param-
eter sweep for a focal parameter, holding other parame-
ters constant at moderate levels. For example, in frame
5a, we first simulate data under a given average false
positive rate, µα (see Eq. 17). We then use our model
to identify the latent network, and we calculate the rele-
vant network-level metrics. Following this, we increment
µα, holding all other simulation parameters constant, and
repeat the process. Each sub-figure visualizes a sweep
across a range of plausible parameter values. In frame
5b, for instance, we fix µα, and instead vary σα, which
controls the amount of between-individual variation in
false positive rate.

We compare the results of our model to the results
obtained by taking the intersection (i.e., coding a tie as
present only if both individuals within a dyad state there
to be such a tie) or the union (i.e., coding a tie as present
if at least one individual within a dyad states there to be
such a tie) of nominations, as these are two of the most
common techniques for processing double-sampled data
in the social sciences (Ready and Power 2021). While
there are a handful of cases where either the intersection
or the union can accurately capture a specific network
metric, one would need to know the reporting bias rates
a priori in order to select the correct metric to use. More-
over, there are many locations in the parameter space
where neither method recovers accurate network met-
rics. In contrast, our latent network approach dynam-
ically adapts, and almost universally recovers the true
network metrics—even in cases where the reporting bi-
ases are set unrealistically high.

3.2. Simulation experiments with the question-order
model

Figure 3 shows the results of the base model with addi-
tional control for question-order effects. In this experi-
ment, data were simulated such that biases in reporting
rates (i.e., the recall rate of true ties, and the false positive
rate) were still present, but a further name-duplication
bias across questions was added (i.e., respondents were
more likely to claim that they received food from a given
alter in question 2, if they reported giving food to that
same alter in question 1). As before, the latent network
approach almost universally captures the true network
metrics, even in cases where the reporting biases are set
unrealistically high. In contrast, neither standard method
allows for accurate inference about the true network
when question-order effects are present. As discussed by
Ready and Power (2021), the use of the union rule to
merge double-sampled networks is especially problem-
atic when question-order effects are present.

3.3. Simulation experiments of the “status effect”

The true in- or out-degree distribution for a node may
often be linked to some key covariate, like social status,
that may also affect reporting bias parameters. Any such
covariate that influences true network structure, and af-
fects the strength of reporting biases in the observation
sub-model, has the potential to severely confound infer-
ence. In such cases, double-sampled self-report data may
be insufficient to resolve the effects of covariates on ei-
ther sub-component.

As an example, we can generate data in which some
covariate, S —e.g., social status—has a strong effect on
outgoing transfers: empirically, a high-status individual
might provide help to a large number of people in a given
community. However, by virtue of having such a large
number of out-going ties to recall, these same high-status
individuals might be less likely to recall all of their true
outgoing ties during an interview. As such, we can sim-
ulate a response bias sub-model in which S has a strong
negative effect on the recall rate of true outgoing ties. Fi-
nally, we can fit our model on the simulated data, and
attempt the recover the effects of social status on both tie
existence and recall rate.

Figure 4 plots the results of this analysis, using a
range of parameter sweeps. As before, the data that de-
fine the true underlying network are held constant, but the
parameters governing response accuracy vary. In all pa-
rameter sweeps, the effects of status on out-degree (pos-
itive) and on recall of true ties (negative) are held fixed.
Across all parameter sweeps, we either underestimate or
entirely fail to detect the true positive effect of status on
out-degree. Likewise, we generally fail to detect the ef-
fect of status on recall of true ties. In sum, the status bias
in the self-report network can substantially mask the ef-
fect of status on out-degree. In order to accurately de-
tect the effects of status, we need to integrate informa-
tion from other network layers, especially ones that are
less susceptible to reporting biases.
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(a) True network (b) Inferred latent network

(c) Intersection of reported networks (d) Union of reported networks

Fig. 1: In frame 1a, we plot a true network of transfers in a simulated group-structured population. Then, we simulate
agents reporting on their transfer relations using a double-sampled design (i.e., reporting both who they gave to, and
who they received from). In this case, we use a 1% false positive rate per node, and a 70% recall rate of true ties. In
frame 1b, we plot the posterior median of our latent network. We also apply standard methods of reducing the double-
sampled network to a single-layer network: in frame 1c we take the intersection (i.e., only classifying a dyadic tie as
existing if both nodes reported the tie), and in frame 1d we take the union (i.e., classifying a dyadic tie as existing if
either node reported the tie). We note, visually, that the latent network approach yields a better representation of the
network—at least in terms of density—than the other methods. More formal tests are presented in the supplementary
materials.

3.4. Simulation experiment of recency and frequency

Here, we replicate the data simulation protocol from sec-
tion 3.3 exactly, but use the more complex model variant
introduced in section 2.3 to analyze the data. That is,
rather than analyzing pure self-report data, we now an-
alyze 12 time points of sparse transfer data (in which
transfers were accurately documented), in addition to
the standard self report data. These sparse networks of
“ground-truth” data might come from field observations
(e.g., “scan sampling” or “spot-checks”, Borgerhoff Mul-
der et al. 1985), diary methods (Paolisso and Hames
2010), experimental games (Ross and Redhead 2021),
video recordings (DeTroy et al. 2021), GPS tracking
(Davis et al. 2018), proximity detection (e.g., through

cell phone data, Urban 2021), or a variety of other meth-
ods. Even with sparse, incomplete “ground-truth” data,
network reconstruction can be improved, and covariate
effects on network structure and reporting parameters
disambiguated.

In Figure 5, we show that by integrating even sparse
ground-truth data, we can recover directionally accurate
estimates of the effect of status on both out-degree and re-
call of true ties. In the supplementary materials, we show
that we recover the average effects of recency on recall
rate and the flow rates of transfers along network ties.
These rates were set to low levels (∼0.12) per time step.
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(a) Average false positive rate, ∈ (0.001, . . . , 0.05)
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(b) Dispersion of false positive rate, ∈ (0.001, . . . , 2)
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(c) Average recall of true tie rate, ∈ (0.5, . . . , 0.999)
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(d) Dispersion of recall of true tie rate, ∈ (0.001, . . . , 2)
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Fig. 2: Base model. Each frame plots an analysis of network-level properties. The true network and all associated
parameters are held fixed, except for the parameters displayed in the column labels, which range over the indicated
support. The levels of each outcome in the true network appear as horizontal black lines. The orange regions illus-
trate the posterior distributions of each outcome from the latent network model. The red and blue lines represent the
outcomes resulting from application of either the union or intersection operator, respectively.
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(a) Average rate of name duplication from question 1 to question 2, ∈ (0.001, . . . , 0.66)

Density Reciprocity Transitivity Betw. Centra. Eigen. Centra.
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(b) Dispersion of average rate of name duplication from question 1 to question 2, ∈ (0.001, . . . , 2)
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(c) Average false positive rate, ∈ (0.001, . . . , 0.05)
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(d) Average recall of true tie rate, ∈ (0.5, . . . , 0.999)
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Fig. 3: Question order model. Rate of name duplication from question 1 to question 2: µθ = 0.2, unless otherwise
noted. Each frame plots an analysis of network-level properties. The true network and all associated parameters are
held fixed, except for the parameters displayed in the column labels, which range over the indicated support. The
levels of each outcome in the true network appear as horizontal black lines. The orange regions illustrate the posterior
distributions of each outcome from the latent network model. The red and blue lines represent the outcomes resulting
from application of either the union or intersection operator, respectively.
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4. The STRAND package

To make implementation of our models simple for end-
users, we have released a fully documented R package,
called STRAND, which can be used to both simulate real-
istic network data, and to analyze empirical network data
using Bayesian methods. In this section, we introduce the
STRAND package, and provide a step-by-step tutorial on
it’s functionality.

4.1. Installation

Much of the functionality of STRAND is made possible by
Stan (Stan Development Team 2021b) and CmdStanR
(Stan Development Team 2021a). Users must install
these programs prior to installing STRAND. Installation
and loading of STRAND is then simple: just run three lines
of code from R:

library(devtools)
install_github("ctross/STRAND")
library(STRAND)

4.2. Data simulation

After loading the library, STRAND can be used to run for-
ward data simulations. We provide four key functions:
simulate_sbm_network, simulate_srm_network,
simulate_sbm_plus_srm_network, and finally the
larger function simulate_selfreport_network. The
first three functions are well described in the literature,
referring to a stochastic block model, a social relations
model, and the union of both models, respectively. The
final function implements the full generative model intro-
duced in section 2. The package documentation provides
detailed descriptions of each function’s arguments and
outputs. We provide an example function call below:

s = simulate_selfreport_network(
N_id = 100,
N_groups = 3,
group_probs = c(0.2, 0.5,
0.3),

in_block = 0.02,
out_block = 0.002,
false_positive_rate =
c(0.01, 0.01, 0.01),
recall_of_true_ties =
c(0.85, 0.85, 0.99)

)

Many additional arguments—including covariate
data and parameters to control their effects—can be
supplied, in order to influence the structure of both the
‘true’ underlying network, and the observed reporting
networks.

4.3. Data analysis

After data are simulated, they can be analyzed with sim-
ple, lm-style function calls. First, we use the function

make_strand_data to organize the simulated data into
a format that can be read by Stan and later functions:

d = make_strand_data(self_report=
list(
s$reporting_network[,,1],
s$reporting_network[,,2]),
group_ids=factor(s$group_id),
individual_covariates=NULL,
dyadic_covariates=NULL)

The make_strand_data function requires self_report
data to be supplied as a list of matrices; in cases where
data come from a single-sampled design, the list will
be of length 1, and in cases where data come from
a double-sampled design, the list will be of length 2.
Users then have the option to include further argu-
ments, such as group_ids (a factor vector of group or
block identification codes), individual_covariates
(a data-frame of any number of covariates that must be
matched by participant ID to the self_report data),
and dyadic_covariates (a labeled list of matrices that
must be the same dimensions as, and matched to, the
self_report data). The make_strand_data function
provides initial error checks, and identifies which net-
work models available in STRAND can be fit given the
input types—e.g., latent network models cannot be fit if
self_report is only supplied as a single layer network.

An intercept only latent network model can then be
fit using:

f = fit_latent_network_model(
data=d,
fpr_regression = ~ 1,
rtt_regression = ~ 1,
theta_regression = ~ 1,
focal_regression = ~ 1,
target_regression = ~ 1,
dyad_regression = ~ 1,
mode="mcmc")

As before, there are numerous arguments that can
be specified, and all are described in detail in the pack-
age documentation. Importantly, STRAND supports model
fitting using all of Stan’s modes: Markov Chain Monte
Carlo, “mcmc”, variational Bayesian inference, “vb”,
and optimization, “optim”. While “mcmc” is gold-
standard for accurate posterior estimates, the other meth-
ods are useful for exploratory model fits, or for large net-
works that are computationally unfeasible with MCMC
methods.

Parameter summaries are then returned and printed
using:

r = summarize_strand_results(f)

4.4. An empirical example: Food/money sharing in
Colombia

To explore how more complex models can be specified,
we draw upon an empirical data-set from rural Colom-
bia (Pisor et al. 2020). These data consist of a double-
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sampled, self-report food/money sharing network, paired
to a variety of individual-level and dyadic covariate data.
The network and dyadic data are structured as adjacency
matrices, and the individual-level data as a dataframe. As
before, we first prepare the data:

net = list(
TransferOut=Outgoing_Transfers ,
TransferIn=Incoming_Transfers
)

ind = data.frame(
Age=center(Age),
GoodsValues=center(GoodsValues),
Male=Male,
CantWork=CantWork ,
GripStrength=center(Grip),
NoFood=NoFood,
Depressed=Sad
)

dyad = list(
Relatedness=Relatedness ,
Friends=Friends
)

model_dat = make_strand_data(
self_report=net,

group_ids=group_ids ,
individual_covariates=ind,
dyadic_covariates=dyad
)

And then the model equations can be specified using
lm-style syntax:

f = fit_latent_network_model(
data=model_dat ,
focal_regression = ~ Age +
GoodsValues + Male + NoFood +
CantWork + GripStrength +
Depressed ,

target_regression = ~ Age +
GoodsValues + Male + NoFood +
CantWork + GripStrength +
Depressed ,

dyad_regression = ~ Relatedness
+ Friends,

fpr_regression = ~ Age +
GoodsValues + Depressed ,

rtt_regression = ~ Age +
GoodsValues + Depressed ,

theta_regression = ~ 1,
mode="mcmc",
return_latent_network = TRUE
)

In Figure 6, we plot the networks implied by the ac-
tual nominations of outgoing transfers (frame 6a) and in-
coming transfers (frame 6b), followed by the networks
implied by taking the intersection (frame 6c) or union
(frame 6d) of these reported networks. Finally, we plot
the posterior median realization from our latent network

Table 1: Network-level measurements as inferred by
three network reconstruction methods. Values in paren-
theses are 89% highest posterior density intervals.

Metric Intersect. Union Latent model
Edge density 0.001 0.01 0.007 (0.006, 0.008)
Reciprocity 0 0.496 0.08 (0.058, 0.124)
Transitivity 0.214 0.099 0.109 (0.076, 0.146)
Betw. Cent. 0.002 0.136 0.115 (0.092, 0.136)
Eigen. Cent. 0.983 0.962 0.954 (0.945, 0.963)

model in frame 6e. We find that use of the intersection
leads to a very sparse reconstructed network, not repre-
sentative of real social ties. The union produces a more
plausible network structure. The latent network model
settles on a similar structure to the union in this data
set, but allows us to better quantify our uncertainty in
network properties conditional on reporting biases (see
Table 1). By disentangling true reciprocity from name
duplication bias (i.e., across layer duplication in nomi-
nations within respondents), the implausibly high reci-
procity rate of 0.49 (resulting from taking the union of
reporting networks) is reduced to about 0.08.

In Figure 7, we plot the effects of various predictor
variables on network properties (frame 7a) and reporting
biases (frame 7b). As in Pisor et al. (2020), which used
a simple social relations model, we find that transfers are
more likely to flow between kin and friends. Likewise,
those with food insecurity or depression are less likely
to report sending outgoing food/money transfers to other
members of their community, whereas those with high
grip-strength (a proxy for health and physical well-being)
are more likely to report making such transfers. There is
little to no effect of covariates on reporting biases. Fi-
nally, in frame 7c, we see some baseline measures of
reporting accuracy. We see that false positive rates ap-
pear quite low, with little variance across respondents.
The recall rate of true ties appears to be substantially less
than unity and variable across respondents; such recall
appears higher in the network layer in which respondents
commented on who they gave to, relative to who they re-
ceived from. Lastly, there is evidence of a name dupli-
cation bias across network layers, with an approximately
25% rate of name duplication inflation across network
layers.

5. Discussion

Within the broad field of social network research, self-
report measurement instruments have remained a pri-
mary tool used for the collection of network data. Self-
report research designs are logistically-feasible, and pro-
vide important information on (individuals’ perceptions
of) social relationships and interactions (Freeman 1992).
However, the interpretation of such data remains an en-
during problem as empirical evidence has suggested that:
i) self-reports do not reliably reflect ground-truth data on
interactions (Killworth and Bernard 1976), ii) relation-
ships that are typically considered undirected (such as
friendships) are characterized by low levels of internal
consistency (Ball and Newman 2013), iii) certain at-
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tributes may bias nominations (Simpson et al. 2011),
and iv) question order may impact patterns of response
(Pustejovsky and Spillane 2009). In an aim to detect and
correct some of these issues, researchers have begun to
collect multiple reports on each directed tie within a net-
work (i.e., they collect double-sampled networks; Adams
and Moody 2007; Nolin 2008). While such approaches
produce data that can conceivably detect disagreements
between multiple reports of a single social relationship
(Ready and Power 2021), it has remained non-trivial to
statistically disambiguate such conflicting reports.

Recently proposed latent network frameworks have
provided promising avenues for examining, and ac-
counting for, simple forms of measurement error (e.g.,
individual-level variation in the frequency of reporting
false ties and/or forgetting real ties) in self-report social
network data (Butts 2003; Peixoto 2018; Young et al.
2020). We build upon this architecture to incorporate a
more realistic data generating process that can flexibly
include recency and frequency biases, attribute-related
biases, and the effects of question order. To ensure ease-
of-use, we have developed a fully documented R pack-
age, STRAND, and have provided a step-by-step tutorial
that outlines the STRAND workflow.

The STRAND R package offers social and behavioral
scientists easy-to-use software to apply our latent net-
work modeling framework (as well as other, more com-
mon tools for social network analysis; e.g., stochastic
block models and social relations models). STRAND pro-
vides full Bayesian inference, with all models being im-
plemented in the Stan programming language (Carpen-
ter et al. 2017), without requiring end-users to have a
detailed technical understanding of the underlying code.
The latent network modeling framework that we propose
here easily incorporates double sampled self-report net-
work data and observational network data aimed at cap-
turing the same type of underlying relationships, along-
side any type of individual-level or dyadic-level covari-
ate data. Users simply need to call the relevant functions
within STRAND and supply formulas similar to those used
in the popular lm syntax. Users who do not wish to im-
plement our latent network model—or who do not have
the appropriate data—may fit a social relations model
(Kenny and La Voie 1984), stochastic block model (e.g.,
Peixoto 2019), or a combination of the two, instead.

The extensive simulation experiments that we present
highlight the reliability of our latent network models. In
realistic conditions—i.e., where there are moderate lev-
els of false positive responses, question order effects, and
attribute-related biases—our latent network models ac-
curately recover individual-level and network-level prop-
erties. Our latent network models even remain reason-
ably accurate in highly unrealistic conditions (e.g., when
false positives occur in a 3 to 1 ratio with true positives).
In comparison, our experiments highlight how standard
approaches for network reconstruction produce highly
inaccurate inferences, even when data contain minimal
amounts of the biases discussed above. For example, the
standard approach of taking the union of double-sampled
network data leads to enormous inflation of density, reci-
procity and transitivity, and deflation of common central-
ization metrics in the presence of even minimal amounts

of false positives. Antithetically, use of the intersection
of double-sampled data leads to substantial underestima-
tion of density, reciprocity and transitivity, and overesti-
mation of centralization metrics in the presence of false
negatives. Contrasting with both approaches, our latent
network model permits accurate recovery of an underly-
ing network, without researchers needing to know—or
guess—any reporting bias rates a priori.

The results of our simulation experiments highlight
the need for greater consideration when running and
interpreting social network models that do not adjust
for measurement error. Our results build upon previ-
ous research, which has spotlighted the sensitivity of
individual-level and network-level properties to infor-
mant false reporting and to survey design (Butts 2003;
Kossinets 2006). Furthermore, when an individual-level
attribute increases the probability of both true ties, and
tendencies to make false reports or fail to recall true
ties, identification of the effects of that attribute on ei-
ther outcome is challenging. This problem is especially
salient in social scientific applications, as the core aim
of most applied network studies is to assess the effects
of individual attributes on network structure. Estimates
of the effects of individual attributes on network struc-
ture from models that do not simultaneously account
for reporting biases may therefore be unreliable. This
observation likely holds regardless of whether the net-
work data are single- or double-sampled, and caution is
thus needed when interpreting such estimates. Our la-
tent network models can examine and adjust for these
attribute-related biases, and—as highlighted by our sim-
ulation experiments—accurately recover the true effects
of such attributes on both outcome types.

The latent network modeling framework that we ad-
vance here provides a platform for many fruitful avenues
of future research. Currently, our package currently only
allows for observed, single-membership stochastic block
models. In future work, we will extend this package to
incorporate models that allow individuals to be members
of multiple, overlapping blocks (or communities: New-
man and Leicht 2007). Similarly, we will develop models
that allow block membership to itself be a latent unob-
served variable (and thus be estimated: Wasserman and
Anderson 1987). Alongside this, our framework provides
an architecture which can be extended in future work
to encompass multi-level (Lazega and Snijders 2015),
and multi-layer cases (Kivelä et al. 2014). In sum, we
hope that the latent network framework—and associated
STRAND R package—will inspire and facilitate empirical
applications designed to investigate and/or adjust for the
biases associated with self-report social network data.
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(a) Average false positive rate, ∈ (0.001, . . . , 0.05)
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(b) Dispersion of false positive rate, ∈ (0.001, . . . , 2)
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(c) Average recall of true tie rate, ∈ (0.5, . . . , 0.999)
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(d) Dispersion of recall of true tie rate, ∈ (0.001, . . . , 2)
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(e) Average false positive rate, ∈ (0.001, . . . , 0.02), and average recall of true tie rate, ∈ (0.999, . . . , 0.4)
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Fig. 4: Model with self-report data only. Each frame plots our recovery of the effect of status on different individual-
level properties. The true network and all associated parameters are held fixed, except for the parameters displayed in
the column labels, which range over the indicated support. The levels of each outcome in the true network appear as
horizontal black lines. The orange regions illustrate the posterior distribution of each outcome from the latent network
model.
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(b) Dispersion of false positive rate, ∈ (0.001, . . . , 2)
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(c) Average recall of true tie rate, ∈ (0.5, . . . , 0.999)

Status on Out−Degree Status on In−Degree Status on FPR (Outgoing) Status on FPR (Incoming) Status on RTT (Outgoing) Status on RTT (Incoming)
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(d) Dispersion of recall of true tie rate, ∈ (0.001, . . . , 2)

Status on Out−Degree Status on In−Degree Status on FPR (Outgoing) Status on FPR (Incoming) Status on RTT (Outgoing) Status on RTT (Incoming)

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

−2.5

−2.0

−1.5

−1.0

−0.5

−2.0

−1.5

−1.0

−0.5

−1.5

−1.0

−0.5

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Dispersion in true tie recall rate

Pa
ra

m
et

er
 v

al
ue

Mode: True Estimated

(e) Average false positive rate, ∈ (0.001, . . . , 0.02), and average recall of true tie rate, ∈ (0.999, . . . , 0.4)
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Fig. 5: Model with self-report and ground-truth data. Each frame plots our recovery of the effect of status on different
individual-level properties. The true network and all associated parameters are held fixed, except for the parameters
displayed in the column labels, which range over the indicated support. The levels of each outcome in the true network
appear as horizontal black lines. The orange regions illustrate the posterior distribution of each outcome from the latent
network model.
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(a) Reported outgoing ties (b) Reported incoming ties

(c) Intersection of reported networks (d) Union of reported networks (e) Inferred latent network

Fig. 6: In frames 6a and 6b, we plot the reported networks of food/money transfers in a rural Colombian population.
Then, in frames 6c and 6d, we plot the intersection and union, respectively, of these networks. Finally, in frame 6e,
we plot the posterior median latent network as inferred by our model. We note, visually, that the intersection appears
too sparse. The latent network model settles on a structure similar to the union in this case, but corrects for reciprocity
inflation arising from question order effects; see Table 1.
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(a) Predictors of network ties
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(c) Random effects for response biases
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Fig. 7: Posterior median estimates (and 89% highest posterior density intervals) of various effects from our regression
models. In frame 7a, we plot the standardized effects of various covariates on network structure. In frame 7b, we plot
the standardized effects of various covariates on false positive and true tie recall rates. Finally, in frame 7c, we plot
the unstandardized parameters controlling the mean and cross-individual variation in the random effects measuring
reporting biases.
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