
10026 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

Rigid Body Path Planning Using Mixed-Integer
Linear Programming

Mingxin Yu and Chuchu Fan , Member, IEEE

Abstract—Navigating rigid body objects through crowded en-
vironments can be challenging, especially when narrow passages
are presented. Existing sampling-based planners and optimization-
based methods like mixed integer linear programming (MILP)
formulations, suffer from limited scalability with respect to either
the size of the workspace or the number of obstacles. In order to
address the scalability issue, we propose a three-stage algorithm
that first generates a graph of convex polytopes in the workspace
free of collision, then poses a large set of small MILPs to generate
viable paths between polytopes, and finally queries a pair of start
and end configurations for a feasible path online. The graph of
convex polytopes serves as a decomposition of the free workspace
and the number of decision variables in each MILP is limited by
restricting the subproblem within two or three free polytopes rather
than the entire free region. Our simulation results demonstrate
shorter online computation time compared to baseline methods
and scales better with the size of the environment and tunnel width
than sampling-based planners in both 2D and 3D environments.

Index Terms—Motion and path planning, formal methods in
robotics and automation.

I. INTRODUCTION

THE Piano Mover’s Problem [1] asks whether one can find
a sequence of rigid body motions from a given initial

position to a desired final position, subject to certain geometric
constraints during the motion. The difficulty in planning for
point objects comes from the dimension of the objects, which
prevents the feasibility of naively tracking the motion of a
point, especially when narrow corridors are presented in the
environment and an associated higher-dimension configuration
space ofSE(2) orSE(3) rather than R2 or R3. This problem has
inspired many motion planning works [2], [3], [4], [5], mainly
streamed as sampling-based and optimization-based methods.

Sampling-based methods like probabilistic roadmap (PRM)
[2] are widely adopted because of their simplicity. The ap-
proaches employ discrete collision detection, which is straight-
forward and efficient but highly dependent on the chosen resolu-
tion. Setting improper parameters can lead to missed obstacles,

Received 17 May 2024; accepted 13 September 2024. Date of publication
25 September 2024; date of current version 4 October 2024. This article was
recommended for publication by Associate Editor K. Leahy and Editor L.
Pallottino upon evaluation of the reviewers’ comments. The work of Mingxin
Yu was supported by the Mathworks Fellowship. This work was supported in
part by the National Science Foundation (NSF) CAREER Award under Grant
CCF-2238030 and in part by MIT-Ford Alliance Program. (Corresponding
author: Mingxin Yu.)

The authors are with the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
yumx35@mit.edu; chuchu@mit.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3468165, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3468165

Fig. 1. Figure demonstrates an example solved with our MILP-based method,
navigating a non-convex, V-shaped object through a complex environment from
the start configuration to the goal configuration, both marked red. In the figure,
the obstacles are shown in pink, while the green depicts the regions swept by
the object, demonstrating the effectiveness and precision of our approach in
challenging environments.

resulting in invalid paths. On the other side, solving an obstacle
avoidance problem can be formulated as optimization problems
for optimality and safety guarantee, such as trajectory optimiza-
tion using Mixed-Integer Linear Programming (MILP) [3], [6]
or Graphs of Convex Sets (GCS) [7]. They offer a more robust
solution by directly incorporating collision avoidance into the
formulations. These methods, unlike sampling-based methods,
ensure paths being collision-free by design, thus bypassing the
dependency of resolution in collision detection.

Despite their advantages, current optimization formulations
come with their own set of challenges. Solving MILPs, for exam-
ple, is an NP-hard problem and can be computationally intensive
as the environment complexity increases. The time to directly
solve a MILP for a feasible path grows exponentially with the
number of waypoints, which is proportional to the required
maneuvers in an environment. This scalability issue makes
brute-force MILP-based methods difficult to apply. On the other
hand, the effectiveness of GCS depends on precise initial seeding
to capture narrow passages within the configuration space, which
brings feasibility challenges to GCS methods. To address these
inefficiencies, our approach, as shown in Fig. 1 simplifies the
problem by decomposing a single large MILP into manageable,
fixed-size smaller MILPs. Additionally, by focusing directly on
the workspace rather than the configuration space, our method
mitigates the challenges associated with identifying critical
narrow passages, thereby enhancing efficiency and scalability
in path planning.

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5274-7451
https://orcid.org/0000-0003-4671-233X
mailto:yumx35@mit.edu
mailto:chuchu@mit.edu
https://doi.org/10.1109/LRA.2024.3468165

YU AND FAN: RIGID BODY PATH PLANNING USING MIXED-INTEGER LINEAR PROGRAMMING 10027

In this work, our pipeline is structured into three key stages:
Workspace decomposition - we first construct a graph of convex
set Gc covering the free workspace. This stage is performed
offline and the graph is reusable for multiple queries across
different objects. We exploit the lower dimensionality of the
workspace compared to the configuration space to obtain a
higher coverage ratio and fewer narrow tunnels, which are typi-
cally challenging to identify and cover. Path segment validation
- we then construct a graph Gd in configuration space, which is
also offline. Here, the nodes represent bottleneck configurations
identified byGc and the edges are viable paths validated through
MILPs. This graph allows multiple queries for different start
and goal configurations. At the online stage, we connect the
start and goal configuration into Gd and retrieve the solution
path. Our experiment results show that this method significantly
reduces online time consumption across various objects and
environments, in both 2D and 3D settings.

This work presents several key contributions: (1) By operating
directly within the workspace, our method effectively mitigates
the challenges associated with covering narrow tunnels in the
free space, compared to configuration space-based approaches.
(2) We simplify the path planning process by breaking down
a large, complex optimization problem into a series of smaller
MILPs. Each smaller problem focuses on finding a valid path
segment within a region, significantly enhancing the scalability
of our approach. (3) We conduct comprehensive experiments
in both 2D and 3D environments, comparing against GCS and
sampling-based methods. Our results demonstrate scalability
with the environment, higher feasibility, and shorter computa-
tion time.

II. RELATED WORKS

Graph-based methods: Graph-based methods are particularly
suitable for scenarios requiring multiple queries within the same
environment. Once the graph is constructed, it can be reused to
find multiple paths. One category builds the graph of discrete
configurations, like sampling-based methods PRM [2] and lat-
tice planners [5]. PRM randomly samples states in C-space as
nodes in the graph. Nodes are connected based on the feasibility
of direct paths. Some variants of PRM also consider utiliz-
ing workspace information to guide sampling in configuration
space [8], [9], therefore accelerating the exploration. Lattice
planners are commonly used in nonholonomic vehicle parking
scenarios and leverage high levels of parallelization [5], [10].
They use a regular grid in the configuration space to define
graph nodes [11]. And the edges are computed offline [12],
representing motions that adhere to specific constraints. How-
ever, one inherent limitation of lattice planners is their scaling
with grid resolution. Employing regular lattices across the en-
tire configuration space can be computationally expensive and
inefficient. In contrast, our method reduces the size of the graph
by only utilizing a regular grid on a set of manifolds within the
configuration space, where the metric is strictly zero.

Another category of graph-based planners relies on space
decomposition, where the graph explicitly represents the free
space. Based on constrained Delaunay triangulation [13], pre-
vious works perform well in 2D environments for point ob-
jects [3], [14] either through search or by solving MILPs. Some
works have addressed the problem for higher DoF robots by
incorporating potential field after decomposition for collision
avoidance [15] in less-cluttered 3D environments. While these

Algorithm 1: Construct a Graph of Convex Polytopes Gc.
Require: list of obstacles Oobs, number of samples for visi-

bility graph nv , number of samples per iteration ns,
coverage threshold α.

1: P ← ∅
2: Gv ← SAMPLEVISIBILITYGRAPH(Oobs, nv)
3: while CHECKCOVERAGE(Ev,P) < α do
4: S ← SAMPLEVISIBILITYEDGE(Ev,P, ns)
5: P ← P ∪ IRIS(S)
6: end while
7: Gc ← CONSTRUCTGRAPH(P)
8: return Gc

approaches provide a foundation for solving the problem, they
may struggle with highly constrained environments or complex
object geometries. GCS line of works [7], [16], [17] adopts a
different approach by attempting to cover the free space with a
set of convex polytopes, thereby retrieving paths through opti-
mization. This method is capable of working in both workspace
and configuration space, thus accommodating any shape and
scaling to more than 10 dimensions.

Exact collision detection Most path-planning algorithms work
with discrete collision detection, due to their easy implemen-
tation, broad applicability, and fast execution [2], [18]. This
method checks a path in C-Space by creating samples along the
path and when all these samples are checked to be collision-free,
the entire path is assumed to be collision-free. While efficient,
its accuracy depends on the sampling resolution, risking missed
collisions with coarse samples or delays with overly fine-grained
samples. To enhance reliability, one method is free bubble [19],
recursively bisecting the samples on the path to guarantee
collision-free [20] by calculating the maximum allowable move-
ment without collision. Another method is continuous collision
checking [21], [22], which performs well for rigid body motions
by directly checking the collisions of the reachable set with
the obstacles. But they suffer from the speed. We integrate
both methods in the algorithm, aiming for both soundness and
efficiency.

III. PIPELINE OVERVIEW

In this letter, we consider the path planning problem of a rigid
body object O. The workspace W , the physical space where
the object lies, can be R2 or R3 depending on the particular
application at hand. And the configuration space for O is SE(2)
and SE(3), respectively. A configuration is represented as q =
(p,R) with a position vector p ∈ R2 or R3 and a rotation matrix
R ∈ SO(2) or SO(3). The pipeline of our method is shown in
Fig. 2. We outline major stages of our method in this section,
before going deep into verifying path segments with MILP in
Section IV.

A. Workspace Decomposition - Construct Coarse Graph Gc

At this stage, we aim to approximately decompose the free
workspace Wfree into a set of convex polytopes P and build a
graph Gc on P as shown in Algorithm 1. The graph Gc is shared
across various objects within the same environment.

Following [23], we first construct a visibility graph Gv :=
(Vv, Ev) where Vv is uniformly sampled from W with points
inside obstacles excluded, and Ev is added by checking for

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

10028 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

Fig. 2. Overview of our pipeline. (a) Workspace decomposition: Decomposition of the free workspace into a graph of convex polytopes Gc. The polytopes serve
as graph vertices and are interconnected if they overlap (Section III-A). (b-d) Path segment validation: Construction of Gd(Section III-B), where each vertex is a
set of interconnected free configurations - illustrated as the set of green points enclosed by the green ring. The motions between vertices (blue edges) are generated
by solving MILPs (Section III-B). (e) Online query: the start and end configurations are connected to graph Gd and the planned path is retrieved (Section III-C).

collisions along the line segments connecting each pair of points
within some distance using Proposition 1. During each iteration,
the subroutine SAMPLEVISIBILITYEDGE samples ns points on
the edges in Ev that are not yet covered by the polytopes in
P . The ns points are then used as initial points for IRIS [16],
after which the newly computed polytopes are added into P .
The iteration terminates when the coverage ratio of P over Ev
exceeds threshold α > 0. Subsequently, an undirected graph
Gc := (Vc, Ec) is constructed with vertices Vc = P , and with
an edge (Pi1 , Pi2) ∈ Ec for every pair of intersected polytopes
Pi1 and Pi2 .

B. Path Segment Validation - Construct Dense Graph Gd

Graph Gc is a GCS, and an optimal solution of the path
planning problem for a point object can be found via [17].
However, its direct applicability is limited when considering
non-point objects. The limitation arises because an intersection
between polytopes - a valid pathway for point objects - does
not inherently guarantee feasible traversal for objects with non-
negligible dimensions and orientations.

To address this challenge, we introduce another undirected
graph Gd := (Vd, Ed) that describes the connectivity between
adjacent polytopes for a specific object O, detailed in Algo-
rithm 2. Our key insight is that, for an object O to move from
Pi to Pj , its center c must traverse the boundary ∂Pij of the
intersection Pij := Pi ∩ Pj .

Vertices Vd: The vertices Vd in Gd are generated through sub-
routine SAMPLE&GROUP. The process begins with discretizing
∂Pij into regular grids.

a) Discretization in 2D environments. For 2D, the boundary
∂Pij is a closed ring, which can be parameterized linearly from
λ = 0 to λ = 1, with the points for λ = 0 and λ = 1 being
identical. Translations along this boundary are selected with
a fixed interval δλ > 0. Rotations are discretized into nR > 0
possible values, with angles (θ1, . . . , θnR) being (1 · 2π/nR, 2 ·
2π/nR, . . . , nR · 2π/nR). These correspond to rotation matri-
ces (R1, . . . , RnR). Together, the translation parameter λ and
the set of rotations θ create a 2D grid of possible configurations,
as shown in Fig. 2.

b) Discretization in 3D environments. In 3D scenarios, the
boundary ∂Pij consists of several facets, each treated as a
disjoint boundary without considering the connections between
them. On each facet, the translations are constructed using a
regular rectangle grid, and the rotations are a selected set of

Algorithm 2: Construct a Graph of Convex Polytopes Gd.
Require:list of obstacles Oobs, graph Gc, number of

intermediate waypoints N .
1: Vd ← ∅, Ed ← ∅
2: for (Pi, Pj) ∈ Ec do
3: vij,1, . . . , vij,nij ← SAMPLE& GROUP(∂Pij ,Oobs)
4: Vd ← Vd ∪ {vij,1, . . . , vij,nij}
5: end for
6: CandidateEdgeSet = {(vij,n1 , vik,n2)|vij,n1 , vik,n2 ∈

Vd, vij,n1 &= vik,n2}
7: for (vij,n1 , vik,n2) ∈ CandidateEdgeSet do
8: if VERIFYTRAVERSAL(vij,n1 , vik,n2 , Gc, N) then
9: Ed ← Ed ∪ {(vij,n1 , vik,n2)}

10: end if
11: end for
12: return Vd, Ed

rotation matrices (R1, . . . , RnR). Together, the translations and
rotations create a 3D grid on a facet.

After discretization, we collect the set of free configurations
Cij on all grids, where a free configuration refers to the object
being completely contained inside Pi ∪ Pj . We then try to
group free configurations on the same grid, forming of several
disjoint subgraphs {Gp,ij,n}

nij

n=1, as shown in Fig. 2. Within each
subgraph, any two configurations can be interconnected via a
collision-free path. This process is detailed in the supplementary
materials.1 Subsequently, the set of verticesVp,ij,n ⊂ Cij ofn-th
subgraph Gp,ij,n on ∂Pij becomes a node vij,n = Vp,ij,n ∈ Vd

to serve as potential waypoints in detailed path planning.
Edges Ed: We assess all possible connections among Vd to

establish Ed. For any two vertices vij,n1 and vik,n2 , an edge is
considered if the proposed traversal between vertices is verified
as feasible by VERIFYTRAVERSAL. The edge (vij,n1 , vik,n2)
represents the feasibility of moving from polytope Pj to Pk

via Pi.

C. Online Query

Graph Gd serves as an offline pre-computed roadmap, en-
abling rapid online path planning from a start configuration qstart
to an end configuration qend. We introduce new vertices vstart =
{qstart} and vend = {qend} into Gd, connecting them using the

1See: https://sites.google.com/view/realm-rigidmilp

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/view/realm-rigidmilp

YU AND FAN: RIGID BODY PATH PLANNING USING MIXED-INTEGER LINEAR PROGRAMMING 10029

same VERIFYTRAVERSAL subroutine. The resulting path consists
of alternating segments: inter-vertex motions and intra-vertex
motions. The path query first tries to extract a sequence of ver-
tices from vstart to vend on Gd. Inter-vertex motions are retrieved
from the connecting edges. For each vertex vij,n to be visited,
the intra-vertex motions are obtained from the corresponding
subgraph Gp,ij,n, to connect entry and exit configurations. All
motion retrieval is performed online using Dijkstra’s algorithm.

IV. VERIFYING PATH SEGMENTS

A significant challenge arises in verifying the motion between
waypoints due to the complex geometry of the objects. Previ-
ously, this is commonly addressed by bloating the obstacles to
account for the size of objects, thereby transforming the problem
into planning within this bloated environment as with a point
object [14]. However, this method can be overly restrictive,
especially for objects whose shapes deviate significantly from
circular or spherical forms.

In this section, we will tackle the challenge using MILP
to verify path segments for polytope objects. We assume the
rigid-body object O to be simply connected (no holes) and its
geometric center to lie inside the O. We denote the vertices of
O are {vO,i}.

A. MILP Formulation

As discussed in Section III-B, the traversal between ver-
tices (vij,n1 , vik,n2) in Gd is not straightforward. Therefore,
we formulate the subroutine VERIFYTRAVERSAL as an MILP,
which is to verify whether there exists a piece-wise linear path
from a configuration in vij,n1 to another one in vik,n2 with N
intermediate waypoints.

For the sake of simplicity, we’ll denotevij,n1 asu and vik,n2 as
w in the discussion of MILP, while denoting the set of polytopes
{Pi, Pj , Pk} ⊂ Ec as Pc. The list of free configurations in u
or w are denoted as (qu,1, . . . , qu,nu) and (qw,1, . . . , qw,nw).
Let qt be the waypoints in the path, including the start and end
configurations, indexed by t ∈ {0, . . . , N + 1}. Each waypoint
qt consists of a translational part pt and a rotational part Rt. The
translational part in a 2D scenario is given by pt = (xt, yt), and
in 3D, it extends to pt = (xt, yt, zt).

Model: The objective is to minimize the total 1-norm of
the translational displacement along the path. The entire MILP
model is formulated in (1):

min
{pt}t,{Rt}t,B

N∑

t=0

‖pt+1 − pt‖1, (1a)

s.t. (2), (3), (4), (5). (1b)

Here B is the set of all binary variables we’ll introduce. The
objective in (1a) can be easily transformed to standard linear
expressions with additional variables, which we will not detail
here.

Basic constraints: The rotational part Rt is encoded as a one-
hot vector βR,t using binary variables. This is achieved through
the constraints

Rt =
nR∑

i=1

βR,t,iRi, ∀t = 0, . . . , N + 1 (2a)

1 = βT
R,t1, ∀t = 0, . . . , N + 1 (2b)

Fig. 3. Figure shows the reachable set of 2D objects for translation and rotation
scenarios, respectively. On the right, we illustrate the approximation of the green
sectors to yellow polytopes.

Each element in R is a possible rotation matrix, as specified in
Section III-B. The index where bR,t = 1 indicates the selection
of the corresponding rotation at waypoint t.

Between two consecutive waypoints, we enforce the object to
either translate or rotate, a decision encoded by binary variable
βor,t in (3). This constraint addresses the challenges associated
with encoding collision-free conditions in MILPs. By restricting
the motion to either translation or rotation at each step, this
simplified model becomes computationally tractable. Specifi-
cally, in 3D scenarios, we further limit the object to translational
motion only, equivalent to setting βor,t = 1.

‖pt+1 − pt‖1 ≤M · βor,t, ∀t = 0, . . . , N (3a)

‖βR,t+1 − βR,t‖1 ≤M(1− βor,t), ∀t = 0, . . . , N (3b)

βor,t = 1, (only present in 3D) ∀t = 0, . . . , N (3c)

The constraints for start and end configuration are that the
first and last waypoints are in u and w correspondingly. We
introduce two additional one-hot vectors βstart and βend, which
are used to select specific configurations from the sets u and w,
shown in (4).

p0 =
nu∑

i=1

βstart,ipu,i, pN+1 =
nw∑

i=1

βend,ipw,i, (4a)

R0 =
nu∑

i=1

βstart,iRu,i, RN+1 =
nw∑

i=1

βend,iRw,i, (4b)

nu∑

i=1

βstart,i = 1,
nw∑

i=1

βend,i = 1 (4c)

B. Collision-Avoidance Constraint

The remaining constraint in the MILP is collision avoid-
ance. While the start (q0) and end (qN+1) configurations are
already checked to be collision-free, ensuring continuous colli-
sion avoidance throughout the motion path is critical. Here, the
collision avoidance constraint is encoded by enforcing that the
each reachable set between two consecutive waypoints (qt, qt+1)
(t = 0, . . . , N) be completely contained within the union of
all relevant collision-free polytopes,

⋃
Pc. Specifically, this is

achieved by checking all the boundaries of the reachable sets
being inside

⋃
Pc.

1) Compute Boundary of Reachable Set: In 2D, the reach-
able set is computed as Fig. 3. For translation, the boundary
contains the blue edges of O at configurations qt and qt+1, and
orange lines connecting a same vertex at two waypoints. For
rotation, the difference is that the lines connecting a same vertex
at two waypoints are arcs. While the arcs can not be expressed

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

10030 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

Fig. 4. Models of collision avoidance around obstacles (gray). The free space
is decomposed into convex polytopes (blue and yellow). Green lines indicate
predicted collision-free paths and red lines indicate detected collisions. Left:
Less strict encoding that only checks endpoints of subdivided line segments.
The dashed red line demonstrates that endpoint-only checking is insufficient as
it cuts through an obstacle. Right [6]: This overly restrictive model allows only
paths like the dotted line where both endpoints lie within the same free region,
rejecting the simpler, viable solid line. Middle (ours): Strict encoding based
on Proposition 1. This approach prevents the dashed line from cutting through
obstacles by incorporating additional constraints beyond endpoint checking,
while including more paths between regions, like the solid line.

in linear expression, we overapproximate the arc with two line
segments, with ‖MA∗‖ cos(∆θmax/2) = ‖MA‖. ∆θmax is the
maximum rotation angle allowed in one step, selected as π/3.
In 3D, only translation is allowed inside MILP. The rotation is
only allowed inside each Vd vertices, which is not solved by
MILP. The reachable set is the union of the polytopes swept by
each face of O, which is also a polytope. Therefore, to check
the collisions of the faces of the reachable set, we only need to
check the superset - the union of the triangle mesh faces of O at
qt and qt+1 and the parallelogram swept by each edge of O.

2) Collision Detection Between Surface and Polytope: Com-
pared with existing models of collision avoidance in Fig. 4, we
propose a new encoding based on the following corollaries. We
just need to check each edge on the boundary of the reachable
set to satisfy Proposition 1.

Proposition 1 (Line segment inside two convex polytopes):
Given two convex polytopes Pi = {x|Aix ≤ bi}, i = 1, 2, and
a line segment lwith two endpoints (xa, xb), l is contained inside
the union of P1 and P2 if one of following conditions holds:

1) xa and xb are within a same polytope Pi,
2) xa and xb are within different polytopes, but there exists

a point x satisfying x ∈ (P1 ∩ P2).
Proof: For condition (1), the convexity of Pi ensures that

all points on l, being a line segment between xa and xb, are
also contained within Pi. If condition (2) holds, line segments
(xa, x) and (x, xb) both satisfy condition (1). Hence, the entire
line segment l remains within P1

⋃
P2. !

We further extend the Proposition 1 from checking line
segments to triangles and convex quadrilaterals. By enforcing
all edges of these shapes satisfying Proposition 1, we prove
that the shapes are contained within the union of two given
convex polytopes. The corollaries and proofs are provided in
the supplementary materials.2 So we just need to check the line
segments within the sets Sline based on Proposition 1:

1) the line segments connecting the object’s geometric center
and vertices at waypoints qt and qt+1

2) the edges of O at waypoints qt and qt+1

3) the line segments connecting a same vertex of O between
waypoints qt and qt+1.

2See: https://sites.google.com/view/realm-rigidmilp

Accurately verifying condition 2) of Proposition 1 involves a
product of two sets of variables - the positions of xa, xb and the
proportion (x, xa) occupies. This product cannot be encoded
into a mixed integer linear programming. Instead, we divide
the line segments into 10 equal parts and only check the 11
endpoints in practice. So the MILP constraints can be written
as, ∀es = (ps,start, ps,end) ∈ Sline:

Ai(ηps,start + (1− η)ps,end) ≤ bi +M(1− βs,i,η),

∀Pi ∈ Pc, ∀η ∈ {0, 0.1, . . . , 1} (5a)
∑

i

βs,i,η ≥ 1, ∀η ∈ {0, 0.1, . . . , 1} (5b)

βs,cond1,i ≤ βs,i,0, βs,cond1,i ≤ βs,i,1 (5c)
∑

η

(βs,i,η + βs,j,η − 1) ≥ 1−M(1− βs,cond2,ij),

∀Pi, Pj ∈ Pc, Pi &= Pj (5d)
∑

i

βs,cond1,i +
∑

(i,j)

βs,cond2,ij ≥ 1 (5e)

where βs,i,η , βs,cond1,i, βs,cond2,ij are binary variables for line
segment es. βs,i,η = 1 indicates that interpolated points are
inside polytope Pi. Similarly, βs,cond1,i or βs,cond2,ij being 1
means the corresponding condition is satisfied. Equations (5a)
and (5b) encodes the preconditions, while (5c) and (5d) encodes
the two conditions in Proposition 1, respectively.

C. Discussion

While our approach decomposes the original planning prob-
lem and solves each subproblem optimally, it does not guarantee
global optimality for the entire path. However, our algorithm
is capable of finding multiple solutions or modalities, which
can then serve as initial solutions for further refinements. It
is important to acknowledge that in the 3D case, our method
currently only allows translation within the MILP formulation
to simplify the computation of the reachable set. We recognize
that this simplification may exclude some potential solutions. To
address this limitation, future work will focus on extending the
approximation techniques used in the 2D case to the 3D domain.

V. EXPERIMENTS

We empirically validate our method in this section. We
initially set the number of intermediate waypoints, N , to 0.
If no solution can be found with N = 0, we increase N to
1. Additionally, rotations are discretized into 12 distinct rota-
tions for 2D environments and 24 for 3D environments, re-
spectively. All experiments were launched on a server with 1
AMD Ryzen Threadripper 3990X 64-Core Processor. We adopt
Gurobi 10.0.0 [25] as the MILP solver and handle the graphs
Gc, Gd with NetworkX [26].

Benchmarks: We collect 8 benchmark environments, visual-
ized in Fig. 5. We consider two types of objects: convex and
non-convex. In 2D environments, the convex object is selected
as a stick of length 1.2 and width 0.1, while the non-convex
object is an L-shape with longer side 1.2, shorter side 0.8 and
width 0.1. In 3D environments, the convex object is a pad of size
1.0× 0.8× 0.1, and the non-convex object is L-shaped, com-
posed of two pads of size 1.0× 0.8× 0.1 and 1.0× 0.1× 0.4.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/view/realm-rigidmilp

YU AND FAN: RIGID BODY PATH PLANNING USING MIXED-INTEGER LINEAR PROGRAMMING 10031

Fig. 5. Visualization of planning results in 2D (obstacles: pink) and 3D scenarios. The start and end configurations are plotted with red, while waypoints and
their corresponding reachable sets are shown in green. In 2D scenarios, we also illustrate the graph Gc with vertices (Vc) as blue polytopes and edges (Ec) as blue
lines connecting red dots, which represent the centers of vertex polytopes. Fig. 5(e) and (h) show the planning results of L-shape non-convex objects, while the rest
show the results of convex objects.

Baselines: We compare our method with the following multi-
query motion planning algorithms, PRM [2], WCO [8] and
GCS [27]. PRM and WCO, sampling-based methods, are eval-
uated across 5 trials for each problem set with an offline phase
of 15 seconds allocated to develop a roadmap before each
trial. GCS constructs a graph of convex set in configuration
space [23], followed by optimizing for an optimal path with
piece-wise linear curves [27]. To ensure a fair comparison in
generating an IRIS cover for both GCS and our method, though
their application in different spaces, we select the same set of
hyperparameters. Specifically, we set nv = 512, α = 0.95 and
select ns = 5 for our method.

A. Planning Results

Metrics: In evaluating the performance of the methods, we as-
sess two key metrics. First, we measure the online time required
to compute a path when a new start and goal configuration pair
is specified. Secondly, we evaluate the number of waypoints
in the solution path. This metric serves as an indicator of the
path’s complexity and efficiency in navigating from start to goal.
A lower number of waypoints generally suggests a smoother
execution in practice.

Result We compare with baselines and show the results in
Table I. We also visualized the solution paths in Fig. 5.

a) Online time: Our method consistently achieved the shortest
online computation times, typically under 100ms across most
test scenarios. This efficiency contrasts with the GCS, which
struggles to find feasible solutions in several environments. This
is particularly evident in configurations involving narrow tunnels
not covered by the C-IRIS strategy, which is explored further in
Section V-C.

The online time for our method involves retrieving the path
from Gd and connecting the start and end configurations to the
graph. In practice, we set the number of intermediate waypoints
N = 0, allowing us to leverage matrix operations for quick
verification instead of solving MILPs for faster online compu-
tation. In contrast, the online stage for GCS involves solving an

TABLE I
COMPARISON OF OUR METHOD AND BASELINES ON BENCHMARKS

optimization problem. For PRM and WCO, it includes discrete
collision checking to connect start and end configurations to a
dense graph, much larger than ours.

b) Waypoint comparison: GCS, which optimizes for path
optimality, generally produces smoother paths when it can find
a solution, leading to fewer waypoints. In 2D environments, our
method typically finds paths with fewer waypoints compared to
sampling-based methods, indicating a more efficient pathfinding
strategy. But the situation differs in 3D. This is because we
over-restrict the free configurations on the boundaries in 3D

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

10032 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

TABLE II
COMPARISON OF OUR METHOD WITH SAMPLING-BASED METHODS FOR AN L-SHAPED OBJECT NAVIGATING A BUGTRAP ENVIRONMENT FIG. 5(B)

TABLE III
METRICS OF OFFLINE STAGES FOR OUR METHOD AND GCS

scenarios, so the solution space is much smaller for our method
and our method tends to generate more complex and twisted
paths.

c) Impact of object shapes: Our method allows the Gc to be
reused for different object shapes. With the dimensions of the
object being similar, our method and sampling-based methods
are able to maintain a consistent online time for different ob-
jects. Conversely, GCS performance is significantly impacted
by changes in object shape, altering the geometry of the free
configuration space and affecting feasibility and computation
times across various environments.

B. Comparison With Sampling-Based Algorithms

Sampling-based methods, such as PRM and WCO, face
challenges when scaling to larger environments. One critical
hyperparameter affecting their performance is the resolution of
collision checking. To assess the adaptability of these meth-
ods, we tested their efficiency with varying distances between
checked states, specifically at 0.25x, 0.1x, and 0.05x of the
object’s length, as detailed in Table II .

Our experiments revealed that both PRM and WCO struggle
to maintain performance as the environment scales. In contrast,
the offline computation time for our method consistently re-
mains around 15 seconds across all test cases, attributable to
the minimal changes in the structure of Gc and Gd besides
scaling. Similarly, the online execution time remains relatively
consistent across scenarios. This is because the MILP approach
in our method performs exact continuous collision checking
with infinite resolution, enabling it to handle larger environments
more effectively. Moreover, we observed that WCO significantly
outperforms PRM when scaling, demonstrating the benefit of
utilizing workspace connectivity information. By leveraging
this information, WCO can more efficiently explore the space
and find feasible paths in larger and narrower environments
compared to PRM.

Fig. 6. A 2D motion planning problem consists of a stick getting out of a trap
and passing through a narrow gap, where our method is able to achieve almost
100% coverage in workspace Fig. 5(b). The C-space is a subset of SE(2),
with two translation axes and a periodic axis corresponding to the rotation. We
visualize the collision-free C-space by sampling (left) and the C-IRIS cover
acquired from GCS (right).

C. Comparison With GCS

The major difference between our method and GCS lies in
space decomposition: our method is workspace-based while
GCS works in C-space. The dimensionality of C-space is usu-
ally higher than that of the workspace, accompanied by in-
herent geometrical and topological differences between these
two spaces. In the demonstrated scenario Fig. 6, where the
objective is for a stick to navigate out of a trap through a
narrow gap. The collision-free C-space consists of two large
regions, connected by three thin tunnels. Despite dense sampling
revealing the tunnels, GCS, with 42 polytopes, failed to detect
any narrow passage, thus incapable of finding a feasible solution
for the problem. On the contrary, our method identifies the
critical pathways and achieves a near-complete coverage in the
workspace. This distinction indicates a challenge in C-space
representation, pathways that occupy a small volume in the
workspace can correspond to an even smaller fraction of the free
space in C-space, considering the increased dimensionality. This
observation underscores the necessity of carefully designing a
sampling strategy to ensure reliability.

We also conduct a comprehensive comparison of time con-
sumption and problem size for the offline stage, as shown in
Table III. The offline stage for our method can be roughly
divided into two: the construction of Gc (Section III-A) and
Gd (Section III-B). The problem size for Gc is the number
of IRIS regions (|Vc|) and its computation only needs to be
conducted once across different objects in the same environment.
But the graph in GCS needs to be recomputed when either
the environment or the object changes. It can be observed that
the number of IRIS regions we need to grow is significantly
lower than GCS while remaining high feasibility. Moving to
Gd, the problem size is determined by the number of MILP
required. Despite our method necessitating a substantial number
of MILPs, the MILPs are designed to be of small sizes, and batch
processing is highly preferred. In the experiment, we assign 2
threads for each MILP. The offline computation time for Gd

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

YU AND FAN: RIGID BODY PATH PLANNING USING MIXED-INTEGER LINEAR PROGRAMMING 10033

scales linearly to the number of MILP. Conversely for GCS,
the number of variables is proportional to the number of IRIS
regions, which makes the online time extremely long for GCS
when the number of IRIS regions is large.

Across the majority of test cases, our method demonstrated
reduced offline computation times while maintaining feasibility.
However, it’s important to note the inherent advantage of GCS
in its design for globally optimal solutions. While our method
focuses on achieving faster computation and higher feasibility,
this comes at the sacrifice of optimality.

VI. CONCLUSION

In this study, we introduced a path-planning approach for rigid
body objects using MILP with better scalability and efficiency.
By structuring our method into three distinct stages – workspace
decomposition, path segment validation, and online query for
rapid path retrieval, we have demonstrated improved planning
efficiency in multi-query scenarios via comprehensive experi-
ments against baselines.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and don’t
necessarily reflect the views of the sponsors.

REFERENCES

[1] J. T. Schwartz and M. Sharir, “On the “piano movers” problem I. The
case of a two-dimensional rigid polygonal body moving amidst polygonal
barriers,” Commun. Pure Appl. Math., vol. 36, no. 3, pp. 345–398, 1983.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[3] M. Vitus, V. Pradeep, G. Hoffmann, S. Waslander, and C. Tomlin, “Tunnel-
MILP: Path planning with sequential convex polytopes,” in Proc. AIAA
Guid., Navigation Control Conf. Exhibit, doi: 10.2514/6.2008-7132.

[4] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptoti-
cally near-optimal motion planning,” Int. J. Robot. Res., vol. 33, no. 1,
pp. 18–47, 2014.

[5] D. Nister, J. Soundararajan, Y. Wang, and H. Sane, “Nonholonomic motion
planning as efficient as Piano mover’s,” 2023, arXiv:2306.0130.

[6] M. d. S. Arantes, C. F. M. Toledo, B. C. Williams, and M. Ono, “Collision-
free encoding for chance-constrained nonconvex path planning,” IEEE
Trans. Robot., vol. 35, no. 2, pp. 433–448, Apr. 2019.

[7] A. Amice, H. Dai, P. Werner, A. Zhang, and R. Tedrake, “Finding and
optimizing certified, collision-free regions in configuration space for robot
manipulators,” in Proc. Int. Workshop Algorithmic Found. Robot., 2022,
pp. 328–348.

[8] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for prm planning,” in Proc. Algorithmic Found.
Robot. VII: Sel. Contributions 7th Int. Workshop Algorithmic Found.
Robot., 2008, pp. 35–51.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics
by a synergistic combination of layers of planning,” IEEE Trans. Robot.,
vol. 26, no. 3, pp. 469–482, Jun. 2010.

[10] M. McNaughton, “Parallel algorithms for real-time motion planning,”
Carnegie Mellon University, 2011.

[11] A. Kelly et al., “Toward reliable off road autonomous vehicles operat-
ing in challenging environments,” Int. J. Robot. Res., vol. 25, no. 5/6,
pp. 449–483, 2006.

[12] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” J. Field Robot., vol. 26,
no. 3, pp. 308–333, 2009.

[13] L. P. Chew, “Constrained delaunay triangulations,” in Proc. 3rd Annu.
Symp. Comput. Geometry, 1987, pp. 215–222.

[14] D. Demyen and M. Buro, “Efficient triangulation-based pathfinding,” in
Proc. AAAI Conf. Artif. Intell., 2006, vol. 6, pp. 942–947.

[15] O. Brock and L. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional configura-
tion spaces,” in Proc. 2001 IEEE Int. Conf. Robot. Automat., 2001, vol. 2,
pp. 1469–1474.

[16] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-free
space through semidefinite programming,” in Proc. Algorithmic Found.
Robot. XI: Sel. Contributions 11h Int. Workshop Algorithmic Found.
Robot., 2015, pp. 109–124.

[17] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths in
graphs of convex sets,” SIAM J. Optim., vol. 34, no. 1, pp. 507–532, 2024.

[18] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[19] S. Quinlan, Real-Time Modification of Collision-Free Paths. Stanford, CA,
USA: Stanford University, 1995.

[20] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic collision
checking for single and multiple articulated robots in complex environ-
ments,” IEEE Trans. Robot., vol. 21, no. 3, pp. 338–353, Jun. 2005.

[21] S. Redon, A. Kheddar, and S. Coquillart, “An algebraic solution to the
problem of collision detection for rigid polyhedral objects,” in Proc. 2000
ICRA Millennium Conf.. IEEE Int. Conf. Robot. Automat. Symposia Proc.,
2000, vol. 4, pp. 3733–3738.

[22] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision detection
for articulated models using taylor models and temporal culling,” ACM
Trans. Graph., vol. 26, no. 3, pp. 15–es, 2007.

[23] P. Werner, A. Amice, T. Marcucci, D. Rus, and R. Tedrake, “Approximating
robot configuration spaces with few convex sets using clique covers
of visibility graphs,” in Proc. IEEE Int. Conf. Robot. Automat., 2024,
pp. 10359–10365.

[24] M. Rungger and M. Zamani, “SCOTS: A tool for the synthesis of symbolic
controllers,” in Proc. 19th Int. Conf. Hybrid Syst.: Comput. Control, 2016,
pp. 99–104.

[25] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2023.
[Online]. Available: https://www.gurobi.com

[26] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proc. 7th Python Sci. Conf.,
G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008,
pp. 11–15.

[27] T. Marcucci, M. Petersen, D. v. Wrangel, and R. Tedrake, “Motion planning
around obstacles with convex optimization,” Sci. Robot., vol. 8, no. 84,
2023, Art. no. eadf7843.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:00:02 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.2514/6.2008-7132
https://www.gurobi.com

