5536

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

A Hierarchical Framework for Solving
the Constrained Multiple Depot
Traveling Salesman Problem

Ruixiao Yang

Abstract—The Multiple Depot Traveling Salesman Problem
(MDTSP) is a variant of the NP-hard Traveling Salesman Problem
(TSP) with more than one salesman to jointly visit all destinations,
commonly found in task planning in multi-agent robotic systems.
Traditional MDTSP overlooks practical constraints like limited
battery level and inter-agent conflicts, often leading to infeasible or
unsafe solutions in reality. In this work, we incorporate energy and
resource consumption constraints to form the Constrained MDTSP
(CMDTSP). We design a novel hierarchical framework to obtain
high-quality solutions with low computational complexity. The
framework decomposes a given CMDTSP instance into manage-
able sub-problems, each handled individually via a TSP solver and
heuristic search to generate tours. The tours are then aggregated
and processed through a Mixed-Integer Linear Program (MILP),
which contains significantly fewer variables and constraints than
the MILP for the exact CMDTSP, to form a feasible solution
efficiently. We demonstrate the performance of our framework on
both real-world and synthetic datasets. It reaches a mean 12.48 %
optimality gap and 41.7x speedup over the exact method on com-
mon instances and a 5.22 % ~14.84 % solution quality increase with
more than 79.8x speedup over the best baseline on large instances
where the exact method times out.

Index Terms—Combinatorial optimization, multi-robot systems,
path planning for multiple mobile robots or agents, planning,
scheduling, and coordination, task planning.

I. INTRODUCTION

O OPTIMIZE robots handling multiple tasks, a crucial step
T is to plan the mission with the optimal order of tasks. The
Traveling Salesman Problem (TSP), well-studied in a wide range
of fields including computer science, operation research, and
optimization theory, seeks the shortest route for a salesman to
visit a set of cities (or destinations) exactly once and return to
the starting point. In the multi-agent robot system, the Multiple
Depot TSP (MDTSP) [1] is a corresponding variant of the classic
TSP that adds multiple depots, where multiple salesmen start,
to visit a set of cities jointly. Such a problem arises in various
real-world robotics applications such as logistics scheduling,

Manuscript received 10 December 2023; accepted 10 April 2024. Date of
publication 16 April 2024; date of current version 6 May 2024. This letter was
recommended for publication by Associate Editor E. Pastore and Editor C.-B.
Yan upon evaluation of the reviewers” comments. This work was supported by
National Science Foundation CAREER under Grant CF-2238030. (Correspond-
ing author: Ruixiao Yang.)

The authors are with the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
ruixiao @mit.edu; chuchu@mit.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3389817, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3389817

and Chuchu Fan

, Member, IEEE

warehouse robots, healthcare routing for metropolitan cities, and
unmanned aerial vehicles (UAVs) [2], [3], [4].

The optimal routes given by the solution of an unconstrained
MDTSP might not be realizable in practice due to the energy
consumption and limited energy capability of each robot (also
called salesmen henceforth). For example, due to the limited
battery capacity, when assigning drones or electric vehicles
to deliver items from different warehouses, visiting charging
stations must be considered. The charging stations also have
limited capabilities in terms of the number of agents they
can host and the total energy resources they can provide. To
better model such real-world requirements, we define a new
class of MDTSP called Constrained MDTSP (CMDTSP) by
introducing the energy and resource constraints into MDTSP.
In CMDTSP, each salesman starts with a finite energy level
and consumes energy proportional to the traveled distance.
In addition, we introduce stations as new nodes where each
salesman can replenish their energy levels. The CMDTSP
seeks the shortest set of routes for m salesmen that start from
different depots, jointly visit a set of cities, and return to the
depots where they start. Furthermore, each station has a limited
energy supply. Hence, there is an additional constraint on the
number of salesmen each station can cater to. It is worth noting
that CMDTSP is also (NP-)hard as any TSP can be reduced to
a CMDTSP with m = 1 and zero energy consumption rate.

Literature on MDTSP is very scarce, and existing works
on related problems either use metaheuristic algorithms such
as Ant-Colony Optimization-based methods [5], [6], [7], Sim-
ulated Annealing-based methods [8], [9], [10], Evolutionary
Algorithm [11], and neighborhood search [12] or directly solve
a Mixed-Integer Linear Programming (MILP) [4], [13], [14].
While the former methods have large optimality gaps, the latter
methods do not scale to large problems due to the high compu-
tational complexity.

In this letter, we propose a novel hierarchical framework for
solving CMDTSP, balancing solution quality and computational
complexity. We first allocate cities to salesmen via a heuristic
method involving the Minimum Spanning Tree (MST) of a graph
consisting of the cities and the depots. Then, we use a TSP solver
to determine each salesman’s visit order in the assigned cities.
Each salesman then proposes multiple potential feasible routes
by adding charging stations to their routes of cities. Finally, the
proposed solutions are collected, and the best feasible solution
is selected using a MILP-based congestion control formulation.
The numbers of both integer and real variables grow linearly
to the number of cities in our MILP instead of quadratic and
fourth order in the exact method. In experiments, our framework
outperforms selected baselines in both solution quality and

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2852-0150
https://orcid.org/0000-0003-4671-233X
mailto:ruixiao@mit.edu
mailto:chuchu@mit.edu
https://doi.org/10.1109/LRA.2024.3389817

YANG AND FAN: HIERARCHICAL FRAMEWORK FOR SOLVING THE CONSTRAINED MULTIPLE DEPOT TRAVELING SALESMAN PROBLEM

scalability on datasets built from Manhattan, Cambridge, and
Massachusetts road maps, as well as existing benchmarks. We
observe a 5.22%~14.84% tour length reduction, and a more
than 79.8x speedup against the best baseline, and a 12.48% mean
optimality gap compared with the exact method. Our framework
is capable of solving large-scale instances with up to 1100 cities
where the exact method times out on 30 cities with the same time
limit. The code, proof for theorems, and MILP formulation for
CMDTSP are publicly available in the full version of the letter
uploaded on the project website.

The main contributions of the letter are as follows: (1) We
formulate CMDTSP as a new variant of MDTSP to model
energy consumption and replenishment of salesmen in the real
world; (2) We propose a novel hierarchical pipeline for solving
CMDTSP and show that the overall computational complexity
of the proposed algorithm is much lower than a pure MILP
formulation; (3) We illustrate through various numerical experi-
ments against multiple baselines on hybrid and synthetic datasets
that the proposed method produces high-quality solutions while
maintaining scalability.

II. RELATED WORK

A. Methods for TSP and Its Variants

Exact methods for TSP and its variants, beyond brute
force enumeration, include Dynamic Programming [15] and
MILP [16]. Existing tools such as Gurobi [17] and Concorde [18]
optimize MILP through the Branch and Bound method and Cut-
ting Plane Method for rapid computation. While exact methods
ensure optimality, they are computationally intensive, leading to
significant scaling challenges.

Approximation and heuristic algorithms are significantly
more computationally efficient than exact methods, but they
provide only sub-optimal solutions. Among algorithms with
worst-case guarantee, the Christofides Algorithm [19] was the
state-of-the-art, offering an approximation ratio of % (defined as
the ratio of the algorithms’ optimal cost to the theoretical optimal
cost). The Lin-Kernighan heuristic (LKH) algorithm [20] stands
out as the best heuristic algorithm for TSP. It begins with a TSP
tour and iteratively removes several edges (with 2 or 3 being
favored in practice) from the tour, then reconnects the remaining
sub-tours to find a tour with a lower cost. Recently, a neural
version of LKH, dubbed NeuralLKH [21], has been developed,
showing superior performance. Metaheuristic algorithms like
Simulated Annealing (SA) are also applicable to solving TSP
and are more flexible in adapting to its variants.

End-to-end learning-based methods have recently attracted
attention from researchers due to their good performance. The
pioneering neural-based approach to solve TSP utilized the
Hopfield network [22], which has recently been improved [23].
Another variant of RNN employed for TSP is the Pointer Net-
work [24]. Recently, Graph Neural Network (GNN) has emerged
as an efficient method for addressing TSP, as it learns the
combinatorial structure of the graph problem better by capturing
the node properties against its graph neighbors [25], [26].

None of the existing approaches can be directly applied to
guarantee the correct results for CMDTSP.

B. CMDTSP-Related TSP Variants

Multiple TSP (MTSP) is the basic problem modeling the
multiagent issue, which asks multiple salesmen starting from the
same depot to collaboratively visit a set of cities exactly once and

5537

come back to the depot. MDTSP is an extension of it by allowing
salesmen to start from different depots. Exact algorithms model
the problem into MILP [27] or constraint programming [28], and
metaheuristic algorithms include Genetic Algorithm (GA) [29],
Ant Colony Optimization (ACO) [30], and Artificial Bee Colony
algorithm (ABC) [31].

Electric TSP (ETSP) introduces energy constraints and
charging stations into standard TSP. The problem is first for-
mally stated by [32] together with the exact MILP formulation.
Previous research on energy constraints came together with a
time window, known as the Electric TSP with Time Windows
(ETSPTW) [33], which is claimed to be easier [32]. Our work
can be viewed as a multiagent variant of the ETSP problem,
where we provide an exact MILP formulation and a scalable
hierarchical framework.

III. PROBLEM FORMULATION

The CMDTSP is a variant of the TSP with multiple levels
of constraints. The problem asks to find the shortest tours for a
group of salesmen to visit a set of cities (destinations) so each city
is visited exactly once while satisfying the following constraints,
1) the salesman consumes energy proportional to the distance
they travel and can replenish their energy at specific locations
called stations; 2) The salesmen cannot run out of energy; and
3) Each station can only serve a limited number of salesmen due
to the limited resources. To clarify, we use the term city aligning
with the term in the TSP, which may refer to arbitrary targets or
destinations in robotic tasks.

Formally, the problem is defined on a complete, undirected
graph 9 = (V, E) := ¥4(V'), where V represents the set of ver-
tices. The vertex set V' is partitioned into the union of three
sets D, C, and S, where D = {d;,ds,...,d,} denotes the set
of m depots (i.e., starting and ending locations of the sales-
men’s tours), C' = {cy,¢a,...,c,} is the set of n cities, and
S = {s1, $2,..., 5} constitutes the set of [stations. Each edge
(i,7) € E is associated with a weight ¢(,) > 0, which repre-
sents the cost of traveling from vertex ¢ to vertex j. The energy
and resource constraints are encoded as an energy capacity e; and
an energy consumption k; per unit distance for each salesman 4,
along with a resource upper bound r, for each station s € S. In
this letter, we consider all salesmen homogeneous, i.e., k; = k
ande; = eforall = 1,2,...,m. The cost of a tour is typically
defined as the sum of the costs of the edges in the tour, and the
total cost is defined as the sum of the costs of all tours. This
cost may be interpreted as distance, time, or any other pertinent
metric. Furthermore, each salesman’s energy level is presumed
to be fully replenished upon visiting any station.

Problem 1 (CMDTSP): Given a complete graph ¢ = (V, E)
where V' = D U C' U S and m salesmen starting from different

depotsin D, find a set of m tours {¢; }Li'l, one per salesman, such
that: (1) each tour begins and ends at the same depot; (2) each
city in C is visited exactly once; (3) each salesman maintains
a nonnegative energy level throughout the tour; (4) each station
s; is visited at most r,, times in total for ¢ = 1,2,...,1; and (5)
the total cost is minimized.

It is also a general version of a more commonly studied sub-
problem, Multiple Depots TSP (MDTSP) [2], [34].

IV. METHODOLOGY

Similar to the original TSP, CMDTSP can also be formulated
as a MILP (see project website). However, the complexity of

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

https://mit-realm.github.io/CMDTSP/
https://mit-realm.github.io/CMDTSP/

5538

Algorithm 1: Framework for Solving CMDTSP.
1: T, P, Solution = ()

2:1=0
3: {C'Z}LIZ‘1 = Partition(C; D) > Assign cities to salemen
4:fori e {1,2,...,m} do
5: gi = %(CZ U {dl})

> Form a complete graph of C; U {d; }
6: t; = TSP(%;) > Find the TSP solution of graph %;
7. for (u,v) € t; do
8 ¥4 =9{u,v}US9)

> Form a complete graph of {u,v} U S
9: P;(u,v) = k-shortest-path(u, v; 4,; k)
> Find the top-k shortest paths from « to v
10: end for
11: end for
12: P=U" P,
13: Solution = CongestionControl(P)
> Form a solution satisfying all constraints from P
14: return Solution

such a MILP scales exponentially with the number of cities to
the fourth power, the number of depots to the third power, and
the number of stations to the second power. Thus, this approach
does not scale well for problems involving a large number of
depots, cities, or stations.

The intuition of our framework is straightforward: by decom-
posing the CMDTSP into smaller subproblems, we aim to reduce
the size of the MILP, the primary bottleneck for scaling. To this
end, we propose a novel hierarchical framework that utilizes
a heuristic and smaller MILP, shown in Algorithm 1. Initially,
cities are allocated to salesmen (line 3) to form standard TSPs
for each (line 5). Then, each TSP is solved without the energy
constraints to return a potential tour ¢; for salesman ¢ (line 6).
For each pair of consecutive cities (u,v) in t;, we suggest the
top-k shortest paths to v from u by passing through a sequence of
stations to maintain a positive energy level (lines 7-10). Finally,
we collect all paths proposed by all salesmen (line 12) to find
a feasible tour for each salesman so that all the constraints,
including positive energy level and limited station resources,
are satisfied (line 13). Fig. 1 shows an illustrative example of
route planning in Manhattan.

A. City Assignment

We first introduce Algorithm 2, the city assignment compo-
nent in the framework.

To begin with, we construct a complete graph ¢ = 4(V') with
V = D U C of all depots D and cities C' and find its minimum
spanning tree T'(rt) rooted at some node rt € D U C. Then,
we split T'(rt) into m components 7; by deleting m — 1 edges
to separate every pair of depots and minimizing the remaining
edges’ weights using dynamic programming, as explained next.
Note that each resulting partition 7; contains exactly one depot
d;.

Given a rooted tree T'(u) with root node u and m,, depots
inside, we define two types of partitions 7'(u) and T'(u). Par-
tition 7'(u) divides the tree T'(u) into m,, subtree(s) such that
each subtree contains exactly one depot. If m,, =0, i.e. T'(u)

contains no depot, then partition 7'() does not exist. Partition

T (u) divides tree T'(u) into m,, + 1 subtrees, where the subtree

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

® Depots
@ Cities
@ Stations
— Roads
= Solution

Fig. 1. Solution of CMDTSP in Manhattan: salesmen start from depots to
collaboratively visit all cities and always keep their energy above zero.

(a) (b)

Fig. 2. Illustration of partitions. The orange nodes represent cities, and the
blue nodes represent depots. Solid lines indicate the edges remaining after
partitioning, and dashed lines represent the edges removed after the partition. In
Fig. (a), we disconnect one depot from the root node to form two subtrees with
one depot in each. In Fig. (b), we disconnect both depots from the root to form
3 subtrees, each with a depot except the subtree containing the root.

containing the root node u has no depots inside, and the rest
m,, subtrees contain exactly one depot each. If root node w is a
depot, partition T(u) does not exist. Fig. 2 shows an illustration
of two partitions.

Next, define f : V' — R such that f(u) represents the mini-
mum total edge weights of 7'(u) and g : V' — R such that g(u)
represents the minimum total edge weights of T(u) If apartition
does not exist, we set the corresponding value of f or g to be 400,
i.e., f(u) = +oo for T'(u) contains no depot and g(u) = +oc if
uis adepot. Let H (u) be the set of children of node w. Functions
f and g can be computed as:

f(w)
min (£0) + el)
=+ > min{f(v’)g(v’)+c(u,v’)}}, ueC,
v'eH (u)\{v}
> min{f(v),g(v) + c(u,v)}, ueD,
veH (u)
(1)

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

YANG AND FAN: HIERARCHICAL FRAMEWORK FOR SOLVING THE CONSTRAINED MULTIPLE DEPOT TRAVELING SALESMAN PROBLEM

Algorithm 2: Assign Cities to Salesmen.

Input: City set C, depot set D
1:9=%CuUD) > Form a complete graph of C' U D
2: T =MST(¥) > Compute a minimum spanning tree
3: Compute minimum weight functions f, g
> Using Equation (1), (2)
4 ULD‘lT- = Part(T, f,g) ©> Partition tree 7" based on f, g
5:return {C' N T; }‘D|

>, min{f(v),g(v) +c(w,v)}, wedl,
g(u) = queH(w) 2
~+00, u e D.

We offer brief insights here and provide the derivation details in
the full version of the letter uploaded on the project website. For
a partition T'(w) or 7'(u), all partitions on its subtrees are also
of type 1" or T. Computing weights for such a partition involves
computing the optimal connection from u to its children and
weights for corresponding partitions on those subtrees. Using
this, we can obtain (1)-(2). ~

We can construct the optimal partition 7'(rt) based on the
functions f and g recursively from root to leaves by the following
rules. Suppose the partition type of 7'(u) is known. For subtree
T(v),v € H(u): (1) If T'(u) is partitioned to T'(u), u € C, and
v is the minimizer in (1). T'(v) is partitioned into 7'(v) and u, v is
connected. (2) Else, T'(v) is partitioned into 7'(v) and disconnect
towif f(v) < g(v) + c(u,v), otherwise T'(v) is partitioned into
T (v) and (u, v) is connected. Now, we show the correctness and
optimality of Algorithm 2’s output.

Theorem 1: Given a graph 9 = 4(V) with V' = D U C and
an edge-weight function c¢, the partition 7'(rt) recovered from
value function assignment in (1)-(2) partitions the minimum
spanning tree T' of ¢/ into m subtrees {7T; }/; such that d; € T;,
and minimizes the total edge weights in the connected compo-

nents, i.e., Z‘i‘l > (uwyer; €U, v).

Theorem 2: Algorithm 2 for MDTSP has an approximation
ratio of 2 for nodes on 2D-plane.

The proof of Theorem 1 and Theorem 2 is provided in the full
version of the letter uploaded on the project website.

After assigning cities to salesmen, we form graphs for each
salesman with corresponding depot and cities and solve TSPs to
determine the order of visits for each salesman. This is a standard
TSP; any off-the-shelf TSP solver can be plugged in here. Since
the solver is called repeatedly, once for each salesman, and the
routes have no restriction on the size, it is desirable to use a TSP
solver that is both fast and scalable. In this work, we use the
state-of-the-art heuristic solver LKH-3 [35], which efficiently
produces solutions with a very small optimality gap and has
good scalability.

Next, given a tour of cities, each salesman proposes k paths
between each edge along its tour by applying the shortest-path
algorithm on the graph consisting of the edge and the sta-
tions. That is, each salesman ¢ with a tour ¢; proposes k|t
paths in total, where |¢;| is the length of the tour ¢;. The total

number of paths is Z‘ﬂ klt;| = k(|C| + |D|), so there are
H‘D‘ H‘f:'l k = kICI+IPI potential solutions. The next step is
to solve the congestion control problem to find a solution for

each salesman that satisfies all the energy constraints.
Authorized licensed use limited

MIT. Downloaded on November 08 2024 at 22

5539

B. Congestion Control

We say congestion happens at station s when more than
rs salesmen want to visit the station. The congestion control
problem aims to plan salesmen tours to avoid congestion at
any station. To this end, a salesman ¢ selects a path from the
k proposed paths for each edge (u, v) in each tour ¢; to satisfy
energy requirements for all salesmen and resource limits at all
stations. We set up this as an optimization problem to find the
path assignment that minimizes the total edge weights while
satisfying the constraints.

Let B;j.n € {0,1} be a binary variable indicating whether
Di.j,h» 1.€. h-th path proposed by salesman i for its j-th edge, is
chosen and c¢; ; 5, be the corresponding cost. If there is at least
one station on the path, we denote the minimum energy needed
to arrive at the first station from the j-th node as ¢ ; ;5 and
the maximum energy left after finishing the path (i.e., arriving
at the (j + 1)-th node) as ¢2; ;5. Let v, ; € R4 U {0} be the
energy level of salesman ¢ at the j-th node in tour ¢;. Thus,
Bi,j,n = 1 is feasible only if corresponding energy constraints
are satisfied, i.e.,v; j > q1,5,5,nh and ¥; j+1 < @2,4,5,1- In the case
when a salesman visits a station between the j-th and (j + 1)-th
node, the energy level 7; ;11 is independent of ; ; because the
station charges the salesman’s energy to its full capacity. On
the other hand, if there is no station on the path, we denote the
minimum energy needed to travel the path p; ; 1, by ¢3,;.5. In
this case, 3; ;.5 = 1 is feasible only if v; ; — vi j+1 > ¢3,i,5,hs
which means that the energy level v; ;11 depends on the pre-
vious energy level v; ;. Additionally, we define g3 () = —oco
for paths with stations and ¢ ,(.) = —o0, ga,(.) = +oo for paths
without stations, so that the tuple gy = (q1,(.y; G2,(.), 3,(.)) 8
well-defined for each edge. Based on these definitions, the
congestion-free tour assignment problem can be posed as:

m |t k
min Z Z Z Cijh - Bijhs (3a)
i=1 j=1 h—1
s.t. Bijn € {0,1},i € [m], 7 € [|t:]], b € [K], (3b)
Zﬁ”h 1,i€[ml],j € [ltll, (3c)
h=1
m |t &k
ZZZ g Pigals] < 7e,s € [, (3d)
i=1 j=1 h=1
0 <9ij,i€[m],j€ [t + 1], (3e)
k
Zﬁi,j,h “quign < Yigat € [ml, g € [[til], (31)
h—1
k
Vig < Zﬁi,j,h “Q2,i,j-1,h,1 € [m], j € 2, |t;] + 1],
h—1
(3g)
k
D Bijh3ign < Vig —Vigr1.i € [m], g € [|ti]],
h—1
(3h)

where |¢;| refers to the length of salesman ¢’s tour ¢;. The
objective (3a) is the overall cost to minimize. Constraints (3b)
and (3c¢) ask to choose exactly one path out of k£ proposed paths

r each ed e. Constraint g d) is the station’s resource limit.
110 UTC from IEEE Xplore. Restrictions apply.

https://mit-realm.github.io/CMDTSP/
https://mit-realm.github.io/CMDTSP/

5540

(2) (b)

Fig. 3.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

- Cities

o Hospitals =5 ., = Depots
e Stations | 4

() (d)

Four Datasets for experiments. (a) The driving road map of Manhattan, New York. (b) The driving road map of Cambridge, Massachusetts. (c) Hospitals

and Tesla’s Supercharger Stations in Massachusetts. (d) The existing benchmark for MDVRP [36].

Constraints (3e)—(3h) are the energy constraints for salesmen
when passing through the chosen paths.

Now, we analyze the complexity of our proposed CMDTSP
solver. Given a graph ¢ = %(V) with |V|=|DUCUS| =
m+mn+1 and parameter k£ denoting the number of paths
proposed for each edge, the MILP (3) has nk real vari-
ables, mk + nk integer variables and 5~ m? + 5mn + [con-
straints. Compared with the naive MILP formulation, which has
mn + mn? +mn?(m +n +1)? real variables, mn? +n in-
teger variables, and m(m + n)?(I? + 6m + 5n + 71 + 3) con-
straints, our algorithm has better scalability, which is also vali-
dated via experiments presented in the next section.

V. EXPERIMENTS

We empirically validate our method in this section. In sec-
tion V-A, we compare our method with three baselines, Ant
Colony Optimization (ACO) [7], Hybrid Evolutionary Algo-
rithm (HEA) [11], and Hybrid Variable Neighborhood Search
(HVNS) [12], on real-world maps and existing benchmarks. In
section V-B, we compare our method with a naive MILP formu-
lation for the scalability and solution quality. In section V-C, we
study our framework’s partition and TSP solver components to
justify our choices. In section V-D, we explore the effectiveness
of resource distribution and provide a sufficient condition for the
existence of feasible solutions based on the experiments. Finally,
in section V-E, we test the influence of the replenishment time.

All experiments were run on a server with 1 AMD Ryzen
Threadripper 3990X 64-Core Processor and 4 Nvidia RTX
A4000 GPUs. Gurobi 10.0.0 [17] served as the MILP solver.

We set the iterations of LKH to 10 and the number of paths
proposed per edge by each salesman k& = 5. The selection of & is
empirical; beyond 5, increasing k£ extends running time without
enhancing performance. For baselines, we adapt the parameters
from their letters [7], [11], [12].

A. Comparison With Baselines

Datasets: We present experiments on four datasets from real-
world maps and existing benchmarks. We use the driving road
map of Manhattan [37], Cambridge, and Massachusetts [38].
For the Manhattan map, instances are generated by uniformly
sampling depots, cities, and stations from the map. For the
Cambridge map, stations are uniformly sampled from Bluebikes
stations in 2023 [39], and depots and cities are uniformly sam-
pled from the rest of the map. For the Massachusetts map, sta-
tions are uniformly sampled from Tesla’s Supercharger stations,
and depots and cities are uniformly sampled from hospitals.
We adapt the existing MDVRP benchmarks [36] by randomly
turning a fraction of cities into stations and uniformly sampling

a fixed amount of depots, cities, and stations. Salesmen are
restricted to traveling along roads in instances from maps and
freely in the 2D space in instances from benchmarks. For each
data source, we generate 1000 small instances consisting of
depots | D| = 5, cities |C| = 30, and stations |S| = 20, and 100
large instances consisting of |D| = 10, |C| = 100, |S| = 20.
We set the resource limit for each station to be » = 2. Due to
the different map sizes, the energy capacity of the salesman is
set differently, i.e., 4 in Manhattan, 40 in Cambridge, 400 in
Massachusetts, and 4 in data from the benchmark. An example
from each data source is provided in Fig. 3.

Metrics: We assess solvers based on total tour length, feasibil-
ity rate, and running time. The tour length is defined as the sum of
path lengths salesmen traveled in a solution. The feasibility rate
is defined as the ratio of feasible solutions found for instances
in a dataset. The running time is the duration from formatted
data being fed into the solver to the solver outputting the best
solution. We report the average tour length and average running
time.

Baselines: We use ACO, HEA, and HVNS as baselines. The
ACO-based algorithm uses the nearest neighbor partition to
split the multi-depot problem into single-depot sub-problems,
with ACO employed to find local optima. HEA starts with
the nearest neighbor population, iteratively creates offspring by
adding minimal incremental density routes from parents, and
enhances the solution with variable neighborhood search. HEA
was originally designed for MDVRP, so we added the station in-
sertion procedure from the ACO baseline to adapt it to CMDTSP.
HVNS initializes the solution by variable neighborhood search
in each iteration and searches for the best solution by tabu search.
The three baselines represent the main approaches for related
problems and are state-of-the-art methods in their categories.

Result: The comparison results are shown in Tables I and
II. Our method effectively produces the best solution quality in
all test cases. When the problem size is small, our method’s
feasibility rate and running time are very close to the best
baseline. On test cases with large problem sizes, our method
outperforms all other baselines in all evaluation metrics, which
also shows good scalability.

B. Compare With Exact Algorithm

Our framework’s trade-offs in solution quality and running
time are assessed by comparison with an exact algorithm.

Datasets: To measure the solution quality, we randomly
generate 100 instances of |C| =15, |D| =3, |S| =20, and
r =2 in the unit square [0, 1]%. To measure the scalability of
our framework, we vary the size of instances to 100 instances
per size. The sizes of problems increase in two ways: (1) fix
the number of stations |.S| = 20 and the number of salesmen

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

YANG AND FAN: HIERARCHICAL FRAMEWORK FOR SOLVING THE CONSTRAINED MULTIPLE DEPOT TRAVELING SALESMAN PROBLEM

5541

TABLE I
RESULTS ON 1000 SMALL INSTANCES OF 5 DEPOTS, 30 CITIES, 20 STATIONS

Manhattan Cambridge Massachusetts MDVRP Benchmark

Method Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s)

ACO 32.93 0.95 1.02 39575 092 1.04 830.13 0.99 1.05 907.83 0.84 1.26

HEA 31.65 0.62 21.57 380.12 0.63 21.62 848.34 097 10.68 909.78 0.43 14.45
HVNS 28.26 1.00 12.95 338.86 1.00 14.80 748.50 0.99 9.71 843.66 1.00 15.25

Ours 24.96 1.00 1.90 31345 1.00 1.91 703.82 0.99 1.89 783.06 091 2.04
The best results are bolded.

TABLE II

RESULTS ON 100 LARGE INSTANCES OF 10 DEPOTS, 100 CITIES, 20 STATIONS

Manhattan Cambridge Massachusetts MDVRP Benchmark
Method Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s)
ACO 65.50 0.34 3.63 881.50 0.14 4.45 1685.88 0.99 4.16 2156.11 0.41 4.03
HEA 5061 001 42062 82400 001 47321 1619.08 095 31027 1931.04 0.9 329.39
HVNS 47.70 0.94 270.19 653.54 048 300.75 137335 0.99 212.72 164298 0.67 287.45
Ours 41.74 0.98 2.54 61943 0.56 3.11 1228.60 0.99 2.78 1511.19 0.70 2.32
The best results are bolded.
|D| = 5, the number of cities |C'| varies from 100 to 1100 for par TSP —PP. —Cong
our framework and from 5 to 20 for the MILP solver; (2) fix 20
the number of stations | S| = 20 and the average cities visited by E
each salesman, i.e., |C|/|D| = 5, the number of salesmen [D| 5
varies from 20 to 220 for our framework and | D| from 1 to 5 for
the MILP solver. To ensure the feasibility rate, we empirically
setr = 0.4-|C|/]S]. %0 02 04 500 1000
Baseline: The baseline we use is a naive MILP. Optimality Gap Cities

Metrics: The solution quality is measured by the gap between
our tour length and the optimal one. The running time is the
same metric as in Section V-A.

Results: Our framework achieves a mean optimal gap of
12.48% and worst gap of 52.34% on the dataset with an average
41.7 times speedup, where the distribution is shown in Fig. 4(a).
We believe this is a good performance as the worst-case guaran-
tee for standard TSP is around 50%. Fig. 4(c) demonstrates the
trends of the increment in running time, where our framework
shows much better scalability than the MILP solver. Even with
more than 1000 cities, the running time of our framework is still
acceptably low. We can conclude that our framework achieves
good suboptimality and tremendously reduces the running time
to be able to scale up to a large problem size.

Comparing the first column in Fig. 4(c), the running time is
shorter when there are more salesmen given the same number
of cities. We empirically evaluate the running time of different
components in our framework. Fig. 4(b) shows the changes in
relative time consumption for subroutines in the entire algorithm
as the number of cities grows from 100 to 1100, while the
number of depots is fixed at 5. The TSP solver and the MILP in
congestion control take up most of the computation time, which
explains the negative correlation between running time and the
number of salesmen. Given more salesmen, the running time of
the partition increases slightly, but the average size of TSP for
salesmen decreases, dramatically reducing the overall running
time.

C. Studies of Components

In this section, we validate the effectiveness of our partition
algorithm and TSP solver by comparing them with several other
potential plugin algorithms.

(@) (b)

L0, IC/D|=5, OURS =+ |CJ/|D|=5, MILP s
= 250

= 8

5 = é

—— 04 —o— -
D=5, OURS D=5, MILP
200 8
% 200 é
100 300 500 700 900 1100 5 10 15 20
Cities Cities
©
Fig. 4. Results on comparison experiments. (a) The distribution of optimality

gaps with a mean value of 12.48%. (b) The change in the percentage of running
time for each part in the framework. (c) Comparison on Scalability. All Y-axes
are time in seconds.

Datasets: We conduct experiments on 100 randomly gener-
ated instances of |D| =5, |C| = 150, |S| = 20, and 100 ran-
domly generated instances of |D| = 5, |C| = 250, |S| = 20 in
the unit square. We set » = 3 in both cases.

Metrics: For partition algorithms, we evaluate the algorithms
by tour length only since all of them take only polynomial time.
We evaluate TSP solvers by tour length, measured by the gap
between using a MILP TSP solver and themselves, and the
running time.

Baselines: For the partition algorithm, we choose the Nearest
Neighbor (N-N) algorithm, which assigns each city to its closest
salesman, and the K-Means clustering algorithm, which first

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

(3 [JO0urs « Appr
= CINN @ NN
2,"5 [CJKMeans g 50 « LKH
53 .
Qo -
1.00 1.25 25
Tour Length (1e3) Gap (%) Gap (%)
(@) (®)
Fig. 5. Results of studies on components. (a) Keep the TSP solver to be LKH,

our partition algorithm outperforms all baselines; (b) keep the Partition algorithm
to be MST based, LKH solver produces the best solution quality and competitive
computation time.

—
S
—_
(=]
S

(9,1
(=)
Feas. Rate (Line)

[o)}

Len. (1e3) (Box)

3 8 16 40120
Stations

Fig. 6. Effect of the dispersion of stations. There are no feasible solutions for
cases with 1 or 3 station(s).

clusters the cities into several groups and then assigns each
group to the salesman closest to its cluster center, as base-
lines. For TSP solvers, we choose the representatives of main
approaches, including neural-based solver [25], approximation
solver (Christofides algorithm), heuristic solver (LKH), and
metaheuristic solver (SA).

Results: Results in Fig. 5(a) show that our partition method
beats both NN and KMeans. The result in the left figure of
Fig. 5(b) shows that LKH gives much smaller gaps than others
within acceptable running time. The right one of Fig. 5(b)
shows that the LKH solver still produces the best solution with
a small running time on large cases, while the neural-based
solver has an enormous drop in its solution quality due to the
out-of-distribution issue.

Again, we want to emphasize that our framework is adaptable
to arbitrary partition algorithms and TSP solvers, allowing for
further performance improvements as these components evolve.

D. Effectiveness of Resource Distribution

In this subsection, we investigate the effectiveness of the
resource distribution given the total resources and problem size
to guide the station setup.

Datasets: We randomly generate 100 instances in the unit
square of |D| = 30, |C| = 1200. Then, we vary |S| from 1 ~
120 and distribute them uniformly in the square, keeping the
total amount of resources 7 - |.S| = 240.

Result: As shown in Fig. 6, adding more stations increases
feasibility and shortens tour length, indicating that spreading
resources more widely eases their use. Based on the observation,
we present a sufficient condition for resource density to ensure
feasible solutions.

€

Theorem 3: Gridding the map with length Tk into even

squares. Suppose in grid ¢, the number of stations is N[i] and
the number of cities is N..[i], then there exists a feasible solution
if N[é] > 1 and N.[i]/Ng[i] < r for all i.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

TABLE III
ABLATION STUDY ON OBJECTIVE FUNCTIONS WHEN R, = 0.25

Optimize Length Optimize Time

Length Time Length Time Similarity
Manhattan 16.56 19.70 16.64 19.43 0.75
Cambridge 197.73 237.16 199.22 23238 0.70
Massachusetts ~ 474.70 493.375 476.92 483.11 0.74

The proof can be found on the website. In practice, the cost
of setting up stations needs to be balanced against their benefits
for optimal resource allocation.

E. Effect of Replenishment Time

In this section, we show that the replenishment time in the
objective function has minimal impact on the final solution.

Method: We introduce the parameter R, = %, i.e., the rate
between consuming energy and replenishing energy, into the
naive MILP to consider the replenishment time. We generate
solutions under R, = 400, i.e. optimizing tour length without
accounting for replenishment time, and R, = 0.25 based on the
speed of 180 kW charging stations for each instance.

Datasets: We build datasets from those in Section V-A by
randomly sampling 2 depots out of all depots and 12 cities out
of all cities from each instance to avoid the explosion of solving
time. The sizes of the dataset are the same.

Results: The results are shown in Table III. The length in the
table represents the total distance salesmen need to travel, and
the time in the table represents the total time salesmen need to
spend given R. = 0.25. Optimizing the length, equivalent to not
considering the replenishment time as our previous setting, can
be done by cheating the MILP of R. = +oc. The similarity
metric, representing the fraction of cases with identical solu-
tions under varying objectives, shows over 70% consistency in
solutions whether or not the replenishment time is considered,
and very small gaps in the remaining cases.

VI. CONCLUSION

We define a new variant of MDTSP called CMDTSP to
capture the energy constraints in real-world applications and
propose a novel framework to solve them. Our method effi-
ciently produces high-quality solutions compared to baselines
and solves much larger problems than the MILP formulation,
verified by the experiments. For future work, we would like
to enhance scalability using a neural network for congestion
control and improve the partition part with a better heuristic.

REFERENCES

[1] E. Benavent and A. Martinez, “Multi-depot multiple TSP: A polyhedral
study and computational results,” Ann. Operations Res., vol. 207, pp. 7-25,
2013.

[2] S. Yadlapalli, W. A. Malik, S. Darbha, and M. Pachter, “A Lagrangian-
based algorithm for a multiple depot, multiple traveling salesmen prob-
lem,” Nonlinear Anal., Real World Appl., vol. 10, no. 4, pp. 1990-1999,
2009.

[3] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a hetero-
geneous, multiple depot, multiple traveling salesman problem,” in Proc.
IEEE Amer. Control Conf., 2009, pp. 1292-1297.

[4] K. Sundar and S. Rathinam, “An exact algorithm for a heterogeneous,
multiple depot, multiple traveling salesman problem,” in Proc. IEEE Int.
Conf. Unmanned Aircr. Syst., 2015, pp. 366-371.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

https://mit-realm.github.io/CMDTSP/

YANG AND FAN: HIERARCHICAL FRAMEWORK FOR SOLVING THE CONSTRAINED MULTIPLE DEPOT TRAVELING SALESMAN PROBLEM

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. Ramadhani, G. F. Hertono, and B. D. Handari, “An ant colony opti-
mization algorithm for solving the fixed destination multi-depot multiple
traveling salesman problem with non-random parameters,” in Proc. AIP
Conf., 2017, vol. 1862, Art. no. 030123.

S. Ghafurian and N. Javadian, “An ant colony algorithm for solving fixed
destination multi-depot multiple traveling salesmen problems,” Appl. Soft
Comput., vol. 11, no. 1, pp. 1256-1262, 2011.

S.Zhang, W. Zhang, Y. Gajpal, and S. Appadoo, “Ant colony algorithm for
routing alternate fuel vehicles in multi-depot vehicle routing problem,” in
Decision Science in Action: Theory and Applications of Modern Decision
Analytic Optimisation. Berlin, Germany: Springer, 2019, pp. 251-260.
T. S. Rao, “A simulated annealing approach to solve a multi traveling
salesman problem in a FMCG company,” Mater. Today, Proc., vol. 46,
pp. 4971-4974, 2021.

Y. Zhang, X. Han, Y. Dong, J. Xie, G. Xie, and X. Xu, “A novel state tran-
sition simulated annealing algorithm for the multiple traveling salesmen
problem,” J. Supercomput., vol. 77, pp. 11827-11852, 2021.

Y. Zhou, W. Xu, Z.-H. Fu, and M. Zhou, “Multi-neighborhood simulated
annealing-based iterated local search for colored traveling salesman prob-
lems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 16072-16082,
Sep. 2022.

B. Peng, L. Wu, Y. Yi, and X. Chen, “Solving the multi-depot green ve-
hicle routing problem by a hybrid evolutionary algorithm,” Sustainability,
vol. 12, no. 5, 2020, Art. no. 2127.

M. E. H. Sadati and B. Catay, “A hybrid variable neighborhood search
approach for the multi-depot green vehicle routing problem,” Transp. Res.
Part E, Logistics Transp. Rev., vol. 149, 2021, Art. no. 102293.

M. Diaby, “Linear programming formulation of the multi-depot multiple
traveling salesman problem with differentiated travel costs,” in Travel-
ing Salesman Problem, Theory and Applications. New York, NY, USA:
InTech, 2010, pp. 257-282.

D. Scott, S. G. Manyam, D. W. Casbeer, and M. Kumar, “Market approach
to length constrained min-max multiple depot multiple traveling salesman
problem,” in Proc. IEEE Amer. Control Conf., 2020, pp. 138—143.

M. Held and R. M. Karp, “A dynamic programming approach to sequenc-
ing problems,” J. Soc. Ind. Appl. Math., vol. 10, no. 1, pp. 196-210, 1962.
C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” J. ACM, vol. 7, no. 4,
pp- 326-329, 1960.

Gurobi Optimization LLC, “Gurobi optimizer reference manual,” 2023.
[Online]. Available: https://www.gurobi.com

D. L. Applegate, R. E. Bixby, V. Chvital, and W. J. Cook, “The traveling
salesman problem,” in The Traveling Salesman Problem. Princeton, NJ,
USA: Princeton Univ. Press, 2011.

N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” Oper. Res. Forum, vol. 3, no. 1, p. 20, 2022.

S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Res., vol. 21, no. 2, pp. 498-516,
1973.

L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining deep
learning model with Lin-Kernighan-Helsgaun heuristic for solving the
traveling salesman problem,” in Proc. Int. Conf. Adv. Neural Inf. Process.
Syst., 2021, vol. 34, pp. 7472-7483.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

5543

J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci., vol. 79, no. 8,
pp. 2554-2558, 1982.

Y. Luo, “Design and improvement of hopfield network for TSP,” in Proc.
Int. Conf. Artif. Intell. Comput. Sci., 2019, pp. 79-83.

J. Perera, S.-H. Liu, M. Mernik, M. Crepinéek, and M. Ravber, “A graph
pointer network-based multi-objective deep reinforcement learning algo-
rithm for solving the traveling salesman problem,” Mathematics, vol. 11,
no. 2, 2023, Art. no. 437.

'W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” in Proc. Int. Conf. Learn. Representations, 2018.

X. Bresson and T. Laurent, “The transformer network for the traveling
salesman problem,” CoRR, vol. abs/2103.03012, 2021.

P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J. M.
Tanchoco, and P. A. Brunese, “Multiple traveling salesman problem with
drones: Mathematical model and heuristic approach,” Comput. Ind. Eng.,
vol. 129, pp. 14-30, 2019.

M. Vali and K. Salimifard, “A constraint programming approach for
solving multiple traveling salesman problem,” in Proc. 16th Int. Workshop
Constraint Modelling Reformulation, 2017, pp. 1-17.

Z. Wang, X. Fang, H. Li, and H. Jin, “An improved partheno-
genetic algorithm with reproduction mechanism for the multiple trav-
eling salesperson problem,” IEEE Access, vol. 8, pp. 102607-102615,
2020.

M. Yousefikhoshbakht, F. Didehvar, and F. Rahmati, “Modification of
the ant colony optimization for solving the multiple traveling salesman
problem,” Romanian J. Inf. Sci. Technol., vol. 16, no. 1, pp. 65-80,
2013.

V. Pandiri and A. Singh, “A hyper-heuristic based artificial bee colony
algorithm for k-interconnected multi-depot multi-traveling salesman prob-
lem,” Inf. Sci., vol. 463, pp. 261-281, 2018.

A. Ceselli and G. Righini, “The electric traveling salesman prob-
lem: Properties and models,” University of Milan, Milan, Italy,
Tech. Rep. 2434/789142, 2020, doi: 10.13140/RG.2.2.17712.99848.

R. Roberti and M. Wen, “The electric traveling salesman problem with time
windows,” Transp. Res. Part E, Logistics Transp. Rev., vol. 89, pp. 32-52,
2016.

K. Sundar and S. Rathinam, “Generalized multiple depot traveling sales-
men problem—polyhedral study and exact algorithm,” Comput. Operations
Res., vol. 70, pp. 39-55, 2016.

K. Helsgaun, “An extension of the Lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems,” Roskilde
Universitet, Tech. Rep., Dec. 2017.

C. R. C. in Distribution Management, “MDVRP,” 2023. [Online]. Avail-
able: http://neumann.hec.ca/chairedistributique/data/mdvrp/

F. Blahoudek, T. Brazdil, P. Novotny, M. Ornik, P. Thangeda, and U.
Topcu, “Qualitative controller synthesis for consumption Markov deci-
sion processes,” in Proc. Int. Conf. Comput. Aided Verification, 2020,
pp. 421-447.

OpenStreetMap contributors, “Planet dump,” 2017. [Online]. Available:
https://planet.osm.org, https://www.openstreetmap.org
Bluebikes, “System data,” 2023. [Online]. Available:
amazonaws.com/hubway-data/current_bluebikes_stations.csv

https://s3.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:06:10 UTC from IEEE Xplore. Restrictions apply.

https://www.gurobi.com
https://dx.doi.org/10.13140/RG.2.2.17712.99848
http://neumann.hec.ca/chairedistributique/data/mdvrp/
https://planet.osm.org
https://www.openstreetmap.org
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv

