
8354 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

Diverse Controllable Diffusion Policy
With Signal Temporal Logic

Yue Meng , Graduate Student Member, IEEE, and Chuchu Fan , Member, IEEE

Abstract—Generating realistic simulations is critical for au-
tonomous system applications such as self-driving and human-
robot interactions. However, driving simulators nowadays still
have difficulty in generating controllable, diverse, and rule-
compliant behaviors for road participants: Rule-based models can-
not produce diverse behaviors and require careful tuning, whereas
learning-based methods imitate the policy from data but are not de-
signed to follow the rules explicitly. Besides, the real-world datasets
are by nature “single-outcome”, making the learning method hard
to generate diverse behaviors. In this letter, we leverage Signal
Temporal Logic (STL) and Diffusion Models to learn controllable,
diverse, and rule-aware policy. We first calibrate the STL on the
real-world data, then generate diverse synthetic data using trajec-
tory optimization, and finally learn the rectified diffusion policy on
the augmented dataset. We test on the NuScenes dataset and our
approach can achieve the most diverse rule-compliant trajectories
compared to other baselines, with a runtime 1/17X to the second-
best approach. In the closed-loop testing, our approach reaches the
highest diversity, rule satisfaction rate, and the least collision rate.
Our method can generate varied characteristics conditional on
different STL parameters in testing. A case study on human-robot
encounter scenarios shows our approach can generate diverse and
closed-to-oracle trajectories.

Index Terms—Autonomous agents, autonomous vehicle
navigation, machine learning for robot control.

I. INTRODUCTION

R EALISTIC behavior modeling is vital for developing
simulators and studying intelligent systems such as au-

tonomous driving and warehouse ground robots [1], [2]. To close
the sim-to-real gap for the agents, it is critical to model the
uncertainty and rule adherence properties that naturally arise
from human behaviors. For example, human drivers have dif-
ferent characteristics (aggressiveness, conservativeness), which
affect their decision-making in challenging scenarios (e.g., go-
ing through a roundabout with dense traffic). Besides, low-level

Manuscript received 26 March 2024; accepted 23 July 2024. Date of pub-
lication 16 August 2024; date of current version 23 August 2024. This article
was recommended for publication by Associate Editor Rudolf Lioutikov and
Editor Jens Kober upon evaluation of the reviewers’ comments. This work
was supported in part by the National Science Foundation (NSF) under Grant
#CCF-2238030 and in part by the MIT-Ford Alliance Program. (Corresponding
author: Yue Meng.)

The authors are with the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
mengyue@mit.edu; chuchu@mit.edu).

The annotation tool, augmented dataset, and code are available at https://
github.com/mengyuest/pSTL-diffusion-policy.

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3444668, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3444668

driving commands (steering the wheel, accelerating, braking)
are also driven by high-level maneuvers (lane-keeping, lane-
changing) and traffic rules (e.g., speed limit). Thus, it is of
paramount importance to endow agent models with diversity,
controllability, and rule-awareness.

However, driving simulators up-to-date [3], [4] still strug-
gle in delivering diverse and rule-compliance agent behaviors.
They either use recorded trajectories or utilize rule-based or
imitation-based methods to generate policy. Rule-based ap-
proaches (IDM [5], MOBIL [6]) directly encode rules into
mathematical models thus can provide safety and goal-reaching
performance. Still, they assume simplified driving scenarios and
require careful parameter tuning, lacking diversity and realis-
ticness. Imitation-based methods [7], [8] learn from real-world
driving data, being more akin to human behaviors, but are prone
to violate the rules. Besides, since there is only one outcome (out
of many possible future trajectories) per scene in the ground
truth, only a limited diversity is achieved by these imitation-
based approaches [9].

Impeding the advancement of learning realistic behaviors
are three challenges: (1) A flexible rule representation, (2) the
scarcity of multiple-outcome datasets, and (3) the trade-off
between rule compliance and diversity. Our letter systematically
addresses these problems by leveraging a formal language
termed Signal Temporal Logic (STL) [10], [11]. STL is known
for modeling complicated rules [12], and there are increasing
works recently studying controller synthesis under STL spec-
ifications via trajectory optimization [13], deep learning [14],
[15] and reinforcement learning [16]. Inspired by these works
and recent breakthroughs in diffusion models [17] for policy
learning [18], we proposed a parametric-STL approach to
flexibly encode traffic rules, augment the dataset, and learn a
controllable diffusion policy to balance quality and diversity1.

The whole pipeline is: We first specify rules via parameter-
STL and use demonstrations to calibrate the parameters. The
parameters involve both discrete and continuous values, adding
the capacity to form multi-modal and diverse policy distribu-
tions. Based on the STL, the parameters, and the original data,
we generate the “multiple-outcome” data via trajectory opti-
mization. Next, we use Denoising Diffusion Probabilistic Model
(DDPM [17]) to learn from the augmented data. Finally, different
from other diffusion-based policies [18], [19], an additional
neural network is designed to regulate the trajectories to be
rule-compliant and diverse.

1“Diversity” refers to generate different trajectories for the same STL rule.

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0204-4819
https://orcid.org/0000-0003-4671-233X
mailto:mengyue@mit.edu
mailto:chuchu@mit.edu
https://github.com/mengyuest/pSTL-diffusion-policy
https://github.com/mengyuest/pSTL-diffusion-policy
https://doi.org/10.1109/LRA.2024.3444668

MENG AND FAN: DIVERSE CONTROLLABLE DIFFUSION POLICY WITH SIGNAL TEMPORAL LOGIC 8355

We conduct experiments on NuScenes [20], a large-scale
autonomous driving dataset. We first label the dataset using
our annotation tool and generate the augmented dataset. Then
we train our approach on the augmented dataset and evaluate
on the validation set and in closed-loop testing. Our approach
results in the highest STL satisfaction rate on the validation
set and generates the most diverse trajectories compared to
baselines. In closed-loop testing, our approach reaches the high-
est overall performance regarding diversity, STL satisfaction,
collision, out-of-lane, and progress. We also show that with
varied STL parameters, our approach can reflect different driver
characteristics in a challenging roundabout scenario, which is
valuable for diverse behavior modeling in simulators. A case
study on human-robot encounter scenarios also shows similar
performance compared to other baselines.

To summarize, our contributions are: (1) We are the first
to use a parametric-STL formulation to augment the driving
dataset for diverse and controllable policy generation (2) we
propose an add-on module (RefineNet) for Diffusion Models to
improve trajectory diversity and quality (3) we achieve leading
performance in the open-loop evaluation and closed-loop test
on NuScenes [20] (4) our algorithm, annotation tool and the
augmented data will be available via open-source distribution.

II. RELATED WORK

Trajectory prediction: Decades of effort have been devoted
to exploring trajectory prediction for autonomous systems [21].
Traditional methods include physics-based methods [22] and
machine-learning approaches such as Gaussian Process [23].
More recent works use neural networks to conduct behavior
cloning or imitation learning [24] on multi-modal large-scale
datasets (NuScenes [20], WOMD [25]), where the performance
is improved by better scene representations (rasterization [7],
polylines [26]), advanced architectures [27], and varied output
types (sets [28], heatmaps [29] and distributions [30]). Most
works predict trajectories by fitting the dataset. Instead, we
assume the rules are given, extract statistics from the data and
learn diverse and rule-compliant trajectories conditional on these
statistics.

Diverse trajectory generation: Deep generative models (Vari-
ational Auto Encoder, Generative Adversarial Network, and
Diffusion Models) are used to learn to produce diverse trajec-
tories [18], [19], [27], [31], [32]. The diversity is either learned
implicitly from data [18], [19], [31], [32] or guided by the
“Minimum over N” (MoN) loss [27]. To avoid the prediction
concentrating merely around the major mode of the data, the
work in [33] learns diversity sampling functions (DSF) in the
latent space to generate diverse trajectories. In the autonomous
driving domain, recent works use inductive heuristics from the
scenes (such as drivable area [34] or lanes [35]) to further
regulate the diverse behaviors to be “reasonable” in common
sense. However, it is worth noting that the original dataset lacks
diversity in essence (for each scene, there is just one ground
trajectory). Unlike all methods that learn diversity from the
original data, we first generate diverse data using trajectory
optimization then learn the diverse policy. The closest works

similar to ours are ForkingPath [9] and [36], where the former
is for pedestrian prediction and requires heavy annotation, and
the latter generates data using IDM which are less diverse.

Realistic agent modeling: Realisticness is often achieved
by augmenting imitation with common sense factors, such as
collision-free [2], [37], map-consistency [38], attractor-repeller
effect [30], driving patterns [39], and LLM-based designs [40].
Recently, Signal Temporal Logic (STL) [10] is widely used
to specify rules for trajectory predictions [18], [41], for its
expressiveness to encode rules [41] and differentiable policy
learning [14], [15]. We follow this line of work and parametrize
the STL to learn controllable behaviors.

III. PRELIMINARIES

A. Signal Temporal Logic (STL)

A signal s = xt, xt+1, . . ., xt+T is a discrete-time finite se-
quence of states xi ∈ Rn. STL is a formal language to specify
signal properties via the following expressions [11]:

φ ::= " | µ(x) ≥ 0 | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2 (1)

where the boolean-type (“true” / “false”) operators split by “|”
serve as building blocks to construct an STL formula. Here
" is “true”, µ denotes a function Rn → R, and ¬, ∧, U,
[a, b] are “not”, “and”, “until”, and time interval from a to
b. Other operators are “or”: φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), “im-
ply”: φ1 ⇒ φ2 = ¬φ1 ∨ φ2, “eventually”: ♦[a,b]φ = "U[a,b]φ
and “always”: "[a,b]φ = ¬♦[a,b]¬φ. Denote s, t |= φ if a signal
s from time t satisfies φ, i.e., φ returns “true”. It is easy to
check satisfaction for ", µ ≥ 0, ¬, ∧, and ∨. As for temporal
operators [42]: s, t |= ♦[a,b]φ ⇔ ∃t′ ∈ [t+ a, t+ b] s, t′ |= φ
and s, t |= "[a,b]φ ⇔ ∀t′ ∈ [t+ a, t+ b] s, t′ |= φ.

Robustness score ρ(s, t,φ) measures how well a signal s
satisfiesφ, where ρ ≥ 0 if and only if s, t |= φ. A larger ρ reflects
a greater satisfaction margin. The calculation is [10]:

ρ(s, t,") = 1, ρ(s, t, µ) = µ(s(t))

ρ(s, t,¬φ) = − ρ(s, t,φ)

ρ(s, t,φ1 ∧ φ2) = min{ρ(s, t,φ1), ρ(s, t,φ2)}

ρ(s, t,♦[a,b]φ) = sup
r∈[a,b]

ρ(s, t+ r,φ)

ρ(s, t,"[a,b]φ) = inf
r∈[a,b]

ρ(s, t+ r,φ) (2)

In our letter, we adopt a differentiable approximation for ρ
proposed in [43] to provide gradient-based policy guidance.

B. Denoising Diffusion Probabilistic Models (DDPM)

Diffusion Models are powerful generative models that learn
a density distribution from the training data to generate samples
that resemble these data. A diffusion model consists of two
procedures: forward process (diffusion) and inverse process
(denoising). In letter [17], during the diffusion process, the data
are iteratively fused with Gaussian noise until they are close to
the white noise. A neural network is trained to predict the noises
added to these samples at different diffusion steps. To generate

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

8356 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

samples, in the denoising process, the latent samples initialized
from the white noise are recovered iteratively by “removing” the
noise predicted by the network.

IV. TECHNICAL APPROACH

A. Problem Formulation

Consider an autonomous system, where we denote the state
of the agent at time t as st ∈ S ⊆ Rn, the control ut ∈ U ⊆
Rm, the scene context c ∈ C ⊆ Rp, and the STL template Ψ :
Γ× C → Φ which generates the STL formula φ ∈ Φ based on
the STL parameters γ ∈ Γ and the scene provided (i.e., φ =
Ψ(γ, c)). Assume a known differentiable discrete-time system
dynamics: f : S × U → S , where from s0 we could generate
a trajectory τ = (s0, s1, . . ., sT) ∈ R(T+1)×n based on control
sequence (u0, u1, . . ., uT−1) ∈ UT . Assume a known diversity
measure J : Ξ → R which is a real-valued function over a set
of trajectories Ξ.

Given a set of demonstrations D = {(ci, τ i}Ni=1 and an STL
template Ψ, the goal is first to generate a set of STL param-
eters {γi}Ni=1 such that τi, 0 |= Ψ(γi, ci), ∀i = 1, 2, . . .N , and
secondly, learn a policy π : S × C × Γ → UT such that for a
given initial state s0, a scene context state c and STL parameters
γ, the trajectories set Ξ generated by π(s0, c, γ) can both (1)
satisfy the STL rule τ, 0 |= Ψ(γ, c), ∀τ ∈ Ξ, and (2) maximize
the diversity measure J(Ξ) (we will use entropy to measure the
diversity and the detailed computation for the entropy is shown
in Section V-B).

B. System Modeling and STL Rules for Autonomous Driving

Ego car model: We use a unicycle model for the dy-
namics: xt+1 = xt + vt cos(θt)%t, yt+1 = yt + vt sin(θt)%t,
θt+1 = θt + wt%t, vt+1 = vt + at%t where the state st =
(xt, yt, θt, vt)T stands for ego car’s xy coordinates, heading
angle, and the velocity at time t, and the controls ut = (wt, at)T

are angular velocity and acceleration. We denote the ego car
width W and length L.

Scene model: The scene context consists of neighbor vehicles
and lanes. We consider the Nn nearest neighbors within the
R-radius disk centered at the ego vehicle and denote their
states at time t as N = {Ijt , x

j
t , y

j
t , θ

j
t , v

j
t , L

j ,W j}Nn
j=1, where

the binary indicator Ijt is one when the jth neighbor is valid
and zero otherwise (this happens when there are less than
Nn neighbor vehicles within the R-radius disk), and the rests
are similar to the ego car state. We represent each lane as
Q = (I, x1, y1, θ1, . . ., xNp , yNp , θNp) ∈ R3Np+1 with an indi-
cator to show its validity and then a sequence of Np centerline
waypoints with 2D coordinates and directions. We denote the
current lane, the left adjacent lane, and the right adjacent lane
for the ego vehicle as Qc, Ql, and Qr.

STL rules and parameters: We define common STL rules that
are required in autonomous driving scenarios,

φ0 = "[0,T] vmin ≤ Speed(s) ≤ vmax

φ1 = "[0,T] Dist(s,N) ≥ dsafe

φ2 = "[0,T] dmin ≤ Dist(s,Qc) ≤ dmax

φ3 = "[0,T] |Angle(s,Qc)| ≤ θmax

φH
4 = ♦[0,T]"[0,T]dmin ≤ Dist(s,QH) ≤ dmax

φH
5 = ♦[0,T]"[0,T]|Angle(s,QH)| ≤ θmax (3)

where the variables in blue are STL parameters, φ0 is for the
speed limit, φ1 specifies the distance to the neighbors should
always be greater than the threshold. Formulasφ2 andφ3 restrict
the vehicle’s distance and heading deviation from the current
lane, whereas φH

4 and φH
5 are for the left and right adjacent

lanes with H ∈ {l, r} to restrict the car to eventually keep the
distance/angle deviation from the target lane within the limit
2. We consider the driving mode M belongs to one of the
high-level behaviors: lane-keeping (M = 0), left-lane-change
(M = 1) and right-lane-change(M = 2). Denote the STL
parameters γ = (M, vmin, vmax, dsafe, dmin, dmax, θmax)T ∈
Γ ⊆ R7. The STL template thus is defined as:

Ψ(γ) = ((M = 0) ⇒ (φ0 ∧ φ1 ∧ φ2 ∧ φ3))

∧
(
(M = 1) ⇒ (φ0 ∧ φ1 ∧ φl

4 ∧ φl
5)
)

∧ ((M = 2) ⇒ (φ0 ∧ φ1 ∧ φr
4 ∧ φr

5)) (4)

C. STL Parameters Calibration

Given the STL template Ψ and the expert demonstrations
D, we find STL parameters γi for each trajectory τi and the
scene ci such that τi, 0 |= Ψ(γi, ci). We develop an annotation
tool to manually label the high-level behaviors M for all the
trajectories, then based on M, we calibrate the rest of the
STL parameters by making the robustness score on the expert
trajectories equal to zero. This is done by conducting min/max
extraction on the existing measurements: e.g., to find dmin, we
first check the high-level policy, then compute the minimum
distance from the trajectory τ to the target lane.

D. Diverse Data Augementation

After obtaining the STL parameters for each scene, we aug-
ment the original demonstration by generating diverse behaviors
using trajectory optimization. For each scene ci and parameter
γi, we formulate the following optimization:

minimize
u0,u1,...,uT−1

σ+(−ρ((s0, s1, . . ., sT), 0,Ψ(γi, ci)))

subject to umin # ut # umax, ∀t = 0, 1, . . ., T − 1

st+1 = f(st, ut), ∀t = 0, 1, . . ., T − 1 (5)

where σ+(·) = max(·, 0), a # b means the vector a is elemen-
twise no larger than the vector b, and umin, umax are predefined
control limits. The system dynamics and STL formula make (5)
a nonlinear optimization, and we use a gradient-based method
to solve for the solution. To increase solutions’ diversity, we
consider all three driving modes for M, and for each mode, we
run gradient-descent fromK initial solutions uniformly sampled
from the solution spaceUT . We denote our augmented dataset as

2Since we aim to eventually “always” keep it in the limit, the “Always”
operator is put inside the “Eventually” scope to realize this behavior.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

MENG AND FAN: DIVERSE CONTROLLABLE DIFFUSION POLICY WITH SIGNAL TEMPORAL LOGIC 8357

Fig. 1. Learning framework. The neural encoder embeds the scene to a feature vector. The DDPM takes the feature vector, the STL parameters (indicating
driving modes, speed limit, safe distance threshold, etc) and the Gaussian noise to generate trajectories. RefineNet takes the upstream trajectories and features and
generates diverse and rule-compliant trajectories.

D̃ = {(c̃i, γ̃i, {τ̃ ji }Kj=1)}3Ni=1 where c̃i = c0i/31 and γ̃i = γ0i/31.
Here, 0·1 denotes rounding a float number to an integer index.

E. Policy Learning Framework

Given the new dataset D̃, we learn the diverse and rule-
compliant behavior via the learning framework shown in Fig. 1.
The encoder network embeds the ego state and the scene to
a feature vector. The DDPM network takes the feature vector,
STL parameters, and a Gaussian noise to produce trajectories
that closely match the distribution in D̃. Finally, the RefineNet
takes upstream features and trajectories to generate diverse and
rule-compliant trajectories.

Encoder Network: The ego state and the scene are first
transformed to the ego frame, s̃ and c̃ = {Q̃c, Q̃l, Q̃r, Ñ } ac-
cordingly. The state s̃ is sent to a fully connected network
(FCN) to get ego feature: zego = gego(s̃) ∈ Rd. Similarly, the
lanes are fed to a lane FCN to generate feature: zlane =
[glane(Q̃c), glane(Q̃l), glane(Q̃r))] ∈ R3d, where [·, ·. . .] is the
vector concatenation. To make the neighbors feature not de-
pend on the neighbor orders, we utilize permutation-invariant
operators in [44] with a neighbor FCN gnei to get: znei =
[maxj gnei(Ñj),minj gnei(Ñj),

∑
j gnei(Ñj)] ∈ R3d, where

Ñj is the jth neighbor feature. The final merged embedding is:
z = [zego, zlane, znei] ∈ R7d.

DDPM Network: Given the embedding z, the STL parameters
γ, the sample τ (0) from D̃, the random noise ε, we generate the
diffused samples: τ (t) =

√
ᾱtτ (0) +

√
1− ᾱtε for uniformly

sampled diffusion steps t ∼ Uniform(1, Td) and pre-defined
coefficients αt and ᾱt =

∏t
s=1 αs. The DDPM network gd :

R7d+7+2T+1 → RT×2 takes z, γ, τ (t), t as input and predicts
the noise, guided by the diffusion loss in the first stage of the
training:

Ld = ED̃,t

[∣∣∣ε− gd(z, γ, τ
(t), t)

∣∣∣
2
]

(6)

In inference, from the Gaussian noise τ (Td) ∼ N (0, I), the
trajectories are generated iteratively by the denoising step:
τ (t−1) = 1√

αt
(τ (t) − 1−αt√

1−ᾱt
gd(z, γ, τ (t), t)) + σtξt with ξt ∼

N (0, I) and σ1 = 0 and σt = 1 for t ≥ 2. We denote the trajec-
tories generated by DDPM as τd.

Refine Network: After DDPM is trained, we use RefineNet,
a fully-connected network gr : R7d+7+2T → RT×2, to regulate
the trajectories generated by the DDPM network to encourage
rule-compliance and diversity. RefineNet takes as input the tra-
jectories with the highest STL score from the last five denoising
steps and outputs a residual control sequence conditional on the
violation of the STL rules, which is:

τfinal = τd + 1{ρ(τd, 0,Ψ(γ, c)) < 0} · gr(z, γ, τd) (7)

If the DDPM produced trajectories already satisfy the STL rules,
the RefineNet will not affect the final trajectories (i.e., τfinal =
τd); otherwise, the RefineNet improves trajectories’ diversity
and the rule satisfaction rate.3 It is hard to directly optimize
for the diversity measure (entropy approximation requires state
space discretization, which is non-differentiable). Instead, in the
second stage, the RefineNet is updated by the following loss:

Lr = ED̃

[
tr
(
I − (K({τfinal,j}Nd

j=1) + I)−1
)]

(8)

where tr(·) is the matrix trace, and K ∈ RNd×Nd is the Direct
Point Process (DPP) kernel [33] over Nd samples:

Kij = 1(ρ(τi) ≥ 0) · exp(−|τi − τj |2) · 1(ρ(τj) ≥ 0). (9)

Minimizing (8) increases the trajectory cardinality and qual-
ity [33], thus increases the diversity and rule satisfaction.

F. Guidance-Based Online Policy Refinement

In evaluation, our learned policy might violate the STL rules
in the unseen scenarios due to the generalization error. Sim-
ilar to [18], we use the STL guidance to improve the sam-
pling process. For a new state s0, scene c, the embedding z
and parameter γ in testing, we replace the original denois-
ing step to τ (t−1) = 1√

αt
τ̃ (t) + σtξt, where τ̃ (t) is initialized

as τ (t) − 1−αt√
1−ᾱt

gd(z, γ, τ (t), t) and is updated by minimiz-

ing −ρ(τ̃ (t), 0,Ψ(γ, c)) via gradient descent. The work [18]

3Table I shows that DDPM results in a very low rule satisfaction rate, which
reflects the great potential of using RefineNet for improvement.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

8358 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

conducts multiple guidance steps at every denoising step. In
contrast, we find it sufficient to just conduct the guidance step
at the last several denoising steps in the diffusion model to
accelerate the computation. Although nonlinear optimization
does not guarantee optimality, in practice, this method can satisfy
the rules with high probability, as shown below.

V. EXPERIMENTS

We first conduct experiments on NuScenes where our method
generates the most diverse trajectories quantitatively and visu-
ally compared to baselines, reaching the highest STL compliance
rate. In closed-loop test we get the lowest collision rate and
out-of-lane rate. Visualization shows how varied STL parame-
ters affect the agent behavior under the same scene, indicating
our approach’s potential for diverse agent modeling. We also
consider a human-robot scenario, where we generate the most
close-to-oracle distribution.

A. Implementation Details

Dataset: NuScenes [20] is a large-scale real-world driving
dataset that comprises 5.5 hours of driving data from 1000 scenes
(from Boston and Singapore). We use the “trainval” split of the
dataset (850 scenes), densely sample from all valid time instants
and randomly split the dataset with 70% for training (11763
samples) and 30% for validation (5042 samples). We developed
an annotation tool and it took a student four days to label high-
level driving behaviors for the data. We mainly focus on vehicles
and leave the other road participants (pedestrians and cyclists)
for future research.

Algorithm details: The planning horizon is T = 20, the dura-
tion is %t = 0.5 s, the number of neighbors is Nn = 8, percep-
tion radius is R = 50 m, each lane has Np = 15 waypoints, and
the control limits are umax = −umin = (0.5 rad/s, 5.0m/s2)T .
In data generation, the number of samples per scene is K = 64.
Similar to [18], the diffusion steps is Td = 100 and a cosine
variance schedule is used. The networks are FCN with 2 hidden
layers, with 256 units for each layer and a ReLU activation for
the intermediate layers. For our method, we first generate the
augmented dataset, then train the DDPM for 500 epochs using
(6). Finally, we freeze the Encoder and DDPM and train the
RefineNet for 500 epochs using (8). We use PyTorch with an
ADAM [45] optimizer, a learning rate 3× 10−4 and a batch
size 128. The augmentation takes 5 hours, and training takes 8
hours on an RTX4090Ti GPU.

B. Open-Loop Evaluation

Baselines: The methods are Traj. Opt.: Trajectory optimiza-
tion solution (treated as “Oracle”); VAE: Variational Auto-
encoder; DDPM: Trained with the loss in (6); TrafficSim [2]:
train a VAE with an extra rule-violation loss; and CTG [18]:
train the DDPM and test with guidance during sampling. And
Ours: our method (Section IV-E); Ours+guidance: with guid-
ance (Section IV-F). For ablations, Ours (w/o RefineNet): no
RefineNet; and Ours (LSTL): uses LSTL = ReLU(0.5− ρ) to
train the RefineNet. We implement baselines to accommodate

for modality and STL rules, and also train VAE and DDPM on
the original NuScenes to show gains from our augmentation.

Metrics: We evaluate the trajectories by (1) Success: the ratio
of the scenes that have at least one trajectory satisfying the
STL rules, (2) Compliance: the ratio of generated trajectories
satisfying the STL rules (valid trajectories), (3) Valid area: The
2d occupancy area of the valid trajectories averaged over all the
scenes, (4) Entropy: At each time step, we compute the entropy
for the normalized angular velocity and the acceleration from
the valid trajectories respectively, and average over all time steps
and all scenes, and (5) Time: measures the trajectory generation
time.

Quantitative results: As shown in Table I, both VAE and
DDPM trained on our augmented dataset achieve a higher
diversity (valid area and entropy) than them trained on the
original NuScenes data, indicating the value of our augmentation
technique to generate diverse demonstrations. VAE and DDPM’s
low compliance rates (less than 10%) imply the need to use
an advanced model. Compared to advanced baselines Traffic-
Sim [2] and CTG [18], “Ours” strikes a sharp rise in the quality
and diversity: 32− 66% higher for rule compliance, 36− 198%
larger valid area, and up to 33% increase in entropy. Moreover,
“Ours+guidance” achieves the highest quality and diversity with
1/17X the time used by the best baseline CTG 4.

Ablation studies: “Ours (w/o RefineNet)” is a bit better than
“DDPM”, where the gains result from the ensemble of DDPM
outputs from the last five denoising steps. With RefineNet and
the STL loss used, “Ours (LSTL)” gets a 47− 188% increase
in the diversity measure compared to “Ours (w/o RefineNet)”.
Further using the diversity loss, “Ours” achieves a 19− 22%
increase in diversity measure, and “Ours+guidance” generates
the most diverse trajectories but at the cost of 4X longer inference
time. We can see that adding the RefineNet and using a diversity
loss greatly improves the diversity and rule compliance rate
(though using the loss Lr will drop the compliance rate by 3%.)

Visualizations: In Fig. 2 we plot all the rule-compliant trajec-
tories (generated by different methods) under specific scenes
and color them based on high-level driving modes (red for
“right-lane-change”, blue for “lane-keeping” and green for “left-
lane-change”). “Ours” and “Ours+guidance” generate close to
Traj. Opt. distributions, with the largest area coverage among
all learning baselines.

C. Closed-Loop Testing

Implementation: We select 26 challenging trials in NuScenes
dataset (where the ego car needs to avoid cars on the street or
to keep track of curvy lanes), and we set the STL parameters to
the minimum/maximum values in the training data to represent
the largest feasible range for parameter selection. We start the
simulation from these trials and stop it if (1) it reaches the max
simulation length or (2) collision happens or the ego car drives
out-of-lane. Due to the fast-changing environment, we follow
the MPC [15] rather than windowed-policy [19], [32] or other

4“Ours+guidance” is much faster than CTG because we only use guidance at
the last five denoising steps, whereas CTG uses guidance at every step.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

MENG AND FAN: DIVERSE CONTROLLABLE DIFFUSION POLICY WITH SIGNAL TEMPORAL LOGIC 8359

TABLE I
OPEN-LOOP EVALUATION: THE HIGHEST IS SHOWN IN BOLD AND THE SECOND BEST IS SHOWN IN UNDERLINE. OUR DATA AUGMENTATION BOOSTS THE

DIVERSITY FOR BASELINES VAE AND DDPM. “OURS+GUIDANCE” GENERATES THE TRAJECTORIES IN THE HIGHEST QUALITY (SUCCESS AND COMPLIANCE) AND
DIVERSITY (VALID AREA, ENTROPY), WITH THE RUNTIME 1/17X TO THE SECOND BEST CTG [18]

Fig. 2. Open-loop visualizations (Green: “left-lane-change”, red: “right-lane-change” and blue: “lane-keeping”). Our approach generates the closest to the Traj.
Opt. solution and results in the largest trajectory coverage among all the learning methods.

mechanism5 [31]. At every time step, out of the 64 generated
trajectories, we choose the one with the highest robustness
score and pick its first action to interact with the simulator. We
measure: (1) Compliance: the ratio of generated trajectories
satisfying the STL rules, (2) Valid Area: The 2d occupancy
area of the valid trajectories, (3) Progress: the average driving
distance of the ego car, (4) Collision: the ratio of trials ending in
collisions, (5) Out-of-lane: the ratio of trials ending in driving
out-of-lane, and (6) Time: the runtime at every step.

Results: As shown in Table II, our approach without guidance
already achieves high performances compared to VAE, DDPM,

5The works [19], [31], [32] are mainly for robot manipulation, where the
task horizon is long and the environment is relatively static. One challenge in
driving scenarios is that the environment can change suddenly in planning (a new
neighbor vehicle emerges, lane changes, etc). Thus, the windowed policy might
not react to these changes and a mechanism to detect the change and trigger the
replanning process is needed. We do not use the goal-conditioned mechanism
in [31] as STL cannot be fully conveyed by a few goal states.

and TrafficSim [2], with slightly high computation time com-
pared to these learning-based baselines - the overhead in the
runtime mainly owes to the DDPM and STL evaluation. Given
that the simulation %t = 0.5 s, this overhead is still in a reason-
able range. With the guidance used, “Ours+guidance” surpasses
all the baselines in quality and diversity metrics (except for
CTG’s progress), achieving the lowest collision rate and zero
out-of-lane. Compared to the best baseline, CTG, our runtime is
just 1/24X of CTG’s. This shows our method’s ability to provide
diverse and high-quality trajectories with an acceptable time
budget in tests.

Diverse behaviors under different STL parameters: To show
the controllability, we use our method with varied STL param-
eters to render agent behaviors in a challenging scene shown in
Fig. 3, where the ego car waits to join in a roundabout with dense
traffic on the right side. We assign three different maximum
speed limits to our network, fix the minimum speed to 0 m/s,
and plot the scenario at t= 22. In Fig. 3, the history of the ego car

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

8360 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

TABLE II
CLOSED-LOOP TESTING: THE HIGHEST IS SHOWN IN BOLD AND THE SECOND BEST IS SHOWN IN UNDERLINE. “OURS+GUIDANCE” STRIKES IN DIVERSITY AND

RULE COMPLIANCE WITH THE LEAST COLLISION AND OUT-OF-LANE RATE WITHIN AN ACCEPTABLE COMPUTATION BUDGET

Fig. 3. Diverse behaviors due to varied STL parameters. When the speed
limit is low, the agent waits until all vehicles pass the roundabout. When at the
middle-speed limit, the agent joins the queue in the middle but yields to other
vehicles at high speed. At the high-speed limit, the car joins the queue and keeps
its place as traversing the roundabout.

is in pink, and planned trajectories are in blue (for lane-keeping)
and red (for right-lane-change). When the max speed limit is
low (1 m/s), the agent waits until all cars finish the roundabout.
When at a speed range [0 m/s, 4 m/s], the agent joins the queue
in the middle but yields to other vehicles at high speed. When
at a wider interval ([0 m/s, 6 m/s]), the car joins the middle
of the queue and keeps the place as moving in the roundabout.
This finding shows we can model different agent characteristics,
which is valuable for realistic agent modeling in simulators.

D. Case Study on Diverse Human Behaviors Generation

We demonstrate how to generate diverse human behaviors in
scenarios [46] where the STL rule for the human is to reach
the goal while avoiding collision with the incoming robot. We
choose collision thresholds as STL parameters and calibrate
them on 1000 real-world trajectories collected by [46]. The
dataset is further augmented as in Section IV-C. We train all
methods on the augmented dataset for comparison.

In Table III, “Ours+guidance” is the highest in “Area” and
“Entropy”, reaching the most close-to-oracle (Traj. Opt.) perfor-
mance with 1/35X of its time. Although TrafficSim [2] reaches
the highest compliance rate, its trajectories are less diverse
(shown in Fig. 4(c)). “Ours+guidance” gets 24 ∼ 38% improve-
ment over CTG [18] in rule-compliance rate and diversity,
being 7.7X faster in inference speed. Visualizations from Fig. 4
show that the trajectory distribution of OursG (Ours+guidance)
is close to the oracle. These results show our advantage in
generating diverse rule-compliant policy.

TABLE III
OPEN-LOOP EVALUATION IN HUMAN-ROBOT ENCOUNTER SCENARIOS [46].

“OURS+GUIDANCE” REACHES THE CLOSEST DIVERSITY TO THE ORACLE (TRAJ.
OPT.), WHILE USING ONLY 1/35X OF ITS TIME

Fig. 4. Valid trajectories for the human-robot encounters. VAE and T.S. (Traf-
ficSim) cannot capture diverse trajectories, whereas OursG (Ours+guidance) are
close-to-oracle.

VI. CONCLUSION

We propose a method to learn diverse and rule-compliant
agent behavior via data augmentation and Diffusion Models.
We model the rules as Signal Temporal Logic (STL), calibrate
the STL parameters from the dataset, augment the data us-
ing trajectory optimization, and learn the diverse behavior via
DDPM and RefineNet. In the NuScenes dataset, we produce
the most diverse and rule-compliant trajectories, with 1/17X the
runtime used by the second-best baseline [18]. In closed-loop
test, we achieve the highest safety and diversity, and with varied
STL parameters we can generate distinct agent behaviors. A

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

MENG AND FAN: DIVERSE CONTROLLABLE DIFFUSION POLICY WITH SIGNAL TEMPORAL LOGIC 8361

case study on human-robot scenarios shows we can generate
closed-to-oracle trajectories. The limitations are: high-level be-
havior labeling effort; longer runtime than VAE, DDPM, or
TrafficSim [2]; and lack of guarantees. Besides, in rare cases
if DDPM learns rule-compliance and non-diverse trajectories,
our RefineNet cannot improve the diversity. We plan to address
those and more complex rules in the future.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and don’t
reflect the views of the sponsors.

REFERENCES

[1] W. Jager and M. Janssen, “The need for and development of behaviourally
realistic agents,” in Proc. Int. Workshop Multi-Agent Syst. Agent-Based
Simul., Springer, 2002, pp. 36–49.

[2] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “TrafficSim: Learning
to simulate realistic multi-agent behaviors,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 10400–10409.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proc. Conf. Robot Learn., PMLR,
2017, pp. 1–16.

[4] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,” in Proc.
IEEE 21st Int. Conf. Intell. Transp. Syst., 2018, pp. 2575–2582.

[5] A. Kesting and M. T. D. Helbing, “Enhanced intelligent driver model to
access the impact of driving strategies on traffic capacity,” Philos. Trans.
Roy. Soc. A, vol. 368, pp. 4585–4605, 2010.

[6] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transp. Res. Rec., vol. 1999, no. 1,
pp. 86–94, 2007.

[7] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in
Proc. Eur. Conf. Comput. Vis., 2020, pp. 683–700.

[8] R. Bhattacharyya et al., “Modeling human driving behavior through gen-
erative adversarial imitation learning,” IEEE Trans. Intell. Transp. Syst.,
vol. 24, no. 3, pp. 2874–2887, Mar. 2023.

[9] J. Liang, L. Jiang, K. Murphy, T. Yu, and A. Hauptmann, “The garden
of forking paths: Towards multi-future trajectory prediction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 10508–10518.

[10] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Proc. Formal Model. Anal. Timed Syst., 2010,
Art. no. 92.

[11] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for STL,”
in Proc. Comput. Aided Verification: 25th Int. Conf., 2013, pp. 264–279.

[12] Y. E. Sahin, R. Quirynen, and S. Di Cairano, “Autonomous vehicle
decision-making and monitoring based on signal temporal logic and
mixed-integer programming,” in Proc. IEEE Amer. Control Conf., 2020,
pp. 454–459.

[13] C. Dawson and C. Fan, “Robust counterexample-guided optimization for
planning from differentiable temporal logic,” in 2022 IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2022, pp. 7205–7212.

[14] K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation through signal
temporal logic specifications: Infusing logical structure into gradient-
based methods,” Int. J. Robot. Res., vol. 42, no. 6, pp. 356–370, 2023.

[15] Y. Meng and C. Fan, “Signal temporal logic neural predictive control,”
IEEE Robot. Automat. Lett., vol. 8, no. 11, pp. 7719–7726, Nov. 2023.

[16] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in 2017 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 3834–3839.

[17] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 6840–6851.

[18] Z. Zhong et al., “Guided conditional diffusion for controllable traffic sim-
ulation,” in 2023 IEEE Int. Conf. Robot. Automat., 2023, pp. 3560–3566.

[19] C. Chi et al., “Diffusion policy: Visuomotor policy learning via action
diffusion,” Robot.: Sci. Syst. Conf., 2023.

[20] H. Caesar et al., “nuScenes: A multimodal dataset for autonomous driv-
ing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 11621–11631.

[21] F. Leon and M. Gavrilescu, “A review of tracking and trajectory prediction
methods for autonomous driving,” Mathematics, vol. 9, no. 6, 2021,
Art. no. 660.

[22] S. Ammoun and F. Nashashibi, “Real time trajectory prediction for colli-
sion risk estimation between vehicles,” in 2009 IEEE 5th Int. Conf. Intell.
Comput. Commun. Process., 2009, pp. 417–422.

[23] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A Bayesian non-
parametric approach to modeling motion patterns,” Auton. Robots, vol. 31,
pp. 383–400, 2011.

[24] A. O. Ly and M. Akhloufi, “Learning to drive by imitation: An overview
of deep behavior cloning methods,” IEEE Trans. Intell. Veh., vol. 6, no. 2,
pp. 195–209, Jun. 2021.

[25] P. Sun et al., “Scalability in perception for autonomous driving: Waymo
open dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 2446–2454.

[26] J. Gao et al., “VectorNet: Encoding HD maps and agent dynamics from
vectorized representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 11525–11533.

[27] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN:
Socially acceptable trajectories with generative adversarial networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2255–2264.

[28] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff,
“CoverNet: Multimodal behavior prediction using trajectory sets,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 14074–14083.

[29] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Thomas: Trajectory heatmap output with learned multi-agent sampling,”
in Proc. Int. Conf. Learn. Representations, 2022.

[30] C. Jiang et al., “MotionDiffuser: Controllable multi-agent motion pre-
diction using diffusion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2023, pp. 9644–9653.

[31] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imitation
learning using score-based diffusion policies,” Robot.: Sci. Syst. Conf.,
2024.

[32] P. M. Scheikl et al., “Movement primitive diffusion: Learning gentle
robotic manipulation of deformable objects,” IEEE Robot. Automat. Lett.,
vol. 9, no. 6, pp. 5338–5345, Jun. 2024.

[33] Y. Yuan and K. Kitani, “Diverse trajectory forecasting with determinantal
point processes,” in Proc. Int. Conf. Learn. Representations, 2020.

[34] Y. Xu, H. Cheng, and M. Sester, “Controllable diverse sampling for
diffusion based motion behavior forecasting,” in IEEE Intell. Vehicles
Symp., 2024.

[35] S. Kim, H. Jeon, J. W. Choi, and D. Kum, “Diverse multiple trajectory
prediction using a two-stage prediction network trained with lane loss,”
IEEE Robot. Automat. Lett., vol. 8, no. 4, pp. 2038–2045, Apr. 2023.

[36] M. Stoll, M. Mazzola, M. Dolgov, J. Mathes, and N. Möser, “Scaling
planning for automated driving using simplistic synthetic data,” 2023,
arXiv:2305.18942.

[37] Y. Meng, Z. Qin, and C. Fan, “Reactive and safe road user simulations using
neural barrier certificates,” in 2021 IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2021, pp. 6299–6306.

[38] S. Casas, C. Gulino, S. Suo, and R. Urtasun, “The importance of prior
knowledge in precise multimodal prediction,” in 2020 IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 2295–2302.

[39] R. P. Bhattacharyya, D. J. Phillips, C. Liu, J. K. Gupta, K. Driggs-
Campbell, and M. J. Kochenderfer, “Simulating emergent properties of
human driving behavior using multi-agent reward augmented imitation
learning,” in 2019 IEEE Int. Conf. Robot. Automat., 2019, pp. 789–795.

[40] Z. Zhong et al., “Language-guided traffic simulation via scene-level dif-
fusion,” in Proc. Conf. Robot Learn., 2023, pp. 144–177.

[41] S. Maierhofer, P. Moosbrugger, and M. Althoff, “Formalization of inter-
section traffic rules in temporal logic,” in 2022 IEEE Intell. Veh. Symp.
(IV), 2022, pp. 1135–1144.

[42] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Proc. Formal Techn., Modelling Anal. Timed Fault-Tolerant
Syst., 2004, pp. 152–166.

[43] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using
the smooth robustness of temporal logic,” in 2017 IEEE Conf. Control
Technol. Appl., 2017, pp. 1235–1240.

[44] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3 d classification and segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 652–660.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[46] A. Linard, I. Torre, A. Steen, I. Leite, and J. Tumova, “Formalizing
trajectories in human-robot encounters via probabilistic STL inference,”
in 2021 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 9857–9862.

Authorized licensed use limited to: MIT. Downloaded on November 08,2024 at 22:16:49 UTC from IEEE Xplore. Restrictions apply.

