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Abstract
The sparse dictionary coding framework represents signals as a

linear combination of a few predefined dictionary atoms. It has been

employed for images, time series, graph signals and recently for

2-way (or 2D) spatio-temporal data employing jointly temporal and

spatial dictionaries. Large and over-complete dictionaries enable

high-quality models, but also pose scalability challenges which are

exacerbated in multi-dictionary settings. Hence, an important prob-

lem that we address in this paper is: How to scale multi-dictionary
coding for large dictionaries and datasets?

We propose a multi-dictionary atom selection technique for

low-rank sparse coding named LRMDS. To enable scalability to

large dictionaries and datasets, it progressively selects groups of

row-column atom pairs based on their alignment with the data

and performs convex relaxation coding via the corresponding sub-

dictionaries. We demonstrate both theoretically and experimentally

that when the data has a low-rank encoding with a sparse subset

of the atoms, LRMDS is able to select them with strong guaran-

tees under mild assumptions. Furthermore, we demonstrate the

scalability and quality of LRMDS in both synthetic and real-world

datasets and for a range of coding dictionaries. It achieves 3× to 10×
speed-up compared to baselines, while obtaining up to two orders

of magnitude improvement in representation quality on some of

the real world datasets given a fixed target number of atoms.
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1 Introduction
Sparse coding methods represent data as a linear combination of a

predefined basis (called atoms) arranged in a dictionary [26]. Dictio-

naries are either derived analytically, for example, discrete Fourier

transform, Wavelets, Ramanujan periodic basis [28] or learned from

data [29]. A key assumption in sparse coding is that real-world sig-

nals are sparse (or compressive) and can be represented via a small

subset of dictionary atoms. Sparse coding has been widely adopted

in signal processing [26], machine learning [18],time series analy-

sis [15, 34], image processing [7], data mining [20, 21] and computer

vision [31] among others.

Existing approaches, depending on their sparsity-promoting

functions, fall in three main categories [17]: convex relaxation [4],

non-convex algorithms [12], and greedy strategies based on match-

ing pursuit [23]. Most existing work focuses on 1D (vector) sig-

nals such as time series [28] and graph signals [6]. More recent

approaches employ sparse coding for multi-way datasets such as im-

ages [8, 10], spatio-temporal data [22] and higher order tensors [19].

These 2D and higher-D methods employ separate dictionaries for

the different modes (dimensions) of the data. Convex relaxation

2D approaches are typically efficient in practice, but their runtime

significantly increases with the size of dictionaries and datasets

and they also require careful tuning of hyper-parameters to pre-

cisely control the density of encoding coefficients [22]. Greedy ap-

proaches recover a desired number of coefficients (model size), but

re-estimate all coding coefficients as new ones are added, and thus

do not scale to large model sizes [8]. Fig. 1(a) demonstrates the 2D

setting in the context of user-product purchase data by employing a

separate user and product graph dictionaries (e.g., graph Fourier dic-

tionaries [27]) based on the corresponding friendship/association

graphs.

Some multi-way techniques further model the coding matrix

as low-rank [19, 22, 24] which enables improved performance due

to sharing of atom-specific patterns within factors. This model-

ing assumption is demonstrated in the toy example from Fig. 1(a).

Given the purchase history of users, represented as one-hot en-

coded icons, and association graphs (e.g., user-user friendship and

product similarity graphs), one can define graph-based user Ψ and

product Φ dictionaries which represent natural communities for
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Figure 1: (a) A 2D low rank coding example for user-product preference
data. The left Ψ and right Φ dictionaries are derived from user and product
association graphs and the goal is to encode the data sparsely via sparse and
low-rank coefficient matrices 𝑌,𝑊 . Our method LRMDS sub-selects the dic-
tionary atoms on both sides to speed up the coding process. (b) Comparison
of competing techniques on a Road traffic dataset. Variants of LRMDS outper-
form all baselines in both representation quality (RMSE) and running time
(best regime in the lower-left corner).

each of the two data dimensions. If purchase behaviors “conform”

to user and product communities (e.g., first three users purchase

electronics while the remaining two purchase sports products),

then the purchase data can be described efficiently via a few sparse

factors as demonstrated in the 𝑌,𝑊 coding matrices. For example,

the user factors in 𝑌 require only two coefficients to represent the

corresponding user groups, and similarly𝑊 represent groups of

products via three coefficients.

While (low-rank) 2D sparse coding is advantageous and widely

applicable, existing methods do not scale to large dictionaries and

data. The 2D-OMP approach [8] composes atoms as outer products

of left and right atoms and greedily selects the best aligning pairs for

encoding one at a time. Low rank approaches [19, 22] adopt convex

relaxation based on alternating directions methods of multipliers

(ADMM). Both groups suffer from poor scalability with the size of

the employed dictionaries. 2D-OMP considers a quadratic number

of atom combinations while low-rank approaches rely on inversion

of matrices whose size depend on that of the employed dictionaries.

While this challenge of limited scalability has been addressed in the

1D sparse coding scenario via dictionary screening [32] and greedy

dictionary selection [9], these methods are not readily applicable to

the 2D scenario. Furthermore, as we demonstrate experimentally,

naive generalizations of dictionary screening algorithms for the 2D

setting result in limited representation accuracy and scalability.

We propose a low-rank multi-dictionary selection and coding ap-

proach for 2D data called LRMDS. Our approach is general, scalable

and theoretically justified. To scale to large dictionary sizes, it itera-

tively performs adaptive joint dictionary sub-selection and efficient

low-rank coding based on convex optimization. LRMDS iteratively

improves the encoding by adding dictionary atoms as needed in

rounds. We prove theoretically and demonstrate empirically that if

the input data conforms to a low-rank coding model via a sparse

subset of atoms, LRMDS is guaranteed to select these atoms in noisy

regimes. An experimental snapshot showcasing the advantages of

LRMDS’s variants is presented in Fig. 1(b) for a real-world sensor

network dataset. In terms of representation error (vertical axis) and

running time (horizontal axis), variants of our method (LRMDS and

LRMDS-f) occupy the lower left corner which is the optimal regime.

We experimentally demonstrate similar advantageous behavior on 3

other datasets detailed in the evaluation section. While in this work

we focus on evaluating dictionary selection in 2-way (matrix) data,

we believe that our framework can be extended to multi-dictionary

settings (tensor data) , though we leave such evaluation for future

investigation. Our contributions in this paper are as follows:

• Novelty: To the best of our knowledge, LRMDS is the first dictio-

nary selection method for multi-dictionary sparse coding.

• Scalability: Our approach scales better than alternatives on large

real-world datasets and when employing large dictionaries.

• Accuracy: LRMDS consistently produces solutions of lower rep-

resentational error compared to the closest baselines from the liter-

ature for a fixed number of coding coefficients (models size).

• Theoretical guarantees: We prove that LRMDS’s dictionary

selection optimally identifies the necessary atoms for low-rank

encoding of the input data in the presence of noise.

2 Related work
Sparse coding is widely employed in signal processing [26, 35],

image analysis [7] and computer vision [31]. Existing methods

can be grouped into three main categories: convex optimization

solutions, non-convex techniques, and greedy algorithms [17]. Re-

laxation techniques impose sparsity on the coding coefficients via

L1 regularizers [19, 22], while greedy algorithms select one atom at

a time [5, 14, 30]. Most existing methods focus on 1D signals while

our focus in this paper is on 2D signals.

2D and multi-way coding methods generalize the one dimen-

sional setting by employing separate dictionaries for each dimen-

sion of the data [8, 10, 19, 22, 33]. Some methods in this group

place no assumptions on the rank of the encoding matrix [8, 10,

24, 33], while others employ a low-rank model for the encoding

matrix [19, 22]. Most related to LRMDS among above the above are

2D-OMP [8] which also utilizes a greedy projection to select atoms,

and TGSD [22] as it also enforces that learned coding coefficients

are low rank for 2D data. We elaborate further on these similarities

in the following section and demonstrate a superior performance

of LRMDS over these baselines in the experimental section.

Dictionary screening and selection. Dictionary screening [32]

is a suite of methods/bounds for “discarding” dictionary atoms of 0

encoding weights at a given sparsity level with the goal of reducing

the running time of the encoding process. These techniques are lim-

ited to 1D data (i.e., only one dictionary), and are not immediately

extendable to the two-dictionary setting. We include naive exten-

sions to 2D by creating composite (pairwise) atoms as baselines

and demonstrate that they do not scale well to large-dictionaries

due to the quadratic space of possible composite atoms. There is

also work on greedy atom selection for the 1D case [9] and our

method can be viewed as a generalization of such techniques to the

2D sparse coding setting.
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3 Preliminaries
Before we define our problem of low rank sub-dictionary selection,

we introduce necessary preliminaries and notation. The goal of

1D sparse coding is to represent a signal via a single (column)

dictionary Ψ ∈ R𝑁×𝐼
optimizing the following objective:

min

𝑦
𝑓 (𝑦) s.t. 𝑥 = Ψ𝑦,

where 𝑥 ∈ R𝑁
represents the given signal, 𝑦 ∈ R𝐼

is the learned

encoding and 𝑓 (𝑦) is a sparsity promoting function (often the 𝐿1
norm). A popular greedy strategy to solve the problem, particularly

when the dictionary forms an over-complete basis, is the orthogonal

matching pursuit (OMP) [23]. The OMP algorithm maintains a

residual of the signal 𝑟 that is not yet represented, and proceeds

in greedy steps to identify the dictionary atom best aligned to the

residual: 𝜓𝑡 = argmax𝜓𝑖
(𝑟𝑇𝜓𝑖 ), where 𝑖 ∈ [1, 𝐼 ], and 𝜓𝑖 is the 𝑖-th

atom in Ψ. The selected atom𝜓𝑡 at step 𝑡 is appended to the result

set, the signal is re-encoded and the residual re-computed. The

process continues until a desired number of atoms are employed,

while satisfying the sparsity function 𝑓 (𝑦).
In this paper we consider the 2D setting involving two dictionar-

ies. The input to our problem is a real valued datamatrix𝑋 ∈ R𝑁×𝑀

which can be represented via two dictionaries: a left (column) dic-

tionary Ψ ∈ R𝑁×𝐼
and a right (row) dictionary Φ𝑇 ∈ R 𝐽 ×𝑀

, where

𝐼 is the number of atoms in Ψ and 𝐽 is the number of atoms in

Φ𝑇 . It is important to note that both analytical and data-driven

dictionaries can be employed [26]. The 2D problem generalizes that

from the 1D case as follows:

min

𝑍
𝑓 (𝑍 ) s.t. 𝑋 = Ψ𝑍Φ𝑇 , (1)

where 𝑍 ∈ R𝐼×𝐽
is an encoding matrix, and 𝑓 (𝑍 ) is the correspond-

ing sparsity promoting function. Intuitively this decomposition

facilitates a representation which aligns to dictionaries across both

modes (dimensions) instead of just one. An early solution for the

problem in Eq. 1 was motivated by decomposing a 2D image via

copies of the same dictionary, i.e. Ψ = Φ [8]. It generalizes OMP

to obtain a 2D-OMP algorithm by forming 2D atoms 𝐵𝑖, 𝑗 = 𝜓
𝑇
𝑖
𝜙 𝑗

as outer products of individual left𝜓𝑖 and right 𝜙 𝑗 atoms, and by

selecting 2D atoms based on their alignment with the residual 𝑅 at

every iteration. Importantly, while sparse, this solution might in

general result in high-rank encoding matrix 𝑍 and as we demon-

strate experimentally it does not scale to large spatio-temporal

datasets and large dictionaries.

A recent method called TGSD [22] employs 2D sparse coding for

general spatio-temporal datasets, and specifically temporal graph

signals, where graph and temporal dictionaries are employed as

Ψ and Φ respectively. Another major difference from the 2D-OMP

solution is that in order to enforce a low-rank solution, TGSD

considers a model with two “slim” dictionary-specific encoding

matrices 𝑌 ∈ R𝐼×𝑟
and𝑊 ∈ R𝑟×𝐽

, where the middle dimension

𝑟 restricts the rank of the encoding 𝑋 = Ψ𝑌𝑊Φ𝑇 . The resulting
objective is:

argmin

𝑌,𝑊

| |𝑋 − Ψ𝑌𝑊Φ𝑇 | |2𝐹 + 𝜆1 | |𝑌 | |1 + 𝜆2 | |𝑊 | |1, (2)

where sparsity via an 𝐿1 norm is enforced for both 𝑌 and𝑊 . Here,

∥𝑀 ∥𝐹 denotes the Frobenius norm of the matrix𝑀 . The solution

adopts an ADMM convex relaxation approach (unlike the greedy so-

lution of 2D-OMP) producing an explainable decomposition model

relating non-zero coefficients to periodic behavior and active spa-

tial/graph domains in the data [22]. However, this solution also does

not scale to large coding dictionaries and datasets—a challenge we

address in our solution.

4 Problem formulation and solutions
4.1 Problem formulation
The existing methods for multi-dictionary sparse coding, TGSD and

2D-OMP, do not scale to large datasets and dictionaries for different

reasons. 2D-OMP selects one atom pair from each dictionary at

a time, re-encodes the data and proceeds with the data residual.

While each step is initially fast, the number of atom pairs grows

quadratically with the size of the dictionaries. In addition, when

the data has a low-rank representation through a subset of atoms,

2D-OMP is not guaranteed to uncover it due to its formulation

employing an unconstrained coding matrix 𝑍 of quadratic size in

the dictionary atoms. Different from that, TGSD is a low rankmodel,

however, its optimization relies on inverting matrices whose sizes

are determined by the dictionaries, hence it also does not scale with

the size of the dictionaries. The scalability limitations are further

exacerbated by the use of over-complete dictionaries which has

been shown to produce accurate and succinct models in various

signal processing and machine learning applications.

Our goal is to enable a (i) scalable, (ii) low-rank, (iii) multi-

dictionary sparse coding, accommodating large over-complete dic-

tionaries without compromising the quality of the learned model by

subs-electing the dictionary atoms. An additional goal is applicabil-

ity to any 2D signals, including spatio-temporal data, graph signals

evolving over time, images and others, by employing appropriate

dictionaries for the corresponding data dimensions. Based on the

above intuition we formalize our problem as follows:

Problem definition: Given a 2D signal 𝑋 , large potentially over-
complete dictionaries Ψ and Φ, and a desired rank 𝑟 , fit a sparse
low-rank model 𝑋 ≈ Ψ𝑠𝑌𝑊Φ𝑇𝑠 , employing a subset of the dictionary
atoms Ψ𝑠 ,Φ𝑠 and coding matrices of 𝑌,𝑊 with inner dimension 𝑟 .

4.2 LRMDS: iterative atom selection and coding
Both TGSD and 2D-OMP with minor modifications can be adopted

for our problem formulation, however, as we discussed earlier they

have limited scalability. The key idea behind our approach is to

sub-select both dictionaries jointly and fit a low-rank encoding

model through the reduced dictionaries. Hence, a key assumption
in LRMDS is that the data can be represented well by a low-rank
encoding matrix and by employing a subset of atoms from the left and
the right dictionaries. This setting is illustrated in Fig. 1(a) where

only a subset of atoms from Ψ and Φ are necessary to represent the

data. There are two main steps to obtain LRMDS’s representation:

(i) identify an appropriate subset of dictionary atoms which align

well with the data and (ii) employ them to perform a low rank dic-

tionary decomposition. We repeatedly perform these steps against

the “unexplained” residual of the data after each iteration. As a

result, our approach can be considered a combination of a greedy

sub-dictionary identification followed by a convex encoding step.

Importantly, we demonstrate that the greedy atom selection step
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recovers the optimal atoms to best encode a dataset with low-rank

and sparse encoding in noisy regimes under mild assumptions.

To jointly sub-select atoms from both dictionaries, we consider

all pairwise 2D atoms of the form𝐵𝑖, 𝑗 = 𝜓𝑖𝜙
𝑇
𝑗
,∀𝑖 ∈ [1, 𝐼 ],∀𝑗 ∈ [1, 𝐽 ]

and themagnitude of the projection of the data on them. Specifically

we maintain a residual matrix 𝑅 ∈ R𝑁×𝑀
initialized as the input

data 𝑋 and subsequently capturing the signal not yet represented

by LRMDS. The alignment scores of atom pairs are computed as:

𝑃𝑖, 𝑗 =
⟨𝑅, 𝐵𝑖, 𝑗 ⟩
| |𝐵𝑖, 𝑗 | |𝐹

, =⇒ 𝑃 = Ψ̂𝑇𝑅Φ̂, (3)

where on the left-hand-side ⟨𝑅, 𝐵𝑖, 𝑗 ⟩ ≜ 𝜓𝑇
𝑖
𝑅𝜙 𝑗 is the alignment

of the 𝑖-th left atom and the 𝑗 − 𝑡ℎ right atom with the residual,

and | |𝐵𝑖, 𝑗 | |𝐹 ≜ 𝜓𝑖𝜙
𝑇
𝑗
is a normalization factor based on the Frobe-

nius norm of the atoms’ outer product. The right-hand-side is the

equivalent to the left for all 𝑃𝑖, 𝑗 when using per-atom normalized

dictionaries Ψ̂ and Φ̂ (details in the supplement). At each iteration,

our method selects the top 𝑘 total atoms from a combination of left

or right dictionary atoms with respect to this alignment 𝑃 .

Once atoms are selected we calculate a low-rank decomposition

of the data via encoding matrices 𝑌 ∈ R𝐼𝑠×𝑟
and𝑊 ∈ R𝑟×𝐽𝑠

where

𝑟 represents the rank of the model, while 𝐼𝑠 and 𝐽𝑠 are the number

of atoms selected from Ψ and Φ respectively. It is important to note,

that the sparsity of the representation is ensured thanks to the atom

sub-selection and the low-rank (via two encoding matrices) model,

hence in this stepwe do not further enforce sparsity on the encoding

coefficients as it is typical to convex relaxation approaches. This

modeling decision enables scalable direct solutions as opposed to

more complicated ADMM optimizers. The encoding problems has

the following form:

argmin

𝑌,𝑊

| |𝑅 − Ψ𝑠𝑌𝑊Φ𝑇𝑠 | |2𝐹 , (4)

where Ψ𝑠 and Φ𝑠 are the subselected dictionaries and 𝑅 is the data

residual originally initialized as 𝑋 . We propose two alternating

optimization schemes for the two variables 𝑌,𝑊 leading to two

variants of LRMDS (LRMDS and LRMDS-f). Both variants iteratively

updated 𝑌 and𝑊 until convergence, however, LRMDS-f does so

faster but at the potential price of accuracy. Detailed explanation

and derivations are available in the supplement.

The overall LRMDS algorithm. The steps of the complete algo-

rithm (corresponding to both versions of our method) are listed in

Alg. 1. The inputs include the data𝑋 , left Ψ and right Φ dictionaries

and parameters for the number of atoms to select per iteration 𝑘

and the rank 𝑟 of the encoding, i.e., the inner dimension of the two

output encoding matrices 𝑌,𝑊 . In the initialization steps, we first

compute per-atom normalized versions of the dictionaries needed

for the alignment scoring (Steps 4-5) and initialize empty sets of

atom indices for both dictionaries (Step 6). Dictionary sub-selection

takes place in Steps 8-15. In Steps 10-14 we add the top aligned

atoms 𝑖 and 𝑗 to the set of select atoms 𝐼𝑠 and 𝐽𝑠 so long as they

are not already selected. We repeat until a total of 𝑘 new atoms

are selected. Finally, we sub-select the relevant atoms from their

dictionaries in Step 15 to create sub-dictionaries Ψ𝑠 and Φ𝑠 .
Steps 16-30 perform the low-rank coding by estimating 𝑌 and𝑊

based on the sub-dictionariesΨ𝑠 andΦ𝑠 .We list the iterative updates

of both versions LRMDS (Steps 18-23) and LRMDS-f (Steps 24-29) of

Algorithm 1 Low Rank Multi-Dictionary Selection (LRMDS)

1: Input: Data 𝑋 ; dictionaries Ψ and Φ; atoms per iteration 𝑘 , decomposition rank 𝑟

2: Output: Encoding matrices 𝑌,𝑊

3: Initialize residual 𝑅 = 𝑋

4: // Compute normalized dictionaries

5: Compute Ψ̂ : { | | ˆ𝜓𝑖 | |2 = 1, ∀𝑖 ≤ 𝐼 }, Φ̂ : { | | ˆ𝜙 𝑗 | |2 = 1, ∀𝑗 ≤ 𝐽 }
6: Initialize sets of selected atoms: 𝐼𝑠 = ∅, 𝐽𝑠 = ∅
7: repeat
8: // Dictionary sub-selection
9: Let 𝑃 = Ψ̂𝑇𝑅Φ̂ ⊲ Eq. 3

10: 𝑐𝑛𝑡 = 0

11: for 𝑃𝑖,𝑗 in descending order and while 𝑐𝑛𝑡 < 𝑘 do
12: if 𝑖 ∉ 𝐼𝑠 then 𝐼𝑠 = 𝐼𝑠 ∪ 𝑖 ; 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1

13: if 𝑗 ∉ 𝐽𝑠 then 𝐽𝑠 = 𝐽𝑠 ∪ 𝑗 ; 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1

14: end for
15: Sub-select dictionaries: Ψ𝑠 = Ψ(𝐼𝑠 ) , Φ𝑠 = Φ( 𝐽𝑠 )
16: // Encoding based on Ψ𝑠 ,Φ𝑠

17: Initialize randomly 𝑌|𝐼𝑠 |×𝑟 and𝑊𝑟×| 𝐽𝑠 |
18: if LRMDS then
19: Pre-compute Ψ (𝑖𝑛𝑣)

𝑠 = Ψ†
𝑠 and Φ(𝑖𝑛𝑣)

𝑠 = Φ†
𝑠

20: repeat
21: 𝑌 = Ψ (𝑖𝑛𝑣)

𝑠 𝑋 (𝑊Φ𝑠 )†
22: 𝑊 = (Ψ𝑠𝑌 )†𝑋Φ(𝑖𝑛𝑣)

𝑠

23: until 𝑌,𝑊 converge

24: else if LRMDS-f then
25: Pre-compute𝐶 = Ψ†𝑋Φ†

26: repeat
27: 𝑌 = 𝐶𝑊 †

28: 𝑊 = 𝑌 †𝐶
29: until 𝑌,𝑊 converge

30: end if
31: 𝑅 = 𝑋 − Ψ𝑠𝑌𝑊Φ𝑇𝑠
32: until | |𝑅 | |𝐹 converges to 0 or after a fixed number of iterations

our method. For the former, we pre-compute the pseudo inverses of

the subselected dictionaries Ψ†,Φ†
and iterate between close form

updates of𝑌 and𝑊 while in the latter we precompute the projection

of the data on the pseudo inverses of the subselected dictionaries

Ψ†𝑋Φ†
and perform simpler updates for the coefficients in𝑌 and𝑊 .

Further discussion of the difference between the two versions and

derivation details for the updates are available in the supplement.

Finally, in Step 31 we re-calculate the residual matrix 𝑅. We repeat

all steps until a fixed number of iterations is reached or if the norm

of the residual (| |𝑅 | |𝐹 ) approaches zero.
The overall complexity of LRMDS is 𝑂 (𝑡 (𝑞(𝑁 +𝑀)𝑟2 +𝑀𝐽 2𝑠 +

𝑁𝐼2𝑠 )) for LRMDS or 𝑂 (𝑡 (𝑞(𝐼𝑠 + 𝐽𝑠 )𝑟2 +𝑀𝐽 2𝑠 + 𝑁𝐼2𝑠 )) when using

LRMDS-f where 𝑡, 𝑞 are the total number of iterations of the main

loop and 𝑌,𝑊 updating. Our framework is designed to flexibly

accommodate any dictionaries Φ and Ψ. Discussion of dictionaries

employed for modes of different types (e.g., time series, graphs, etc.)

can be found in the extended version [16].

4.3 Dictionary subselection theoretical analysis
In this section, we give an accuracy guarantee for the quality of

our method’s selection of top 𝑘 atoms in each step. when used to

recover a low-rank signal matrix 𝑅 from a data matrix 𝑅 = 𝑅 +𝑄
that includes Gaussian noise. Throughout, we assume without loss

of generality that 𝑀 = 𝑜 (
√
𝑁 ) as 𝑁 → ∞ (the argument applies

equally well when the roles of𝑀 and 𝑁 are switched). We describe

this denoising problem setting and assumptions for our theoretical

guarantee below.

Noise model: We will consider the recovery of a low-rank, sparse

signal matrix 𝑅 from a noise-perturbed version 𝑅 := 𝑅 +𝑄 , where𝑄
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Dataset #Nodes #Time Res. Associated TGSD 2D-OMP SC-TGSD LRMDS LRMDS-f
Steps Graph RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

Synthetic 1k-4k 1k-8k - SBM 0.06 146 0.02 3196 0.03 61.7 0.009 31.3 0.009 30.1
Road [2] 1923 920 1h Road network 17.8 285 10.1 228 12.1 32 5.4 37 5.8 15

Twitch [25] 78,389 512 1h Shared audience 1.38 8,413 1.36 341,294 1.35 5,353 1.23 9655 1.26 4,280
Wiki [1] 999 792 1h Co-clicks 15.7 422 9.7 1390 11.7 41 2.8 52 3.5 37
Covid [13] 3047 678 1d Spatial k-NN 31969 551 23908 2668 21320 267 204 145 228 88

Table 1: Statistics of the datasets used for evaluation (left sub-table) and quality and running times for competing techniques (right sub-table). All datasets have a
temporal and graph mode with corresponding dictionaries. The temporal resolution of each dataset is specified in column Res while the following column lists the
kind of associated graph. RMSE and timing results of all competing methods using the same number of atoms are listed in the remaining columns. The target
number of atoms are as follows: Synthetic with ground truth (GT) atom count (200, GW+RS test in Fig. 2); Road, Twitch, and Covid: 40% of total atoms; Twitch: 20%
of total atoms.

is a matrix in R𝑁×𝑀
with independent and identically distributed

standard Gaussian entries, appropriately normalized. Specifically,

the assumption that𝑁 ≫ 𝑀 implies that with high probability, each

column of a standard Gaussian matrix has 𝐿2 norm approximately√
𝑁 . Thus, we define the noise component as:

𝑄 =
𝜎

√
𝑁𝑀

· N (0, 𝐼𝑁×𝑀 ), (5)

for some positive standard deviation 𝜎 . With this normalization,

∥𝑄 ∥𝐹 = Θ(1), and thus has the same order of growth as ∥𝑅∥𝐹 , with
high probability.

Low rank and sparsity assumptions on 𝑅: We will assume that

𝑅 has rank 𝑟 , which implies that 𝑅 has an expansion of the form

𝑅 = Ψ𝑌𝑊Φ𝑇 =

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖, 𝑗𝜓𝑖𝜙
𝑇
𝑗 , (6)

where 𝑌 ∈ R𝐼×𝑟
and𝑊 ∈ R𝑟×𝐽

, and where the double-sum atom-

based representation is under the assumption that Ψ and Φ𝑇 are

not under-complete. Eq. 6 implies the following explicit 𝑝𝑖, 𝑗 form:

𝑝𝑖, 𝑗 = (𝑌𝑖,·) (𝑊·, 𝑗 )𝑇 . (7)

Furthermore, we will make the following sparsity assumption: there

exist only 𝑠 = Θ(1) dictionary coefficients 𝑝𝑖, 𝑗 in the expansion of

𝑅 that are nonzero, and these are Θ(1) uniformly in 𝑁 and𝑀 .

Assumption on approximate orthogonality of dictionary
atoms: We next formulate an approximate orthogonality condition

for the dictionary atoms. To do so, we first recall the definition of

the 𝐿∞ operator norm of a matrix𝑀 :

∥𝑀 ∥𝑜𝑝,∞ := sup

∥𝑥 ∥∞=1
∥𝑀𝑥 ∥∞ . (8)

We will assume that the dictionaries Ψ ∈ R𝑁×𝐼 ,Φ𝑇 ∈ R 𝐽 ×𝑀
are

such that 𝐼 ∈ [𝑁, 𝑐𝑜𝑛𝑠𝑡 · 𝑁 ], 𝐽 ∈ [𝑀,𝑐𝑜𝑛𝑠𝑡 ·𝑀] and that a subset of
the atoms for each dictionary constitutes a basis for R𝑁

and R𝑀
,

respectively. We fix an 𝛼 ≥ 0, which may depend on 𝑁 and𝑀 . We

also define a matrix Σ ∈ R𝐼×𝐼
collecting the pairwise inner products

between dictionary elements in Ψ: namely, Σ𝑖, 𝑗 := (𝜓𝑖 )𝑇 ·𝜓 𝑗 .We

will assume that ∥Σ1/2∥𝑜𝑝,∞ ≤ 𝛼 = 𝑜 (1). We similarly define Γ ∈
R 𝐽 ×𝐽

for Φ𝑇 , with the same bound on ∥Γ1/2∥𝑜𝑝,∞. Intuitively, this

operator norm upper bound translates to an upper bound on the

sum of absolute values of inner products between dictionary atoms.

Thus, this constitutes an approximate orthogonality assumption.

Such assumptions are common in analyses of orthogonal matching

pursuit, under the name of mutual incoherence between dictionary

atoms. See, e.g., [3]. We will also assume that the columns of Ψ and

the rows of Φ𝑇 are normalized in 𝐿2.

Statement of the accuracy guarantee: We finally state our main

theoretical result. We denote by 𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡 the output of the top- ˆ𝑘

atom selection algorithm with input data matrix 𝑅 and dictionaries

Ψ,Φ𝑇 . Specifically, by this wemean that 𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡 is the result of first

choosing the
ˆ𝑘 atoms (outer products of left and right dictionary

elements) with the highest alignment scores with 𝑅, then approxi-

mating 𝑅 via a linear combination of the chosen atoms obtained by

solving (4).

Theorem 4.1 (Accuracy guarantee for top-𝑘 atom selection

denoising). Let 𝑁,𝑀,Ψ,Φ𝑇 , 𝑅,𝑄, 𝑅, 𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡 be as outlined above.
We then have that if ˆ𝑘 ≥ 𝑠 and ˆ𝑘 = Θ(1), where 𝑠 is the sparsity pa-
rameter of the the signal matrix 𝑅, then ∥𝑅 −𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡 ∥𝐹 = 𝑜 (∥𝑅∥𝐹 ) .

In other words, the relative error in approximating 𝑅 by 𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡
is 𝑜 (1) as 𝑁 → ∞. That is, when the data consists of a Gaussian-

noise perturbation of a low-rank signal matrix that is a sparse

linear combination of dictionary atoms, and when the greedy atom

selection algorithm chooses sufficiently many atoms, the signal

matrix is recovered to within a vanishingly small relative error. We

prove Theorem 4.1 in Appendix A. We also extend the result to

cover the case where
ˆ𝑘 < 𝑠 but the algorithm is run for sufficiently

many iterations.

Our analysis provides a theoretical justification for the top k atom

selection strategy as a recovery guarantee for a noise-perturbed

low-rank and sparse signal matrix, which forms a subroutine of

our method. We also demonstrate empirically that this recovery

guarantee holds in Sec. 5.5. The scalability of our technique comes

from the fact that we are working with a few atoms as opposed to

the complete dictionary and the theoretical analysis shows that this

running time reduction affects minimally the model quality since

the“true” atoms necessary for encoding the noise-free version of

the data are retained.

5 Experimental evaluation
Our experimental design focuses on the running time and the rep-

resentation quality of competing methods with both variants of

LRMDS on synthetic and real-world datasets listed in Tbl. 1. We

also empirically confirm our theoretical results. We compare our

approaches to state-of-the-art baselines for 2D sparse coding. We

measure running time in seconds for execution on a dedicated In-

tel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz and 251 GB memory

server using MATLAB’s R2019a 64-bit version. The representation

quality is quantified as the root mean squared error (RMSE) be-

tween the data and the learned representation. It is important to

note, that beyond representation quality, the low-rank sparse 2D

coding model offers advantages in a number of downstream tasks

as reported by baselines employing this or similar models [8, 22].
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We focus our evaluation of scalability and representation qual-

ity as speed-up via dictionary sub-selection is the main contribu-

tion of our work. An implementation of LRMDS is available at

https://www.cs.albany.edu/~petko/lab/code.html.

5.1 Datasets
Synthetic data generation. Our synthetic data is generated based
on the low-rank encoding model Ψ𝑠𝑌𝑊Φ𝑇𝑠 + 𝜖 , where Ψ𝑠 and Φ𝑠
are small (ground truth) randomly selected subsets of the overall

dictionaries and the corresponding coding coefficients for those

atoms in 𝑌 and𝑊 are also randomly sampled with 𝜖-mean random

noise added to the input. Real-world datasets.We employ real-

world datasets with temporal and spatial dimensions to evaluate

competing techniques employing both time and graph dictionaries.

The datasets span a variety of domains: data from content exchange

within Twitch [25], web traffic dataWiki [1], spatio-temporal disease

spread over time in the Covid [13] dataset, and sensor network

data from road traffic Road [2]. We provide further details on data

generation and real-world evaluation datasets in the supplement.

5.2 Experimental setup.
Baselines.We compare the versions of LRMDS to the two avail-

able methods for multi-dictionary coding: (TGSD [22] and 2D-
OMP [8]). These methods have already been discussed in detail in

Sec. 3. As a brief summary, TGSD solves the problem of low-rank

encoding within an 𝐿1 sparsity regularized optimization framework.

2D-OMP selects dictionary atom pairs in a greedy manner and

estimates the corresponding coding coefficients one at a time. It

produces a solution which is not guaranteed to be low-rank.

Since a key advantage of our method is its sub-selection of large

dictionaries, we also seek to understand if extending 1D dictionary

screening to the 2D setting results in a scalable 2D approach. To this

end, we generalize a 1D dictionary screening approach [32] to work

with multiple dictionaries and combine it with TGSD to facilitate

a more thorough comparison. The resulting method SC-TGSD
screens (removes) the worst dictionary atoms from a dictionary by

calculating alignment scores between atoms and associated data.

To perform the subsequent coding, we employ TGSD with only the

sub-selected dictionaries. Intuitively this baseline can be thought

as a 2-step combination of screening and TGSD coding. Details of

the screening process are available in the extended version [16].

Metrics.We measure the reconstruction error of the learned repre-

sentation using root mean squared error (RMSE=

√︂∑
𝑖,𝑗 (𝑋𝑖,𝑗−𝑋 ′

𝑖,𝑗
)2

|𝑋 | ,

where 𝑋 is the original signal, 𝑋 ′
is the reconstruction and |𝑋 | de-

notes the number of elements in 𝑋 ) of the learned representation’s

departure from the input data. We measure the running time in

seconds for all competing methods.

Experimental design. The goal of our experiments is to demon-

strate the utility of LRMDS in both synthetic and real world datasets.

In synthetic data tests, we varying different properties of the data

generation process, such as SNR and the dictionary size and type.

We seek to quantify the speed up and quality improvement that

LRMDS enables compared to baselines. Parameter settings can be

found in the supplement.

5.3 Evaluation on synthetic data.
In our synthetic data evaluationwe compare the effects of dictionary

size and type on the performance of LRMDS and its competitors.

Using the ground truth number of atoms as a target, we compare

the reconstruction error (RMSE) and running time (secs) for all

techniques. We also characterize the effect of varying noise and

show these results in the supplement.

Varying dictionary composition and size. As all competitors

perform a type of dictionary sub-selection (implicitly in the case of

TGSD due to its regularization), a natural question to ask is: How
does the composition and size of the input dictionaries affect the ability
of a method to quickly and accurately represent a data matrix? To
answer this question we first utilize a set of composite dictionaries

to generate the data input. In this case the left composite dictionary

is a stack of a GFT (G) and a graph Wavelet (W) dictionaries and

the right composite dictionary is a stack of Ramanujan (R) and

Spline (S) temporal dictionaries. We use 50 randomly chosen atoms

from each of the four dictionaries (200 in total) to generate the

synthetic input data. We then prepare 3 test settings by varying the

dictionaries compositions available to the competitors. The model

input dictionaries in these 3 settings are as follows (1) Ψ = [𝐺],Φ =

[𝑅] denoted G+R; (2) Ψ = [𝐺,𝑊 ],Φ = [𝑅] denoted GW+R; and (3)

Ψ = [𝐺,𝑊 ],Φ = [𝑅, 𝑆] denoted GW+RS.

We first compare the RMSE and running time for all techniques

when using a fixed number of dictionary atoms and report results

of this experiment in Fig. 2(a), 2(b). The x-axis lists the consecutive

dictionary compositions and the total number of atoms is listed on

top of the figure. We report RMSE and run time of each method

when employing 200 atoms, which is also the number of ground

truth (GT) atoms. Note that for SC-TGSD and TGSD, we pick the

point for which the employed number of atoms is closest to the GT

since they have no parameters to directly control the exact number

of atoms in their methods. As larger dictionaries are being used,

the RMSE of all methods improves, however LRMDS achieves the

best reconstruction quality at all points. This is due to the higher

quality atom selection compared to baselines. LRMDS variants are

also the fastest to select these atoms as seen in Fig. 2(b).

In Figs. 2(c), 2(d), we further break down the performance of

each method when utilizing ground truth composite dictionaries

GW+RS. Explicitly, we track the RMSE and run time as a function

of the percentage of selected atoms. We additionally show that the

representation quality improves as a function of the total run time,

and similar results for other choices of dictionary combinations

settings (G+R, GW+R) in the extended version [16].

Both variants of LRMDS obtain the most accurate representa-

tions among competitors while simultaneously taking the least

amount of time. The next best approach, 2D-OMP initially selects

and updates its coefficients quickly, closely trailing LRMDS when

the representation quality for both is poor. However, with further

iterations the representation quality gains by 2D-OMP slow down.

This is due to 2D-OMP’s restriction to only select one coefficient

corresponding to an atom pair per iteration and the need to re-

estimate the coefficients for all previously selected pairs. This is

highly inefficient when many pairs of a small subset of atoms in

the optimal sparse coding are non zero. In such cases, 2D-OMP still
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Figure 2: Comparison of competing techniques on synthetic data. (a), (b): RMSE and running time for varying dictionaries available to each method (listed under
the x axis). The total number of (left and right dictionary) atoms is specified at the top of each figure. We stack increasing sets of dictionaries on the left and right,
while the ground truth atoms are selected from the full set GW+RS. (c): RMSE as a function of the number of selected atoms when multiple dictionaries are provided.
(d): Run time as a function of the number of selected atoms. GW+RS stands for GFT and Graph Haar wavelets stacked together for the graph dimension and RS
stands for Ramanujan and Spline dictionaries stacked for the temporal dimension (details of the dictionary definitions are available in the extended version [16]).

adds pairs one at a time, while our approach allows for coding with

all combinations of already selected left and right atoms.

5.4 Evaluation on real-word datasets.
We next evaluate all techniques on the real-world datasets and re-

port the RMSE and running time at set percentages of total available

atoms selected. Results from all datasets for a fixed percentages of

atoms are listed in Tbl. 1. This high-level comparison demonstrates

that given a fixed number of target atoms, LRMDS produces the

most accurate representations, while LRMDS-f is the most scalable

at the cost of slight deteriorating in RMSE compared to LRMDS.

Note that LRMDS-f is still the most accurate among baselines from

the literature.

More detailed results on real-world datasets are presented in

Fig. 3. We employ a graph Fourier dictionary (GFT) for Ψ and Ra-

manujan periodic dictionary for Φ for all datasets. The sizes of

these dictionaries are listed in the caption of Fig. 3. The detailed

analysis also demonstrates that variants of LRMDS dominate based

on both accuracy and running time across a wide variety of settings

and datasets. We show the representation error as a function of

the percentage of selected atoms in Figs 3(a)-3(d) and the run time

necessary to obtain said percentages in Figs. 3(e)-3(h). Together

these plots show both the quality of representation and the time

necessary to obtain it for a varying percentage of selected atoms

(additional figures in the extended version [16] explicitly show this

relationship). For each dataset, 2D-OMP selects highly represen-

tative atoms at first due to its greedy strategy, however, its trend

is quickly overtaken by those of our methods as more atoms are

allowed for selection. LRMDS matches or outperforms LRMDS-f in

terms of representation quality given the same number (percentage)

of atoms, however, LRMDS-f selects new atoms faster demonstrat-

ing the trade-off between running time and quality between the

two. Both of our methods are as fast or faster than all baselines at

selecting atoms with the exception of the 2D-OMP in its first several

iterations. The only method matching the speed of LRMDS is TGSD-

SC (LRMDS-f is always faster). Although fast, TGSD-CS exhibits

poor representation quality rendering it not useful in settings in

which the representation quality is critical. For the Twitch datasets

when a large percentage of atoms are selected, TGSD is able to

obtain similar running time to LRMDS but at a far worse represen-

tation quality. TGSD is not well suited for dictionary sub-selection

as sparsity is only implicitly encouraged through 𝐿1 regularization

over all possible coefficients and it has no direct control on which

atoms are used. Thus, even a single nonzero coefficient correspond-

ing to an otherwise poorly selected atom may cause the atom to be

“selected” by TGSD.

An interesting finding is that there is an abrupt drop in RMSE

in Wiki and Covid data for both variants of LRMDS. This indicates

that the learned representation is initially missing some crucial

atoms that LRMDS is able to eventually detect and incorporate

into the selected dictionaries. Competitors omit these crucial atoms

in their representations leading to poorer RMSE. This drop also

corresponds to a setting where the difference in quality between

LRMDS and competitors is most striking. For example, in Fig. 3(d)

LRMDS obtains a roughly two orders of magnitude reduction in

RMSE when 50% of the available atoms are selected.

5.5 Theoretical guarantees validation (Thm 4.1)
Here, we study the performance of the LRMDS for denoising which

serves as empirical validation of Thm. 4.1. Specifically, we demon-

strate that LRMDS is able to recover the underlying “clean” signal

𝑅 from a noisy signal 𝑅 = 𝑅 +𝑄 (Fig.4(a)). The experimental setup

is as follows: 𝑁,𝑀, 𝐼, 𝐽 are set to 500, 10, 1000, 20, respectively. The

rank 𝑟 of the signal is set to 3. For each dictionary, the first half of its

atoms are almost orthogonal (generated as an orthogonal basis with

Gaussian noise added to the atoms at SNR=20), and the atoms in

the second half of the dictionary are generated as GaussianN(0, 1)
random. The sparsity parameter 𝑠 is set to 10% of the total num-

ber of the almost-orthogonal atoms. The GT atoms for the signal

matrix 𝑅 are chosen uniformly at random from the first half of the

atoms (almost-orthogonal), and the atom coefficients are selected

randomly (N(0, 1)). This constitutes the clean signal matrix 𝑅. We

also create a pure independent Gaussian noise matrix 𝑄 by first

calculating the standard deviation 𝜎 of 𝑅, and set 𝑄 = N(0, 𝜎
20
).

Finally, we set 𝑅 = 𝑅 +𝑄 .
To demonstrate LRMDS’s ability to denoise input data 𝑅, we run

LRMDS on both 𝑅 and 𝑅 producing two sets of coefficients (𝑌𝑊 )𝑅
and (𝑌𝑊 )𝑅+𝑄 . We then track the RMSE of the reconstruction for

both variants against the clean data 𝑅 (i.e., RMSE(𝑅 − Ψ(𝑌𝑊 )𝑅Φ𝑇 )
and RMSE(𝑅 − Ψ(𝑌𝑊 )𝑅+𝑄Φ𝑇 )). Results from this analysis are pre-

sented in Fig. 4(a). The curves are nearly identical regardless of

the input, demonstrating that LRMDS successfully extracts the un-

derlying signal while ignoring the noise. To further investigate

this property we compare the three different sets of dictionary

coefficients corresponding to 𝑅, 𝑅, and 𝑄 : (𝑌𝑊 )𝑅 , (𝑌𝑊 )𝑅+𝑄 (as

above) and 𝑍𝑄 . 𝑍𝑄 contains coefficients computed via 2D-OMP
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Figure 3: Comparison between competitors of representation quality as a function of the percentage of selected atoms Figs.(a)-(d), and runtime as a function of
the percentage of selected atoms Figs.(e)-(h). All methods use a GFT for Ψ and a Ramanujan periodic dictionary for Φ. The dimensions of the utilized dictionaries
are as follows: Twitch: Ψ ∈ R78389×78389, Φ ∈ R512×2230; Wiki: Ψ ∈ R999×999,Φ ∈ R792×6000; Road: Ψ ∈ R1923×1923,Φ ∈ R720×3044; Covid: Ψ ∈ R3047×3047,Φ ∈ R678×6000.
Note: 2D-OMP’s trace on the Twitch dataset is truncated early as it does not scale (fails to complete in 72 hours) when selecting more than 13% of the atoms.
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Figure 4: (a)-(b): Empirical demonstration of the theoretical guarantee on LRMDS’s ability to denoise a signal. (a): “clean: LRMDS” operates on the clean matrix 𝑅

whereas “clean + noise” operates on the noisy signal 𝑅̂ = 𝑅 +𝑄 . The RMSE for both methods is measured with respect to the clean data 𝑅. (b) The absolute difference
between the learned coefficient matrices for the clean data (𝑌𝑊 )𝑅 , noisy data (𝑌𝑊 )𝑅+𝑄 , and pure noise 𝑍𝑄 . (c)(d): Ablation study demonstrating the importance of
joint selection of atoms from both dictionaries. We compare LRMDS to variants in which atoms are selected from the left and right dictionaries independently
(LRMDS-1D) or randomly (RAND). We measure RMSE (c) and runtime (d) as a function of the percentage of selected atoms.

of the noise matrix. We utilize this instead of LRMDS as due to

its low rank constraint it is not capable of well representing an

arbitrary noise matrix (as demonstrated above). All methods are

run until they converge for their respective inputs. We then calcu-

late the absolute difference in the learned coefficients. Explicitly,

| (𝑌𝑊 )𝑅 − (𝑌𝑊 )𝑅+𝑄 | and | (𝑌𝑊 )𝑅 − (𝑍 )𝑄 | and plot the histograms

of the nonzero difference values in Fig. 4(b). While the noise𝑍𝑄 and

clean data (𝑌𝑊 )𝑅 differ significantly (3683 non-zero differences

between the two), the fits of the noisy (𝑌𝑊 )𝑅+𝑄 and clean (𝑌𝑊 )𝑅
data align much better (1236 non-zero differences). The histograms

of these differences also indicate that the addition of noise does not

significantly impact the coefficients learned by LRMDS.

5.6 Ablation study: Is joint selection critical?
LRMDS uses the projection of the residual onto left-right atom pairs

(i.e., 𝑃 = Ψ̂𝑇𝑅Φ̂) to select atoms. This opens a natural question on

the necessity of this technique: Can we select atoms from each of
the dictionaries independently employing 1D approaches directly on

the left and right dictionary? In other words, is joint selection based
on the projection we employ critical? To answer these questions, we

implement two variants of LRMDS: i) LRMDS-1D selects atoms

from one dictionary at a time via 1D projection, while ii) RAND

chooses 2D atoms randomly.We then evaluate their performance on

a version of our synthetic dataset with an equal number of ground

truth atoms in Ψ and Φ. More details on the implementation and

setting for this experiment are available in the extended version

[16].

In Fig. 4(c) we plot RMSE of the three variants of our method as

a function of the number of selected atoms. LRMDS approaches its

optimal fit (smallest RMSE) when using the ground truth number of

atoms. LRMDS-1D requires more atoms to achieve the same level

of RMSE, demonstrating that the joint atom selection is essential

for identifying good representative atoms from both dictionaries.

The RAND method (random 2D atom selection) is unlikely to select

atoms aligned with the data leading to its poor performance. The

running time of LRMDS and LRMDS-1D are similar with the latter

having a slight advantage due to its cheaper selection mechanism
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and residual re-calculation (Fig. 4(d)). For LRMDS, the projection

requires multiplication of complexity 𝑂 (𝑚𝑖𝑛(𝐼𝑁𝑀 + 𝐼𝑀 𝐽 , 𝐼𝑁 𝐽 +
𝑁𝑀𝐽 ), whereas the projection in LRMDS-1D has a complexity of

𝑂 (𝐼𝑁𝑀+𝑁𝑀𝐽 ). Note that𝑀 < 𝐽 in this experiment, explaining the

runtime advantage of LRMDS-1D. RAND runs much faster at the

beginning as there is no projection to select atoms, however, when

more atoms are added this advantage shrinks dramatically. This is

because the computational complexity quickly becomes dominated

by the coefficient updates which take similar time regardless of

which atoms are selected.

Another significant weakness of LRMDS-1D and RAND not

highlighted by this experiment is their inability to adaptively select

different number of atoms from the right and left dictionaries. The

user must specify how many atoms should be selected from each

dictionary manually. In contrast, LRMDS can dynamically select

the best atoms from either dictionary in a data-driven manner.

Thus, this experiment represents an ideal scenario where a user has

correctly identified the proportion of atoms need from Ψ and Φ.

6 Conclusion
In this paper we introduced LRMDS, a scalable and accurate method

for sparse multi-dictionary coding of 2D datasets. Our approach

sub-selects dictionary atoms and employs convex optimization to

encode the data using the selected atoms. We provided a theoretical

guarantee for the quality of the atom sub-selection for the task of

denoising the data. We also demonstrated the quality and scalability

of LRMDS on several real-world datasets and by employingmultiple

analytical dictionaries. It outperformed state-of-the-art 2D sparse

coding baselines by up to 1 order of magnitude in terms of running

time and up to 2 orders of magnitude in representation quality on

some of the real-world datasets. As a future direction, we plan to

extend our dictionary selection approach to multi-way data (i.e.,

tensors) making the core idea applicable to a wider range of problem

settings.
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Supplemental Material
We next add supplemental content to aid reproducibility and the

understanding of our theoretical analysis including proofs of the

theoretical results, method derivation, dataset preparation and pa-

rameter tuning.

A Proofs of Theorem 4.1
Here we give details for the proof of Theorem 4.1. Intuitively, the

task boils down to showing that the coefficients in any dictionary

expansion of the noise matrix𝑄 are uniformly 𝑜 (1), which allows us
to recover the dictionary atoms that contribute to the signal matrix

𝑅. As a reminder 𝑄 ∈ R𝑁×𝑀
with independent and identically

distributed standard Gaussian entries.

We start with several lemmas. In essence, the first lemma al-

lows us to focus on upper bounding the inner product of the

columns of 𝑄 with those of Ψ in order to upper bound the co-

efficients in any dictionary expansion of 𝑄 . Before stating it, we

note that R𝑁×𝑀
is an inner product space with inner product

⟨𝐴, 𝐵⟩𝑁,𝑀 :=
∑𝑁
𝑖=1

∑𝑀
𝑗=1𝐴𝑖, 𝑗𝐵𝑖, 𝑗 . It is a matter of simple algebra to

show the following formula for ⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 :

⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 =

𝑀∑︁
𝑘=1

𝜙 𝑗,𝑘 · ⟨𝑄 ·,𝑘 ,𝜓𝑖 ⟩𝑁,𝑀 . (9)

This implies the following upper bound, since the rows of Φ𝑇 are

normalized in 𝐿2:

|⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 | ≤
√
𝑀 · max

𝑘∈[𝑀 ]
|⟨𝑄 ·,𝑘 ,𝜓𝑖 ⟩𝑁,𝑀 |, (10)

using the fact that for any vector 𝑥 ∈ R𝑑
, ∥𝑥 ∥1 ≤

√
𝑑 ∥𝑥 ∥2. In other

words, to upper bound the inner product of 𝑄 with any dictionary

element, it suffices to upper bound the inner product of any column

of 𝑄 with any element of the left-hand dictionary.

Lemma A.1 (Comparison of inner products with dictio-

nary coefficients). Under the boundedness assumptions on dictio-
nary atoms, if an 𝑂 (1)-norm vector 𝑄 ∈ R𝑁×𝑀 has an expansion
𝑄 =

∑𝐼 ,𝐽
𝑖=1, 𝑗=1

𝑐𝑖, 𝑗 · 𝜓𝑖𝜙𝑇𝑗 for 𝑐𝑖, 𝑗 ∈ R, then we may upper bound
max𝑖∈[𝐼 ], 𝑗 ∈[𝐽 ] |𝑐𝑖, 𝑗 | by upper bounding the inner product
max𝑖, 𝑗 ⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 . Specifically, for all (𝑖, 𝑗) ∈ [𝐼 ] × [𝐽 ],

|⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 − 𝑐𝑖, 𝑗 | = 𝑂 (𝑀𝛼2) = 𝑜 (1) . (11)

Proof. We note that by linearity of the inner product,

⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 = 𝑐𝑖, 𝑗 +
∑︁

(𝑘,ℓ)≠(𝑖, 𝑗)
𝑐𝑘,ℓ ⟨𝜓𝑘𝜙𝑇ℓ ,𝜓𝑖𝜙

𝑇
𝑗 ⟩𝑁,𝑀 . (12)

The coefficients 𝑐𝑘,ℓ are uniformly𝑂 (1) by virtue of𝑄 having norm

𝑂 (1), so this simplifies to

⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 − 𝑐𝑖, 𝑗 = 𝑂 (1) ·
∑︁

(𝑘,ℓ)≠(𝑖, 𝑗)
⟨𝜓𝑘𝜙𝑇ℓ ,𝜓𝑖𝜙

𝑇
𝑗 ⟩𝑁,𝑀 (13)

= 𝑂 (1)
∑︁

(𝑘,ℓ)≠(𝑖, 𝑗)
⟨𝜓𝑘 ,𝜓𝑖 ⟩𝑁,𝑀 ⟨𝜙𝑇ℓ , 𝜙

𝑇
𝑗 ⟩𝑁,𝑀

(14)

≤ 𝑂 (1)
∑︁

(𝑘,ℓ)≠(𝑖, 𝑗)
⟨𝜓𝑘 ,𝜓𝑖 ⟩𝑁,𝑀 (15)

≤ 𝑂 (𝑀𝛼2) . (16)

□

Lemma A.1 implies that we may upper bound the coefficients

of an expansion of a matrix 𝑄 using the inner products of 𝑄 with

dictionary elements. The upper bound (10) allows us to further up-

per bound ⟨𝑄,𝜓𝑖𝜙𝑇𝑗 ⟩𝑁,𝑀 , reducing our problem to upper bounding

the entries of a multivariate Gaussian random variable. Specif-

ically, if we denote by 𝐾 ∈ R𝑀×𝐼
the matrix 𝐾 = 𝑄𝑇Ψ, then

𝐾𝑖, 𝑗 = ⟨𝑄 ·,𝑖 ,𝜓 𝑗 ⟩𝑁,𝑀 . We then have that

max

𝑖, 𝑗
|𝑐𝑖, 𝑗 | ≤

√
𝑀 max

𝑖, 𝑗
|𝐾𝑖, 𝑗 | + 𝑜 (1) . (17)

The next lemma gives us a tool to upper bound max𝑖, 𝑗 |𝐾𝑖, 𝑗 | by
using the fact that the covariance of 𝐾𝑖, 𝑗 and 𝐾𝑖,ℓ , for ℓ ≠ 𝑗 , is equal

to ⟨𝜓 𝑗 ,𝜓ℓ ⟩𝑁,𝑀/
√
𝑁𝑀 = Σ 𝑗,ℓ/

√
𝑁𝑀 . In other words, the vector 𝐾̂

obtained by appending the columns of 𝐾𝑇 into a column vector of

dimension𝑀 · 𝐼 has distribution N(0, Σ̂), where Σ̂ ∈ R𝑀𝐼×𝑀𝐼
and

satisfies ∥Σ̂1/2∥𝑜𝑝,∞ = 1√
𝑁

· ∥Σ1/2∥𝑜𝑝,∞.

Lemma A.2 (Upper bound on the maximum of correlated

Gaussians). Let 𝑋 ∼ N(0, Σ) be a Gaussian vector in R𝑛 with
covariance matrix Σ ∈ R𝑛×𝑛 . Then we have that

E[∥𝑋 ∥∞] = 𝑂 (∥Σ1/2∥𝑜𝑝,∞ ·
√︁
log𝑛) . (18)

Proof. This is a consequence of a well-known upper bound on

the maximum of independent and identically distributed standard

normal random variables, along with the fact that, for an isotropic,

mean 0 Gaussian vector 𝑍 , Σ1/2𝑍 has covariance matrix Σ. □

Lemma A.3 (Upper bound on the maximum inner product

between a noise vector and a dictionary atom). Consider the
matrix 𝐾 = 𝑄𝑇 · Ψ ∈ R𝑀×𝐼 whose (𝑖, 𝑗)th entry is the inner product
of the 𝑖th column of 𝑄 with the 𝑗 th dictionary element of Ψ. We have
that with high probability,

max

𝑖, 𝑗
|𝐾𝑖, 𝑗 | = 𝑂 (

√︁
log(𝑀𝐼 )/

√
𝑁 ) . (19)

Proof. We start with Lemma A.2 applied to 𝐾̂ . This yields

E[∥𝐾̂ ∥∞] = 𝑂 (∥Σ̂1/2∥𝑜𝑝,∞ ·
√︁
log(𝑀𝐼 )
√
𝑁𝑀

) (20)

= 𝑂 (
√︁
log(𝑀𝐼 )
√
𝑁

· ∥Σ1/2∥𝑜𝑝,∞). (21)

The proof is finished by applying Markov’s inequality. □

A corollary of Lemma A.3 is that the maximum inner product

between 𝑄 and the dictionary elements is 𝑜 (1) with high proba-

bility. This implies, by Lemma A.1, that the coefficients of 𝑄 in

any of its dictionary expansions are uniformly 𝑜 (1). Because of the
sparsity assumption on the coefficients of 𝑅, the data matrix 𝑅 has

𝑠 coefficients that are Θ(1), while the rest are 𝑜 (1). Thus, provided
that the dictionary atom selection procedure selects

ˆ𝑘 ≥ 𝑠 atoms

with
ˆ𝑘 = Θ(1), those atoms for which 𝑅 has nonzero coefficients

will be among those selected. As a result, the reconstructed matrix

𝑅𝑟𝑒𝑐𝑜𝑛𝑠𝑡 differs from the signal matrix 𝑅 by only 𝑜 (∥𝑅∥𝐹 ). This
completes the proof of Theorem 4.1.

We note that only a minor tweak of the above proof is needed to

extend to the case where dictionary selection is iteratively applied
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for a fixed number 𝑡 ≥ 𝑠/ ˆ𝑘 of steps, each time to the residual of

the previous step. Specifically, in order to formulate this, we need

more notation. Suppose, as before, that 𝑅 is a linear combination of

𝑠 atoms, each with coefficient uniformly Θ(1). Suppose that ˆ𝑘 < 𝑠 .

Let 𝑅≤ ˆ𝑘
denote the truncation of 𝑅 to its top

ˆ𝑘 atoms (i.e., those with

the largest coefficients in absolute value), and let 𝑅
> ˆ𝑘

:= 𝑅 − 𝑅≤ ˆ𝑘
.

That is, 𝑅
> ˆ𝑘

is the residual of the signal matrix after subtracting

𝑅≤ ˆ𝑘
. Finally, we define 𝑅

𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘
to be the output of the algorithm

after a single iteration. The proof of our theorem so far showed

that 𝑅
𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘

− 𝑅≤ ˆ𝑘
= 𝑜 (𝑅≤ ˆ𝑘

). This implies the following:

𝑅 − 𝑅
𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘

= (𝑄 + 𝑅≤ ˆ𝑘
+ 𝑅

> ˆ𝑘
) − 𝑅

𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘
(22)

= (𝑅
> ˆ𝑘

+𝑄) + (𝑅≤ ˆ𝑘
− 𝑅

𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘
) (23)

= (𝑅
> ˆ𝑘

+𝑄) + 𝑜 (𝑅≤ ˆ𝑘
) . (24)

We note that 𝑅 − 𝑅
𝑟𝑒𝑐𝑜𝑛𝑠𝑡,≤ ˆ𝑘

is the residual after applying a single

iteration of the top-
ˆ𝑘 atom selection algorithm. After at least 𝑡 − 1

applications of the algorithm to the residual matrix of the previous

step, the final residual matrix consists of fewer than
ˆ𝑘 nonzero

atoms, plus Gaussian noise. This satisfies the hypotheses of our

theorem statement. Since the sparsity parameter 𝑠 is assumed to be

Θ(1), the total accumulated error over all steps of the algorithm is

𝑜 (𝑅≤ ˆ𝑘
), which is 𝑜 (𝑅) in the Frobenius norm. Additional lemma-

supporting numerical experiments can be found in the extended

version [16].

B Reproducibility
B.1 LRMDS Solution Details
LRMDS has two key steps: atom selection and encoding. To perform

atom selection we quantify the alignment of each 2D atom with

the current residual via projection. We can compute 𝑅’s projection

as follows:

𝑃𝑖, 𝑗 =
⟨𝑅, 𝐵𝑖, 𝑗 ⟩
| |𝐵𝑖, 𝑗 | |𝐹

, (25)

where ⟨𝑅, 𝐵𝑖, 𝑗 ⟩ ≜ 𝜓𝑇
𝑖
𝑅𝜙 𝑗 is the alignment, and | |𝐵𝑖, 𝑗 | |𝐹 is a nor-

malization based on the Frobenius norm of the 2D atom product.

Intuitively atoms of good alignment will be advantageous for encod-

ing the data. Instead of utilizing Eq. 25 in the algorithm for LRMDS

we perform the functionally equivalent projection via 𝑃 = Ψ̂𝑇𝑅Φ̂
employing the normalized dictionaries Ψ̂ and Φ̂. Due to the normal-

ization, the denominator from Eq. 25 can be omitted since:

| |𝐵𝑖, 𝑗 | |𝐹 = | | ˆ𝜓𝑖 | |2 · | | ˆ𝜙 𝑗 | |2 = 1,∀𝑖, 𝑗 .
This in turn allows to us utilize simply matrix multiplication Ψ̂𝑇𝑅Φ̂
to obtain alignment scores for atoms.

We then select the top 𝑘 total atoms from a combination of left or

right dictionary atoms with respect to this alignment. To illustrate

the methodology, suppose 𝑘 = 3, and the top alignments correspond

to 𝑃2,3, 𝑃3,3 in descending order. We would then add the atoms𝜓2,

𝜙3,𝜓3 and in that order to our sub-dictionaries we call Ψ𝑠 ∈ R𝑁×𝐼𝑠

and Φ𝑠 ∈ R𝑀×𝐽𝑠
, where 𝐼𝑠 , 𝐽𝑠 are the number of selected atoms

from the left and the right dictionaries. It is important to note that

we only add atoms if they don’t already exists in our selected sub-

dictionary. Importantly this may result in uneven selection from

the dictionaries (i.e 𝐼𝑠 ≠ 𝐽𝑠 ). This is desirable as there may be signif-

icantly more complexity in one of 𝑋 ’s modes, necessitating more

atoms from the corresponding dictionary for good representation.

Intuitively, we let the data guide the selection on both sides. Ties

between atoms are resolved arbitrarily.

Once we have sub-selected the dictionary via these chosen atoms

we need to solve for the encoding coefficients in𝑌 and𝑊 by solving

the following:

argmin

𝑌,𝑊

| |𝑅 − Ψ𝑠𝑌𝑊Φ𝑇𝑠 | |2𝐹 , (26)

To achieve this we iteratively alternate through solving for 𝑌

and𝑊 while the other is fixed. The updates in each case can be de-

rived by taking the gradients with respect to the non-fixed variable,

setting them to 0, and solving. This results in the following update

rules:

(1) Given𝑊 , the update rule for 𝑌 is as follows:

Ψ†
𝑠 Ψ𝑠𝑌𝑊Φ𝑇𝑠 (𝑊Φ𝑇𝑠 )† = Ψ†

𝑠 𝑅(𝑊Φ𝑇𝑠 )†

𝑌 = Ψ†
𝑠 𝑅(𝑊Φ𝑇𝑠 )†,

(27)

where † denotes the pseudo-inverse of the corresponding matrix.

(2) Given 𝑌 , the update rule for𝑊 is:

(Ψ𝑠𝑌 )†Ψ𝑠𝑌𝑊Φ𝑇𝑠 (Φ
†
𝑠 )𝑇 = (Ψ𝑠𝑌 )†𝑅(Φ†

𝑠 )𝑇

𝑊 = (Ψ𝑠𝑌 )†𝑅(Φ†
𝑠 )𝑇

(28)

Note that at every iteration, the update rules for the two variables

require four pseudo-inversions solved via singular value decompo-

sition with per-iteration complexity of 𝑂 (𝑚𝑖𝑛(𝑚𝑛2,𝑚2𝑛)), where
𝑚,𝑛 are the size of the target matrix. The dictionary inversions

Ψ†
𝑠 and Φ†

𝑠 can be computed only once per decomposition as they

are fixed with respect to 𝑌 and𝑊 . Thus, the overall complexity of

these steps assuming 𝑁 > 𝐼𝑠 , and 𝑀 > 𝐽𝑠 is 𝑂 (𝑁𝐼2𝑠 ) for Ψ
†
𝑠 and

𝑂 (𝑀𝐽 2𝑠 ) for Φ
†
𝑠 . We need to compute (Ψ𝑠𝑌 )† and (Φ𝑠𝑊 )† for every

iteration, thus assuming 𝑞 iterations to convergence the total com-

plexity of the coding step is𝑂 (𝑞(𝑁 +𝑀)𝑟2 +𝑀𝐽 2𝑠 +𝑁𝐼2𝑠 ) assuming

the selected decomposition rank is lower than the corresponding

data dimensions, i.e., 𝑁 > 𝑟 and𝑀 > 𝑟 .

We can further optimize the run time based on the assumption

that the inversions of both products (𝑊Φ𝑇𝑠 )† and (Ψ𝑠𝑌 )† involve
matrices of full column (left matrix in the product) and row (right

matrix) rank. Then we can separate the inversions and open more

opportunities for savings by using the following matrix product

inversion rule due to [11]:

(𝐴𝐵)† = 𝐵†𝐴†
(29)

Updates from Eq. 27 and Eq. 28 can then be rewritten as:

𝑌 = Ψ†
𝑠 𝑋 (Φ†

𝑠 )𝑇𝑊 †
(30)

𝑊 = 𝑌 †Ψ†
𝑠 𝑋 (Φ†

𝑠 )𝑇 , (31)

where Ψ†
𝑠 𝑋 (Φ†)𝑇 is a common term that can be pre-computed

outside of the iterative updates. This enables us to only need to

compute the pseudo-inversion of 𝑌 and𝑊 within the inner-loop.

𝑌 †
and𝑊 †

have complexity 𝑂 (𝑟2𝐼𝑠 ) and 𝑂 (𝑟2 𝐽𝑠 ) respectively. Re-
ducing the overall complexity is to 𝑂 (𝑞(𝐼𝑠 + 𝐽𝑠 )𝑟2 + 𝑀𝐽 2𝑠 + 𝑁𝐼2𝑠 )
which is linear with respect to the size of input matrix. We name

this faster LRMDS variation method LRMDS-f. Note that when
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Method Parameters Range Synthetic Convergence Ablation Twitch Road Wiki Covid

TGSD 𝜆1, 𝜆2 [10−3, 10−2, · · · , 103 ] Vary Vary Vary Vary Vary Vary Vary

2D-OMP 𝑇0 3 − 100% #atoms 3.5% 100% NA 13% 40% 50% 50%

SC-TGSD

𝜆
0

𝜆
0𝑚𝑎𝑥

, 𝜆1, 𝜆2 (0.1 : 0.01 : 0.9) ; [10−3, 10−2, · · · , 103 ] Vary NA NA Vary Vary Vary Vary

LRMDS 𝑘 [5, 6, 10, 100, 500] 5 10 6 500 100 100 100

LRMDS-f 𝑘 [5, 6, 10, 100, 500] 5 10 6 500 100 100 100

Table 2: Parameters for competing methods where 𝜆1, 𝜆2 are sparsity parameters for TGSD;𝑇0 is the targeting number of coefficients for 2D-OMP; 𝜆
0

𝜆
0𝑚𝑎𝑥

is the
regularizer for SC; 𝑘 is the number of atoms selected per iteration for LRMDS and LRMDS-f. Some methods are not included in the convergence and ablation
experiments and the corresponding cells are marked as NA for Not Applicable. Ranges for tested values are listed in the Range column.

the conditions for Eq. 29 are not met, our encoding will be not as

accurate in this variant, but we demonstrate experimentally that

this alternative solver offers a good runtime-quality trade-off.

B.2 Datasets Generation and Pre-processing
Synthetic data generation: Unless otherwise noted in specific

experiments, the variables in our model for synthetic data are set

to the following: Ψ𝑠 corresponds to 20 randomly chosen atoms

from a GFT dictionary which itself is generated from a Stochastic

Block Model (SBM) graph with 3 blocks of equal size and 1000 total

nodes and internal and cross-block edge probabilities set to 0.2 and

0.02 respectively. Φ𝑠 contains 20 randomly selected atoms from a

Ramanujan periodic dictionary. The entries of 𝑌 and𝑊 are set to

uniformly random numbers between 0 and 1 and the rank 𝑟 is set

to 3. Finally, 𝜖 is Gaussian white noise with magnitude ensuring an

overall 𝑆𝑁𝑅 = 10 for the signal.

Real-world dataset: The original Twitch dataset specifies active

viewers over time and the streams that they are viewing. We create

a graph among viewers, where an edge between a pair of viewers

exists if they viewed the same stream at least 3 times over a period

of 512 hours (which is the temporal dimension of the dataset). The

largest connected component of this co-viewing graph involve

78, 389 viewers. Each entry of the data matrix 𝑋 ∈ R78389×512
from

Twitch represents the number of minutes in any given hour that the

viewer spent viewing streams on the platform. The Wiki dataset

captures hourly number of views of Wikipedia articles for a total of

792 hours. We construct a graph among the articles by placing edges

between articles with at least 10 pairwise (clicked by the same IPs)

click events within a day. Furthermore, we pick a starting node (the

Wikipedia article on China) and construct a breadth-first-search

(snowball) subgraph of 1000 nodes around it. We removed an article

that was not sufficiently active during the observed period resulting

in 999 total nodes. The Covid dataset tracks daily confirmed COVID

cases for 3047 counties in the US for 678 days. We use a k-nearest

neighbor (𝑘 = 5) spatial graph connecting counties to their closest

neighbors. The Road dataset consists of 1923 highway speed sensors

in the LA area, we use the hourly average speed for 30 days as our

signal matrix, and the graph is based on connected road segments.

B.3 Hyper-parameter Settings
The parameter settings for all competing techniques unless other-

wise specified are as follows. We set the rank for low rank decom-

position methods (LRMDS, LRMDS-f, TGSD, SC-TGSD, LRMDS-1D,

RAND ) to be 𝑟 = 3 in synthetic (equal to the ground truth) and

𝑟 = 50 in real-world datasets. For all real-world datasets, we set

the number of atoms per iteration for LRMDS and LRMDS-f to be

𝑘 = 100 for all experiments except for Twitch in which 𝑘 = 500

since this dataset is large and the input dictionaries have in total

close to 80, 000 atoms. In both synthetic and real world datasets,

we vary SC-TGSD’s screening parameter
𝜆0

𝜆0𝑚𝑎𝑥
in the range of 0.1

to 0.9 with a step size of 0.01 to create a set of regimes of selected

sub-dictionaries and associated RMSE/running time.

Controlling the number of selected atoms exactly for all com-

petitors is not trivial as TGSD and SC-TGSD employ sparsity regu-

larizers (𝜆1, 𝜆2) that do not offer explicit control over the number of

used atoms. In order to facilitate direct but fair comparison we use

the ground truth number of selected atoms in synthetic datasets as

targets for 2D-OMP and LRMDS, and report results for TGSD and

SC-TGSD using sparsity levels resulting in atom “selection” closest

to (but exceeding) the ground truth number.

In our ablation study we set 𝑘1, 𝑘2 = 3 for both LRMDS-1D and

RAND, and 𝑘 = 6 for LRMDS. We do this so that the total number

of atoms selected by each method is 6 at each iteration to facilitate

fair comparison. We re-run RAND 10 times and report its average

performance in terms of RMSE and running time.

Complete details on how parameters were searched (i.e., ranges)

and set for each dataset can are listed in Tbl. 2.

We also performed a more detailed analysis of the effect of the

number of selected atoms (𝑘) and determined that it controls a

trade-off between quality and runtime. Given a total target (optimal

but unknown) number of atoms 𝑘∗, when 𝑘 << 𝑘∗ our algorithm
requires more iterations to converge (involving multiple sparse

coding fits with increasing dictionaries). On the other hand, a larger

𝑘 similar to 𝑘∗ will result in fewer iterations, however, the algorithm
may require more than 𝑘∗ atoms to achieve the same RMSE. For

example, if two “good” atoms are similar, then the projections on

them will also be similar and high-valued and they will both be

selected although potentially redundant. We chose a middle-ground

k for our experiments.

C Further experimental analysis and discussion
Additional material is available in the extended version [16] includ-

ing: (i) extra numerical experiments supporting the lemmas; (ii)

baseline solution details; (iii) extra experiments and figures, includ-

ing synthetic data analysis for varying noise level and dictionary

sizes and the corresponding representation quality vs runtime; and

(iv) discussion of generalization to multi-way data.
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