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Abstract— Distributed Kalman filters have been widely studied
in vector space and have been applied to 2-D target state
estimation using sensor networks. In this article, we introduce
a novel distributed invariant extended Kalman filer (DIEKF) that
exploits matrix Lie groups and is suitable to track the target’s
6-DOF motion in a 3-D environment. The DIEKF is based on the
proposed extended covariance intersection (CI) algorithm that
guarantees consistency in matrix Lie groups. The DIEKF is fully
distributed as each agent only uses the information from itself
and the one-hop communication neighbors, and it is robust to a
time-varying communication topology and changing blind agents.
In addition to assuming a known target model, we study the
case where the target’s true motion is unknown. To evaluate the
performance, first, we apply the algorithm in a camera network
to track a target pose. Extensive Monte-Carlo simulations have
been performed to analyze the performance. More importantly,
the performance is further verified with real data collected by
using a quadrotor with multiple ultra-wideband (UWB) anchor
receivers. Overall, the proposed algorithm is more accurate and
more consistent in comparison with our recent work on the
quaternion-based distributed extended Kalman filter (QDEKF).

Index Terms— Distributed estimation, information fusion,
invariant extended Kalman filtering, wireless sensor network.

I. INTRODUCTION

S
ENSOR networks with the ability of communication and

perception have a wide range of applications such as

target tracking, area monitoring, and search and rescue. For

the problem of target tracking, it is normally assumed that

the target state evolves according to a known noisy model.

Each agent can obtain observations of the target when the

target is inside its sensing region. The objective is to use these

measurements and the target dynamics to estimate its pose

(i.e., orientation and position) on each agent. The problem

can be solved in a centralized way where there exists a

fusion center that collects all sensors’ measurements and

estimates the state using a centralized extended Kalman filter

(EKF). Although this provides optimal accuracy, it requires

communications from all agents to the center and expensive

computational costs which makes the centralized algorithm not

applicable for larger sensor networks. Therefore, distributed

Manuscript received 11 March 2023; accepted 9 June 2023. Date of
publication 28 August 2023; date of current version 23 October 2023. This
work was supported by the National Science Foundation under Grant CMMI–
2027139. Recommended by Associate Editor M. Abbaszadeh. (Corresponding

author: Wei Ren.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
jxu150@ucr.edu; pzhu008@ucr.edu; yzhou280@ucr.edu; ren@ee.ucr.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCST.2023.3290299.

Digital Object Identifier 10.1109/TCST.2023.3290299

algorithms that use only each agent’s own and communication

neighbors’ information draw more attention in both control

and robotics societies.

In distributed algorithms, each agent maintains an estimator

of the same target. To fuse the information from neighbors,

there is a need to handle the unknown cross-covariances

between different estimators on the agents. Naively fusing

these estimators yields an inconsistent estimator that will

diverge. The consensus [1] and the covariance intersection

(CI) [2] algorithms have been widely used to design a con-

sistent distributed EKF in the existing works. The consensus

algorithm as a tool of information distributed averaging has

been applied to the information pairs (i.e., information vectors

and matrices) [3], the measurements [3], and the hybrid of the

two in [4]. These approaches require multiple communication

iterations at each timestamp. To be more efficient, the CI

algorithm that computes a convex combination of the local

information pairs from one-hop communication is used to

design the DEKF. In [5], each agent first updates the esti-

mator using its own measurements, and then the resulting

information pairs are fused with the pairs from neighbors in

CI. In [6], CI is first used to fuse the prior information pairs

among neighborhoods and then the improved prior information

is updated with the local and neighboring measurements. Note

that all these algorithms work on vector space that has additive

errors. Besides, the effectiveness is only evaluated on the

tracking problem in 2-D cases. Although one can naively

extend the vector space algorithm to the 3-D case by using

the Euler angle representation for rotations, it suffers the

well-known Gimbal lock problem.

To address this issue, our recent work [7] introduces a

quaternion-based distributed EKF (QDEFK) algorithm where

the 3-D orientation is represented as a unit quaternion. CI is

for the first time extended to the 3-D space using “quaternion

average” [8]. Good performance is shown by tracking a drone

using a camera network. However, the filer is built upon the

error-state EKF where the position, velocity, and orientation

errors are decoupled [9], and the linearized error dynamics

Jacobians and the measurement Jacobians are still functions

of the estimated states. Then, the unobservable states can gain

spurious information and become observable by the filter. This

hurts the consistency and then the accuracy. Besides, we only

study the case where the target motion model is known.

Recently, a new type of EKF is designed based on the

invariant observer theory [10]. The estimation error is invariant

under the action of matrix Lie groups and satisfies a log-linear

autonomous differential equation with nice properties [11].
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In particular, in the case of SEK (3), the position, velocity, and

orientation errors are coupled. This invariant EKF (IEKF) has

been successfully applied to leg robot state estimation [12]

and simultaneous localization and mapping (SLAM) [13],

where the IEKF achieves promising performance, especially

with poor initialization. It is proved in these articles that the

observability of the linearized system is coincident with the

original nonlinear system.

The main contribution of the article is that it introduced

a novel distributed algorithm that utilizes the invariant error

associated with the matrix Lie group to address the 3-D target

estimation when the robots can only communicate with their

neighbors and see the target from time to time. The proposed

algorithm is fully distributed in that each agent estimates the

3-D motion of the target by using information from the neigh-

borhood. To the best of our knowledge, there is no existing

work in the literature that addresses 3-D motion estimation in

a fully distributed manner. Furthermore, we show that the pro-

posed algorithm can be extended to track the target even when

the target motion is unknown, which is also a contribution.

Motivated by the IEKF and QDEKF algorithms, in this arti-

cle, we design a novel distributed IEKF (DIEKF) that utilizes

the invariant errors associated with the matrix Lie group for

solving the problem of distributed state estimation using sensor

networks in a 3-D environment. To design DIEKF, we extend

the CI in a vector setting to matrix Lie groups for the first time.

The proposed algorithm is fully distributed in that each agent

only estimates the 3-D motion of the target by using the infor-

mation among the neighborhood. Furthermore, we show that

the proposed algorithm can be extended to track the target even

when the target motion is unknown. The proposed algorithm

is first applied in simulation to track target 3-D motion in

a camera network. The algorithm is then implemented in

experiments to track the 3-D pose of a quadrotor using

multiple ultra-wideband (UWB) anchor receivers. As shown in

both Monte-Carlo simulations and experiments, the accuracy

and consistency of the DIEKF in both position and orientation

are improved as compared against the QDEKF [7]. The current

article expands on our preliminary result presented at [14] by

further considering the case of the unknown target motion and

providing experimental results.

II. PRELIMINARIES

A. Notation and Definitions

We denote 0m×n as a m × n zero matrix, and In (0n) as

n × n square identity (zero) matrix. Given a 3 × 1 vector

q = [q1, q2, q3]¦, its skew symmetric matrix is defined as

(q)× =





0 −q3 q2

q3 0 −q1

−q2 q1 0





and its projection function is defined as 5(q) =
(1/q3)[q1, q2]. The Jacobian of the projection function is

computed as

Hp (q) = 1

q3









1 0 −q1

q3

0 1 −q2

q3









. (1)

In a network of M agents, we define a directed graph G =
(V, E) to represent the communication topology among agents,

where V indicates the set of all the agents, and E stands for the

set of communication links defined as E ∈ V×V . Specifically,

if ( j, i) ∈ E , agent j is a neighbor of agent i , and agent i

can receive information from agent j . We assume that self

communication always exists, i.e., (i, i) ∈ E , ∀i ∈ V . The set

of all the communicating neighbors of agent i is defined as

Ni = { j |( j, i) ∈ E, j ∈ V}.

B. Problem Formulation

Consider a network of agents in the 3-D environment with

fixed and known positions aiming to cooperatively track a

moving target’s state. Each agent can communicate with its

neighbors and is equipped with an on-board camera. Denote

G, T , and Ci as the global frame, the target frame, and i th

agent’s camera frame, respectively. Let G
T R ∈ SO(3) be the

rotation matrix that describe the rotation from T to G. Let
Gv ∈ R

3 and Gp ∈ R
3 be the target’s velocity and position

in the global frame. Let GpCi
∈ R

3 be the position of agent

i’s camera in the global frame. The target is modeled as a

point cloud where one of the feature points is chosen as the

representative point and the others as the nonrepresentative

points. Computer vision techniques can be used to distinguish

the representative point and the nonrepresentative points. The

representative point is the origin of the target frame while the

positions of the nonrepresentative points in the target frame are

unknown but fixed. The nonrepresentative points provide addi-

tional measurements and constraints and can hence improve

the estimation accuracy. For convenience, we assume that there

is only one nonrepresentative feature point. However, the state

can be augmented to include multiple nonrepresentative points.

Let T p f ∈ R
3 be the position of the nonrepresentative feature

point in the target frame.

Here we consider two cases of state representation. First,

we consider the case where the agents have access to the

target’s motion inputs. In this case, the state of the target is

represented as

x =
(

G
T R Gv Gp T p f

)

(2)

which includes the target’s 6-DoF pose G
T R and Gp, the linear

velocity Gv in the global frame, and the 3-D position of a

nonrepresentative point in the target frame T p f . The individual

dynamics of the state are given as

G
T Ṙ = G

T R (É − nÉ)×
Gv̇ = G

T R (a − na) + g
Gṗ = Gv

T ṗ f = 03×1 (3)

where É and a are, respectively, the angular velocity and

the linear acceleration of the target in the target frame, the

corresponding nÉ and na are white Gaussian noises, and g is

the gravity vector.

Second, we consider the case where the agents do not have

access to the target’s motion inputs. We adopt a generic model

with constant angular velocity É and linear acceleration a in
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the target frame to propagate the target’s state. The dynamics

of the individual states are the same as (3) with nÉ and na

removed with additional dynamics for É and a as

É̇ = nÉ

ȧ = na (4)

where É and a are treated as random walks driven by

zero-mean white Gaussian noises nÉ and na . These two

parameters É and a become extended states to estimate. The

covariances of nÉ and na become tuning parameters in the

filter design. The state of the target is represented as

x =
(

G
T R Gv Gp T p f É a

)

. (5)

In both cases, the measurements of the representative feature

at time tk (specifying the target’s position) and the nonrepre-

sentative feature obtained by agent i’s camera are given by,

respectively,

zk
i = 5

(

Ci pk
)

+ nk
i

zk
fi

= 5
(

Ci pk
f

)

+ nk
fi

(6)

where nk
i and nk

fi
are the measurement noises of agent i’s

camera at time tk , assumed to be white Gaussian, and Ci pk and
Ci pk

f denote, respectively, the representative feature’s position

(target’s position) and the nonrepresentative feature’s position

in agent i’s camera frame at time tk . The objective of our

work is to let each agent compute an accurate estimate of the

target’s state.

C. Lie Group and Lie Algebra

Here we briefly introduce the matrix Lie group theory that

we will use to derive our algorithm. The material is adopted

from [10]. A matrix Lie group G is a subset of square invertible

N × N matrices satisfying

IN ∈ G

∀a ∈ G, a−1 ∈ G

∀a, b ∈ G, ab ∈ G.

Its Lie algebra is denoted as g, which is a vector space

with the same dimension as G. For convenience, let (·)' :
R

dim g → g be the linear map that transforms the elements in

the Lie algebra to the corresponding matrix representation. The

exponential map is further defined as exp(À) = expm(À') ∈ G,

where À ∈ R
dim g is an element in g, and expm is the matrix

exponential. The logarithm map, which is the inverse function

of the exponential map, is denoted by log(·), and satisfies

log(·) = (logm(·))( : G → R
dim g, where logm is the matrix

logarithm, and (·)( is the inverse operator of (·)'.

Let Xt ∈ G be the state of a system at time t . The dynamics

of the system are denoted as

d

dt
Xt = fut (Xt ) (7)

where ut is the input. Let Xt and X̄t be two distinct trajectories

of (7). The right invariant error is then defined as

¸t = Xt

(

X̄t

)−1
. (8)

The error (8) is invariant to the right multiplication of any

element ϒ ∈ G.

Let Id ∈ G be the identity element of G. If the dynamics of

the system satisfy

fut

(

Xt X̄t

)

= fut (Xt ) X̄t + Xt fut

(

X̄t

)

− Xt fut (Id) X̄t

the system is group affine. Then, the right invariant error

dynamics satisfy (d/dt)¸t = gut (¸t ), where gut (¸t ) =
fut (¸t ) − ¸t fut (Id). Define At as a matrix satisfying

gut (exp(Àt )) ≜ (AtÀt )
' +O(||Àt ||2), and let Àt be the solution

of (d/dt)Àt = AtÀt . From the log-linear property of the error

¸t , given ¸0 = exp(À0), for t g 0, the error ¸t can be computed

from Àt by

¸t = exp (Àt ) .

D. Matrix Lie Group Representation

As shown in [10] and [12], the state collection shown in (2)

forms a matrix Lie group SE2+L(3), where L = 1 denotes the

number of nonrepresentative points, represented as

X =









G
T R Gv Gp T p f

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









∈ R
6×6.

In the case that there are more than one nonrepresentative

point (i.e., L g 1), it is straightforward to expand X to

include the other nonrepresentative point(s). Let Xt be the state

representation at time t , and X̄t be the state estimate. Define

the right invariant estimation error ¸t given as

¸t = Xt

(

X̄t

)−1
=









¹11, ¹12, ¹13, ¹14

01×3, 1, 0, 0

01×3, 0, 1, 0

01×3, 0, 0, 1









where the individual terms are calculated as

¹11 = G
T Rt

(

G
T R̄t

)¦
∈ SO (3)

¹12 = Gvt − ¹11
Gv̄t ∈ R

3

¹13 = Gpt − ¹11
Gp̄t ∈ R

3

¹14 = T p ft − ¹11
T p̄ ft ∈ R

3.

Note that the orientation estimation error ¹11 is coupled in the

velocity estimation error ¹12, the position estimation error ¹13,

and the nonrepresentative point estimation error ¹14. It is worth

mentioning that there are closed-loop formulas to compute the

inverse and log function of an element in SE2+L(3) as well

as the exp function of a vector (see [10], [12]). Hence the

computation complexity for these quantities is mild. The error

vector Àt , defined in the Lie algebra of SE3(3), denoted by

se3(3), is given by

Àt =
[

(

ÀRt

)¦ (

Àvt

)¦ (

Àpt

)¦ (

Àp f t

)¦]¦
∈ R

12
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where ÀRt , Àvt , Àpt , and Àp ft
∈ R

3. Here, ¸t = exp(Àt ) =
expm(À'

t ), with À'
t given as

À'
t =









(

ÀRt

)

× Àvt Àpt Àp ft

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









∈ R
6×6. (9)

It is shown in [12] that (3) without noise is group affine, and

the dynamics of Àt are given as

d

dt
Àt = AtÀt − Ad

X̄t
Ut (10)

where

At =









03 03 03 03

(g)× 03 03 03

03 I3 03 03

03 03 03 03









and Ad
X̄t

denotes the adjoint of SE3(3) at X̄t given as













G
T R̄t 03×3 03×3 03×3

(

Gv̄t

)

×
G
T R̄t

G
T R̄t 03×3 03×3

(

Gp̄t

)

×
G
T R̄t 03×3

G
T R̄t 03×3

(

T p̄ ft

)

×
G
T R̄t 03×3 03×3

G
T R̄t













and Ut = [n¦
Ét

, n¦
at

, 01×6]¦. Note that here At does not

depend on the estimated state, which improves the estimation

consistency and accuracy.

For the state shown in (5), it is no longer possible to find a

matrix Lie group representation that satisfies the group affine

property. Instead, we represent the state in SE3(3) × R
6 as a

combination of Xt and {Ét , at }. Let É̄t and āt denote the state

estimates of, respectively, Ét and at . The estimation error in

SE3(3)×R
6 is given by a combination of ¸t , É̃t , and ãt , where

É̃t = Ét − É̄t and ãt = at − āt . The corresponding error in

se3(3) × R
6 is given by Àext,t = [À¦

t , É̃t , ãt ]¦. The dynamics

of the vector error are shown as

d

dt
Àext,t = AtÀext,t − Ut (11)

where

At =



























03 03 03 03
G
T R̄t 03

(g)× 03 03 03

(

(

Gv̄t

)

×

)

G
T R̄t

G
T R̄t

03 I3 03 03

(

(

Gp̄t

)

×

)

G
T R̄t 03

03 03 03 03

(

(

T p̄ f t

)

×

)

G
T R̄t 03

03 03 03 03 03 03

03 03 03 03 03 03



























and Ut = [01×12, n¦
Ét

, n¦
at

]¦. Note that compared with [12], the

nonzero entries in the last two columns of At have opposite

signs in our setting.

III. PROPOSED ALGORITHM

A. Known Target Motion

Suppose that each agent knows the target motion. For

notation simplicity, let Xk denote the target state at time tk .

Also let X̄
k
i and X̂

k
i denote, respectively, agent i’s prior and

posterior estimates of the target state at time tk . Let ¸
k|k−1
i =

Xk(X̄k
i )

−1 = exp(À
k|k−1
i ), and ¸

k|k
i = Xk(X̂k

i )
−1 = exp(À

k|k
i )

denote, respectively, agent i’s prior and posterior estimation

errors in SE3(3). Here À
k|k−1
i and À

k|k
i denote, respectively, the

prior and posterior estimation errors in se3(3). The covariances

associated with À
k|k−1
i and À

k|k
i are denoted, repectively, as P̄k

i

and P̂k
i .

The first step is to propagate the posterior estimation pair

(X̂k−1
i , P̂k−1

i ) to obtain the prior estimation pair (X̄k
i , P̄k

i ).

As this step is standard, we include it in Appendix A.

In the second step, agent i aims to update its local estimate

by communicating with its neighbors. The goal is to fuse

all the prior estimates among the neighbors, i.e., (X̄k
j , P̄k

j ),

j ∈ N k
i , to obtain an intermediate estimation pair (X̆k

i , P̆k
i ).

By doing so, the agents with better estimates would help those

with poor estimates. For example, blind agents, which refer to

the agents that themselves and their one-hop communication

neighbors cannot see the target, would have poor estimates.

Because of the communication from previous timesteps, and

the fact that the agents are estimating the same target, X̄
k
i and

X̄
k
j would be correlated. However, in the distributed setting,

it is not possible to keep tracking the cross-correlations and

hence they are unknown. The CI algorithm [15] can be used

to fuse estimates with unknown correlations. However, the CI

algorithm is applicable in the vector space and it is not clear

how to fuse the Lie group elements X̄
k
i and X̄

k
j , which are

in SE3(3). Next, we extend the CI algorithm in the context

of error-state EKF in Lie groups to estimate the error states

represented in se3(3) and map back to SE3(3).

Recall that for each j ∈ N k
i , ¸

k|k−1
j = Xk(X̄k

j )
−1 is the

prior estimation error in SE3(3), and À
k|k−1
j = log(¸

k|k−1
j ) is

the corresponding prior estimation error in se3(3). We will

make use of X̄
k
j , j ∈ N k

i , to identify the estimates of À
k|k−1
i ,

and then fuse these estimates. Note that for each j ∈ N k
i

exp
(

À
k|k−1
j

)

= X
k
(

X̄
k
j

)−1
= X

k
(

X̄
k
i

)−1 (

X̄
k
i

) (

X̄
k
j

)−1

= exp
(

À
k|k−1
i

) (

X̄
k
i

) (

X̄
k
j

)−1
.

It follows that

X̄
k
j

(

X
k
i

)−1
= exp

(

−À
k|k−1
j

)

exp
(

À
k|k−1
i

)

. (12)

According to the Baker–Campbell–Hausdorff (BCH) for-

mula [16], the exponential map satisfies the property

exp(À1) exp(À2) ≈ exp(À1+À2), if À1 and À2 are small by ignor-

ing higher-order terms involving À1 and À2. In the remainder of

the article, the approximation symbol denotes the fact that the

higher-order terms of small quantities are ignored. Then, (12)

can be rewritten as X̄
k
j (X̄

k
i )

−1 ≈ exp(À
k|k−1
i − À

k|k−1
j ), which

implies that À
k|k−1
i − À

k|k−1
j ≈ log(X̄k

j (X̄
k
i )

−1), or equivalently
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À
k|k−1
i − log(X̄k

j (X̄
k
i )

−1) ≈ À
k|k−1
j , for each j ∈ N k

i . As a

result, each log(X̄k
j (X̄

k
i )

−1), j ∈ N k
i , can be treated as one

prior estimate of À
k|k−1
i , and the corresponding estimation

error is given by À
k|k−1
j with covariance P̄k

j . We can use the

CI algorithm to fuse all estimation pairs (log(X̄k
j (X̄

k
i )

−1), P̄k
j )

to get an intermediate estimation pair (À̆
k|k−1
i , P̆k

i ) for À
k|k−1
i

by

P̆k
i =







∑

j∈N k
i

Ãk
j

(

P̄k
j

)−1







−1

À̆
k|k−1
i = P̆k

i







∑

j∈N k
i

Ãk
j

(

P̄k
j

)−1
log

(

(

X̄
k
j

) (

X̄
k
i

)−1
)







where Ãk
j ∈ [0, 1] and

∑

j∈Ni
Ãk

j = 1. Note that as

i ∈ N k
i , the prior estimate of À

k|k−1
i by agent i is simply

log(X̄k
i (X̄

k
i )

−1) = 012×1 with covariance P̄k
i , which is con-

sistent with the definition of À
k|k−1
i . While Ãk

j can be solved

from an optimization problem, a simplified algorithm can be

used to compute Ãk
j according to [15]

Ãk
j =

1
/

Tr
{

P̄k
j

}

∑

j∈Ni
1
/

Tr
{

P̄k
j

} .

The intermediate state estimate of Xk in SE3(3), denoted by

X̆
k
i , can be recovered from À̆

k|k−1
i by

X̆
k
i = exp

(

À̆
k|k−1
i

)

X̄
k
i . (13)

Now define ε
k|k−1
i as the new error vector in se3(3) with X̆

k
i

being the prior estimate of Xk satisfying

exp
(

ε
k|k−1
i

)

= X
k
(

X̆
k
i

)−1
. (14)

Because we are going to apply the error-state EKF on the inter-

mediate estimation error ε
k|k−1
i , we need the corresponding

covariance. Note that

X
k = exp

(

ε
k|k−1
i

)

X̆
k
i = exp

(

À
k|k−1
i

)

X̄
k
i

⇒ exp
(

ε
k|k−1
i

)

exp
(

À̆
k|k−1
i

)

X̄
k
i = exp

(

À
k|k−1
i

)

X̄
k
i

⇒ exp
(

ε
k|k−1
i

)

exp
(

À̆
k|k−1
i

)

= exp
(

À
k|k−1
i

)

⇒ exp
(

ε
k|k−1
i

)

= exp
(

À
k|k−1
i

)

exp
(

−À̆
k|k−1
i

)

⇒ exp
(

ε
k|k−1
i

)

≈ exp
(

À
k|k−1
i − À̆

k|k−1
i

)

⇒ ε
k|k−1
i ≈ À

k|k−1
i − À̆

k|k−1
i (15)

and P̆k
i is the estimated covariance for À

k|k−1
i − À̆

k|k−1
i . As a

result, P̆k
i can be directly used as the estimated covariance for

the new error ε
k|k−1
i .

The third step is to fuse agent i’s intermediate estimation

pair (X̆k
i , P̆k

i ) with all the measurements from itself and its

neighbors, i.e., representative feature measurements zk
j , ∀ j ∈

N k
i , and nonrepresentative feature measurements zk

f j
, ∀ j ∈

N k
i , defined by (6). To calculate the Jacobian associated with

zk
j , denoted by H k

j , first define

C j p̆k
i = C j

G R
(

Gp̆k
i − GpC j

)

(16)

as the linearization point in agent j’s camera frame, where
C j

G R

and GpC j
together denote the 3-D pose of agent j’s camera

that is fixed and known. Then, the difference between the true

target’s position and the linearization point in agent j’s camera

frame is calculated as

C j pk
i − C j p̆k

i = C j

G R
(

Gpk − GpC j

)

− C j

G R
(

Gp̆k
i − GpC j

)

= C j

G R
(

Gpk − Gp̆k
i

)

.

Note that ε
k|k−1
i is a column stack vector of ε

k|k−1
Ri

,

ε
k|k−1
vi

, ε
k|k−1
pi

, and ε
k|k−1
p fi

. Recall from (14) that Xk =
exp(ε

k|k−1
i )X̆k

i ≈ (I6 + (ε
k|k−1
i )')X̆k

i , where (·)' is defined

by (9). The position of the target can be calculated as Gpk ≈
[I3 +(ε

k|k−1
Ri

)×]Gp̆k
i +ε

k|k−1
pi

= −(Gp̆k
i )×ε

k|k−1
Ri

+ε
k|k−1
pi

+Gp̆k
i .

Hence the Jacobian H k
j is calculated as

H k
j = Hp

(

C j p̆k
i

) (

C j

G R
)

[

−
(

Gp̆k
i

)

×
, 03, I3, 03

]

where Hp(·) is defined by (1). To calculate the Jacobian

associated with the nonrepresentative feature, denoted by H k
f j

,

define

C j p̆k
fi

= C j

G R
(

G
T R̆k

i

(

T p̆k
fi

)

+ Gp̆k
i − GpC j

)

(17)

as its linearization point. Then, the difference between the true

position of the nonrepresentative feature and the linearization

point is given by

C j pk
fi

− C j p̆k
fi

= Mk
i ε

k|k−1
Ri

+ εk|k−1
pi

+ G
T R̆k

i εk|k−1
p fi

where Mk
i is given by

Mk
i = −G

T R̆k
i

(

T p̆k
fi

)

×
−
(

G
T R̆k

i
T p̆k

fi

)

×
−
(

Gp̆k
i

)

×
. (18)

Hence the Jacobian H k
f j

is calculated as

H k
f j

= Hp

(

C j p̆k
fi

) (

C j

G R
) [

Mk
i , 03, I3,

G
T R̆k

i

]

.

Note that at time tk , it is possible that some or even all

neighbors do not see the representative or nonrepresentative

feature. Let N̄ k
i ¢ N k

i (respectively, N̄ k
fi

¢ N k
i ) be the subset

of agent i’s neighbors that can see the representative feature

(respectively, nonrepresentative feature) at time tk . Define H̃ k
i

by stacking all H k
j , j ∈ N̄ k

i , and H k
f j

, j ∈ N̄ k
fi

. Let C̃k
i be a

block diagonal matrix with the measurement noise covariances

Ck
j , j ∈ N̄ k

i , and Ck
f j

, j ∈ N̄ k
fi

. Let Sk
i = H̃ k

i P̆k
i (H̃ k

i )¦ + C̃k
i .

The Kalman gain K k
i is calculated as

K k
i = P̆k

i

(

H̃ k
i

)¦ (
Sk

i

)−1
(19)

and the measurement residual yk
i is given by stacking zk

j −
5(C j p̆k

i ), j ∈ N̄ k
i , and zk

f j
− 5(C j p̆k

fi
), j ∈ N̄ k

fi
. Then, the
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TABLE I

DIEKF ALGORITHM WITH KNOWN TARGET MOTION

posterior estimate of ε
k|k−1
i , denoted as ε̂k

i , and its covariance

P̂k
i are calculated as

ε̂k
i = K k

i yk
i

P̂k
i =

(

I12 − K k
i H̃ k

i

)

P̆k
i . (20)

In the last step, we recover the estimated state X̂
k
i from ε̂k

i

and X̆
k
i analogously to (13) as

X̂
k
i = exp

(

ε̂k
i

)

X̆
k
i . (21)

Note that a similar procedure to (15) can be used to show that

À
k|k
i ≈ ε

k|k−1
i − ε̂k

i . Hence P̂k
i can be used as the estimated

covariance for À
k|k
i . The proposed DIEKF algorithm with

known target motion is summarized in Tabel I.

B. Unknown Target Motion

Suppose that we do not know the motion of the target. Then,

the target’s angular velocity Ék and linear acceleration ak will

be additional states to be estimated. For agent i , its prior and

posterior estimates of the target state at time tk is given by,

respectively, X̄
k
ext,i = (X̄k, É̄k, āk) and X̂

k
ext,i = (X̂k, É̂k, âk).

The prior estimate’s extended error state in se3(3) × R
6 is

defined as À
k|k−1
ext,i = [(À k|k−1

i )¦, (Ék − É̄k
i )

¦, (ak − āk
i )¦]¦,

where exp(À
k|k−1
i ) = Xk(X̄k

i )
−1. The posterior estimate’s

extended error state in se3(3) × R
6 is defined similarly as

À
k|k
ext,i = [(À k|k

i )¦, (Ék −É̂k
i )

¦, (ak −âk
i )¦]¦, where exp(À

k|k
i ) =

Xk(X̂k
i )

−1. Let the covariances associated with À
k|k−1
ext,i and À

k|k
ext,i

be denoted as, respectively, P̄k
i and P̂k

i .

The first step is to propagate the target state. The standard

propagation steps are included in Appendix A.

The second step is to compute the intermediate estima-

tion pair (X̆k
ext,i , P̆k

i ). By following a similar procedure in

Section III-A, we have

P̆k
i =







∑

j∈N k
i

Ãk
j

(

P̄k
j

)−1







−1

ek
i =

[

(

log

(

(

X̄
k
j

) (

X̄
k
i

)−1
))¦

,
(

É̄k
j − É̄k

i

)¦
,

(

āk
j − āk

i

)¦
]¦

À̆
k|k−1
ext,i = P̆k

i







∑

j∈N k
i

Ãk
j

(

P̄k
j

)−1
ek

i







X̆
k
i = exp

(

À̆
k|k−1
ext,i,l

)

X̄
k
i

É̆k
i = É̄k

i + À̆
k|k−1
ext,i,w

ăk
i = āk

i + À̆
k|k−1
ext,i,a

where À̆
k|k−1
ext,i can be written as

[(À̆ k|k−1
ext,i,l )¦, (À̆

k|k−1
ext,i,w)¦, (À̆

k|k−1
ext,i,a)¦]¦ with À̆

k|k−1
ext,i,l ∈ R

12,

À̆
k|k−1
ext,i,w ∈ R

3, and À̆
k|k−1
ext,i,a ∈ R

3.

The third step is to fuse the intermediate estimate with

measurements. We define C j p̆k
i and C j p̆k

fi
the same as (16)

and (17). The corresponding Jacobian for the representative

feature H k
j is calculated as

H k
j = Hp

(

C j p̆k
i

) (

C j

G R
)

[

−
(

Gp̆k
i

)

×
, 03, I3, 03, 03, 03

]

and the Jacobian for the nonrepresentative feature H k
f j

is

calculated as

H k
f j

= Hp

(

C j p̆k
fi

) (

C j

G R
) [

Mk
i , 03, I3,

G
T R̆k

i , 03, 03

]

where Mk
i is defined in (18).

In the last step, the same equations from (19) and (20) with

I12 replaced with I18 are used to calculate K k
i , ε̂k

i , and P̂k
i .

Here ε̂k
i = [(ε̂k

i,l)
¦, (ε̂k

i,w)¦, (ε̂k
i,a)¦]¦ with ε̂k

i,l ∈ R
12, ε̂k

i,w ∈
R

3, and ε̂k
i,a ∈ R

3. To calculate the posterior estimate X̂
k
ext,i =

(X̂k
i , É̂

k
i , âk

i ), the equations from (21) are adjusted as

X̂
k
i = exp

(

ε̂k
i,l

)

X̆
k
i

É̂k
i = É̆k

i + ε̂k
i,w

âk
i = ăk

i + ε̂k
i,a .

The DIEKF algorithm with unknown target motion is adapted

from that with known target motion and can be summarized

analogously by adapting Table I (hence omitted here).

IV. SIMULATION RESULTS

We apply the DIEKF algorithm to solve the distributed

state estimation problem where ten fixed agents equipped

with cameras are employed to track the 3-D motion of a

drone. The positions of the agents are known and the target’s

state is to be estimated. A nonrepresentative point is created

in addition to the center feature point of the target. The

position of the nonrepresentative point in the target frame is

unknown but is fixed. In this simulation, each camera has

a resolution of [752, 480] and is assumed to have a noise

of 1 pixel. The maximum sensing depth of the cameras is

all set to be 5 m. Based on the positions of the cameras

and the drone, the status of which the agent can sense the

drone is shown in Fig. 1. It is clear that each one of the

agents is not able to see the target for a long period of

time. In our framework, the agents communicate every time

when they receive a measurement (e.g., 10 Hz in this camera

measurement case), but the communication frequency can
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Fig. 1. Target’s visibility to the agents. The red lines indicate the timesteps
when the agent can directly observe the target’s representative and nonrepre-
sentative features.

certainly be reduced as the communication graph is allowed

to be time-varying. Extensive Monte-Carlo simulations are

performed to validate the algorithm. The results are quantified

by rooted mean square error (RMSE) which evaluates the

accuracy, and normalized estimation error squared (NEES)

which evaluates the consistency. The comparison to the results

of our previous QDEKF algorithm [7] is also included. See

Appendix B for a brief introduction to the QDEKF. For a fair

comparison, the initial covariance of the error state in DIEKF

P̄0
i is converted from the initial covariance of QDEKF P̄0

i,q by

P̄0
i ≈ B P̄0

i,q B¦, where

B =













I3 03 03 03
(

Gv0
i

)

× I3 03 03
(

Gp0
i

)

× 03 I3 03
(

T p0
fi

)

×
03 03 I3













. (22)

In addition, centralized implementations of both DIEKF and

QDEKF, where a central station collects all data from each

agent, are included as baselines.

A. Results for Known Target Motion

We set the noise of the linear acceleration É and angular

velocity a to be white Gaussian noise with standard deviations

of 6.6968 × 10−3 rad/(s
√

Hz) and 2 × 10−2 m/(s2
√

Hz),

respectively. To show the result of cooperative tracking,

we define a communication rate, which means that each agent

has a certain probability to communicate with other agents.

For instance, 20% communication means that each agent

has 20% probability to communicate with each one of the

other agents. Hence the set of communication neighbors are

randomly determined at every time step.

In the first test, we assume that the agents have knowledge

of the target’s ground truth state at the first timestep. So we

initialize our estimator with the ground truth and give it

a very small initial covariance. We conduct 50 Monte-

Carlo simulations and calculate the average result of the

50 runs among agents. Fig. 2 shows the averaged position

Fig. 2. Average PRMSE and ORMSE with known target motion using DIEKF
at different communication rates without initialization errors.

TABLE II

AVERAGE RMSE FOR THE ESTIMATED TARGET POSE OVER 50 MONTE-
CARLO RUNS AND ALL TIMESTEPS

Fig. 3. Average PNEES and ONEES with known target motion using DIEKF
and QDEKF at 40% communication rate without initialization errors.

RMSE (PRMSE) and averaged orientation RMSE (ORMSE)

for different percentages of the communication as well as

the centralized scenario. A comparison with the QDEKF

algorithm in our previous work [7] is shown in Table II. The

last column shows the centralized results. It is clear that

DIEKF outperforms the QDEKF in estimating both position

and orientation. In addition, the estimation accuracy improves

as the communication rate increases and the centralized case

performs better than the distributed cases as expected.

We further show the NEES result at 40% communication

rate. As shown in Fig. 3, while the orientation NEES (ONEES)

appears to be similar, the position NEES (PNEES) for DIEKF

is closer to 3 as compared to the QDEKF algorithm. This

indicates the improvement of the consistency [17].
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Fig. 4. Average PRMSE and ORMSE with known target motion using DIEKF
at different communication rates with initialization errors.

Fig. 5. Average PRMSE and ORMSE with known target motion using
QDEKF at different communication rates with initialization errors.

In the second test, we assume that the agents do not have

perfect knowledge of the target’s ground truth state at the

first timestep. We initialize our state estimator to a value near

the ground truth and give it a larger covariance. Similarly,

we conduct 50 Monte-Carlo simulations on the DIEFK and

QDEKF with the same initialized state estimate and equivalent

covariance. Figs. 4 and 5 show the result for both DIEKF

and QDEKF using the same initialization, measurements, and

noise. Compared with the results of QDEKF, our DIEKF

algorithm obviously converge faster in the position estimation,

and is more accurate in general.

Overall, if the target motion is known, our algorithm can

accurately track the trajectory of the target in the 3-D space

and can maintain consistency.

B. Results for Unknown Target Motion

In the case where the target motion is unknown, we select,

respectively, 1×10−2 rad/(s
√

Hz) and 1.2×10−1 m/(s2
√

Hz),

as the standard deviations associated with nÉ and na in (4).

It is clear from Figs. 6 and 7 that even if the target motion is

unknown, both algorithms can still track the target position

well, while the orientation error is larger. The DIEKF has

Fig. 6. Average PRMSE and ORMSE using DIEKF with unknown target
motion without initialization errors.

Fig. 7. Average PRMSE and ORMSE using QDEKF with unknown target
motion without initialization errors.

a better performance, especially for the orientation estimate.

The larger estimation errors compared to the case where the

target motion is known might be due to the inaccurate model

applied.

V. EXPERIMENTS

In this section, both the QDEKF algorithm and the DIEKF

algorithm are tested to track a quadrotor by using multiple

UWB anchor receivers. Infrared markers are attached to the

quadrotor for obtaining the ground truth data through the

VICON system. The effectiveness of the two algorithms is

verified with the measurement data obtained from the UWB

receivers. The performances of the two algorithms are also

compared. Centralized implementations of both DIEKF and

QDEKF are included as baselines. As in Section IV, both

the cases that the target motion is known or unknown are

considered.

The experiment is conducted within a 4 × 3 × 2 m

indoor space as shown in Fig. 8. A Crazyflie 2.1 quadrotor

is used as the target of interest. The quadrotor flies following

a predesigned figure “8” trajectory in addition to taking off and

landing. Eight UWB anchor receivers, named as agents 1–8,

are placed in the environment. The positions of the UWB

receivers in the world coordinate frame are shown in Table III.
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Fig. 8. Experimental environment.

TABLE III

UWB ANCHOR POSITIONS

Each UWB receiver is set to two-way ranging (TWR) mode

to obtain the distance measurements between itself and the

target. The measurements for every agent are tested to be

subject to a zero mean white Gaussian process noise with

a standard deviation of 0.15 m. The communications among

agents are randomly assigned according to the communication

rates.

In our experiment, only the representative feature on the

target is used and there is no nonrepresentative feature point.

The initial state estimate of both DIEKF and QDEKF is

set according to the ground truth. The initial covariance

corresponding to the error state in QDEKF is set to be

P̄0
i,q = diag

(

0.152, 0.152, 0.202,

10−4, 10−4, 10−4, 10−4, 10−4, 10−4
)

.

For fair comparisons, the initial covariance of the error state

P̄0
i in DIEKF is converted according to P̄0

i ≈ Bs P̄0
i,q B¦

s ,

where Bs is changed from B in (22) by removing the last

row and column. The calculated Jocabians in Section III are

also changed accordingly by removing the corresponding line

and column which corresponds to the nonrepresentative feature

point.

In the case that the target’s motion is known, the built-in

IMU in the quadrotor is used to obtain the motion of the

target. The standard deviation of the process noise for the

accelerometer na and the gyroscope nÉ of the x–y–z axes are,

respectively, na = [0.02, 0.02, 0.05]¦ m/s2/
√

Hz and nÉ =
[0.005, 0.005, 0.015]¦ deg/s/

√
Hz. All the data, including

Fig. 9. Estimated trajectory using QDEKF and ground truth with known
target motion in the experiment.

Fig. 10. Estimated trajectory using DIEKF and ground truth with known
target motion in the experiment.

TABLE IV

AVERAGE RMSES FOR THE POSE ESTIMATION AMONG

EIGHT AGENTS IN EXPERIMENT

IMU, UWB measurements, and ground truth are collected at

the frequency of 100 Hz. Figs. 9 and 10 show the ground

truth trajectory of the target and the estimated trajectory of

the target by agent 1 for, respectively, QDEKF and DIEKF at

40% communication rate. To further illustrate the result, the

PRMSE and ORMSE of agents 1–3 for the two algorithms

at 40% communication rate are shown in Figs. 11 and 12.

It can be observed from Figs. 9 to 12 that the trajectory of the

target can be well estimated by both algorithms with DIEKF

achieving better performance. Although the PRMSE of DIEKF

has a little bit larger overshoot than that of QDEKF at the

very beginning, DIEKF has a better performance over time

as seen in the overall trajectory. For further comparison, the

resulting average RMSE for QDEKF and DIEKF in different

communication rates are shown in Table IV. The last column

shows the centralized results for both algorithms. It is obvious

that DIEKF outperforms QDEKF in all the cases in our

experiment.

We further apply the DIEKF to the case that the target’s

motion is unknown. According to the generic model (4), the

angular velocity É and linear acceleration a are assumed

to progress as random walks driven by Gaussian noises.

We select, respectively, [0.005, 0.005, 0.01]¦ deg/s/
√

Hz and

[0.4, 0.4, 0.6]¦ m/s2/
√

Hz, as the standard deviations for

the x–y–z axes associated with nÉ and na in (4). The initial
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Fig. 11. PRMSE and ORMSE using DIEKF with known target motion in
the experiment.

Fig. 12. PRMSE and ORMSE using QDEKF with known target motion in
the experiment.

estimates of É and a are both set to 03×1 at the initialization.

Figs. 13 and 14 show, respectively, the RMSE of the estimated

Fig. 13. PRMSE and ORMSE using DIEKF with unknown target motion in
the experiment.

Fig. 14. PRMSE and ORMSE using QDEKF with unknown target motion
in the experiment.

pose of agent 1 using DIEKF and QDEKF. The results for

the other agents are similar to that of agent 1 and hence not
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shown here. As observed in Figs. 13 and 14, even though

the target’s motion is unknown, the position of the target

can be well tracked. While DIEKF can still track the target’s

orientation with larger errors than the known target motion

case, QDEKF fails to track the target’s orientation. DIEKF

achieves comparable performance compared to its centralized

counterpart, and the performance of DIEKF is better than

QDEKF.

VI. CONCLUSION AND FUTURE WORK

In this article, by using the matrix Lie group represen-

tation of the state, we introduced a new DIEKF algorithm

that yields consistent and accurate estimates of the target in

the 3-D space over the sensor networks given the target’s

motion. We also include the case that the target’s motion

is unknown, the algorithm can still track the position of the

target accurately. The proposed algorithm requires only one

communication iteration with its communication neighbors

at every time instant. Furthermore, the algorithm is shown

to be robust to changing communication topology and blind

agents. These properties ensure that our approach can have

a wide application in multiagent scenarios. The performance

of the proposed algorithm is tested via both Monte-Carlo

simulations and experiments. Some key performance measures

are compared with the algorithm that did not use the Lie group

representation for the state. In this article, all derivations of

the DIEKF are based on first-order approximations for error

propagation on the matrix Lie group by ignoring higher-order

terms. In future work, an interesting direction is to consider

second-order terms for error propagation to further improve

the estimation accuracy.

APPENDIX A

DISCRETIZED PROPAGATION

In the case where the target motion is known, we can dis-

cretize (3) without process noises to obtain the state estimate

at time tk , denoted as X̄
k
i . According to [12], the individual

states in X̄
k
i can be propagated from X̂

k−1
i as

G
T R̄k

i = G
T R̂k−1

i 00

(

Ék−11t
)

Gv̄k
i = Gv̂k−1

i + G
T R̂k−1

i 01

(

Ék−11t
)

ak−11t + g1t

Gp̄k
i = Gp̂k−1

i + Gv̂k−1
i 1t

+ G
T R̂k−1

i 02

(

Ék−11t
)

ak−1 (1t)2 + 1

2
g (1t)2

T p̄ fi

k = T p̂ f
k−1

i
(23)

where 0m(Æ) is defined as [18]

0m (Æ) =
( ∞
∑

n=0

1

(n + m)! (Æ)n
×

)

Ék−1 and ak−1 denote, respectively, the target’s angular

velocity and acceleration at time tk−1, and 1t = tk −
tk−1. To propagate the covariance, the state transition matrix

8(tk, tk−1), associated with At defined in (10), is computed

as

8 (tk, tk−1) =









I3 03 03 03

(g)× 1t I3 03 03

03 I31t I3 03

03 03 03 I3









.

Then, the covariance P̄k
i associated with À

k|k−1
i can be prop-

agated from P̂k−1
i as

Qk−1
i = Ad

X̂
k−1
i

cov
(

U
k−1

) (

Ad
X̂

k−1
i

)¦

Qk−1
d = 8 (tk, tk−1) Qk−1

i 8 (tk, tk−1) 1t

P̄k
i = 8 (tk, tk−1) P̂k−1

i 8 (tk, tk−1) + Qk−1
d (24)

where Uk−1 denotes Ut defined after (10) at time tk−1, and

cov(·) denotes the covariance.

In the case where the target motion is unknown, in addition

to (23) with Ék−1 and ak−1 replaced with É̂k−1 and âk−1, the

posterior estimates of Ék−1 and ak−1 from the previous time

tk−1, new equations are introduced as

É̄k
i = É̂k−1

i

āk
i = âk−1

i .

According to [12], the state transition matrix for agent i

associated with At defined in (11) is given as

8i (tk, tk−1) =

















I3 03 03 03 − ´15 03

(g)× 1t I3 03 03 − ´25 − ´26

03 I31t I3 03 − ´35 − ´36

03 03 03 I3 − ´45 03

03 03 03 03 I3 03

03 03 03 03 03 I3

















where the individual terms are computed as

91 =
∫ tk

tk−1

(

00

(

É̂k−1
i t

)

âk−1
i

)

×
01

(

É̂k−1
i t

)

tdt

Æl = 0¦
0

(

É̂k−1
i 1t

)

91

92 =
∫ tk

tk−1

00

(

É̂k−1
i t

)

Ældt

´15 = −
(

G
T R̂k−1

i

)

01

(

É̂k−1
i 1t

)

1t

´25 = −
(

Gv̄k
i

)

×

(

G
T R̂k−1

i

)

01

(

É̂k−1
i 1t

)

1t +
(

G
T R̂k−1

i

)

91

´35 = −
(

Gp̄k
i

)

×

(

G
T R̂k−1

i

)

01

(

É̂k−1
i 1t

)

1t +
(

G
T R̂k−1

i

)

92

´45 = −
(

T p̄k
fi

)

×

(

G
T R̂k−1

i

)

01

(

É̂k−1
i 1t

)

1t

´26 = −
(

G
T R̂k−1

i

)

01

(

É̂k−1
i 1t

)

1t

´36 = −
(

G
T R̂k−1

i

)

02

(

É̂k−1
i 1t

)

1t2.

Then, the covariance P̄k
i can be propagated according to (24)

with Ad
X̂

k−1
i

removed and Uk−1 denoting Ut defined after (11).
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APPENDIX B

QDEKF

For completeness, we include the QDEKF from our

previous work [7]. Let Xk
q = [T

G q̄k¦ Gvk¦ Gpk¦ T pk
f

¦]¦
denote the state of the target at time tk in the QDEKF

algorithm which uses quaternion as the representation of the

orientation. The QDEKF represents the orientation, velocity,

position, and nonrepresentative point separately (SO(3) × R
9).

The orientation, velocity, position, and nonrepresentative point

estimation errors are decoupled. The orientation error vector is

defined in the Lie algebra of SO(3) while the velocity error,

position error, and nonrepresentative point error are defined

as the arithmetic difference between the true and estimated

values. In contrast to DIEKF, where the error vector is defined

in the Lie algebra of SE3(3), the resulting matrix At in the

error dynamics in the QDEKF depends on the estimated state

(linearization point). Let X̄
k
i,q and X̂

k
i,q denote, respectively,

the prior and posterior estimate of Xk
q by agent i . Let P̄k

i,q and

P̂k
i,q denote, respectively, the corresponding prior and posterior

covariance. Let Xk
v,q = [Gvk¦ Gpk¦ T pk

f

¦]¦ denote the vector

quantities in Xk
q excluding the quaternion. Let X̄

k
v,i,q and X̂v,i,q

denote the prior and posterior estimates of X k
v,q by agent i .

Suppose that at time tk , each agent maintains a prior estimator

(X̄k
i,q , P̄k

i,q) after standard propagation. Now agent i aims to

update its local estimator (X̄k
i,q , P̄k

i,q) by using information

from it one-hop communication neighbors. The first step

is to fuse all the prior estimation pairs. We synchronize

the prior estimation pairs to reduce their uncertainty in a

weighted manner. The weight Ã j,q satisfies Ã j,q ∈ [0, 1] and
∑

j∈N k
i

Ã j,q = 1. For the estimation of Xk
v,q , we compute

X̆v,i,q =
∑

j∈N k
i

Ãk
j,q X̄

k
v, j,q .

To average the orientations represented by the quaternions,

we employ the method in [8] to provide a closed-form solution

of averaged quaternion T
G

˘̄qk

i by the following maximization

procedure:

T
G

˘̄qk

i = arg max
q̄∈S3

q̄¦Qq̄

Q =
∑

j∈N k
i

Ãk
j,q

(

T
G

¯̄qk
j

)¦
T
G

¯̄qk
j (25)

where T
G

¯̄qk
j is agent j’s prior estimation of T

G q̄k , and S3 denotes

the unit 3-sphere. Solving (25) in fact gives a quaternion

that minimizes the weighted sum of the orientation errors.

We define a compatible symbol ⊠ for computing the weighted

average and then we obtain

X̆
k
i,q =

[

T
G

˘̄qk

i

X̆
k
v,i,q

]

=
∑

j∈N k
i

Ãk
j,q ⊠ X̄

k
j,q .

For the covariance, it can be directly computed as P̆k
i,q =

∑

j∈N k
i

Ãk
j P̄k

j,q , since the quaternion error is represented by

the error of the rotational angle that is a vector quantity. The

weight Ãk
j is chosen to minimize the determinant or the trace

of P̄k
i,q .

The second step is to fuse the intermediate estimation pair

(X̆k
i,q , P̆k

i,q) with all the local measurements zk
j , ∀ j ∈ N k

i .

Let zk
i = hi (X

k
q) + wk

i be the measurement model, and

let V k
i denote the covariance of the measurement noise wk

i .

After linearization of zk
i about the current estimated state,

we compute

sk
i =

(

H k
i,q

)¦ (
V k

i

)−1
H k

i,q

yk
i =

(

H k
i,q

)¦ (
V k

i

)−1
z̃k

i

where z̃k
i = zk

i − hi (X̆
k
i,q) and H k

i,q = (∂hi/∂Xi )(X̆
k
i,q). Then,

the updated covariance P̂k
i,q and the state correction ¶X

k
i,q is

calculated as

P̂k
i,q =







(

P̆k
i,q

)−1
+
∑

j∈N k
i

sk
j







−1

¶X
k
i,q =

[

¶¹k
i

¶X
k
v,i,q

]

= P̂k
i,q

∑

j∈N k
i

yk
j

where ¶¹k
i is the correction for the orientation, and ¶X

k
v,i,q is

the correction for the vector quantities. Next, we update X̂i,q

by using ¶Xi,q . For the vector quantities Xv,i,q , it is calculated

by X̂
k
v,i,q = X̆

k
v,i,q + ¶X

k
v,i,q . For the quaternion, it is updated

according to

T
G

ˆ̄qk

i = T
G

˘̄qk

i ¹ ¶q̄i

where ¹ represents the quaternion multiplication, and

¶q̄i = 1
√

1 + 1
4
¶¹k

i

¦
¶¹k

i





1

2
¶¹k

i

1





is a unit quaternion. A compatible symbol ⊞ is defined for

updating all the states as

X̂
k
i,q =

[

T
G

ˆ̄qk

i

X̂
k
v,i,q

]

= X̆
k
i,q ⊞ ¶X

k
i,q .
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