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Abstract— Distributed Kalman filters have been widely studied
in vector space and have been applied to 2-D target state
estimation using sensor networks. In this article, we introduce
a novel distributed invariant extended Kalman filer (DIEKF) that
exploits matrix Lie groups and is suitable to track the target’s
6-DOF motion in a 3-D environment. The DIEKF is based on the
proposed extended covariance intersection (CI) algorithm that
guarantees consistency in matrix Lie groups. The DIEKEF is fully
distributed as each agent only uses the information from itself
and the one-hop communication neighbors, and it is robust to a
time-varying communication topology and changing blind agents.
In addition to assuming a known target model, we study the
case where the target’s true motion is unknown. To evaluate the
performance, first, we apply the algorithm in a camera network
to track a target pose. Extensive Monte-Carlo simulations have
been performed to analyze the performance. More importantly,
the performance is further verified with real data collected by
using a quadrotor with multiple ultra-wideband (UWB) anchor
receivers. Overall, the proposed algorithm is more accurate and
more consistent in comparison with our recent work on the
quaternion-based distributed extended Kalman filter (QDEKF).

Index Terms— Distributed estimation, information fusion,
invariant extended Kalman filtering, wireless sensor network.

I. INTRODUCTION

ENSOR networks with the ability of communication and
Sperception have a wide range of applications such as
target tracking, area monitoring, and search and rescue. For
the problem of target tracking, it is normally assumed that
the target state evolves according to a known noisy model.
Each agent can obtain observations of the target when the
target is inside its sensing region. The objective is to use these
measurements and the target dynamics to estimate its pose
(i.e., orientation and position) on each agent. The problem
can be solved in a centralized way where there exists a
fusion center that collects all sensors’ measurements and
estimates the state using a centralized extended Kalman filter
(EKF). Although this provides optimal accuracy, it requires
communications from all agents to the center and expensive
computational costs which makes the centralized algorithm not
applicable for larger sensor networks. Therefore, distributed
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algorithms that use only each agent’s own and communication
neighbors’ information draw more attention in both control
and robotics societies.

In distributed algorithms, each agent maintains an estimator
of the same target. To fuse the information from neighbors,
there is a need to handle the unknown cross-covariances
between different estimators on the agents. Naively fusing
these estimators yields an inconsistent estimator that will
diverge. The consensus [1] and the covariance intersection
(CI) [2] algorithms have been widely used to design a con-
sistent distributed EKF in the existing works. The consensus
algorithm as a tool of information distributed averaging has
been applied to the information pairs (i.e., information vectors
and matrices) [3], the measurements [3], and the hybrid of the
two in [4]. These approaches require multiple communication
iterations at each timestamp. To be more efficient, the CI
algorithm that computes a convex combination of the local
information pairs from one-hop communication is used to
design the DEKF. In [5], each agent first updates the esti-
mator using its own measurements, and then the resulting
information pairs are fused with the pairs from neighbors in
CIL In [6], CI is first used to fuse the prior information pairs
among neighborhoods and then the improved prior information
is updated with the local and neighboring measurements. Note
that all these algorithms work on vector space that has additive
errors. Besides, the effectiveness is only evaluated on the
tracking problem in 2-D cases. Although one can naively
extend the vector space algorithm to the 3-D case by using
the Euler angle representation for rotations, it suffers the
well-known Gimbal lock problem.

To address this issue, our recent work [7] introduces a
quaternion-based distributed EKF (QDEFK) algorithm where
the 3-D orientation is represented as a unit quaternion. CI is
for the first time extended to the 3-D space using “quaternion
average” [8]. Good performance is shown by tracking a drone
using a camera network. However, the filer is built upon the
error-state EKF where the position, velocity, and orientation
errors are decoupled [9], and the linearized error dynamics
Jacobians and the measurement Jacobians are still functions
of the estimated states. Then, the unobservable states can gain
spurious information and become observable by the filter. This
hurts the consistency and then the accuracy. Besides, we only
study the case where the target motion model is known.

Recently, a new type of EKF is designed based on the
invariant observer theory [10]. The estimation error is invariant
under the action of matrix Lie groups and satisfies a log-linear
autonomous differential equation with nice properties [11].
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In particular, in the case of SEg (3), the position, velocity, and
orientation errors are coupled. This invariant EKF (IEKF) has
been successfully applied to leg robot state estimation [12]
and simultaneous localization and mapping (SLAM) [13],
where the IEKF achieves promising performance, especially
with poor initialization. It is proved in these articles that the
observability of the linearized system is coincident with the
original nonlinear system.

The main contribution of the article is that it introduced
a novel distributed algorithm that utilizes the invariant error
associated with the matrix Lie group to address the 3-D target
estimation when the robots can only communicate with their
neighbors and see the target from time to time. The proposed
algorithm is fully distributed in that each agent estimates the
3-D motion of the target by using information from the neigh-
borhood. To the best of our knowledge, there is no existing
work in the literature that addresses 3-D motion estimation in
a fully distributed manner. Furthermore, we show that the pro-
posed algorithm can be extended to track the target even when
the target motion is unknown, which is also a contribution.

Motivated by the IEKF and QDEKEF algorithms, in this arti-
cle, we design a novel distributed IEKF (DIEKF) that utilizes
the invariant errors associated with the matrix Lie group for
solving the problem of distributed state estimation using sensor
networks in a 3-D environment. To design DIEKF, we extend
the CI in a vector setting to matrix Lie groups for the first time.
The proposed algorithm is fully distributed in that each agent
only estimates the 3-D motion of the target by using the infor-
mation among the neighborhood. Furthermore, we show that
the proposed algorithm can be extended to track the target even
when the target motion is unknown. The proposed algorithm
is first applied in simulation to track target 3-D motion in
a camera network. The algorithm is then implemented in
experiments to track the 3-D pose of a quadrotor using
multiple ultra-wideband (UWB) anchor receivers. As shown in
both Monte-Carlo simulations and experiments, the accuracy
and consistency of the DIEKF in both position and orientation
are improved as compared against the QDEKF [7]. The current
article expands on our preliminary result presented at [14] by
further considering the case of the unknown target motion and
providing experimental results.

II. PRELIMINARIES
A. Notation and Definitions
We denote 0,,%, as a m x n zero matrix, and I, (0,) as
n X n square identity (zero) matrix. Given a 3 x 1 vector
q=I[q1, 92, qg]T, its skew symmetric matrix is defined as

0 -q3 Q2
@Dy =] a3 0 —q1
—-q2  q1 0

and its projection function is defined as II(q) =
(1/g3)[q1, g2]. The Jacobian of the projection function is
computed as

oo _n
q3

H, (@ =— . )]
q3 0 1 _Q
q3
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In a network of M agents, we define a directed graph & =
(V, &) to represent the communication topology among agents,
where V indicates the set of all the agents, and £ stands for the
set of communication links defined as £ € V x V. Specifically,
if (j,i) € &, agent j is a neighbor of agent i, and agent i
can receive information from agent j. We assume that self
communication always exists, i.e., (i,i) € £, Vi € V. The set
of all the communicating neighbors of agent i is defined as

Ni={jlG,D) €€, jeVh

B. Problem Formulation

Consider a network of agents in the 3-D environment with
fixed and known positions aiming to cooperatively track a
moving target’s state. Each agent can communicate with its
neighbors and is equipped with an on-board camera. Denote
G, T, and C; as the global frame, the target frame, and ith
agent’s camera frame, respectively. Let (T;R € SO(3) be the
rotation matrix that describe the rotation from 7 to G. Let
Gy e R? and “p € R? be the target’s velocity and position
in the global frame. Let p¢, € R3 be the position of agent
i’s camera in the global frame. The target is modeled as a
point cloud where one of the feature points is chosen as the
representative point and the others as the nonrepresentative
points. Computer vision techniques can be used to distinguish
the representative point and the nonrepresentative points. The
representative point is the origin of the target frame while the
positions of the nonrepresentative points in the target frame are
unknown but fixed. The nonrepresentative points provide addi-
tional measurements and constraints and can hence improve
the estimation accuracy. For convenience, we assume that there
is only one nonrepresentative feature point. However, the state
can be augmented to include multiple nonrepresentative points.
Let Tp rE RR? be the position of the nonrepresentative feature
point in the target frame.

Here we consider two cases of state representation. First,
we consider the case where the agents have access to the
target’s motion inputs. In this case, the state of the target is
represented as

x=(fr % 9 Tp;) )
which includes the target’s 6-DoF pose ?R and ©p, the linear
velocity ®v in the global frame, and the 3-D position of a
nonrepresentative point in the target frame ' p 7~ The individual
dynamics of the state are given as

TR = 7R (@ = no)
G

b =SR@—ny)+g
Gp'=G,U
T = 0351 3)

where w and a are, respectively, the angular velocity and
the linear acceleration of the target in the target frame, the
corresponding n,, and n, are white Gaussian noises, and g is
the gravity vector.

Second, we consider the case where the agents do not have
access to the target’s motion inputs. We adopt a generic model
with constant angular velocity w and linear acceleration a in
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the target frame to propagate the target’s state. The dynamics
of the individual states are the same as (3) with n, and ny,
removed with additional dynamics for w and a as

=N,
a=ng, @

where w and a are treated as random walks driven by
zero-mean white Gaussian noises n, and n,. These two
parameters w and a become extended states to estimate. The
covariances of n, and n, become tuning parameters in the
filter design. The state of the target is represented as

X:(?R Gy Gp Tpf w a). 5)

In both cases, the measurements of the representative feature
at time #; (specifying the target’s position) and the nonrepre-
sentative feature obtained by agent i’s camera are given by,
respectively,

F=1 (C"pk) + nf
Z]}i =11 (C"pl}) + nl}l (6)

where nf and nl}l are the measurement noises of agent i’s
camera at time #;, assumed to be white Gaussian, and € pk and
Cipk denote, respectively, the representative feature’s position
(target’s position) and the nonrepresentative feature’s position
in agent i’s camera frame at time f;. The objective of our
work is to let each agent compute an accurate estimate of the
target’s state.

C. Lie Group and Lie Algebra

Here we briefly introduce the matrix Lie group theory that
we will use to derive our algorithm. The material is adopted
from [10]. A matrix Lie group G is a subset of square invertible
N x N matrices satisfying

INGQ
VaeG, aleg
Ya,b € G, abed.

Its Lie algebra is denoted as g, which is a vector space
with the same dimension as G. For convenience, let ()" :
RYM8 s g be the linear map that transforms the elements in
the Lie algebra to the corresponding matrix representation. The
exponential map is further defined as exp(¢) = exp,, (§") € G,
where & € RYM9 is an element in g, and exp,, is the matrix
exponential. The logarithm map, which is the inverse function
of the exponential map, is denoted by log(-), and satisfies
log(-) = (log,, ()Y : G — RYME  where log,, is the matrix
logarithm, and (-) is the inverse operator of (-)".

Let X; € G be the state of a system at time ¢. The dynamics

of the system are denoted as
d
EXI = fu, (X¢) (7

where u, is the input. Let X; and )_(, be two distinct trajectories
of (7). The right invariant error is then defined as

=X (Xt)il . 3)
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The error (8) is invariant to the right multiplication of any
element Y € G.

Let I; € G be the identity element of G. If the dynamics of
the system satisfy

Su, (XIXI) = fu, X)) X; + X fu, (Xt) = X fu, Aa) X;

the system is group affine. Then, the right invariant error
dynamics satisfy (d/d)n, = g, (1), where g, () =
Su,(n) — mifu,(Iy). Define A, as a matrix satisfying
8u, (exp(&) £ (AiEN)" + O(||& 1), and let & be the solution
of (d/dt)g, = A;&. From the log-linear property of the error
n:, given ng = exp(&p), for ¢ > 0, the error n; can be computed
from &; by

n: = exp (&) .

D. Matrix Lie Group Representation
As shown in [10] and [12], the state collection shown in (2)

forms a matrix Lie group SE»4 1 (3), where L = 1 denotes the
number of nonrepresentative points, represented as

GR Gy Gp Tp,

_ |01k 1 0 0 6x6

X= 0.5 0 1 0 e R>™.
0143 0 0 1

In the case that there are more than one nonrepresentative
point (i.e., L > 1), it is straightforward to expand X to
include the other nonrepresentative point(s). Let X; be the state
representation at time ¢, and X, be the state estimate. Define
the right invariant estimation error 7, given as

011, O, 013, 0Oua
0143, 1, 0, 0
0143, 0, 1, 0
013, 0, 0, 1

=X ()_(Z)_l =

where the individual terms are calculated as

AT
011 = 9R, ((T;Rt) €S0 (3)
912 = Gv, — 91101_)t € R3
013 = “pr — 011%p; e R?
Ou =Tps —011"py e R
Note that the orientation estimation error 61 is coupled in the
velocity estimation error 612, the position estimation error 613,
and the nonrepresentative point estimation error 614. It is worth
mentioning that there are closed-loop formulas to compute the
inverse and log function of an element in SE>,; (3) as well
as the exp function of a vector (see [10], [12]). Hence the
computation complexity for these quantities is mild. The error
vector &, defined in the Lie algebra of SE3(3), denoted by
se3(3), is given by

f=[en)” @7 @) ()] e
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where %-Rt’ Ev,, 5171’ and Spft S R3. Here, n; = exp(ét) =
exp,, (§), with £ given as

(“;:R,) x &y, éj[’t é:Pft

A_ | O1x3 0 0 0 6x6

5 =10 0o o oK O
0143 0 0 0

It is shown in [12] that (3) without noise is group affine, and
the dynamics of &, are given as

d
Tk = A — Adg U, (10)

where

03 0; 03 03
(&x 03 03 03
03 Iz 03 03
03 0; 03 03

and Adg denotes the adjoint of SE3(3) at X, given as

9R, 03x3  03x3 0343
(“0) R SR 035 033
(5pr) SR 0343 SR, 0343
(Tps), SR 03x3 033 SR
T T T
and U, = [nwt,nat,()lxé] . Note that here A; does not

depend on the estimated state, which improves the estimation
consistency and accuracy.

For the state shown in (5), it is no longer possible to find a
matrix Lie group representation that satisfies the group affine
property. Instead, we represent the state in SE3(3) x R® as a
combination of X; and {wy, a;}. Let &; and a; denote the state
estimates of, respectively, w; and a;. The estimation error in
SE3(3) xR® is given by a combination of 7, @, and d,;, where
@y = w; — @y and a; = a; — a;. The corresponding error in
se3(3) x RO is given by Eextt = [StT, @;,a;]". The dynamics
of the vector error are shown as

d
ESext,t = At‘i:ext,t - Ut (11)
where
(03 03 03 0; 9R, 03 |
(@x 03 03 03 ((Gl_)t) X) ?Rt ?Rt
A, = 0 I3 03 03 ( G_z)x) SRy 03
03 03 03 0 ((T'f,)x) 7R 03
0; 03 03 03 03 03
0; 03 03 03 03 03 |

and U, = [01x12, n;';, n;—t]T. Note that compared with [12], the
nonzero entries in the last two columns of A, have opposite
signs in our setting.
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III. PROPOSED ALGORITHM
A. Known Target Motion

Suppose that each agent knows the target motion. For
notation simplicity, let X¥ denote the target state at time #.
Also let X;‘ and Xf? denote, respectively, agent i’s prior and

posterior estimates of the target state at time #;. Let nflk_l =

XEXE) ™! = exp(e ), and nf¢ = XEKHT = exp(e™)
denote, respectively, agent i’s prior and posterior estimation
errors in SE3(3). Here éflk*l and gl.""‘ denote, respectively, the
prior and posterior estimation errors in se3(3). The covariances
associated with El.klk_l and Sik * are denoted, repectively, as ﬁik
and 13ik.

The first step is to propagate the posterior estimation pair
()A(f_l, Isik_l) to obtain the prior estimation pair ()_(i.‘, [_’ik).
As this step is standard, we include it in Appendix A.

In the second step, agent i aims to update its local estimate
by communicating with its neighbors. The goal is to fuse

all the prior estimates among the neighbors, i.e., ()_(';, 13]]5),

j € /\/f‘, to obtain an intermediate estimation pair ()v(f , f’ik).
By doing so, the agents with better estimates would help those
with poor estimates. For example, blind agents, which refer to
the agents that themselves and their one-hop communication
neighbors cannot see the target, would have poor estimates.
Because of the communication from previous timesteps, and
the fact that the agents are estimating the same target, )_(i.‘ and
X% would be correlated. However, in the distributed setting,
it is not possible to keep tracking the cross-correlations and
hence they are unknown. The CI algorithm [15] can be used
to fuse estimates with unknown correlations. However, the CI
algorithm is applicable in the vector space and it is not clear
how to fuse the Lie group elements )_(f.‘ and XX, which are
in SE3(3). Next, we extend the CI algorithm in the context
of error-state EKF in Lie groups to estimate the error states
represented in se3(3) and map back to SE3(3).

Recall that for each j € N, nlj.lk_l = Xk()_(’j.)’1 is the

klk—=1 _ log(nk-‘k_l

J J
the corresponding prior estimation error in se3(3). We will
klk—1

i >

prior estimation error in SE3(3), and & ) is

make use of )_(’;, j € /\/}’2 to identify the estimates of &
and then fuse these estimates. Note that for each j € ./\/ik

exp (64) = X6 (36) " = (%) (5¢) (%)

o () () (¢)
It follows that

)_(']‘- (Xf) : =exp (—éflkfl) exp (gl.klkfl) .
According to the Baker—Campbell-Hausdorff (BCH) for-
mula [16], the exponential map satisfies the property
exp(&1) exp(§2) ~ exp(§1+&2), if &1 and &, are small by ignor-
ing higher-order terms involving &; and &,. In the remainder of
the article, the approximation symbol denotes the fact that the
higher-order terms of small quantities are ignored. Then, (12)

can be rewritten as XX ()_(5.‘)’1 ~ exp(éklk*1 — éjl.“kfl), which

i
implies that Eiklk_l — Eflk_l

(12)

~ vk (yWky—1 :
~ log(X § (X{)™"), or equivalently
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klk—1 Sk klk—1 .
éil — log(X’;(Xk) h ~ £ K= for each j e NE As a
result, each log(Xk (Xk) b, j e ./\/ik, can be treated as one

klk—1

prior estimate of &; , and the corresponding estimation

error is given by & jl ~! with covariance }3/’.‘ . We can use the
CI algorithm to fuse all estimation pairs (log()_(]? ()_(1.‘)_1) 13k)

to get an intermediate estimation pair (§; ghlk=1 Pk) for &; klk=1

-1

-1
pk 2: k( pk
i j( j)

jeN}
E e S ok (ﬁj’_‘)_llog ((5(’]‘) (Xf)_l)
jeNt

where n;? e [0,1] and Zje/\/,- 715? = 1. Note that as
i € J\/I.k, the prior estimate of éiklk_l by agent i is simply
log()_(k()_(k)_l) = 012« with covariance pik, which is con-
sistent with the definition of Sklk ! While 715.‘ can be solved
from an optimization problem, a simplified algorithm can be
used to compute n;? according to [15]

1/ P}
- Xjen 1/TH{PY

The intermediate state estimate of XX in SE3(3), denoted by
X{.‘ , can be recovered from sik k1 by

XE = exp (éklk ]) Xk,

(13)
Now define aflk_l as the new error vector in se3(3) with )v(f‘
being the prior estimate of X* satisfying

exp( klk= 1) =Xk ()v(i‘)_1

Because we are going to apply the error-state EKF on the inter-

(14)

. I klk—1 .
mediate estimation error sil , we need the corresponding

covariance. Note that

Xk = exp (eflkfl) )V(k exp (Eklk 1) Xk

o |k—l) exp (éildk—l) exp (Eklk 1)

xp (67" exp (-

(]
>
iS
|A/;\/\/\
Fn P T O
=~
|
-
N~—"
Il
[¢]

= exp (¢ |k—1) ~ exp (sk|k 1 é__k\k 1)
N gklk Uy é__klk 1 gk|k 1 (15)
and Pk is the estimated covariance for éklk ! S.klk_l. As a

result, Plk can be directly used as the estimated covariance for
the new error sl].‘lkfl.

The _third step is to fuse agent i’s intermediate estimation
pair (Xk Pk) with all the measurements from itself and its

neighbors, i.e., representative feature measurements z ,Vje

2781

k
N; b

J\f k. defined by (6). To calculate the Jacobian associated with
/ denoted by H Jk first define
%))

as the linearization point in agent j’s camera frame, where gj R
and Gpcj together denote the 3-D pose of agent j’s camera
that is fixed and known. Then, the difference between the true
target’s position and the linearization point in agent j’s camera
frame is calculated as

and nonrepresentative feature measurements z* 7o Vj e

Cpt = R (95 (16)

Ci k jsk _ Cin (G k _ G Cin(Gsk G
jp' pl = GIR( )2 PC,) - GIR( P — PCj)
Cin (G k Gk
= G’R( p pi)-
Note that sklk ! is a column stack vector of s’g,k_l,
Kk—1  klk—1 Klk—1 k
ey - &y » and e, . Recall from (14) that ) C—

exp(el XK ~ (s + (¢} MXE, where ()" is defined
by (9). The p0s1t10n of the target can be calculated as Gpk ~
[+ (e D195k Hep ™ = (O et et s BE.
Hence the Jacoblan H kis calculated as

nf = my (93F) () [ (1), 0s 10

where H),(-) is defined by (1). To calculate the Jacobian
associated with the nonrepresentative feature, denoted by HX >

define
fR (GRk ( f) + G];ll_c _ Gpcj)

as its linearization point. Then, the difference between the true
position of the nonrepresentative feature and the linearization
point is given by

il = (17)

C./p’}i _ Cjﬁf

i

kklkl ity Gjgk ghlk—t
M;e + e, + fRfe Py

k . .
where M is given by

M* = —GRk ( ’}) (18)

(GRkT k) _
) x

Hence the Jacobian H ’;j is calculated as

v C;
= (31) 09 [

Note that at time #;, it is possible that some or even all
neighbors do not see the representative or nonrepresentative
feature. Let N C NF (respectively, N ]'Sl C N¥) be the subset
of agent i’s neighbors that can see the representative feature
(respectively, nonrepresentative feature) at time #;. Define I:Iik
by stacking all Hk j e N, and Hk je€ Nj]f, Let C¥ be a
block diagonal matr1x with the measurement noise covariances
ck j e Nk, and c§ j eN" Let S = A¥PF(HNT + Ck.
The Kalman gain K is calculated as

=t (i) (5)

and the measurement residual y is given by stacking z
n©ip), j € N¥, and Zf — (Y, j € N Then, the

(%)
X

05, 1. GRE].

19)
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TABLE I
DIEKF ALGORITHM WITH KNOWN TARGET MOTION

Propagation:

obtain )Zf using (23), calculate PF using (24)

Compute the intermediate update:

obtainX¥and P using (12) and (13)

Compute the measurement update:

obtainX¥ and P using (20) and (21)

klk—1

posterior estimate of ¢, , denoted as 8 , and its covariance

Pl.k are calculated as

Ny
g = K;y

- (112 — k* ﬁi") k. (20)

In the last step, we recover the estimated state Xi.‘ from éf‘

vk
and X analogously to (13) as
)A(k = exp ( ) Xk
Note that a similar procedure to (15) can be used to show that

-1 4 5 .
f}klk A e],‘lk — &%, Hence Pl.k can be used as the estimated

covariance for & . The proposed DIEKF algorithm with
known target motion is summarized in Tabel I.

20
k|k

B. Unknown Target Motion

Suppose that we do not know the motion of the target. Then,
the target’s angular velocity o* and linear acceleration a* will
be additional states to be estimated. For agent i, its prior and
posterior estimates of the target state at time 7 is given by,
respectively, X];xt ; = (XK, &, a*) and Xext ; = (XK, ok, aky.
The prior estimate’s extended error state in se3(3) x RO is

klk—1 klk—1 - -
defined as &7 = [T, (@ —aHT, (@ —aHTIT
where exp(g‘l.klkfl) xk ()_(f)’l. The posterior estimate’s
extended error state in se3(3) x R® is defined similarly as
klk klk N N
et = 16T (@ -ahT, @ =aHT]T

Xk ()A(f )~1. Let the covariances associated with &

, Where exp(giklk) =
klk—1 d §k|k

ext,i ext,i
be denoted as, respectively, 15,." and ﬁik.

The first step is to propagate the target state. The standard
propagation steps are included in Appendix A.

The second step is to compute the intermediate estima-
tion pair (Xextl, Pl.k). By following a similar procedure in
Section III-A, we have
- -1

~1
Sk k( pk
P = E T; (Pj)
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-1
chlk—1 3k k ( pk k
Eext,i =P z T (P/) €;

jeN}

vk _ klk—1 k

Xi = &xp (gext il ) X

vk sklk—1

w; = + Eext i,w

ok 2klk—1

a; = + Eext i,a

cklk—1 .
where Eext ; can be written as
sklk—1\T  gklk—1.T ,2klk—1 T sklk—1 12

[(Eext il ) (‘i:ext i w) (é:ext i a) with é:ext il € R,

ghlk—1 3 gklk—1 3
éjext,i,w € R and é:ext i,a e R . . . .
The third step is to fuse the intermediate estimate with
measurements. We define Jp and ij’/i the same as (16)
and (17). The corresponding Jacobian for the representative

feature H jk is calculated as

HJ]'{ =H, (C/l;lk) (ij) |:_ (Gﬁl/f)x, 05, Iz, 03, 03, 03i|

and the Jacobian for the nonrepresentative feature H Jli is
J
calculated as

Hj, =, (95) (oF)

where M!‘ is defined in (18).
In the last step, the same equations from (19) and (20) with
I, replaced with I;g are used to calculate K k gk and Pk

l’
Here &f = [(&F) 7, &F )T, (EF )T with &, e R12, & e

lU)

ME, 03, 13, GRF, 05, 03]

R3, and & Ei e R3. To calculate the posterior estimate Xext P =
(Xi.‘, c?)f.‘, &ll‘), the equations from (21) are adjusted as

vk _ Ak Yk

X; = exp (51',1) X;

ak _ vk | Ak

P =0 TEy
~k _ sk, ak
a; =a; + Eiq-

The DIEKF algorithm with unknown target motion is adapted
from that with known target motion and can be summarized
analogously by adapting Table I (hence omitted here).

IV. SIMULATION RESULTS

We apply the DIEKF algorithm to solve the distributed
state estimation problem where ten fixed agents equipped
with cameras are employed to track the 3-D motion of a
drone. The positions of the agents are known and the target’s
state is to be estimated. A nonrepresentative point is created
in addition to the center feature point of the target. The
position of the nonrepresentative point in the target frame is
unknown but is fixed. In this simulation, each camera has
a resolution of [752,480] and is assumed to have a noise
of 1 pixel. The maximum sensing depth of the cameras is
all set to be 5 m. Based on the positions of the cameras
and the drone, the status of which the agent can sense the
drone is shown in Fig. 1. It is clear that each one of the
agents is not able to see the target for a long period of
time. In our framework, the agents communicate every time
when they receive a measurement (e.g., 10 Hz in this camera
measurement case), but the communication frequency can
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Fig. 1. Target’s visibility to the agents. The red lines indicate the timesteps

when the agent can directly observe the target’s representative and nonrepre-
sentative features.

certainly be reduced as the communication graph is allowed
to be time-varying. Extensive Monte-Carlo simulations are
performed to validate the algorithm. The results are quantified
by rooted mean square error (RMSE) which evaluates the
accuracy, and normalized estimation error squared (NEES)
which evaluates the consistency. The comparison to the results
of our previous QDEKF algorithm [7] is also included. See
Appendix B for a brief introduction to the QDEKF. For a fair
comparison, the initial covariance of the error state in DIEKF
I_’io is converted from the initial covariance of QDEKF ]_’i? 4 by

PY ~ BI_’iOqBT, where

3 03 03 0s
N, L 03 0
B = “pY), 03 I3 03

(TP(}I.)X 0; 0 Ij

In addition, centralized implementations of both DIEKF and
QDEKEF, where a central station collects all data from each
agent, are included as baselines.

(22)

A. Results for Known Target Motion

We set the noise of the linear acceleration @ and angular
velocity a to be white Gaussian noise with standard deviations
of 6.6968 x 1073 rad/(sv/Hz) and 2 x 1072 m/(s’v/Hz),
respectively. To show the result of cooperative tracking,
we define a communication rate, which means that each agent
has a certain probability to communicate with other agents.
For instance, 20% communication means that each agent
has 20% probability to communicate with each one of the
other agents. Hence the set of communication neighbors are
randomly determined at every time step.

In the first test, we assume that the agents have knowledge
of the target’s ground truth state at the first timestep. So we
initialize our estimator with the ground truth and give it
a very small initial covariance. We conduct 50 Monte-
Carlo simulations and calculate the average result of the
50 runs among agents. Fig. 2 shows the averaged position
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Fig. 2. Average PRMSE and ORMSE with known target motion using DIEKF
at different communication rates without initialization errors.

TABLE I

AVERAGE RMSE FOR THE ESTIMATED TARGET POSE OVER 50 MONTE-
CARLO RUNS AND ALL TIMESTEPS

communication rate 10% | 20% | 30 % 40% cen
QDEKF PRMSE (m) 0.088 | 0.035 | 0.021 | 0.016 | 0.009
ORMSE (deg) | 1.410 | 1.229 | 1.168 | I1.131 1.029
DIEKE PRMSE (m) 0.039 | 0.019 | 0.014 | 0.012 | 0.009
ORMSE (deg) | 1.152 | 1.077 | 1.080 [ 1.061 1.060
8-
e DIEKF
sl QDEKF
i
w4t
=
o
2
0 . . . . . .
0 1000 2000 3000 4000 5000 6000
limesteps
4 : : : : :
DIEKF
3t QDEKF
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Fig. 3. Average PNEES and ONEES with known target motion using DIEKF
and QDEKF at 40% communication rate without initialization errors.

RMSE (PRMSE) and averaged orientation RMSE (ORMSE)
for different percentages of the communication as well as
the centralized scenario. A comparison with the QDEKF
algorithm in our previous work [7] is shown in Table II. The
last column shows the centralized results. It is clear that
DIEKF outperforms the QDEKF in estimating both position
and orientation. In addition, the estimation accuracy improves
as the communication rate increases and the centralized case
performs better than the distributed cases as expected.

We further show the NEES result at 40% communication
rate. As shown in Fig. 3, while the orientation NEES (ONEES)
appears to be similar, the position NEES (PNEES) for DIEKF
is closer to 3 as compared to the QDEKF algorithm. This
indicates the improvement of the consistency [17].
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Fig. 4. Average PRMSE and ORMSE with known target motion using DIEKF
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Fig. 5. Average PRMSE and ORMSE with known target motion using

QDEKEF at different communication rates with initialization errors.

In the second test, we assume that the agents do not have
perfect knowledge of the target’s ground truth state at the
first timestep. We initialize our state estimator to a value near
the ground truth and give it a larger covariance. Similarly,
we conduct 50 Monte-Carlo simulations on the DIEFK and
QDEKEF with the same initialized state estimate and equivalent
covariance. Figs. 4 and 5 show the result for both DIEKF
and QDEKEF using the same initialization, measurements, and
noise. Compared with the results of QDEKF, our DIEKF
algorithm obviously converge faster in the position estimation,
and is more accurate in general.

Overall, if the target motion is known, our algorithm can
accurately track the trajectory of the target in the 3-D space
and can maintain consistency.

B. Results for Unknown Target Motion

In the case where the target motion is unknown, we select,
respectively, 1 x 1072 rad/(s+/Hz) and 1.2x 10! m/(s2+/Hz),
as the standard deviations associated with n, and n, in (4).
It is clear from Figs. 6 and 7 that even if the target motion is
unknown, both algorithms can still track the target position
well, while the orientation error is larger. The DIEKF has
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Fig. 6. Average PRMSE and ORMSE using DIEKF with unknown target
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Fig. 7. Average PRMSE and ORMSE using QDEKF with unknown target
motion without initialization errors.

a better performance, especially for the orientation estimate.
The larger estimation errors compared to the case where the
target motion is known might be due to the inaccurate model
applied.

V. EXPERIMENTS

In this section, both the QDEKF algorithm and the DIEKF
algorithm are tested to track a quadrotor by using multiple
UWB anchor receivers. Infrared markers are attached to the
quadrotor for obtaining the ground truth data through the
VICON system. The effectiveness of the two algorithms is
verified with the measurement data obtained from the UWB
receivers. The performances of the two algorithms are also
compared. Centralized implementations of both DIEKF and
QDEKF are included as baselines. As in Section IV, both
the cases that the target motion is known or unknown are
considered.

The experiment is conducted within a 4 x 3 x 2 m
indoor space as shown in Fig. 8. A Crazyflie 2.1 quadrotor
is used as the target of interest. The quadrotor flies following
a predesigned figure “8” trajectory in addition to taking off and
landing. Eight UWB anchor receivers, named as agents 1-8,
are placed in the environment. The positions of the UWB
receivers in the world coordinate frame are shown in Table III.
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Fig. 8. Experimental environment.
TABLE III

UWB ANCHOR POSITIONS
ID | x[m] | y[m] | z[m]
0 -1.83 | -1.34 0.20
1 -1.88 1.10 1.73
2 2.02 1.10 0.20
3 1.98 -1.32 1.73
4 -1.83 1.34 1.73
5 -1.87 1.11 0.20
6 2.02 1.10 1.73
7 1.98 -1.32 0.20

Each UWB receiver is set to two-way ranging (TWR) mode
to obtain the distance measurements between itself and the
target. The measurements for every agent are tested to be
subject to a zero mean white Gaussian process noise with
a standard deviation of 0.15 m. The communications among
agents are randomly assigned according to the communication
rates.

In our experiment, only the representative feature on the
target is used and there is no nonrepresentative feature point.
The initial state estimate of both DIEKF and QDEKF is
set according to the ground truth. The initial covariance
corresponding to the error state in QDEKEF is set to be

PY, = diag (0.15%,0.15%, 0,20,
104,104,104, 1074, 1074, 10—4) .

For fair comparisons, the initial covariance of the error state
ﬁio in DIEKF is converted according to ﬁio ~ Bsﬁi?qB;'— ,
where Bj is changed from B in (22) by removing the last
row and column. The calculated Jocabians in Section III are
also changed accordingly by removing the corresponding line
and column which corresponds to the nonrepresentative feature
point.

In the case that the target’s motion is known, the built-in
IMU in the quadrotor is used to obtain the motion of the
target. The standard deviation of the process noise for the
accelerometer n, and the gyroscope n,, of the x—y—z axes are,
respectively, n, = [0.02,0.02,0.05]" m/s?>/+/Hz and n,, =

[0.005, 0.005,0.015]—r deg/s/~/Hz. All the data, including
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Fig. 9. Estimated trajectory using QDEKF and ground truth with known
target motion in the experiment.

Position estimation of DKF
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Fig. 10.  Estimated trajectory using DIEKF and ground truth with known
target motion in the experiment.

TABLE IV

AVERAGE RMSES FOR THE POSE ESTIMATION AMONG
EIGHT AGENTS IN EXPERIMENT

Communication rate 10% 20% 30% 40% cen
QDEKF PRMSE (m) 0.063 0.050 0.044 | 0.039 | 0.030
ORMSE (deg) | 12.597 | 11.897 | 9.918 | 9.764 | 9.720

DIEKF PRMSE (m) 0.058 0.043 0.037 | 0.034 | 0.028
ORMSE (deg) 6.901 7.200 6.963 | 6.515 | 6.340

IMU, UWB measurements, and ground truth are collected at
the frequency of 100 Hz. Figs. 9 and 10 show the ground
truth trajectory of the target and the estimated trajectory of
the target by agent 1 for, respectively, QDEKF and DIEKF at
40% communication rate. To further illustrate the result, the
PRMSE and ORMSE of agents 1-3 for the two algorithms
at 40% communication rate are shown in Figs. 11 and 12.
It can be observed from Figs. 9 to 12 that the trajectory of the
target can be well estimated by both algorithms with DIEKF
achieving better performance. Although the PRMSE of DIEKF
has a little bit larger overshoot than that of QDEKF at the
very beginning, DIEKF has a better performance over time
as seen in the overall trajectory. For further comparison, the
resulting average RMSE for QDEKF and DIEKEF in different
communication rates are shown in Table IV. The last column
shows the centralized results for both algorithms. It is obvious
that DIEKF outperforms QDEKF in all the cases in our
experiment.

We further apply the DIEKF to the case that the target’s
motion is unknown. According to the generic model (4), the
angular velocity » and linear acceleration a are assumed
to progress as random walks driven by Gaussian noises.
We select, respectively, [0.005, 0.005, 0.01]T deg/s/ +/Hz and
[0.4,0.4, 0.6]—r m/sz/\/m, as the standard deviations for
the x—y—z axes associated with n, and n, in (4). The initial
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Fig. 12. PRMSE and ORMSE using QDEKF with known target motion in
the experiment.

estimates of w and a are both set to 03 at the initialization.
Figs. 13 and 14 show, respectively, the RMSE of the estimated
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Fig. 13.  PRMSE and ORMSE using DIEKF with unknown target motion in
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Fig. 14. PRMSE and ORMSE using QDEKF with unknown target motion
in the experiment.

pose of agent 1 using DIEKF and QDEKEF. The results for
the other agents are similar to that of agent 1 and hence not
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shown here. As observed in Figs. 13 and 14, even though
the target’s motion is unknown, the position of the target
can be well tracked. While DIEKF can still track the target’s
orientation with larger errors than the known target motion
case, QDEKF fails to track the target’s orientation. DIEKF
achieves comparable performance compared to its centralized
counterpart, and the performance of DIEKF is better than
QDEKF.

VI. CONCLUSION AND FUTURE WORK

In this article, by using the matrix Lie group represen-
tation of the state, we introduced a new DIEKF algorithm
that yields consistent and accurate estimates of the target in
the 3-D space over the sensor networks given the target’s
motion. We also include the case that the target’s motion
is unknown, the algorithm can still track the position of the
target accurately. The proposed algorithm requires only one
communication iteration with its communication neighbors
at every time instant. Furthermore, the algorithm is shown
to be robust to changing communication topology and blind
agents. These properties ensure that our approach can have
a wide application in multiagent scenarios. The performance
of the proposed algorithm is tested via both Monte-Carlo
simulations and experiments. Some key performance measures
are compared with the algorithm that did not use the Lie group
representation for the state. In this article, all derivations of
the DIEKF are based on first-order approximations for error
propagation on the matrix Lie group by ignoring higher-order
terms. In future work, an interesting direction is to consider
second-order terms for error propagation to further improve
the estimation accuracy.

APPENDIX A
DISCRETIZED PROPAGATION

In the case where the target motion is known, we can dis-
cretize (3) without process noises to obtain the state estimate
at time f;, denoted as X;‘ . According to [12], the individual

states in )_(f.‘ can be propagated from )A(ff*1 as

GRE = GRI~'To (o} ar)

gk = Opk=1 4 SR, (a)k_lAt) d" A1+ gAr
Gl;l — Gplk 1+Gﬁ{(—1At
1
+GRMIT, (w’HAt) a1 (A1 + Sg (A1)
_ k ~ k—1
TPfi = Tpfi (23)

where ', (¢) is defined as [18]

— 1
rm<¢>>:(z( — ),<¢>)X)

k—1 k—1

10} and a denote, respectively, the target’s angular
velocity and acceleration at time f#;_j, and At = f —
tr—1. To propagate the covariance, the state transition matrix
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D (#, tx—1), associated with A; defined in (10), is computed
as

J B 03 0; 03
@At Iz 03 03
03 I:;Ar Iz 03
03 03 03 I3

D (tg, th—1) =

Then, the covariance Pk associated with ék‘k !

agated from Pl.k I as

can be prop-

-

Qf.‘71 = Adk{ﬁlcov (Uk_l) (Ad)‘dc—l)

05 = @ (. 1) OF
Pl = @ (i, 1) X' ® (1, 1) + 05!

'p (tg, tr—1) At
(24)

where UF~! denotes U, defined after (10) at time fx_;, and
cov(-) denotes the covariance.

In the case where the target motion is unknown, in addition
to (23) with *~! and a*~! replaced with ®*~! and a*~!, the
posterior estimates of @*~! and a*~! from the previous time
tx—1, new equations are introduced as

o = ot
=l
According to [12], the state transition matrix for agent i

associated with A; defined in (11) is given as

I3 03 03 03 —pBi5 03

@xAt Iz 03 03 —fBos — P

' _ 03 IAr I3 03 — B35 — B3
i (k, fi-1) = 03 03 03 Iz —pss 03

03 03 03 03 13 03
03 03 03 03 03 13

where the individual terms are computed as

173
A :/ (FO( k= lt) &f“l) T (c?)f“lt) tdt
Th— X

1

¢ =T] ( k= lAt)\Dl

Tk
Yy = / Iy ((I)lk_lt) ¢idt

Tk—1
Bis = — (?Rf‘l) I (@’F—lm) At
Bos = —( Rk 1) ( k= 1Al) At + (GRk 1) %
Bis = — (G—l{c) GRk 1) r, (Ak lAt) At + (GRk 1) v,

X

("8%) (FREY) T (af ' ar) A

B = — (?ly‘_l) I (d)f.‘_lAt)

Brs = — (?kf—l) r, (d){.‘—lm) NG

Then, the covariance 15;‘ can be propagated according to (24)
with Adgc-1 removed and U*=T denoting U, defined after (11).

G

Bas = —
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APPENDIX B
QDEKF

For completeness, we include the QDEKF from our
previous work [7]. Let X} = [(T;(jkT Gyk T Gk T Tp’}T]—r
denote the state of the target at time #; in the QDEKF
algorithm which uses quaternion as the representation of the
orientation. The QDEKEF represents the orientation, velocity,
position, and nonrepresentative point separately (SO(3) x R?).
The orientation, velocity, position, and nonrepresentative point
estimation errors are decoupled. The orientation error vector is
defined in the Lie algebra of SO(3) while the velocity error,
position error, and nonrepresentative point error are defined
as the arithmetic difference between the true and estimated
values. In contrast to DIEKF, where the error vector is defined
in the Lie algebra of SE3(3), the resulting matrix A; in the
error dynamics in the QDEKF depends on the estimated state
(linearization point). Let Xk and Xk denote, respectively,
the prior and posterior estlmate of Xk by agent i. Let Pk nd

denote respectively, the correspondmg prior and postenor

_[Gk GkTTk I

covariance. Let Xk P denote the vector

quantities in Xk excludlng the quatermon Let Xv iq and )A(U,,-yq
denote the prior and posterior estimates of X q by agent i.
Suppose that at time 7, each agent maintains a prior estimator
(Xl a 13]‘ ) after standard propagation. Now agent i aims to
update 1ts local estimator (Xl e _l’fq) by using information
from it one-hop communication neighbors. The first step
is to fuse all the prior estimation pairs. We synchronize
the prior estimation pairs to reduce their uncertainty in a
weighted manner. The weight 7 , satisfies 7;, € [0, 1] and
2 Nk g = = 1. For the estimation of XX ., we compute

= 2. X

jeNf

v,q9°

To average the orientations represented by the quaternions,
we employ the method in [8] to provide a closed-form solution

. =k . e
of averaged quaternion gq,- by the following maximization
procedure:

T <k
G = arg max ¢ Qg
ge8S3
AT o
Q= =, (5d) &4 (25)
jeNf

where gc? is agent j’s prior estimation of qk and S3 denotes
the unit 3-sphere. Solving (25) in fact gives a quaternion
that minimizes the weighted sum of the orientation errors.
We define a compatible symbol X for computing the weighted
average and then we obtain

vk qu Z Sk
g = | ok 7T/quj,q
v,i,q JG-/\/:‘k

PF =
1,q
> JeN* nkP @ since the quaternion error is represented by

the error of the rotational angle that is a vector quantity. The

For the covariance, it can be directly computed as
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weight n;.‘ is chosen to minimize the determinant or the trace

of qu

vTh)e second step is to fuse the intermediate estimation pair
(Xﬁ 7 Pk ) with all the local measurements z , Vj e J\/f‘
Let zf = h (Xk) + w be the measurement model, and

let Vik denote the covariance of the measurement noise wl{‘.

After linearization of zf.‘ about the current estimated state,
we compute

T -1
k k k k
Si = (Hi,q) (‘/l) H,
T -1
k k k ~k
ot = () (V) 3
sk _ _k _ . Xk ko _ ‘ Xk
where 7} = z; — h; (X} q) and H| g = (0h; /X)) (X] q). Then,
the updated covariance 13i’f p and the state correction SXZ{ q 1
calculated as
- -1

jeN}t
[ sok .
k i _ pk k
5Xi,q - 8Xk - Pt,q Z Yj
v,i,q jEJ\/,-k
where 59" is the correction for the orientation, and sxk is

v,i 4
the correction for the vector quantities. Next, we update X,’q

by using §X; ;. For the vector quantities X, ; 4, it is calculated

by Xv g = X]; gt 8Xﬁ i.¢- For the quaternion, it is updated
accordmg to
2k vk —
64i = G4i ® 83

where ® represents the quaternion multiplication, and

1
1 Eael.k

8‘?1' = —T
V14 150k sk |1

is a unit quaternion. A compatible symbol H is defined for
updating all the states as

7 2k
ok th vk k
Xi’q_ ot _Xi,qHHSXi’q
v,i,q
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