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Abstract— Understanding the intention of vehicles in the
surrounding traffic is crucial for an autonomous vehicle to
successfully accomplish its driving tasks in complex traffic
scenarios such as highway forced merging. In this paper,
we consider a behavioral model that incorporates both social
behaviors and personal objectives of the interacting drivers.
Leveraging this model, we develop a receding-horizon control-
based decision-making strategy, that estimates online the other
drivers’ intentions using Bayesian filtering and incorporates
predictions of nearby vehicles’ behaviors under uncertain
intentions. The effectiveness of the proposed decision-making
strategy is demonstrated and evaluated based on simulation
studies in comparison with a game theoretic controller and a
real-world traffic dataset.

I. INTRODUCTION

One of the major challenges in autonomous driving lies in
ensuring safe interaction with nearby traffic, particularly in
highway merging scenarios. Unlike the simple stop-and-go
strategy used in urban intersections with stop signs, the on-
ramp ego vehicle must cooperate with high-speed vehicles
and transition itself into the highway traffic in a secure, but
also timely manner. Moreover, the varied social behaviors of
different drivers can result in diverse responses to the merg-
ing intent. In this dynamic interaction, the ego vehicle must
actively search for available space or create opportunities for
merging. A cooperative driver on the highway may decelerate
or change lanes to facilitate the merging process, while a self-
interested driver may maintain a constant speed and disregard
the merging vehicle. Consequently, understanding the driving
intentions of the surrounding vehicles becomes crucial for the
ego vehicle to accomplish its task successfully.

Learning-based methods have been extensively explored
for autonomous driving applications. Without explicit in-
teraction behavior modeling, Reinforcement-Learning (RL)
based methods have been utilized to learn end-to-end driving
policies [1]. Additionally, researchers have employed imita-
tion learning to train decision-making modules that emulate
expert behavior, such as a Model Predictive Controller [2].
A comprehensive survey of RL methods in autonomous
driving research can be found in [3]. However, a significant
drawback of end-to-end RL-learned policies is the lack of
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interpretability; furthermore, their ability to generalize may
be limited by the interaction observed in the training data.

To address this challenge, researchers have explored the
integration of learning-based methods with planning and
control techniques. The Inverse Reinforcement Learning
(IRL) approach has been employed to learn the reward
function of human drivers for planning purposes [4], [5].
Additionally, neural network models, such as the Social
Generative Adversarial Network [6], have been implemented
in trajectory prediction modules for Model Predictive Control
(MPC) [7]. Novel network architectures have also been
designed to enhance driving motion forecasting [8], [9].
However, a common issue in these learned modules is their
limited generalization capability beyond the training dataset.

Game theoretic approaches have also been considered
to represent interactions between agents in traffic, such as
the Level-k method [10], and Stackleberg games [11]. A
Leader-Follower Game theoretic Controller (LFGC) has been
proposed specifically for modeling pairwise leader-follower
interactions in forced merging scenarios in [12]. Inspired
by the concepts in [12], we adopt a pairwise interaction
formulation to model vehicle cooperative behaviors, enabling
better scalability for scenarios involving multiple vehicles.

Differently from [12], to create a more comprehensive
model of human driving, we design a novel behavioral model
that incorporates various social psychology factors. Early
studies in social psychology have revealed that individuals
don’t always act solely to maximize their own rewards
in experimental games [13]. Drawing inspiration from the
concept of Social Value Orientation (SVO) [13], [14], and
its application in autonomous driving [15], we propose a
novel behavioral model that encompasses both the drivers’
inclination towards social cooperation and their individual
objectives as latent parameters. Leveraging this behavioral
model, we can estimate the underlying driving intentions of
the interacting vehicles and make appropriate decisions for
the ego vehicle in forced merging scenarios. The algorithms
we propose offer several potential advantages:

1) The behavioral model incorporates aspects of both the
driver’s social cooperativeness and personal objectives
and captures a rich and realistic set of behaviors.

2) The algorithm uses a Bayesian filter to infer the latent
driving intent parameters, thereby handling uncertain-
ties in the cooperation intent of interacting vehicles.

3) The decision-making module adopts a pairwise in-
teraction formulation and utilizes receding-horizon
optimization-based control, leading to good scalability
while ensuring safety for forced merging applications.



This paper is organized as follows: In Sec. II, we introduce
the problem setting and the forced merging scenario. We also
outline the assumptions made regarding vehicle kinematics,
action space, and driver’s action objectives. In Sec. III, we
present our behavioral model that incorporates the coop-
eration intents and personal objectives of the interacting
vehicles. In Sec. IV, we present the decision-making module
for the ego vehicle, that effectively handles uncertainties in
the driving intentions of the interacting vehicles. In Sec. V,
we demonstrate the ability of our behavioral model to repro-
duce realistic driving behaviors. Furthermore, we validate
the proposed controller through simulations in comparison
with the LFGC and real-world dataset evaluations. Finally,
the conclusions are given in Sec. VI.

II. PROBLEM FORMULATION

Fig. 1: Schematic diagram of the highway forced merging
problem: an ego vehicle (red) interacts with highway vehicles
(grey) to facilitate its merging.

In this paper, we focus on the design of a decision-making
module for autonomous driving applications in forced merg-
ing scenarios. The decision-making module plans high-
level behaviors such as acceleration, deceleration, or lane
changing, and generates desired reference trajectories for the
autonomous vehicle. Subsequently, a lower-level controller is
assumed to be available that can control the steering and
acceleration/braking of the vehicle to track the reference
trajectory. As illustrated in Fig. 1, the goal is to design a
behavior planner for the ego vehicle to merge into the target
highway lane while accounting for interactions with multiple
highway vehicles to ensure safe and effective merging.

A. Vehicle Kinematics Model

We use the following discrete-time model to represent the
vehicle kinematics, x(t+ 1)

vx(t+ 1)
y(t+ 1)

 =

 x(t) + vx(t)∆t
vx(t) + a(t)∆t
y(t) + vy(t)∆t

+ w̃(t), (1)

where x, vx, and a are the longitudinal position, velocity, and
acceleration, respectively; y and vy are the lateral position
and velocity; ∆t > 0 is the sampling period between discrete
time instances t and t + 1; w̃(t) ∈ R3 is a disturbance
representing unmodeled dynamics.

We assume all the vehicles, including both ego and high-
way vehicles, follow this dynamics model. For simplicity,
Eq. (1) can be rewritten as,

si(t+ 1) = f
(
si(t), ui(t)

)
+ w̃i(t), i = 0, 1, 2, . . . , (2)

where si(t) = [x(t), y(t), vx(t)]
T and ui(t) = [a(t), vy(t)]

T

represent the state and control of the i-th vehicle at time in-
stance t, respectively. In the following context, the subscript
i = 0 designates the ego vehicle, while i ∈ {1, 2, . . . } rep-
resents another vehicle with which the ego vehicle interacts.

B. Action Space

We assume vehicles take actions from the action set U
that comprises:

1) “Maintain”: keep the current lateral position and lon-
gitudinal speed;

2) “Accelerate”: keep the current lateral position and
accelerate at a m/s2 without exceeding the upper
speed limit vmax m/s;

3) “Decelerate”: keep the current lateral position and
decelerate at −a m/s2 without falling below the lower
speed limit vmin m/s;

4) “Steer to the left”: keep the current longitudinal speed
and steer to the left adjacent lane with a constant lateral
velocity of wlane

Tlane
m/s;

5) “Steer to the right”: keep the current longitudinal speed
and steer to the right adjacent lane with a constant
lateral velocity of −wlane

Tlane
m/s.

Note that we assume a complete lane change takes Tlane
sec to move into the adjacent lane with a lateral traveling
distance of lane width wlane, which is reflected by the above
actions. We also note that more acceleration and deceleration
levels |a| can be introduced to the action space, but we only
consider one level here for simplicity.

C. Driving Objectives

The driving objectives of each vehicle are reflected in the
reward function that depends on the following four variables:

1) Traffic rules c: The binary variable c ∈ {0, 1} is an
indicator for either getting into a collision with other
vehicles or getting beyond the road boundaries. A
safety bounding box is constructed that overbounds
each vehicle body in the x−y plane with certain safety
margins. The value of c = 1 indicates the overlap of
two vehicles’ bounding boxes or the overlap between
the vehicle’s bounding box and the road boundary. The
value of c = 0 indicates that the vehicle stays within
the road and is not in collision with other vehicles. The
visualization of the highway road boundaries is shown
in Fig. 1 using solid black lines.

2) Safety consciousness h: The variable h ∈ [0, 1] is
derived from the Time-to-Collision (TTC) with a
vehicle ahead in the same lane (assume constant speed)

h =
sat[Tmin,Tmax](TTC)− Tmin

Tmax − Tmin
,

where Tmin = 0.2 sec is the minimum reaction time,
Tmax = 3 sec stands for an adequate time headway, and
sat[a,b] (·) is a saturation function between the minima
a and the maxima b. The reward function depends on h
to encourage vehicles to keep an appropriate headway
distance and be conscious of potential collisions.



3) Traveling time τ : The variable τ ∈ [0, 1] reflects the
objective of shortening the traveling time, and is a
weighted summation of

τx =
x− x0

xf − x0
, τy = 1− 1

wlane
min (|y − yr| , wlane) ,

where x0 and xf (see Fig. 1) are the x−coordinates of
the beginning of the ramp and a goal placed a specified
distance away from the end of the ramp, respectively,
while yr corresponds to the center of the highway lane
that is next to the ramp. The reward for τx promotes
the highway vehicle reaching the end of the highway
in a shorter time. A higher reward for τy is imposed
for on-ramp vehicles to encourage merging action.

4) Control effort e: The reward for e ∈ [0, 1] promotes
vehicles to drive at a constant speed and to reduce
acceleration/deceleration. The variable e attains a value
of 1 under the action “maintain”; its value decreases
if the vehicle makes speed changes or lane changes.

III. SOCIAL BEHAVIOR MODELING

In this section, we introduce our behavioral model that
captures drivers’ interactive decision-making process during
the forced merge scenario. Inspired by social psychology
studies [13], [14], and its application in the context of
autonomous driving [15], we define the SVO-based reward
model in Sec. III-A. In Sec. III-B, we integrate this reward
model into the interacting vehicle’s decision-making process.

A. Social Value Orientation and Multi-modal Reward
We assume each vehicle i interacts pairwise with each

adjacent vehicle j ∈ A(i), where A(i) contains indices of all
nearby vehicles in the same lane or adjacent lanes as vehicle
i. We assume each driver aims to achieve their personal
objectives and, to a certain extent, is cooperating with others.
Hence, we model each driver’s intention using a multi-modal
reward function of the form

Ri

(
s(t), u(t)|σi, wi

)
= 1

|A(i)|
∑

j∈A(i) ·[
θ1(σi) · ri

(
si(t), ui(t), sj(t), uj(t)|wi

)
+θ2(σi) · rj

(
sj(t), uj(t), si(t), ui(t)|wj

)]
,

(3)

where u(t) = [uT
i (t), u

T
A(i)(t)]

T is the aggregated control
vector of all vehicles and uA(i)(t) is a column vector con-
catenating uj(t) for all j ∈ A(i); s(t) = [sTi (t), s

T
A(i)(t)]

T

reflects the state of the traffic at time t; |A(i)| is the
number of interacting vehicles; ri(·) and weights wi ∈ R3

model personal reward as a weighted summation of personal
objectives defined in Sec. II-C,

ri(si, ui, sj , uj |wi) = (¬c) · wT
i · [h, τ, e]T . (4)

The symbol ¬ in Eq. (4) is the logical negation operator and
σi in Eq. (3) takes one of four values corresponding to four
SVO categories and specifies values of θ1(σi) and θ2(σi):

(θ1, θ2) =


(0, 1) if σi = altruistic,

(1/2, 1/2) if σi = prosocial,
(1, 0) if σi = egoistic,

(1/2,−1/2) if σi = competitive.

(5)

Note that in Eq. (3), θ1 and θ2 correspond to the weight of
the self-reward ri and the weight of the other drivers’ net
reward, respectively.

In this multi-modal reward given by Eq. (3), there are
two latent parameters (σi, wi) that represent different driving
incentives: wi reflects different personal goals, and σi repre-
sents different social behaviors or levels of cooperativeness.
For instance, a driver with weights wi = [0, 1, 0]T in Eq. (4)
might consider driving at full speed thereby minimizing
the traveling time. As implied by Eq. (3), a “prosocial”
driver has equal weights for personal objectives and other
drivers’ objectives; hence such drivers intend to cooperate
with others in pursuing a large net reward. Note that wj

is the internal parameter of vehicle j and is a latent vari-
able affecting the decision of vehicle i if σi ̸= “egoistic”
and j ∈ A(i). Nonetheless, an altruistic or prosocial (or
competitive) driver of vehicle i is likely to improve (or
diminish) other drivers’ rewards in all three variables if they
do not know other drivers’ objectives wj a priori. Therefore,
we assume that during the i-th vehicle’s decision-making,
wj = [1/3, 1/3, 1/3] in Eq. (3) for j ∈ A(i).

B. Driving Behavior Model

In our behavior model, we assume the driver of vehicle i
aims to maximize the cumulative reward, defined as

Q′
i

(
s(t), γi|σi, wi

)
=

Eγj ,j∈A(i)

[
N−1∑
k=0

λkRi

(
s(t+ k), u(t+ k)

∣∣σi, wi

)]
,

(6)

where γi = {ui(t+ k)}N−1
k=0 ∈ UN is an action sequence

over a horizon of length N , and λ ∈ [0, 1] is a discount
factor. This cumulative reward is an averaged reward over all
possible action sequences γj of vehicles j ∈ A(i), assuming
a uniform distribution. Furthermore, the driver of vehicle i
is assumed to adopt a receding horizon control strategy, i.e.,

u∗
i (t) = argmax

u∈U
Qi

(
s(t), u|σi, wi

)
, (7)

where Qi(s(t), u) = Eγi∈Γ1(u) [Q
′
i(s(t), γi|σi, wi)] and

Γ1(u) =
{
γi = {ui(t+ k)}N−1

k=0 : ui(t) = u
}

contains all
the action sequences with the initial action u. Furthermore,
considering stochasticity in the decision-making process, a
policy distribution can be prescribed by adopting a softmax
decision rule [16]:

P
(
ui = u|σi, wi, s(t)

)
∝ exp

(
Qi(s(t), u|σi, wi)

)
. (8)

Based on the behavioral model defined above, the model
parameters σi, wi can affect action policies to represent dif-
ferent driving intentions. Since other drivers’ intentions are
not known in a given traffic scenario, the model parameters
σi, wi (i.e., drivers’ intentions) need to be estimated and
updated online so that the autonomous ego vehicle is able to
make optimal merging decisions.



IV. DECISION-MAKING UNDER COOPERATION INTENT
UNCERTAINTY

We now develop a decision-making algorithm to facilitate
the forced merging process. We first present a Bayesian filter
for the ego vehicle that estimates the latent variables σi, wi of
the interacting vehicles online. Considering the uncertainties
in estimation of other drivers’ intentions, we use a receding-
horizon control formulation to simultaneously address the
safety and performance aspects of the forced merging.

A. Bayesian Inference of Latent Driving Intentions

At each time step, we assume that the ego vehicle can
observe the traffic nearby the i-th interacting vehicle where
i ∈ A(0), and the observed traffic history is defined as

ξ(t) =
{
s(0), s(1), . . . , s(t),

uA(i)(0), uA(i)(1), . . . , uA(i)(t− 1)
}
,

where s(t) = [sTi (t), s
T
A(i)(t)]

T and uA(i)(t) is a column
vector concatenating uj(t) for all j ∈ A(i). The ego vehicle
utilizes the traffic history to estimate the posterior distribution
P (σi, wi|ξ(t+ 1)) of the i′th interacting vehicle’s latent
parameters using the following proposition:

Proposition 1. Given a prior P (σi, wi|ξ(t)) and assuming
that the disturbance w̃i(t) ∼ N (0, Q) is zero-mean Gaus-
sian, and the interacting drivers follow policy according to
Eq. (8), the posterior distribution can be computed as

P (σi, wi|ξ(t+ 1)) =
Λi (σi, wi, s(t), si)

Ni(t)
· P (σi, wi|ξ(t)) ,

(9)
where Ni(t) is a normalization factor and
Λi (σi, wi, s(t), si) admits the following form:

Λi (σi, wi, s(t), si) =
∑
u∈U

P (ui = u|σi, wi, s(t)) ·

P (w̃i(t) = si − f(si(t), u)) ,
(10)

where P (ui = u|σi, wi, s(t)) is defined in Eq. (8).

Note that the above recursive Bayesian filter can be
initialized using a uniform distribution and the covariance
matrix Q is a tunable parameter. Intuitively, if we consider
the current traffic state s(t) and the vehicle i is executing
policy defined in Eq. (8) conditioned on parameters σi and
wi, Λi (σi, wi, s(t), si) represents the transition probability
of the vehicle i moving from si(t) to si(t + 1) = si. The
proof is presented as follows:

Proof. Applying the Bayesian rule, the posterior admits the
following form,

P (σi, wi|ξ(t+ 1)) = P
(
σi, wi|s(t+ 1), uA(i)(t), ξ(t)

)
=

P(s(t+1)|σi,wi,uA(i)(t),ξ(t))
P(s(t+1)|uA(i)(t),ξ(t))

· P (σi, wi|ξ(t)) .

Moreover, the likelihood P
(
s(t+ 1)|σi, wi, uA(i)(t), ξ(t)

)
can be decomposed to P

(
sA(i)(t+ 1)|uA(i)(t), sA(i)(t)

)
·

P (si(t+ 1)|σi, wi, s(t)), whereby the posterior reduces to

P (σi, wi|ξ(t+ 1)) ∝
P (si(t+ 1)|σi, wi, s(t)) · P (σi, wi|ξ(t)) ,

and Λi (σi, wi, s(t), si) = P (si(t+ 1)|σi, wi, s(t)) is the
transition probability conditioned on the model parameters
σi, wi and the current traffic state s(t).

B. Receding-horizon Optimization-based Control

We leverage the receding horizon control to achieve safe
merging. The objective of successful merging without colli-
sions can be translated into maximizing predictive cumula-
tive reward,

Q′
0(s(t), γ0) =

1
|A(0)|

∑
i∈A(0)

E
σi,wi∼P(σi,wi|ξ(t)){

E
γi∼P(γi|σi,wi,s(t))

[
Q

′
0

(
s0(t), si(t), γ0, γi

)]}
,

(11)

where A(0) contains indices of all the vehicles near the ego
vehicle; γ0, γi are action sequences of length N correspond-
ing to the ego vehicle and the vehicle i; P (σi, wi|ξ(t)) is
the posterior distribution of the latent parameter estimated by
the Bayesian filter; similar to Eq. (8), P (γi|σi, wi, s(t)) is an
augmented policy distribution derived from Eq. (6) such that
P (γi|σi, wi, s(t)) ∝ exp (Q′

i(s(t), γi|σi, wi)); Q
′
0 (·) com-

putes the discounted cumulative reward of the ego vehicle
according to Q

′
0(s0(t), si(t), γ0, γi) =

∑N−1
k=0 λkr0(s0(t +

k), u0(t + k), si(t + k), ui(t + k)) and the one-step reward
function r0(s0, u0, si, ui) = (¬c) · τ encourages collision
avoidance and faster merging. Note that we can also cus-
tomize r0 for other implementation requirements, e.g., add
variable τ of other drivers to r0 to mitigate traffic congestion
introduced by the ego vehicle’s merging action.

Here, we model the ego vehicle interactions pairwise
with the nearby vehicles i ∈ A(0). For each interaction
vehicle i, the outer expectation in Eq. (11) considers all
possible combinations of parameters σi, wi that illustrate the
cooperation intent and personal objectives of the interacting
vehicle i. The inner expectation then takes an average return
of all plausible decisions by vehicle i conditioned on the
parameters σi, wi under our behavior model. The reward
function Q

′
0 (·) represents the cumulative gain of the pairwise

interaction between the ego vehicle and the vehicle i.
Based on the cumulative reward, the ego vehicle is con-

trolled using a receding horizon control strategy, i.e.,

u∗
0(t) = argmax

u∈U
Q0(s(t), u), (12)

where Q0(s(t), u) = Eγ0∈Γ1(u) [Q
′
0(s(t), γ0)] and Γ1(u)

contains all action sequences of length N with u being their
initial action.

Remark. Note that the reward computation in Eq. (11) is
not reactive. Our algorithm does not predict other vehicles’
reactions to the ego actions in the prediction. To address this
concern, we can also adopt a game-theoretic formulation
similar to [12], [15]. However, such a formulation is com-
putationally demanding in practice. Due to the formulation
of pairwise interaction in Eq. (11), our algorithm can solve
Eq. (12) effectively via an exhaustive search that scales
linearly with the number of interacting vehicles.



V. SIMULATION AND EXPERIMENTAL RESULTS

Here, we demonstrate the effectiveness of the proposed
behavioral model and the forced merging control algorithm.
The behavioral model is first demonstrated by reproduc-
ing real-world driving behaviors. Then, the effectiveness
of the proposed forced merging control algorithm is illus-
trated through simulation studies in comparison with the
LFGC [12] against interacting vehicles controlled by our be-
havior model and through a naturalistic driving dataset [17].

A. Reproducing Real-world Traffic

We leverage a naturalistic traffic dataset called the High-D
dataset [17]. It contains 60 traffic recordings among which
three recordings/scenes (58-60) have merging ramps. We first
calibrate the values of the model parameters a and Tlane from
the High-D dataset (see Fig. 2). The lane width wlane = 3.5 m
in High-D. We choose |a| = 6 m/s2 because the longitudinal
accelerations and decelerations of High-D vehicles are within
an interval of [−6, 6] m/s2. We select Tlane = 4 sec since the
majority of the vehicles in the High-D dataset take 4 ∼ 6 sec
to change lane.

Fig. 2: Histogram of vehicle driving statistics in High-D
dataset: (a) Longitudinal acceleration/deceleration (y-axis in
log scale). (b) Time duration for a complete lane change.

We aim to reproduce the real-world driving behavior (see
Fig. 3) in the recording segments using our behavioral model
with certain parameters σi, wi. Specifically, to reproduce the
behavior of a target vehicle i, we initialize our behavioral
model with its actual initial state si(t = 0) from the record-
ing segment. At each time step of 2 seconds, we assume a
virtual vehicle i is controlled by our behavior model, and can
observe the surrounding traffic s(t) = [si(t)

T , sA(i)(t)
T ]T .

With prescribed parameters σi, wi, the virtual vehicle i up-
dates its control decision every time step using the behavioral
model defined in Eq. (7) with MPC prediction horizon N = 3
spanning 6 seconds. The kinematics of the virtual vehicle
obeys Eq. (1) with a sampling rate of 25 Hz. Furthermore,
to introduce realistic lateral behaviors, the underlining lane
change trajectories are modeled by 5th-order polynomials as
proposed in [18].

As shown in Fig. 3a), the virtual truck 14 in green is
controlled by our behavioral model with parameters σ14 =
egoistic, w14 = [0, 2/3, 1/3]T . This combination of param-
eters implies the virtual vehicle cares about the self-reward
solely by the formulation in Eq. (3) and Eq. (5) and tries
to minimize the traveling time because it has the largest
weight 2/3 for τ in Eq. (4). As a result, the virtual truck
merges into the highway, and the trajectory in the green
boxes matches the actual target vehicle in the red boxes. As
shown in Fig. 3b), in front of the virtual vehicle 13, there
are two vehicles 12 and 15 driving slowly. With parameters

σ13 = competitive, w14 = [0, 1, 0]T , the behavioral model
controls the virtual vehicle to compete with the two vehicles
while minimizing its traveling time. This interaction results
in an overtaking behavior for the virtual vehicle which
qualitatively matches the actual traffic recording. These ex-
amples provide evidence of our behavioral model being able
to capture realistic driving behaviors. Note that there are
quantitative mismatches in positions between the reproduced
and the actual results in Fig. 3. Such mismatches partially
result from the model assumption in Eq. (1); improvements
to the kinematic model are left as future work.

B. Forced Merging in Simulation Compared with LFGC

We build up a highway with five vehicles (see Fig. 4) to
simulate a forced merging scenario. The ego vehicle interacts
with the surrounding traffic using the proposed controller
in Eq. (12). In this example, each time step corresponds
to one second and the lane change takes two time steps.
Other vehicles are controlled using our behavioral model
with different parameters σi, wi. All the traffic vehicles are
modeled as “egoistic” drivers, i.e., σi = “egoistic” for all
i = 1, . . . , 4. We assign vehicle i = 1, 3, 4 with weights
wi = [0, 0, 1] to encourage minimization of control effort
e such that the three vehicles will keep a constant speed.
Vehicle 2 with weights w2 = [1, 0, 0] tries to search for a
larger headway space h, therefore, changes to the inner lane
from t = 0 to t = 2 seconds.

We also deploy the LFGC to control the ego vehicle in
the same highway traffic setting, and the results are plotted
overlaid with ours in comparison (see Fig. 4). Note that the
parameters σi and wi of all vehicles 1-4 are not available to
ego vehicle 0. As a result, the ego vehicle needs to interact
with other vehicles and estimate their intentions online to
facilitate its merging. During the simulation, our ego vehicle
successfully infers the cooperative intents of vehicle 1, 2, 3
from their behaviors, and it decides to first accelerate to
surpass vehicle 1 from t = 0 to t = 1, and merges into
the gap created by the lane changing of vehicle 2.

We also provide our Bayesian filter estimation results (see
Fig. 5) at time step t = 1. Here, we confine the domain of
the weights wi into a finite subset W ⊂ [0, 1]3 as follows

W =

{
[0, 0, 1], [0, 1, 1]/2, [0, 1, 0], [1, 1, 1]/3,

[1, 0, 1]/2, [1, 1, 0]/2, [1, 0, 0]

}
, (13)

where each weight case is a normalized combination of zeros
and ones. Moreover, as shown in Fig. 5, the σi =“altruistic”
category stands alone and is not correlated with the reward
weights wi because the “altruistic” driver does not care
about the self-reward as modeled in Eqs. (3), (4) and (5).
Notably, the actual parameters σi, wi are among the ones
of the highest probability. Meanwhile, for vehicle 2, the
cases with the highest probability mostly emphasize traveling
time τ and headway distance h while those of vehicles 1, 3
emphasize control effort e. Using these probability distribu-
tions, the ego vehicle can predict the driving and cooperation
intent of vehicles 1, 2, 3, and plan its task accordingly, as
demonstrated in Fig. 4.



Fig. 3: Examples of reproducing real-world highway merging and overtaking behaviors: In each example, the target
vehicle is represented by a green box, and interacts with the traffic. All traffic vehicles are visualized as boxes of different
edge colors filled with grey. The trajectory of vehicles is shown in dashed lines with vehicles’ positions every second
marked as boxes in green (for the target vehicle) and circles filled with grey (for other traffic vehicles). The virtual vehicles’
trajectories are visualized using red dashed lines and red boxes and match the actual ones closely. a) A traffic of 12 seconds
is sampled from frames 1-300 in scene 59 from the High-D dataset. The trajectory of vehicle 14 is reproduced using our
behavioral model with σ14 = egoistic, w14 = [0, 2/3, 1/3]T , i.e., vehicle 14 is an egoistic driver, and minimizes the traveling
time by merging to the highway. b) A traffic of 14 seconds is sampled from frames 1-350 in scene 59 from the High-D
dataset. The trajectory of vehicle 13 is reproduced using our behavioral model with σ13 = competitive, w13 = [0, 1, 0]T ,
i.e., vehicle 13 is a competitive driver, and minimizes the traveling time by overtaking the leading vehicles.

Fig. 4: Forced merging comparison in a simulation environ-
ment: Ego vehicle controlled by our algorithm in the red box
interacts with the adjacent vehicles in colored boxes. The
LFGC is tested using the same highway traffic setting, and
the results are plotted overlaid using grey boxes. Four sub-
figures demonstrate the interactions at t = 0, 1, 2, 3 seconds,
respectively. After accelerating to surpass vehicle 1, our ego
vehicle properly merges into the highway at t = 3 seconds.

In comparison, the ego vehicle controlled by the LFGC es-
timates the probability of the vehicle being a leader or being a
follower, i.e., P (i = “leader”) = 1−P (i = “follower”) , i =
1, 2, 3, 4. However, due to the lane-changing behavior, the
LFGC cannot distinguish between vehicle 2 being a “leader”
and it being a “follower”, namely, P (i = “leader”) =
P (i = “follower”) = 0.5. This results in a deceleration
decision of the LFGC from t = 0 to t = 1. Seeing the
constant-speed vehicle 1 as a “leader”, the LFGC further
keeps a low speed from t = 1 to t = 2 and decides to merge
after vehicle 1 at t = 2 while the ego vehicle controlled by
our algorithm is in the middle of a lane change. This provides

Fig. 5: Bayesian filter estimations of posterior
P (σi, wi|ξ(t)): Three sub-figures visualize the parameter
belief of the interacting vehicles i = 1, 2, 3, respectively,
at t = 1 second. The x axis labels the SVO categories σi,
with the “altruistic” one standing alone. The y axis labels 7
different weights wi ∈ W with order listed in Eq. (13). The
heatmap presents a higher probability with a deeper blue
and the actual model parameters are circled in red.

evidence that, compared to the LFGC, our behavioral model
captures a richer and more realistic set of behaviors and the
controller integrated with our behavioral model can achieve
faster merging in certain cases.

C. Validation on Real-world Dataset

To validate our controller in real-world traffic, we consider
traffic segments (see Fig. 6) that contain merging vehicles
from the High-D dataset. Similar to Sec. V-A, we use wlane =
3.5 m, |a| = 6 m/s2, Tlane = 4 sec, and an MPC prediction
horizon N = 3 spanning 6 seconds. We initialize our virtual
ego vehicle using the initial state of the merging vehicle on
the ramp. Afterward, we control the virtual ego vehicle with
the proposed controller. We use the finite weight set W in
Eq. (13) for parameter estimation in the Bayesian filter.

As shown in Fig. 6, the virtual ego vehicle interacts with
two trucks 1 and 2 that drive approximately at constant
speeds. Thus, the ego vehicle first accelerates to create



adequate merge space and speed advantage, then successfully
merges between the two trucks. Notably, we can observe that
the ego vehicle’s trajectories are similar to the ones of the
actual target vehicles, shown in green boxes.

Fig. 6: Example of forced merging on the High-D dataset: the
virtual ego vehicle in the red box is initialized using the target
vehicle’s initial state. Four rows demonstrate the interactions
at t = 0, 2, 4, 6 seconds, respectively. After accelerating, the
virtual ego vehicle properly merges onto the highway.

Meanwhile, in the High-D dataset, there are in total of 75
merging vehicles in scenes 58-60. For each merging vehicle,
we repeat the aforementioned procedures to set up the test
environment and control the virtual ego vehicle to merge onto
the highway. The test results are presented in Table I. We
consider a test case a success if the ego vehicle successfully
merges without collisions. A failure case implies that the ego
vehicle either collides with other vehicles or fails to merge
by the end of the ramp. Our algorithm can achieve a 100%
success rate among the 75 test cases, and properly merges
the virtual vehicles into the naturalistic traffic.

TABLE I: High-D forced merging test results on scenes 58,
59, and 60: the traffic recordings in three scenes are recorded
during different time intervals on Wednesday 07/2018 in the
same highway location.

Scene Number 58 59 60 Total
Time Interval (AM) 9:15-9:22 9:23-9:31 9:37-9:53
Number of Merges 18 21 36 75

Success 18 21 36 75
Failure 0 0 0 0

Success Rate (%) 100 100 100 100

VI. CONCLUSION

In this paper, we proposed a driving behavioral model that
takes different social value orientations and personal objec-
tives into consideration. Based on the proposed behavioral
model, we developed a Bayesian filter that estimates online
the latent cooperation intent of the interacting vehicles, and
proposed a control algorithm that simultaneously achieves
the merging objective and ensures driving safety. Finally,

we demonstrate the effectiveness of the proposed behavioral
model and the forced merge control algorithm by repro-
ducing real-world trajectories and evaluating the merging
performance in simulations in comparison with the LFGC
and a naturalistic traffic dataset.
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