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Abstract

Two novel numerical estimators are proposed for solving forward-backward stochastic differential equations (FBSDEs) ap-
pearing in the Feynman-Kac representation of the value function in stochastic optimal control problems. In contrast to the
current numerical approaches, which are based on the discretization of the continuous-time FBSDE, we propose a converse
approach, namely, we obtain a discrete-time approximation of the value function, and then we derive a discrete-time estima-
tor that resembles the continuous-time counterpart. The proposed approach allows for the construction of higher accuracy
estimators along with an error analysis. The approach is applied to the policy improvement step in a reinforcement learning
framework. Numerical results, along with the corresponding error analysis, demonstrate that the proposed estimators show
significant improvement in terms of accuracy over classical Euler-Maruyama-based estimators. In the case of LQ problems, we
demonstrate that our estimators result in near machine-precision level accuracy, in contrast to previously proposed methods
that can potentially diverge on the same problems.

Key words: Stochastic optimal control problems; Generalized solutions of Hamilton-Jacobi equations; Non-Linear Control
Systems; Monte Carlo methods; Stochastic control and game theory; Parametric optimization.

1 Introduction

Feynman-Kac representation theory and its associ-
ated forward-backward stochastic differential equations
(FBSDEs) have been gaining traction as a framework to
solve nonlinear stochastic optimal control problems, in-
cluding problems with quadratic cost [5], minimum-fuel
(L1-running cost) problems [5], differential games [6],
as well as reachability problems [20]. Although FBSDE-
based methods have seen growing attention in both
the controls and robotics communities recently, much
of the relevant research originated in the mathematical
finance community [16,18].

The underlying foundation of Feynman-Kac-based FB-
SDE algorithms is the intrinsic relationship between
the solution of a broad class of second-order parabolic
or elliptic PDEs to the solution of FBSDEs (see, e.g.,
[24, Chapter 7]), brought to prominence in [19,4]. Both
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Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-
Isaacs (HJI) second order PDEs that are utilized for
the solution of, respectively, stochastic optimal control
and stochastic differential game problems, can thus be
solved via FBSDE methods, even when the dynamics
are nonlinear and the cost is non-quadratic. FBSDE
methods thus provide an alternative to the grid-based
solution of HJB/HJI-type PDEs, typically solved using
finite-difference, finite-element, or level-set schemes,
which are known for their poor scaling in high dimen-
sional state spaces (n ≥ 4).

Recently proposed methods [6,5] have suggested an it-
erative-FBSDE (iFBSDE) approach for solving stochas-
tic optimal control problems, where alternating forward
sampling passes and backward value function regression
passes iteratively improve the approximation of the op-
timal value function. While initial results demonstrate
promise in terms of flexibility and theoretical validity,
iFBSDE methods have not yet matured. For even mod-
est problems, iFBSDE methods can be unstable, pro-
ducing value function approximations which quickly di-
verge. Thus, producing more robust numerical methods
for solving FBSDEs is critical for the broader adoption
of iFBSDE methods for real-world tasks.
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The iFBSDE numerical methods broadly consist of two
steps: a forward pass, which generates Monte Carlo sam-
ples of the forward stochastic process, and a backward
pass, which iteratively approximates the value function
backwards in time. The value function approximation
is performed using least-squares Monte Carlo (LSMC),
which implicitly solves the backward SDE using para-
metric function approximation [16]. The approximate
value function fit in the backward pass is then used to
improve the sampling in an updated forward pass, lead-
ing to an iterative algorithm that improves the approx-
imation till convergence.

Although at first glance iFBSDE methods seem similar
to differential dynamic programming (DDP) techniques
[14], the approach is significantly different. DDP meth-
ods require first and second order derivatives of the dy-
namics, and directly compute a quadratic approxima-
tion of the value function using constraints on the deriva-
tives of the value function. By comparison, iFBSDE only
uses approximations of the value function at a distribu-
tion of states, using the derivative of the value function
to improve the accuracy of the estimator. The iFBSDE
methods are more flexible, in the sense that they do not
require derivatives of the dynamics and can be used with
models of the value function that are not necessarily
quadratic. Furthermore, for most DDP applications, a
quadratic running cost with respect to the control is re-
quired for appropriate regularization whereas iFBSDE
methods more easily accommodate non-quadratic run-
ning costs (e.g., of the class L1 or zero-valued), lending
to a variety of control applications [5].

In this work, we investigate the discrete-time approxi-
mation of the backward SDE in the context of solving
for the value function in the backward pass in stochas-
tic optimal control FBSDE methods. Although for some
special cases analytic solutions of the backward SDEs
over short intervals can be accommodated into the as-
sociated algorithms [16], for many nonlinear problems
analytic solutions are not available and numerical inte-
gration based on time-discretization is necessary. In the
currently available algorithms in the literature, Euler-
Maruyama approximations are employed for discretizing
the continuous-time FBSDEs [5], to solve for an approx-
imation of the continuous-time value function.

Instead of the direct application of the Euler-Maruyama
approximation on the Feynman-Kac FBSDEs, we formu-
late a discrete time problem with the Euler-Maruyama
approximation of the dynamics, cost, and value func-
tion, and then we derive discrete-time relationships us-
ing Taylor expansions that resemble their continuous-
time counterparts. By doing so, we arrive at a set of al-
ternative estimators for the value function.

The primary contributions of this paper are as follows:

• We propose a pair of alternative estimators for
the value function used in the backward pass of a
Girsanov-drifted Feynman-Kac FBSDE numerical
method.

• We characterize the theoretical bias and variance of

these estimators and show their theoretic superiority
to previously proposed estimators.

• We numerically confirm the theoretical results on rep-
resentative stochastic optimal control problems.

This paper expands upon the authors’ prior work in
[12], first by providing more details into how the pro-
posed estimators are constructed, and second, by provid-
ing detailed proofs for the stated theorems. In addition,
we discuss how the methodology can be adapted to im-
prove the policy in a reinforcement learning setting by
computing a similar approximation of the Q-value func-
tion. Finally, we present new results of numerical exper-
iments on a two-dimensional nonlinear problem and a
four-dimensional LQ problem, verifying our theoretical
claims about the accuracy of the proposed estimators.

2 Continuous-Time Feynman-Kac FBSDEs

In this section, we introduce the “on-policy” value func-
tion and show how its solution relates to the solution of
a pair of continuous-time forward-backward stochastic
differential equations (FBSDEs).

2.1 On-Policy Value Functions

Let µ(t, x) be a given bounded and measurable pol-
icy and let fµ(t, x) := f(t, x, µ(t, x)) and ℓµ(t, x) :=
ℓ(t, x, µ(t, x)) refer to the dynamics and the running cost
associated with some optimal control problem, respec-
tively. The on-policy value function V µ is defined as

V µ(t, x) = E[

∫ T

t

ℓµs ds+ g(XT ) |Xt = x], (1)

with the process Xs satisfying the forward SDE (FSDE)

dXs = fµ
s ds+ σs dWs, (2)

with initial condition X0 = x0, where fµ
s := fµ(s,Xs)

and similarly for ℓµs and σs, and where Ws is an n-
dimensional standard Brownian (Wiener) process. We
assume that fµ, σ, ℓµ, g are uniformly continuous in (t, x)
and Lipschitz in x, and that σ−1 exists and is uniformly
bounded on its domain. Furthermore, we assume that
the PDE

∂tv +
1

2
tr(σσ⊤∂xxv) + fµ⊤∂xv + ℓµ = 0,

g = v|t=T

(3)

has a classical solution, that is, the solution is contin-
uously differentiable in t, twice so in x, and satisfies
equation (3) everywhere 1 . A Feynman-Kac-type theo-
rem [24, Chapter 7, Theorem 4.1] establishes that V µ in
(1) is this classical solution to (3) and is the same for any

1 The theory can be relaxed to the case where only viscos-
ity solutions are available, at the cost of a more technical
analysis. For more details, please see [10].
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Brownian process Ws (i.e., the FSDE (2) has a unique
strong solution).

2.2 Off-Policy Drifted FBSDE

If we sample from the trajectory distribution generated
by the FSDE (2) with the on-policy drift term fµ

s we
can easily arrive at relationships which allow us to solve
for V µ either directly from (1) or via dynamic program-
ming. Instead, we present a result that shows that we
can sample from an FSDE with a different drift termKs,
and then solve a system of drifted FBSDEs to obtain the
same value function V µ.

Theorem 2.1 Let (Ω,F , {Ft}t∈[0,T ],P) be a filtered

probability space on which WP
s is Brownian and let Ks

be any Fs-progressively measurable process on the in-
terval [0, T ] such that Ds := σ−1

s (fµ
s − Ks) satisfies

Novikov’s criterion (EP[exp(1/2
∫ T

0
∥Ds∥2 ds)] < ∞) [1,

Theorem 15.4.2] 2 , and let

dXs = Ks ds+ σs dW
P
s , X0 = x0, (4)

admit a unique square-integrable solution Xs (see, e.g.,
[24, Chapter 1, Theorem 6.16]). Then, the forward SDE
(4) and the backward SDE

dYs = −(ℓµs + Z⊤
s Ds) ds+ Z⊤

s dWP
s , YT = g(XT ), (5)

have a unique, square-integrable solution (Xs, Ys, Zs)
such that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ⊤
s ∂xV

µ(s,Xs), a.e. s ∈ [0, T ],
(6)

holds P-a.s. where V µ is defined in (1). □

PROOF. The existence of a square-integrable solution
to (4) allows the conditions of [24, Chapter 7, Theo-
rem 3.2] to be satisfied for (5), guaranteeing a unique
square-integrable solution (Ys, Zs). Defining the process

WQ
t := WP

t −
∫ t

0

Ds ds, t ∈ [0, T ], (7)

Girsanov’s theorem guarantees that WQ
s is Brownian in

some measure Q [8, Chapter 5, Theorem 10.1]. With
a simple algebraic reduction, Girsanov’s theorem also
guarantees that Xs solves the FSDE (2) (where Ws =
WQ

s ), and that (Xs, Ys, Zs) solves the BSDE dYs =
−ℓµs ds + Z⊤

s dWQ
s with YT = g(XT ). Moreover, Theo-

rem 4.5 in [24, Chapter 7] establishes that (6) holds Q-
a.s., since V µ is the solution of (3). Novikov’s condition
on Ds yields that P and Q are equivalent measures [17],
and thus we can conclude that (6) holds P-a.s. as well.

2 The notation EP hereafter refers to the expectation taken
in the measure P.

Fig. 1. Illustration of the result of (6) for two separate appli-
cations of Theorem 2.1 showing that the joint distribution
(t,Xt, Yt) lies on the surface (t, x, V µ(t, x)). This holds re-
gardless of whether the drift term is on-policy (Ks = fµ

s ) or
off-policy (Ks ̸= fµ

s ).

When the samples of the FSDE are drawn using an ar-
bitrary drift Ks instead of fµ

s , the latter associated with
the target policy µ, we say that the FBSDE samples
“off-policy.” Off-policy sampling is useful for numerical
methods because one can arbitrarily sample in the for-
ward pass, then solve for the value function V µ associ-
ated with a target policy µ, where this policy can be es-
tablished during the backward pass. Figure 1 illustrates
Theorem 2.1. In the figure, V µ is the optimal value func-
tion and the cyan trajectories depict the optimal tra-
jectory distribution. When approximating the unknown
optimal value function, we can begin with an approxi-
mate drift that generates the x component of the orange
trajectory distribution 3 . As we solve the BSDE back-
wards along this distribution for the y component of the
joint distribution (Xs, Ys), we obtain new approxima-
tions for the optimal value function, and thus, new ap-
proximations for the optimal policy. At the end of the
backward pass we have a direct estimate of the yellow
surface around the distribution of the orange trajecto-
ries without ever having sampled from the optimal pol-
icy. A subsequent iteration samples forward utilizing a
newly estimated policy.

Remark 2.1 For any given process K̂s and some large
constant C > 0, it is possible to construct a process Ks

such that the corresponding process Ds = σ−1
s (fµ

s −Ks)
is a bounded process and, thus, satisfying Novikov’s con-
dition and the assumption in Theorem 2.1. To be more
specific, one can set

Ks =

{
K̂s, if ∥fµ

s − K̂s∥ < C,

K̃s otherwise,
(8)

with K̃s an arbitrary process satisfying ∥fµ
s − K̃s∥ < C;

3 Colors are best viewed in the electronic version.
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e.g., K̃s = fµ
s or K̃s = −fµ

s +

(
C

∥fµ
s −K̂s∥

fµ
s − K̂s

)
, etc.

3 Forward-Backward Difference Equations

In [5] the results of the continuous-time FBSDE theory
were reduced to a discrete-time approximation via the
Euler-Maruyama method. In this section we propose the
converse approach: we begin by forming a discrete-time
approximation of the dynamics and the value function,
then we derive relationships that resemble those arrived
at by taking the Euler-Maruyama approximation of the
FBSDE system (4)-(5). In doing so, we make two contri-
butions: first, we arrive at better estimators compared
to the direct discretization of the continuous time rela-
tions because we are able to exploit characteristics of the
discrete-time formulation obscured by the continuous-
time problem, and, secondly, we provide a discrete-time
intuition for the continuous-time theory.

3.1 Discrete-Time On-Policy Value Function

The interval [0, T ] is partitioned into N subintervals of
length ∆twith the partition {t0 = 0, t1 = ∆t, ..., tN−1 =
T − ∆t, tN = T}. We abbreviate the variables Xti =:
Xi for brevity. Using the Euler-Maruyama method [15],
let Fµ

i = f(ti, Xi, µi(Xi))∆t, Σi = σ(ti, Xi)(∆t)
1/2, and

Lµ
i = ℓ(ti, Xi, µi(Xi))∆t, where µi(Xi) = µ(ti, Xi). The

discrete-time on-policy value function is

V µ
i (x) = E[

N−1∑
j=i

Lµ
j + g(XN ) |Xi = x], (9)

for i = 0, . . . , N where the discrete time process {Xj}
obeys the difference equation

Xj+1 −Xj = Fµ
j +ΣjWj , (10)

with initial condition Xi = x, where {Wj}N−1
j=i

is a standard discrete time Brownian increment
process, that is, Wj ∼ N (0, In) is normally dis-
tributed, is Fj+1-measurable (for the given filtration
{Fj}j∈{i,...,N}), and {Wj} are mutually independent.

3.2 Drifted Taylor-Expanded Backward Difference

We now offer a discrete-time approximation of the
drifted off-policy FBSDEs.

3.2.1 FSDE Approximation

Overloading notation, let (Ω,F , {Fi}i∈{0,...,N},P) be a

discrete-time filtered probability space where WP
i is the

associated Brownian increment process. Define on this
space the difference equation

Xi+1 −Xi = Ki +ΣiW
P
i , X0 = x0, (11)

where the process {Ki}N−1
i=0 is defined such that each

Ki is Fi-measurable and independent of WP
i . For exam-

ple, Ki can be constructed using the function Ki(ω) =
Ki(Xi(ω), ξi(ω)), where {ξi} is some random process
where ξi is Fi-measurable and independent of WP

i (but
not necessarily independent of WP

i−1).

3.2.2 BSDE Approximation

We define the ideal discrete-time BSDE process as
{Yi := V µ

i (Xi)} and the ideal backward difference as
∆Yi := Yi+1 − Yi. For each backward step from i + 1

to i we assume we have an approximation Ṽ µ
i+1 ≈ V µ

i+1,
twice differentiable, and we wish to produce an ap-

proximation Ṽ µ
i ≈ V µ

i using least-squares Monte-Carlo
(LSMC) function regression [16]. We use two separate

estimators, Ŷi+1 ≈ Yi+1 and ∆Ŷi ≈ ∆Yi, to obtain the
combined estimator

Ŷi := Ŷi+1 −∆Ŷi, (12)

with the interpretation that Ŷi estimates Ṽ µ
i (Xi) ≈

V µ
i (Xi). Both Ŷi+1 and ∆Ŷi can be chosen according

to different approximation schemes; these choices are
investigated below.

3.2.3 Taylor-Based Backward Step Approximator

Similar to the definition (7) in the proof of Theorem 2.1,
we define the process

WQ
i := WP

i −Di, i = 0, . . . , N − 1, (13)

where Di := Σ−1
i (Fµ

i −Ki). A discrete-time version of
Girsanov’s theorem yields the existence of a measure Q
under which the process {WQ

i } is a Brownian increment
process [3, Theorem 1]. By substituting this process into
(11), note that {Xi} always satisfies the difference equa-
tion in (10) where {WQ

i } is the Brownian increment pro-
cess. Since the choice of Brownian increment process is
irrelevant to the definition of the on-policy value func-
tion, if we use the expectation EQ in (9), the solution
to the off-policy drifted difference equation (11) can be
used as the process in the definition of the on-policy
value function. It is easy to show that the on-policy value
function V µ

i satisfies the Bellman equation 4

V µ
i (Xi) = Lµ

i +EQ[V
µ
i+1(Xi+1)|Xi,Ki]. (14)

The proposed backwards step estimator is a simplified
form of

∆Ŷi = Ỹi+1 − (Lµ
i +EQ[Ỹi+1|Xi,Ki]), (15)

4 Although the rightmost term in the Bellman equa-
tion typically appears as EQ[V

µ
i+1(Xi+1)|Xi], we can sub-

stitute in EQ[V
µ
i+1(Xi+1)|Xi,Ki] = EQ[V

µ
i+1(Xi+1)|Xi]

because Xi+1 is independent of Ki given Xi in the
measure Q. Conditional independence can be demon-
strated by noting that EQ[1{(Xi+1,Ki)∈A×B}|Xi] =

EQ[1{Xi+F
µ
i +ΣiW

Q
i ∈A}|Xi]EQ[1{Ki∈B}|Xi].
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where Ỹi+1 is computed by a Taylor expansion to
be introduced shortly. Specifically, using the second-

order Taylor expansion of the function Ṽ µ
i+1(Xi+1) ≈

V µ
i+1(Xi+1) = Yi+1 centered at the conditional mean

of Xi+1 taken in the measure P, yields X
P
i+1 :=

EP[Xi+1|Xi,Ki] = Xi +Ki. Furthermore, we have that

Ṽ µ
i+1(Xi+1) = Ṽ µ

i+1(X
P
i+1+ΣiW

P
i ) = Ỹi+1+δh.o.t.i+1 , (16)

where,

Ỹi+1 := Y i+1 + Z
⊤
i+1W

P
i +

1

2
(WP

i )
⊤M i+1W

P
i , (17)

and Y i+1 := Ṽ µ
i+1(X

P
i+1), Zi+1 := Σ⊤

i ∂xṼ
µ
i+1(X

P
i+1),

M i+1 := Σ⊤
i ∂xxṼ

µ
i+1(X

P
i+1)Σi, and δh.o.t.i+1 includes the

third and higher order terms in the Taylor series expan-
sion. Substituting (13) into (17), then (17) into (15), and
simplifying 5 yields the proposed estimator,

∆Ŷi := −Lµ
i + Z

⊤
i+1W

P
i − Z

⊤
i+1Di

+
1

2
tr
(
M i+1(W

P
i (W

P
i )

⊤ − I −DiD
⊤
i )

)
.

(18)

Lemma 3.1 The choice (18) yields the residual error

∆Yi −∆Ŷi = δ∆Ŷ
i+1 −EQ[δ

∆Ŷ
i+1 |Xi,Ki], (19)

where, δ∆Ŷ
i+1 := V µ

i+1(Xi+1) − Ṽ µ
i+1(Xi+1) + δh.o.t.i+1 is the

sum of the error in approximation of V µ
i+1(Xi+1) and the

residual due to the Taylor expansion.

PROOF. The Taylor expansion (16) immediately gives

Yi+1 = Ỹi+1 + δ∆Ŷ
i+1 . Substituting into (15) yields ∆Ŷi =

−Lµ
i + Yi+1 − δ∆Ŷ

i+1 −EQ[Yi+1 − δ∆Ŷ
i+1 |Xi,Ki]. If we sub-

stitute Yi, Yi+1 into the Bellman equation (14) we have
Yi = Lµ

i + EQ[Yi+1|Xi,Ki]. After substituting this ex-
pression into the previous equation and rearranging we
arrive at (19).

3.3 Estimators of Ŷi+1

We propose two potential estimators for Ŷi+1 ≈
V µ
i+1(Xi+1). First, we propose using the value function

approximation associated with the previous backward

step to re-estimate the Ŷi+1 values,

Ŷ re-est
i+1 := Ṽ µ

i+1(Xi+1). (20)

Alternatively, we can also use the estimator

Ŷ noiseless
i+1 := Ỹi+1, (21)

5 Note that Di, Y i+1, Zi+1, and M i+1, are (Xi,Ki)-
measurable and thus come out of the conditional expecta-
tions EQ[·|Xi,Ki].

which ends up cancelling out the terms withWP
i , so that

(12) reduces to

Ŷ noiseless
i = Lµ

i + Y i+1 + Z
⊤
i+1Di

+
1

2
tr
(
M i+1(I +DiD

⊤
i )

)
. (22)

3.3.1 Error Analysis

The following theorem establishes the error of the two
estimators.

Theorem 3.2 For the estimator Ŷi := Ŷi+1 − ∆Ŷi,

where ∆Ŷi is defined in (18) and Ŷi+1 is defined in (20)
or (21), the bias is

EP[Yi − Ŷ re-est
i |Xi,Ki] = EQ[δ

∆Ŷ
i+1 |Xi,Ki]

−EP[δ
h.o.t.
i+1 |Xi,Ki], (23)

EP[Yi − Ŷ noiseless
i |Xi,Ki] = EQ[δ

∆Ŷ
i+1 |Xi,Ki]. (24)

Respectively, the variances of these estimators are

VarP[Ŷ
re-est
i |Xi,Ki] = VarP[δ

h.o.t.
i+1 |Xi,Ki], (25)

VarP[Ŷ
noiseless
i |Xi,Ki] = 0. (26)

PROOF. See Appendix A.

We call the estimation scheme used in [7] Euler-
Maruyama-noiseless (EM-noiseless) because it is arrived
at by applying EM to the continuous-time FBSDEs.
The following proposition offers a comparative analysis.

Proposition 3.3 The bias of the EM-noiseless es-

timator Ŷ em-nless
i := Ṽ µ

i+1(Xi+1) + Lµ
i + Z̃⊤

i+1Di,

where Z̃i+1 := Σ⊤
i ∂xṼ

µ
i+1(Xi+1), has the follow-

ing relationship with the Taylor re-estimate esti-

mator bias, EP[Yi − Ŷ em-nless
i |Xi,Ki] = EP[Yi −

Ŷ re-est
i |Xi,Ki] + 1

2D
⊤
i M i+1Di + h.o.t.. Moreover,

the variance of the EM-noiseless estimator is greater

than the Taylor estimator, VarP[Ŷ
em-nless
i |Xi,Ki] ≥

VarP[Ŷ
re-est
i |Xi,Ki] + ∥Zi+1 +M i+1Di∥2.

PROOF. See Appendix B.

The addition of the 1
2D

⊤
i M i+1Di term to the bias makes

the EM estimator generally more biased than the Taylor
estimator. This observation is made more precisely in
the following proposition.

Proposition 3.4 If the error in the approximation of
V µ
i+1(Xi+1) and the third and higher order terms in

the Taylor expansions of Ṽ µ
i+1(Xi+1) and ∂xṼ

µ
i+1(Xi+1)

are all relatively small in magnitude compared to
| 12D

⊤
i M i+1Di|, the bias of the EM-noiseless estimator

is greater than the bias of the Taylor estimator, that is,

|EP[Yi − Ŷ em-nless
i |Xi,Ki]| ≥ |EP[Yi − Ŷ re-est

i |Xi,Ki]|.
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PROOF. See Appendix C.

It is worth remarking that neither of the two estimators
are unbiased estimators but, as established in Proposi-
tion 3.3, the proposed Taylor estimator yields a smaller
variance compared to the EM-noiseless estimator. No-
tice thatDi := Σ−1

i (Fµ
i −Ki) is a consequence of the dif-

ference between the selection of K for forward sampling
and the drift associated with the policy of interest µ.
Therefore, ifD = 0 (i.e., ifK is always selected to be Fµ)
the estimators have the same bias (while the proposed
Taylor estimator always yields a smaller variance). How-
ever, in order to compare the two biases when D ̸= 0,
one needs to first fix other parameters of the underlying
computational algorithm. In particular, the error in the
approximation of V µ

i+1(Xi+1) and the third and higher

order terms in the Taylor expansions of Ṽ µ
i+1(Xi+1) and

∂xṼ
µ
i+1(Xi+1) depend on several factors including the

number of samples, the granularity of time discretiza-
tion, and the selection of basis functions for the rep-

resentation of Ṽ µ. Notice also that selecting Ki differ-
ent from Fµ

i can potentially improve numerical accuracy
(see, e.g., [11]) and, hence, in the development of numer-
ical algorithms | 12D

⊤
i M i+1Di| remains significant even

at near convergence of the algorithm. In comparison, the
error in the approximation of V µ

i+1(Xi+1) is expected to
become small near convergence and, furthermore, with

a proper selection of basis for the representation of Ṽ µ

(see, e.g., Proposition 3.1 below) other errors can be sup-
pressed in such a way that third and higher order deriva-
tives are either zero or relatively small. Hence, the pro-
posed Taylor estimator outperforms the EM estimator
in both its bias and in its variance by Proposition 3.4. In
particular, if we use a value function approximation rep-
resentation that is always guaranteed to be quadratic,
we have the following result.

Remark 3.1 If the value function approximation Ṽ µ
i+1

is quadratic, then δh.o.t.i+1 ≡ 0.

This is a consequence of the fact that if Ṽ µ
i+1 is quadratic

then its second order Taylor expansion is exact.

The magnitude of the error term δ∆Ŷ
i+1 depends on the

measure we use to interpret it. For numerical applica-
tions we sample from the measure P instead of Q, and

thus EQ[δ
∆Ŷ
i+1 |Xi,Ki] is difficult to interpret. We can use

the following result to characterize the value exclusively
in the measure P.

Proposition 3.5 The bias term appearing in Theo-
rem 3.2 is bounded as

|EQ[δ
∆Ŷ
i+1 |Xi,Ki]|

≤ exp(
1

2
∥Di∥2) EP[(δ

∆Ŷ
i+1)

2|Xi,Ki]
1/2. (27)

PROOF. See Appendix D.

Although the error bound in Proposition 3.5 suggests

that the bias grows rapidly with ∥Di∥, when this mag-
nitude is small (∥Di∥ ≤ 1) the first term in the product
on the right hand side of the inequality is bounded by√
e ≈ 1.65. This suggests that in the selection of Ki,

the magnitude of the difference Fµ
i −Ki should not be

significantly higher than the magnitude of the diffusion
as specified by Σi. This result justifies the assumption
that for appropriately chosen Ki, the proposed estima-
tors have relatively low bias and low variance. It also
provides some guidance on how to select Ki.

Furthermore, note that if Ki is selected so that the dif-
ference Fµ

i −Ki is bounded, e.g., using the modification
(8) to ensure that ∥Fµ

i −Ki∥ < C for some target drift

K̂i ≈ Ki and some (possibly, large) constant C > 0,
then, as discussed in Remark 2.1, the continuous analog
of the discrete-time problem will satisfy Novikov’s con-
dition, as required in Theorem 2.1.

4 Policy Improvement

In this section we discuss how we can improve the pol-
icy based on the value function parameters obtained
from the backward passes in the context of reinforce-
ment learning. According to the discussion in the previ-
ous section, we propose an alternative Taylor-based ap-
proach to policy improvement as follows. We begin with
a discrete approximation of the continuous-time prob-
lem and form the Q-value function at time i, given the
value function V µ

i+1, as usual,

Qi(x, u;V
µ
i+1) := Li(x, u)+E[V µ

i+1(X
x,u
i+1)|Xi = x], (28)

where Xx,u
i+1 := x+ Fi(x, u) + ΣiWi, corresponds to the

forward difference step with xi = x, ui = u and nor-
mally distributed Wi. For the optimal control problem
defined by (F,L,Σ, g,N), let V ∗, π∗ refer to the optimal
value function and the optimal policy, respectively. The
Bellman equation states that the optimal policy satis-
fies π∗

i (x) ∈ argminu∈U Qi(x, u;V
∗
i+1) and the optimal

value function satisfies V ∗
i (x) = minu∈U Qi(x, u;V

∗
i+1)

[21], so approximations of the Q-value function can be
utilized to obtain improved policies, especially when the
current approximation of the optimal value function is
nearly optimal.

Performing the same Taylor expansion as in (16), but

centered at X
x,u

i+1 := E[Xx,u
i+1] = x + Fi(x, u), we arrive

at the approximation Q̃i ≈ Qi given by

Q̃i(x, u; Ṽ
µ
i+1) := Li(x, u) + Y

x,u

i+1 +
1

2
tr(M

x,u

i+1), (29)

where M
x,u

i+1 := Σ⊤
i ∂xxṼ

µ
i+1(X

x,u

i+1)Σi and Y
x,u

i+1 :=

Ṽ µ
i+1(X

x,u

i+1).

Proposition 4.1 The error when using (29) to approx-
imate the Q-value function is

Qµ
i (x, u;V

µ
i+1)− Q̃µ

i (x, u; Ṽ
µ
i+1) = E[δ∆Ŷ x,u

i+1 ], (30)
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where δ∆Ŷ x,u
i+1 := V µ

i+1(X
x,u
i+1)− Ṽ µ

i+1(X
x,u
i+1) + δh.o.t. x,u

i+1 .

PROOF. TheTaylor expansion of Ṽ µ
i+1(X

x,u
i+1) centered

at X
x,u

i+1 is Ỹ x,u
i+1 := Y

x,u

i+1 + (Z
x,u

i+1)
⊤Wi +

1
2W

⊤
i M

x,u

i+1Wi,

so the r.h.s. of (29) is Li(x, u) + E[Ỹ x,u
i+1 ]. Substituting

Ṽ µ
i+1(X

x,u
i+1) = Ỹ x,u

i+1 + δh.o.t. x,u
i+1 and subtracting both

sides of (29) from (28) yields the desired result.

In practice, we seek a policy πi, improved over µi from
the previous iteration, with smaller Q-value function,

that is, Q̃i(x, πi(x); Ṽ
µ
i+1) ≤ Q̃i(x, µi(x); Ṽ

µ
i+1). A poten-

tial method is to use the policy

µ∗
i (x; Ṽ

µ
i+1) := min

u∈U
Q̃i(x, u; Ṽ

µ
i+1). (31)

Similarly to the previous section, when Ṽ µ
i+1 is quadratic

the Taylor expansion used in this estimator is exact.
Thus, this optimization will yield the exact optimal con-
trol solution for an LQ problem.

4.1 Iterative-FBSDE Numerical Method

The iFBSDE approach begins by approximating the dis-
tribution of {X0

i }Ni=0 in P0 through Monte-Carlo tech-
niques for some initial {K0

i }Ni=0. The initial target policy
µ0 can be specified in a variety of ways. One possibility
is to use whatever policy was used to generate {K0

i }Ni=0,

such that K0
i ≡ Fµ0

i , making the first backwards pass
an on-policy pass. Another possibility is to generate µ0

i

during the backward pass as µ0
i = µ∗

i (x; Ṽ
µ0

i+1), as in (31).

This is allowable because µ0
i is not needed during the

forward sampling pass and only needed after Ṽ µ0

i+1 is al-
ready estimated. The drift of the forward pass in the sub-
sequent iteration {K1

i }Ni=0 can be informed by the latest

optimizing policy µ∗
i (x; Ṽ

µ0

i+1). Alternatively, the estima-
tors and policy improvement techniques presented here
can be employed in methods such as those presented in
[11], which allow for the broad exploration of the state
space without a prior.

5 Numerical Results

In this section, we numerically evaluate and compare
the proposed Taylor estimators to the näıve Euler-
Maruyama estimators on three problems: two nonlinear
problems of state dimension n = 1 and n = 2, and an
LQ 4-dimensional problem. The estimators evaluated
in this section are summarized in Table 1.

It is worth noting that while the first two examples do
not enjoy the guarantees for the existence of classical so-
lutions, they are guaranteed to possess unique viscosity
solutions [24, Chapter 7, Theorem 4.4] and regardless of
the smoothness of the value function, the use of smooth
basis functions to produce function estimators is justi-
fied by the fact that a viscosity solution is an upper-

Table 1
Expressions for the proposed noiseless and re-estimate esti-
mators, as well as the competing Euler-Maruyama estima-
tors. The Euler-Maruyama Noisy estimator is an application
of Euler-Maruyama to (5), where its noiseless counterpart is
a variance-reduced version of the same, proposed in [5].

Estimator Ŷi

Taylor Lµ
i + Y i+1 + Z

⊤
i+1Di

Noiseless + 1
2
tr(M i+1(I +DiD

⊤
i ))

Taylor Ṽ µ
i+1(Xi+1) + Lµ

i − Z
⊤
i+1W

P
i + Z

⊤
i+1Di

Re-estimate + 1
2
tr(M i+1(I +DiD

⊤
i −W P

i W
P⊤
i ))

Euler-Maru. Ṽ µ
i+1(Xi+1) + Lµ

i + Z̃⊤
i+1Di

Noiseless [5]

Euler-Maru. Ṽ µ
i+1(Xi+1) + Lµ

i − Z̃⊤
i+1W

P
i + Z̃⊤

i+1Di

Noisy

(respectively lower-) envelope to a smooth sub- (respec-
tively super-) solution (see, e.g., [9] or [24, p. 197-8]).

We assume for each example thatKi is selected such that
the difference Fµ

i −Ki is bounded by some constant us-
ing a construction similar to (8) in Remark 2.1, thus en-
suring that the continuous analogs of the examples will
satisfy Novikov’s condition. Furthermore, for the exam-
ples with quadratic cost, we tacitly assume that they are,
in fact, only locally quadratic, growing linearly once ∥x∥
surpasses some (large) constant. This will ensure that
in the corresponding continuous SDE formulation the
dynamics and cost functions are uniformly Lipschitz, as
required by Theorem 2.1.

5.1 Nonlinear 1D Example

Consider the scalar optimal control problem with the
dynamics and cost

dXs =
(
0.1(Xs − 3)2 + 0.2us

)
ds+ 0.8 dWs, x0 = 7,

Jt(u[t,T ]) = E

[ ∫ T

t

(
12 |Xs − 6|+ 0.4u2

s

)
ds+ 25X2

T

]
,

over a time interval of length T = 10, with N = 200
timesteps. We compute a ground-truth optimal
value function V ∗

i and the optimal policy π∗ by di-
rectly evaluating the optimal Bellman equation us-
ing a finely-gridded state and control space. The
values for E[V ∗

i+1(X
x,u
i+1)|Xi = x, ui = u] are com-

puted by interpolating a convolution which evalu-
ates the expectation over Wi, namely, V ∗smooth

i+1 (x) =∑
j p(wj ; Σ)V

∗
i+1(x + wj), where p(wj ; Σ) is the prob-

ability density of ΣWi at wj . The optimal value func-
tion is visualized in Fig. 1 (the yellow surface), along
with two forward-backward trajectory distributions
{(Xi, Yi)} considered for evaluation: (a) the optimal

Koptimal
i = Fπ∗

i (the cyan trajectories), and (b) the

suboptimal Ksubopt
i = −0.2Xi (the orange trajecto-

ries). We ran a series of simulations to investigate how
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(a) Optimal forward sampling distribution generated
with Koptimal (On-policy estimators).
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(b) Suboptimal forward sampling distribution generated
with Ksubopt (Off-policy estimators).

Fig. 2. Heatmaps of experiments comparing the proposed estimators (Noiseless/Re-estimate) against näıve estimators (EM
Noiseless/EM Noisy), with varying numbers of basis functions and numbers of trajectory samples. Each matrix element is the
relative absolute error of the value function averaged over both 20 trials and N = 200 timesteps.

each estimator performs under different algorithmic
conditions, visualized in Fig. 2. Each trial has one for-
ward pass and a single backward pass, corresponding to
each estimator. For the purposes of fair comparison we
choose the target policy to be the ground-truth optimal

policy µ = π∗, but the next step value function Ṽ µ
i+1 is

the approximation produced by that estimator for the
previous step in the backward pass. Chebyshev polyno-
mials are used to locally approximate the optimal value
function. For evaluation we use the relative absolute
error (RAE) metric [23, Chapter 5]∑

x∈Ci
|Ṽi(x)− V ∗

i (x)|∑
x∈Ci

|
∑

y∈Ci

1
|Ci|V

∗
i (y)− V ∗

i (x)|
, (32)

where Ci := {xi − 3σi, . . . , xi + 3σi} and xi, σi are the
mean and standard deviation 6 of Xi. For each element
in Fig. 2 we average the RAE approximations (32) over
20 trials and N = 200 time steps.

The results show that in all cases the proposed Taylor-
based estimators perform as well as the Euler-Maruyama
estimators and for the vast majority perform signifi-
cantly better. Although the Taylor-based estimators
generally perform equally well, there are slight differ-
ences in how they perform under different conditions.
The Taylor-noiseless estimator seems to outperform
the re-estimate estimator when the number of trajec-
tory samples is low, and vice versa when the number
is high. Recall that the error analysis suggests that the
re-estimate estimator has lower bias but higher vari-

6 A small positive constant is used instead if the standard
deviation is excessively small.

ance than the Taylor-noiseless estimator. The simulated
results confirm the theoretical results, that is, when
the number of trajectory samples is low, high variance
makes the re-estimate estimator perform poorly, but
when there are enough samples to overcome the vari-
ance in the estimator, the low bias properties can result
in better accuracy. In typical usage, however, it is likely
that the low variance of the Taylor-noiseless estimator
is preferable for its simplicity and lower variance.

5.2 L1 Inverted Pendulum

Next, we compared the estimators on a 2-dimensional in-
verted pendulum problem with dynamics and cost given
as follows

dXs =

[
X2

s

0.4X2
s + 19.62 sin(X1

s ) + 19.62u

]
ds

+

[
0.04 0

0 0.4

]
dWs, u ∈ [−1, 1],

Jt(u[t,T ]) = E

[ ∫ T

t

0.2 |us| ds+ 4 (X1
T )

2 + 2 (X2
T )

2

]
,

where x0 = [0, π]⊤, and the discretization uses N = 64
time steps. Note that the cost is different than most
approaches to this problem since it has an L1 penalty
in terms of the control, making the optimal policy
bang-bang-bang, that is, always contained in the dis-
crete set π∗(x) ∈ {−1, 0, 1}. We used normalized
Chebyshev polynomials of degree 2 and lower for the
linear basis functions used in the representation of
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Ṽ µ. The suboptimal sampling distribution drift was

Ksubopt
i = F ∗

i + [k1W̃
1
i , k2W̃

2
i + k3(N − i)]⊤, where F ∗

i
is the problem dynamics driven by the optimal policy,

k1, k2, k3 are constants, and W̃ 1
i , W̃

2
i are normally dis-

tributed random variables independent of the problem’s
noise W 1

i ,W
2
i . The trajectory distributions include

M = 2, 000 trajectory samples.

The optimal and suboptimal forward distributions are
visualized in Fig. 3(a). A comparison of the RAE, now
computed over a 2-dimensional grid of the same width,
for each of the four estimators is visualized in Fig. 3(b).
The Taylor estimators again outperform the EM esti-
mators by at least an order of magnitude for most of
the backward pass on the suboptimal forward sampling
condition. Although for the optimal sampling condition
the EM Noiseless estimator performs about as well as
the Taylor estimators on average, it has higher variance
and is thus less reliable. Again, between the Taylor esti-
mators they show nearly equivalent performance.
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tirely overlapped by the blue Taylor Re-estimate lines.

Fig. 3. Comparison of accuracy of estimators on a 2-dimen-
sional inverted pendulum problem with L1 running cost.

5.3 LQ 4D Problem

We also tested the proposed estimators on a linearized
version of the 4-dimensional finite time cart-pole prob-
lem [22] with initial condition x0 = [0, 0, π/9, 0]⊤ and

σ = diag(0.01, 0.1, 0.01, 0.1). For the suboptimal sam-
pling distribution we selected a time-invariant linear

closed-loop feedback policy Ksubopt
i corresponding to a

feedback gain matrix
[
0 0 0.5 0.2

]
. The optimal policy

is found through the solution of the associated Riccati
equations (distributions visualized in Fig. 4(a)). The

value function model for Ṽ again used Chebyshev func-
tions of degree 2 and lower (15 basis functions). The
RAE metrics, now computed over a 4-dimensional grid
of the same width, (32) are visualized in Fig. 4(b).

As predicted by the error analysis, since this is an
LQ problem and the value function is in the class of
quadratic functions, the Taylor expansion-based esti-
mators are able to produce approximations of the value
function with accuracy near machine precision for both
conditions. For the suboptimal forward sampling the
EM estimators diverge quickly during the backward
pass. For the optimal forward sampling condition the
EM estimators did not perform as well compared to the
value function’s variance and their error is still several
orders of magnitudes higher than the Taylor estimators.

These results confirm that the proposed estimators are
able to achieve near perfect performance on the most
common problem in stochastic optimal control, namely,
linear dynamics with quadratic cost (LQ). Further, they
confirm that utilizing second-order derivatives of the
value function is crucial for accurate Girsanov-inspired
off-policy estimator schemes, contrary to what näıve ap-
plication of the theory would suggest.

6 Conclusion

We have demonstrated that Taylor-based estimators for
numerically solving Feynman-Kac FBSDEs are signifi-
cantly more accurate than näıve Euler-Maruyama-based
estimators through both error analysis and numeri-
cal simulation. These estimators are derived by using
higher-order Taylor expansions and follow the spirit
of the continuous-time Feynman-Kac-Girsanov formu-
lation. Both error analysis and numerical simulations
confirm that these estimators have very high accuracy
when applied to LQ problems. Further, in simulation,
the proposed estimators are orders of magnitude more
accurate than the EM estimators in both LQ and nonlin-
ear problems. This paper also proposes a method to use
the estimated value function parameters for generating
an improved policy in reinforcement learning problems.

Moving forward, the primary challenge with Feynman-
Kac FBSDE methods is how to produce robust iterative
methods. Although value function approximation can be
extremely accurate in the proximity of the initial forward
pass, even for off-policy methods, Runge’s phenomenon
begins dominating outside the sampling distribution. As
a consequence, when in some extrapolative region the ap-
proximation significantly underestimates the true value
function, policy improvement begins to fail and future
iterations are constructed based on divergent policies
with little room for improvement aside from starting
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(a) Trajectory distributions for the two sampling con-

ditions (Koptimal
i / Ksubopt

i ).
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(b) Accuracy of the value function approximation Ṽ µ
i

compared to ground-truth over time, evaluated via rel-
ative absolute error (32).

Fig. 4. Comparison of accuracy of estimators on a 4-dimen-
sional LQ approximation of cart-pole balancing system.

over. To overcome such difficulties, the proposed esti-
mators can be integrated into model-based policy gradi-
ent techniques. By alternating between small batches of
trajectory samples and small changes to the policy, the
trajectory distribution avoids moving significantly off-
policy into regions where the current policy and value
function estimates are invalid. Although our approach
appears similar to [13], our estimators utilize dynam-
ics models without differentiating the drift term or the
running cost, instead leveraging only derivatives of the
local value function with respect to the state. Further,
our estimators are more closely related to off-policy Bell-
man residual updates as discussed in [21]. Unlike typical
off-policy Bellman updates, however, our estimators are
nearly free from bias because they directly compensate
for taking a step off-policy.
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Appendix

A Proof of Theorem 3.2

PROOF. Using (12) and the result (19) of Lemma 3.1

we have Ŷi := Ŷi+1 − ∆Ŷi = Ŷi+1 − ∆Yi + (δ∆Ŷ
i+1 −

EQ[δ
∆Ŷ
i+1 |Xi,Ki]), and so the general expression for the

bias is EP[Yi − Ŷi|Xi,Ki] = EP[Yi+1 − Ŷi+1|Xi,Ki] +

EQ[δ
∆Ŷ
i+1 |Xi,Ki] − EP[δ

∆Ŷ
i+1 |Xi,Ki]. The variance of

the estimator is VarP[Ŷi|Xi,Ki] = VarP[Ŷi+1 − ∆Yi +

(δ∆Ŷ
i+1 −EQ[δ

∆Ŷ
i+1 |Xi,Ki])|Xi,Ki] = VarP[δ

∆Ŷ
i+1 − (Yi+1 −

Ŷi+1)|Xi,Ki], noting that we can drop the terms Yi and

EQ[δ
∆Ŷ
i+1 |Xi,Ki] because they are (Xi,Ki)-measurable.

For the re-estimate estimator we have Yi+1 − Ŷ re-est
i+1 =

V µ
i+1(Xi+1) − Ṽ µ

i+1(Xi+1), and for the noiseless estima-

tor we have Yi+1 − Ŷ noiseless
i+1 = V µ

i+1(Xi+1) − Ỹi+1 =

V µ
i+1(Xi+1)− (Ṽ µ

i+1(Xi+1)− δh.o.t.i+1 ) = δ∆Ŷ
i+1 , due to (16).

Plugging these two equalities into the general expres-
sions for the bias and variance yields the result.

B Proof of Proposition 3.3

PROOF. A separate application of Taylor’s theorem to

∂xṼ
µ
i+1(Xi+1) can be used to show that Z̃i+1 = Zi+1 +

M i+1W
P
i +Σ⊤

i δ̃
h.o.t.
i+1 , where δ̃h.o.t.i+1 is a new set of resid-

ual terms of order three and higher. Substituting Z̃i+1

and (16)-(17) into the definition of Ŷ em-nless
i , we have

Ŷ em-nless
i = Lµ

i +Y i+1+Z
⊤
i+1W

P
i + 1

2 (W
P
i )

⊤M i+1W
P
i +

δh.o.t.i+1 +Z
⊤
i+1Di+D⊤

i M i+1W
P
i +D⊤

i Σ
⊤
i δ̃

h.o.t.
i+1 . If we sub-

stitute this intoEP[Ŷ
em-nless
i −Ŷ noiseless

i |Xi,Ki] and then

substitute in (23)-(24), we get EP[Yi − Ŷ em-nless
i |·] =

EP[Yi − Ŷ re-est
i |·] + 1

2D
⊤
i M i+1Di −EP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·].

For the variance result, when taking the conditional vari-

ance of Ŷ em-nless
i , the terms Lµ

i , Y i+1, D
⊤
i Zi+1 drop out

because they are (Xi,Ki)-measurable, which results in

VarP[Ŷ
em-nless
i |·] = VarP[δ

h.o.t.
i+1 |·]+∥Zi+1+M i+1Di∥2+

VarP[
1
2 (W

P
i )

⊤M i+1W
P
i |·] +VarP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·] + · · ·

where the remainder of the terms are covariances be-
tween the terms in Ŷ em-nless

i . Since the second two
variance terms are non-negative, we now only need to
prove that covariance terms are not significantly large
and negative.

Every covariance term but one contains higher order
terms and is thus, by our assumptions, relatively small.
The only covariance term without higher order terms is
CovP[(Zi+1 + M i+1Di)

⊤WP
i ,

1
2 (W

P
i )

⊤M i+1W
P
i |·] = 0.

This can be shown by noting that, for any vector Z
and matrix M measurable with respect to the condi-
tional expectation and normally distributed vector W ,
Cov[Z⊤W,W⊤MW |·] =

∑
i,j,k E[WiWjWk|·]ZkMi,j ,

and since, for distinct i, j, k,E[WiWjWk|·] = E[W 2
i Wj |·] =

E[W 3
i |·] = 0 by the properties of normal vectors, then

E[WiWjWk|·] = 0 for all i, j, k.

C Proof of Proposition 3.4

PROOF. The assumptions of the proposition im-
ply that there exists a constant 0 ≤ α ≪ 1/7 such
that each of the following terms (conditioned on

(Xi,Ki)) |EQ[V
µ
i+1(Xi+1)−Ṽ µ

i+1(Xi+1)|·]|, |EQ[δ
h.o.t.
i+1 |·]|,

|EP[δ
h.o.t.
i+1 |·]|, |EP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·]| ≤ α| 12D

⊤
i M i+1Di|.

In light of these assumptions, the triangle inequal-

ity immediately yields that |EP[Yi − Ŷ re-est
i |·]| ≤

3α| 12D
⊤
i M i+1Di|. A second application yields |EP[Yi −

Ŷ re-est
i |·] − EP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·]| ≤ 4α| 12D

⊤
i M i+1Di|.

Applying the reverse triangle inequality gives the re-

sult |EP[Yi − Ŷ em-nless
i |·]| = | 12D

⊤
i M i+1Di + EP[Yi −

Ŷ re-est
i |·] − EP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·]| ≥ || 12D

⊤
i M i+1Di| −

|EP[Yi − Ŷ re-est
i |·] − EP[D

⊤
i Σ

⊤
i δ̃

h.o.t.
i+1 |·]|| ≥ (1 −

4α)| 12D
⊤
i M i+1Di| ≥ (1− 4α)| 12D

⊤
i M i+1Di| ≥ |EP[Yi−

Ŷ re-est
i |·].

D Proof of Theorem 3.5

PROOF. As a result of the change of measure defined
in the discrete-time Girsanov theorem [3, Theorem 1],

we have EQ[δ
∆Ŷ
i+1 |Xi,Ki] = EP[φ(Di,W

P
i )δ

∆Ŷ
i+1 |Xi,Ki],

where φ(d,w) := exp(− 1
2∥d∥

2 + d⊤w). By the Cauchy-

Schwartz inequality, we have that |EQ[δ
∆Ŷ
i+1 |Xi,Ki]| ≤

EP[φ(Di,W
P
i )

2|Xi,Ki]
1/2EP[(δ

∆Ŷ
i+1)

2|Xi,Ki]
1/2. Us-

ing properties of log-normal distributions [2] we have
EP[φ(Di,W

P
i )

2|Xi,Ki] = EP[exp(∥Di∥2)|Xi,Ki] =
exp(∥Di∥2), which, upon substitution, yields the desired
result.
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