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Abstract—1In this work, we propose the Informed Batch
Belief Trees (IBBT) algorithm for motion planning under
motion and sensing uncertainties. The original stochastic mo-
tion planning problem is divided into a deterministic motion
planning problem and a graph search problem. First, we solve
the deterministic planning problem using Rapidly-exploring
Random Graph (RRG) to construct a nominal trajectory
graph. Then, an informed cost-to-go heuristic for the original
problem is computed based on the nominal trajectory graph.
Finally, we grow a belief tree by searching the graph using
the proposed heuristic. IBBT interleaves batch state sampling,
nominal trajectory graph construction, heuristic computing,
and searching over the graph to find belief space motion
plans. IBBT is an anytime, incremental algorithm. With an
increasing number of batches of samples added to the graph,
the algorithm finds improved plans. IBBT is efficient by reusing
results between sequential iterations. The belief tree search is an
ordered search guided by an informed heuristic. We test IBBT
in different planning environments. Our numerical investigation
confirms that IBBT finds non-trivial motion plans and is faster
compared with previous similar methods.

I. INTRODUCTION

For safe and reliable autonomous robot operation in real-
world environments, consideration of various uncertainties
becomes necessary. These uncertainties may arise from an
inaccurate motion model, actuation or sensor noise, partial
sensing, or the presence of other agents operating in the same
environment. In this paper, we study the safe motion planning
problem for robot systems with nontrivial dynamics, motion
uncertainty, and state-dependent measurement uncertainty in
an environment with non-convex obstacles.

Planning under uncertainty is referred to as belief space
planning (BSP), where the state of the robot is characterized
by a probability distribution function (pdf) over all possible
states. This pdf is commonly referred to as the belief or
information state [1], [2]. A BSP problem can be formulated
as a partially observable Markov decision process (POMDP)
problem [3]. Solving POMDPs for continuous state, control,
and observation spaces, is, however, intractable. Existing
methods based on discretization are resolution-limited [4],
[5]. Optimization over the entire discretized belief space to
find a path is computationally expensive and does not scale
well to large-scale problems.
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Planning in infinite-dimensional distributional (e.g., belief)
spaces can become more tractable by using sampling-based
methods [6]. For example, belief roadmap methods [7]
build a belief roadmap to reduce estimation uncertainty; the
rapidly-exploring random belief trees (RRBT) algorithm [8]
has been proposed to grow a tree in the belief space.
Owing to their advantages in avoiding local minima, dealing
with nonconvex obstacles and high-dimensional state spaces,
along with their anytime property, sampling-based methods
have gained increased attention in the robotics commu-
nity [9], [10], [11], [12], [13], [14].

Robot safety under uncertainty can be also formulated as a
chance-constrained optimization problem [15], [16], [17]. In
addition to minimizing the cost function, one also wants the
robot not to collide with obstacles, with high probability.
By approximating the chance constraints as deterministic
constraints, references [15], [16], [17] solve the problem
using an optimization-based framework. However, those ap-
proaches lack scalability with respect to problem complex-
ity [18], and the explicit representation of the obstacles is
usually required.

In this paper, we focus on sampling-based approaches
similar to [8], [9], [19]. One challenge of sampling-based
algorithms for planning under uncertainty is the lack of
the optimal substructure property, which has been discussed
in [8], [20], [21]. The lack of the optimal substructure
property is further explained by the lack of total ordering
on paths based on cost. Specifically, it is not enough to only
minimize the usual cost function — explicitly finding paths
that reduce the uncertainty of the robot is also important
(see Figure 1(a)). The RRBT algorithm proposed in [8§]
overcomes the lack of optimal substructure property by
introducing a partial ordering of belief nodes and by keeping
all non-dominated nodes in the belief tree. Note that without
this partial ordering, the methods in [9], [10], [11], [19]
may not be able to find a solution, even if one exists.
Minimizing the cost and checking the chance constraints
can only guarantee that the existing paths in the tree satisfy
the chance constraints. Without searching for paths that
explicitly reduce state uncertainty, it may be difficult for
future paths to satisfy the chance constraints.

In this paper, we propose the Informed Batch Belief Tree
(IBBT) algorithm, which improves over the RRBT algorithm
with the introduction of batch sampling and ordered graph
search guided by an informed heuristic. Firstly, IBBT uses
the partial ordering of belief nodes as in [8]. Compared
to [9], [10], [11], [19], IBBT is able to find sophisticated
plans that visit and revisit the information-rich region to gain



information. Secondly, RRBT uses unordered search like
RRT* while IBBT uses batch sampling and ordered search.
RRBT adds one sample each time to the graph randomly.
As shown in [22] and [23], ordered searches such as FMT*
and BIT* perform better than RRT*. Thirdly, RRBT only
uses the cost-to-come to guide the belief tree search while
IBBT introduces a cost-to-go heuristic and uses the total path
cost heuristic for informed belief tree search. After adding a
sample, RRBT performs an exhaustive graph search. Thus all
non-dominated belief nodes are added to the belief tree. With
batch sampling and informed graph search, IBBT avoids
adding unnecessary belief nodes. Thus, IBBT is able to find
the initial solution in a shorter time and has better cost-time
performance compared to RRBT.

II. RELATED WORKS

In [7], the problem of finding the minimum estimation
uncertainty path for a robot from a starting position to a
goal is studied by building a roadmap. In [8] and [24],
it was noted that the true a priori probability distribution
of the state should be used for motion planning instead
of assuming maximum likelihood observations [7], [25].
A linear-quadratic Gaussian (LQG) controller along with
the RRT algorithm [26] was used for motion planning in
[24]. To achieve asymptotic optimality, the authors in [8]
incrementally construct a graph and search over the graph to
find all non-dominated belief nodes. Given the current graph,
the Pareto frontier of belief nodes at each vertex is saved,
where the Pareto frontier is defined by considering both the
path cost and the node uncertainty.

In [10] it is shown that high-frequency replanning is
able to better react to uncertainty during plan execution.
Monte Carlo simulation and importance sampling are used
in [11] to compute the collision probability. Moving obstacles
are considered in [18]. In [27], state dependence of the
collision probability is considered and incorporated with
chance-constrained RRT* [9], [28]. In [29], a roadmap search
method is proposed to deal with localization uncertainty;
however, solutions for which the robot needs to revisit a
position to gain information are ruled out. Distributionally
robust RRT is proposed in [19], [30], where moment-based
ambiguity sets of distributions are used to enforce chance
constraints instead of assuming Gaussian distributions. Sim-
ilarly, a moment-based approach that considers non-Gaussian
state distributions is studied in [31]. In [32], the Wasserstein
distance is used as a metric for Gaussian belief space
planning. The algorithm is compared with RRBT. However,
from the simulation results, RRBT usually finds better (lower
cost) plans and thus has a better convergence performance.

Other works that are not based on sampling-based methods
formulate the chance-constrained motion planning problem
as an optimization problem [15], [16], [17]. In those methods,
the explicit representation of the obstacles is usually required.
The obstacles may be represented by convex constraints
or polynomial constraints. The chance constraints are then
approximated as deterministic constraints and the optimiza-
tion problem is solved by convex [16] or nonlinear pro-

gramming [17]. Differential dynamic programming has also
been used to solve motion planning under uncertainty [2],
[33], [34]. These algorithms find a locally optimal trajectory
in the neighborhood of a given reference trajectory. The
algorithms iteratively linearize the system dynamics along
the reference trajectory and solve an LQG problem to find
the next reference trajectory.

III. PROBLEM FORMULATION

We consider the problem of planning for a robot with
nontrivial dynamics, model uncertainty, measurement uncer-
tainty from sensor noise, and obstacle constraints. The state-
space 2 is decomposed into free space Zfee and obstacle
space Zops- The motion planning problem is given by

argmin E lNZ:lJ(xk,uk)] , (1)

g k=0
s.t. xo~ A (%5, Py), Xy = Xg, 2)
P(xp € Zops) <8, k=0,---,N, 3)
Xk+1 :f(xk,uk,wk), k:(),..‘,Nfl, (4)
e = h(xg,ve), k=0,....N—1, ()

where (4) and (5) are the motion and sensing models,
respectively. Furthermore, x; € R™ is the state, u; € R™ is
the control input, and y; € R’ is the measurement at time
step k=0,1,...,N—1, where the steps of the noise processes
wr € R™ and v, € R™ are i.i.d standard Gaussian random
vectors, respectively. We assume that (wy)y—, and (vk)g;()l
are independent. In (1), J(xt,u;) is the cost at step k. We
assume J(x;,u;) is a general convex function with respect
to x; and u;. For example, it can be a quadratic function
given by ka Orxr + ukTRkuk, where Q; and R, are cost penalty
parameters. Expression (2) is the boundary condition for the
motion planning problem. The initial state xp is Gaussian
distributed and the terminal mean Xy is fixed. Condition (3)
is a chance constraint that enforces the safety of the robot. §
specifies the maximum probability that state x; collides with
obstacles for every time step k.

Similar to [8], the motion plan considered in this paper
is formed by a nominal trajectory and a feedback controller.
Specifically, we will use a Connect function that returns
a nominal trajectory and the corresponding feedback gains
between two states & and &2,

(}_(“vb,Ua’b,Ka’b) = Connect(favib)’ ©)

where X%? and U%? are the sequences of the states and the
controls respectively of the nominal trajectory, and K% is a
sequence of the corresponding feedback control gains. The
nominal trajectory can be obtained by solving a deterministic
optimal control problem with boundary conditions ¥* and
#, and system dynamics ;.1 = f(%,,0). The feedback
gains can be computed using, for example, finite-time LQR
design [20].

A Kalman filter is used for online state estimation, which
gives the estimate! £; of (x; — %). Thus, the control at time

'Note non-standard notation.



k is given by
uy = iy + KXy (7)

With the introduction of the Connect function, the opti-
mal motion planning problem (1)-(5) is reformulated as one
of finding the sequence of intermediate states (¥°,%!,---,%°).
The final control is given by

(ux)¥ =y = (Connect (&%, &), - ,Connect (& ', ).

®)

The remaining problem is to find the optimal sequence of
intermediate states and enforce the chance constraints (3).

IV. COVARIANCE PROPAGATION

We assume that the system given by (4) and (5) is locally
well approximated by its linearization along the nominal
trajectory. This is a common assumption as the system
will stay close to the nominal trajectory using the feedback
controller [20], [21]. Define

X = X — Xy (9a)
g = U — Uy, (9b)
i = Yk — h(%, 0). (%)
By linearizing along (X, i), the error dynamics is
%= Ap 1% + Bi i1 + Gr Wi 1,
k= Ag—1Xk—1 + Br—1lig—1 + Gr—1Wi—1 (10)

Vi = Gy + Dyvg.

We will consider this linear time-varying system hereafter.
A Kalman filter is used for estimating X; and is given by

B = B + Li Ok — G-, (an
R = Ak—18k—1 + Br—1lig—1, (12)
where,
Ly = P-CL(CP-CL +DyD}) ™!, (13a)
P = (1 —Lka)f’k—, (13b)
Pe = A 1B AL + GGy, (13¢)

and L; is the Kalman gain. The covariances of X, %, and
F = Xy — %y are denoted as P, = E[%¥]], B, = E[#£]] and
P = E[%%7], respectively. Note that the covariance of x; is
also given by P, and the estimation error covariance Py is
computed from (13b). From (10)-(12), it can be verified that
E[¥%] = E[%] = E[£-]. Since E[¥y] = 0, by choosing E[%y] =
0, we have E[£;] =0 for k=0,--- ,N. Using (11) and (12)
we also have that

P = E[ai}] = E[fx 5] + Li(CePe G+ DiDR) L
= (At-1+Bi1 K1) B (Ak—1 + B 1 K1)’ +LiCia

Using the fact that E[#%7] = 0, it can be verified that P, =
B, + P,. Thus, given the feedback gains K; and the Kalman
filter gain L;, we can predict the covariances of the state
estimation error and the state along the trajectory, which also
provides the state distributions in the case of a Gaussian
distribution.
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Fig. 1: (a) RRBT: Two paths reach the same point B. The red path
detours to an information-rich region to reduce uncertainty. Both
paths are explored and preserved in the belief tree in RRBT as it
finds all non-dominated belief nodes. (b) IBBT avoids exploring
unnecessary belief nodes. If the blue path BG satisfies the chance
constraint, the whole blue path SBG satisfies the chance constraint
and has a lower cost than the red path SABG. The operation of
finding more paths reaching B with less uncertainty (but a larger
cost), including the red one, becomes redundant.

V. INFORMED BATCH BELIEF TREE ALGORITHM
A. Motivation

The motivation of IBBT is shown in Figure 1. The ellipses
show the covariance/uncertainty of the node. Two paths reach
point B in Figure 1(a). The red path reaches B with a large
cost but with low uncertainty. The blue path reaches B with
a small cost but with high uncertainty. In this case, the blue
path cannot dominate the red path, as it will incur a high
probability of chance constraint violation for future segments
of the path. Thus, in RRBT, both paths are preserved in
the belief tree. More specifically, RRBT will find all non-
dominated belief nodes by exhaustively searching the graph.

IBBT avoids exhaustive graph search and hence avoids
adding unnecessary belief nodes. In Figure 1(b), if the
blue path BG (starting anywhere inside the blue ellipse)
satisfies the chance constraint, the blue path SBG will be
the solution of the problem since it satisfies the chance
constraints and has a lower cost than SABG. The operation
of searching the current graph to find more paths reaching
B with less uncertainty (but a higher cost), including the red
one, becomes redundant. Here, we assume that the cost of the
nominal trajectory, Zg;ol J (%, iy ), makes most of the cost in
(1). That is, for the path BG, starting from the red ellipse
and the blue ellipse will incur a similar cost. Reducing the
uncertainty at node B is mainly for satisfying the chance
constraint of the future trajectory. Such an assumption can
also be found, for example, in [35].

RRBT performs an exhaustive search to find all non-
dominated nodes whenever a vertex is added to the graph.
Specifically, RRBT will spend a lot of effort finding nodes
with low uncertainty but a high cost-to-come. Such nodes are
only necessary if they are indeed part of the optimal path.
If the blue path in Figure 1(b) is the solution, we do not
need to search for other non-dominated nodes (red ellipse).
However, since we do not know if the future blue path BG
will satisfy the chance constraint or not, the red node may
still be needed. Thus, IBBT searches the graph and adds
belief nodes to the belief tree only when necessary. This is
done by batch sampling and using an informed heuristic.




B. Nominal Trajectory Graph

The stochastic motion planning problem (1)-(5) is divided
into a simpler deterministic planning problem and a belief
tree search problem. The deterministic planning problem is
given by

N—1
argmin Z J (X, i), (15)

3 k=0
St Ko = X, Ty = X (16)
Xk¢=%(-)bsvk:07'”7Na (17)
Frp1 = f (%, i1, 0), (18)

and is solved by the Rapidly-exploring Random Graph
(RRG) algorithm [6]. RRG adds batches of samples and
maintains a graph of nominal trajectories. Similarly, the PRM
algorithm [36] may be used in place of RRG. The nominal
trajectory graph is given by G = (V,E). Where V is the vertex
set and E is the edge set. Each vertex is state sampled in the
state space of the robot. Each edge is a nominal trajectory
from the Connect function introduced in Section III. An
edge is added to the graph only if the corresponding nominal
trajectory is obstacle-free.

C. IBBT

The Informed Batch Belief Tree algorithm repeatedly
performs two main operations: It first builds a graph of
nominal trajectories to explore the state space of the robot,
and then it searches over this graph to grow a belief tree in
the belief space. The IBBT algorithm is given by Algorithm 1
and Algorithm 2. Additional variables are needed to define a
belief tree. A belief node n is defined by a state covariance
n.P, an estimation error covariance n.P, a cost-to-come n.c,
a heuristic cost-to-go n.h, and a parent node index n.parent.
A vertex v is defined by a state v., a set of belief nodes v.N,
and a vertex cost v.h.

The graph search given by Algorithm 2 repeats two prim-
itive procedures to grow a belief tree: Belief node selection
which selects the best node in the belief queue for expansion;
Belief propagation which propagates the selected belief node
to its neighbor vertices to generate new belief nodes.

(b)

Fig. 2: (a) Nominal trajectory graph. Each edge is computed by
solving a deterministic optimal control problem with edge cost
given by (15). (b) Two belief nodes are shown at vertex v;.

Algorithm 1: Informed Batch Belief Tree

1 n.P < Py, n.P <+ By; n.c < 0; n.h < Inf;
n.parent <— null ;

Vs.N < {n}; ve.N < 0;

VX $— X5 Vg.X < Xg}

Vvg.h < Inf; ve.h < 0;

Ve {v,ve}s E<0; G+ (V.E);

0 < {n}; Cost < Inf;

repeat

(G,Vhew) = RRG(G,m);

G=VI(G);

foreach vy, € View do
foreach vicighbor Of Vnew do

L 0+« QU Vneighbor~N 5

13 Prune(Q,Cost);

14 0 <+ QUve.N;

15 (G,0,flag) = GraphSearch(G,Q);
16 if flag then

17 L Cost = min{n.c|Vn € v4.N};

18 until Stop;

19 return G,flag;

// initialize belief n

e e N N A WN

—
S»—tc

// update queue

Algorithm 2: Graph Search

1 flag < False;
2 while O # 0 do

3 n <+ Pop(Q);

4 if v(n).x = %, then

5 ﬁag < True ; // solution found
6 return G, Q,flag;

7 foreach vycighpor of v(n) do

8 Npew <— Propagate(encighboryn);

9 succ, G < Append(G, Vncighbon”new)?

10 if succ then

11 L Q%Qu{nnew};

12 return G, Q,flag;

The metric to rank the belief nodes in the belief queue
is vital for efficient graph search. Here, we propose an
informed and admissible heuristic for efficient search. Using
the results of the nominal trajectory graph, we compute the
cost-to-go for all vertices. A nominal trajectory graph is
shown in Figure 2(a). Every edge in the graph is computed
by solving a deterministic optimal control problem with
edge cost given by (15). We compute the cost-to-go v;.h
using value iteration for every vertex in the graph. v;.h is
the true cost-to-go for the nominal trajectory graph. Since
J(x,ug) is a convex function, via Jensen’s inequality [37],
we have J(%. i) < E[J(xg,uy)]. Thus, Y J (& i) <
E (X0 J (v u)] s Lo J (%, iii) is an underestimate of the
actual cost, and v;.h is an admissible cost-to-go heuristic
for the belief tree search problem. On the other hand,



YN J (R, i) is close to E[XY-o J(xk,ux)] compared to
other ad hoc heuristics, which makes v;.A an informed
heuristic. We call our algorithm ‘informed’ based on this
informed heuristic. We first solve a simpler problem and use
the results of the simpler problem to guide the solving of the
original problem. This is different from [23] which defines
an informed set for geometric planning.

The nodes in the belief node queue are ranked based on
the total heuristic cost n.f = n.c+n.h. All belief nodes at the
same vertex have the same heuristic cost-to-go and n.h = v.h.
In Figure 2(b), two belief nodes n;, ny are shown at vertex v;.
Their total heuristic costs are ny.f =nj.c+v;.h and ny.f =
ny.c +v;.h, respectively. The partial ordering of belief nodes
is defined as follows. Let n, and n; be two belief nodes of
the same vertex v. We use n, < n;, to denote that belief node
np is dominated by n,. n, < ny, is true if

(na.f < np.f) A (ng.P < ny.P) A (ng.P < ny.P). (19)

In this case, n, is better than n;, since it traces back a
path that reaches v with a smaller cost and less uncertainty
compared with n,. Next, we summarize some primitive
procedures used in the IBBT algorithm.

RRG: The RRG procedure adds m new samples to the
current nominal trajectory graph and forms a new denser
graph. The m samples constitute one batch. RRG-D returns
the updated graph and the newly added vertex set Vpew.
Pop: Pop(Q) selects the best belief node in terms of the
lowest cost n.f from belief queue Q and removes it from Q.
Propagate: The Propagate procedure implements
three operations: covariance propagation, chance constraint
evaluation, and cost calculation. Propagate(e,n) performs
the covariance propagation using (13a)-(14). It takes an
edge e and a belief node n at the starting vertex of the
edge as inputs. Chance constraints are evaluated using the
state covariance P, along the edge. We use Monte Carlo
samples to approximate the probability of collision [14]. If
there are no chance constraint violations, a new belief 7,ew
is returned, which is the final belief at the end vertex of
the edge. Otherwise, the procedure returns no belief. The
cost-to-come of nyey, is the sum of n.c and the cost of edge
e by applying the controller (7) associated with e.

Append Belief: The function Append(G,v,npey) decides
if the new belief n,.w should be added to vertex v or not.
If npew is not dominated by any existing belief nodes in
V.N, npew is added to v.N. Note that adding n,., means
extending the current belief tree such that n,., becomes a
leaf node of the current belief tree. Next, we also check if
any existing belief node in v.N is dominated by npey. If an
existing belief is dominated, its descendant and the node
itself are pruned.

Prune Node Queue: The function Prune(Q,Cost) removes
nodes in Q whose total heuristic cost is greater than Cost.
Cost is the cost of the current solution found.

Value Iteration: The function VI(G) computes the cost-
to-go for all vertices in G using value iteration. The value
iteration is done using the nominal trajectory graph. For
vertices whose cost-to-go values are computed in the last

iteration (before calling this function), their values are
reused for initialization for faster convergence.

In Algorithm 1, Line 1-5 initializes the graph and the belief
tree. The initial condition is given by the starting state X,
state covariance Py, and estimation error covariance Py. The
goal state is X,. In Line 6, queue Q is initialized with the
initial node 7, and the cost of the current solution is set as
infinity. In Line 8, RRG adds m new samples to the nominal
trajectory graph. Viey is the set of newly added vertices.
Based on the nominal trajectory graph, cost-to-go for all
vertices in G is computed using value iteration (Line 9). Line
10-12 update the belief node queue after batch sampling. For
every vertex that has an outgoing edge towards vyey, all the
belief nodes at that vertex are added to the queue.

In Algorithm 2, the belief n is propagated outwards to all
the neighbor vertices of v(n) to grow the belief tree in Line
7-11. v(n) refers to the vertex associated with 7. Vpeighbor 18
a neighbor of v(n) when there is an edge epcighbor from v(n)
tO Vpeighbor in the graph. The new belief npew is added to the
Vneighbor- NV and Q if the belief tree extension is successful.
Then, n is marked as the parent node of nyey,. Note that each
belief node traces back a unique path from the initial belief
node. For every belief node in the belief tree, we already
found a feasible path (i.e., it satisfies the chance constraints)
to this node. Algorithm 2 terminates when the belief node
at Xg is selected for expansion (Line 4-6, Algorithm 2) or Q
is empty. In the first case, the best solution is found. In the
second case, no solution exists given the current graph.

VI. EXPERIMENTAL RESULTS

In this section, we test the IBBT algorithm for different
motion planning problems and compare the results with the
RRBT algorithm [8] and the Monte Carlo Motion Planning
(MCMP) algorithm [11]. MCMP solves a deterministic mo-
tion planning problem with inflated obstacles to compute an
approximately optimal trajectory using FMT* [22], computes
the collision probability of this trajectory using Monte Carlo
simulations, adjusts the inflation factor of the obstacles, and
repeats the process until a satisfactory solution is found or
iteration limit reached. In our implementation, we used the
chance constraint parameter 6 = 0.1 for all examples. In
IBBT, the number of samples for each batch is m = 20. The
parameters for the MCMP algorithm are In,x =4, Inin =0,
r=10. We also terminate the algorithm if Ipax — Inin < 0.05.
Please refer to [11] for more details.

Two environment models shown in Figure 3 are consid-
ered. The first model shown in the first two figures consists
of rectangle obstacles and information-rich regions. The blue
regions are the information-rich regions. When the robot is
in this region, the measurement noise is small. Specifically,
the measurement matrix Dy = 0.011; when the robot is in
an information-rich region, otherwise D; = I4. Note that this
makes the measurement model (10) state-dependent.

The second model shown in the last two figures of Figure 3
consists circle obstacles and has landmarks (shown as black
stars) for robot localization. The robot observes a landmark
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Fig. 3: Different planning environments

TABLE I: Comparison of IBBT, RRBT, and MCMP.

First solution Improved solution
Time Cost Time Cost
IBBT RRBT | MCMP | IBBT RRBT | MCMP | IBBT RRBT | MCMP | IBBT RRBT | MCMP
DI-IR 0.3240 | 0.6677 | 0.9402 34.10 39.76 34.92 0.9817 | 1.9497 | 1.1623 28.91 35.83 32.15
DI-LM 0.3681 | 1.0513 | 1.5729 31.98 37.36 32.61 14326 | 4.0112 | 1.8093 27.01 34.11 28.50
Dubins-IR 0.8753 | 2.4415 | 2.6501 28.18 28.22 29.22 2.3075 | 7.0539 | 5.2650 21.50 23.88 22.96

DI-IR: Double integrator with information-rich regions. DI-LM: Double integrator with landmarks.

only if it is in the line of sight (the line between the robot
and the landmark is obstacle-free). Each observed landmark
provides a noisy position measurement of the robot. The
robot receives more accurate position measurements when it
is closer to the landmarks. Let L be the observed landmark
set when the robot is at state x. The number of observed
landmarks is ¢. Let the Euclidean distance between the
position of the robot and the j** landmarks L; € L be given
by d;. Then, the 7" position measurement corresponding to
landmark L; is y = [x(1) x(®)]T —i—npd]z-vp, j=1,2--- 4,
where parameter 717, = 0.01, and v, is a two-dimensional
standard Gaussian random vector. Thus, the total measure-
ment vector y is a 2¢ dimensional vector, composed of ¢
position measurements. The dimension of the measurement
varies and depends on the location of the robot.

For each environment, the obstacles are generated ran-
domly. The number, location, and size (width, length, radius)
are uniformly sampled from the corresponding intervals. The
information-rich regions are sampled similarly. The location
of the landmarks is randomly sampled in the free space.
We generate 10 environments for each environment model
for testing. For each environment, 20 start-goal queries are
sampled. Therefore, 400 planning problems are used to test
IBBT, RRBT, and MCMP. The algorithms are tested using
a double integrator model and a Dubins vehicle model.

The averaged results of the three algorithms are given
in Table I. The double integrator and the Dubins vehicle
are tested in the information-rich region environment. The
double integrator is also tested in the landmark environment.
IBBT is able to find the first solution faster. The first
solutions returned by IBBT also have lower costs on average.
After finding the initial solution, all algorithms are able to
improve their current solution when more samples are added
to the graph. IBBT shows better cost vs. time performance.
Note that RRBT and IBBT are anytime algorithms while
MCMP is not. The results of MCMP are based on knowing
the number of samples needed. If the number of samples

needed is not known, MCMP may need to restart and the
performance will be worse. Figure 4 gives one example
of the DI-IR problem. For the environment and start-goal
shown in Figure 4(a), each algorithm is run 20 times to
solve this problem. One solution from IBBT is also given in
Figure 4(a). The cost vs. time results are given in Figure 4(b).

Time (s)

(@ (®)
Fig. 4: (a) IBBT planning result. The robot starts at the bottom of
the map. Gray lines are Monte Carlo simulations of the plan. (b)
Comparison results for the planning problem shown in (a).

VII. CONCLUSION

We developed an online, anytime, incremental algorithm
for motion planning under uncertainties. The algorithm con-
siders a robot that is partially observable, has motion uncer-
tainty, and operates in a continuous domain. The algorithm
interleaves between batch sampling, building a nominal tra-
jectory graph, and graph searching to grow a belief tree. The
proposed informed heuristic along with ordered search makes
the belief tree search efficient. We have tested the IBBT al-
gorithm in various randomly generated environments. IBBT
finds non-trivial motion plans and provides better solutions
using a smaller amount of time compared to previous meth-
ods. Future work includes studying the asymptotic property
of IBBT, extending IBBT to consider non-Gaussian noises
and replanning in changing environments.
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