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Abstract—A new belief space planning algorithm, called co-
variance steering Belief RoadMap (CS-BRM), is introduced, an-
alyzed, and numerically and experimentally tested. CS-BRM is a
multi-query algorithm for motion planning for dynamical systems
under simultaneous motion and observation uncertainties. CS-
BRM extends the probabilistic roadmap (PRM) approach to
belief spaces based on the recently developed theory of covariance
steering (CS) that enables guaranteed satisfaction of terminal
belief constraints in finite time. The nodes in the CS-BRM are
sampled in the belief space and represent distributions of the
system states. A covariance steering controller steers the system
from one BRM node to another, thus acting as an edge controller
of the corresponding belief graph that ensures belief constraint
satisfaction. After the edge controller is computed, a specific
edge cost is assigned to that edge. The CS-BRM algorithm
allows the sampling of non-stationary belief nodes and thus is
able to explore the velocity space and find much more efficient
trajectories than previous BRM methods. The performance of
CS-BRM is evaluated and compared to previous belief space
planning approaches using several numerical examples and
experimental demonstrations, illustrating the benefits of the
proposed approach.

Index Terms—Motion planning, uncertainty, covariance steer-
ing, belief space roadmap, probabilistic roadmap

I. INTRODUCTION

Motion uncertainty and measurement noise arise in all real-
world robotic applications. When evaluating the safety of
a robot under motion and estimation uncertainties, it iS no
longer sufficient to rely only on deterministic indicators of
performance, such as whether the robot is in collision-free
or in-collision status. Instead, the state of the robot is best
characterized by a probability distribution over all possible
states, which is commonly referred to as the belief [1]-[3].
Explicitly taking into account the motion and observation
uncertainties thus requires planning in the belief space, which
allows one to compute the collision probability and thus make
more informed decisions.

Planning under motion and observation uncertainties is
referred to as belief space planning, which can be formulated
as a partially observable Markov decision process (POMDP)
problem [4]. Solving POMDPs for continuous state, control,
and observation spaces is, however, intractable, especially
for long-horizon, global planning problems. Existing methods
based on discretization are resolution-limited. Optimization

over the entire discretized belief space to find a path is
computationally expensive and does not scale well to large-
scale problems [5]-[7].
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Fig. 1: Illustration of PRM and BRM algorithms. (a) PRM and the planned
path (red line). PRM does not consider motion and observation uncertainties.
The planned path has a high probability of collision. (b) BRM and the planned
path. BRM nodes are distributions of the state sampled in the belief space.
BRM makes informed plans by considering both safety and path efficiency.
One challenge of the BRM algorithm is to derive the edge controller that
achieves node reachability, i.e., steers the system from one distribution to
another. Here only Gaussian distributions are assumed, characterized by their
mean and 3o covariance ellipses.

Sampling-based motion planning algorithms such as prob-
abilistic roadmaps (PRM) [8] and rapidly exploring random
trees (RRTs) [9] can be used to solve planning problems
in high-dimensional continuous state spaces by building a
roadmap or a tree incrementally through sampling. However,
traditional PRM-based methods only address deterministic
systems. PRM methods can be extended to belief space
planning using belief space roadmaps (BRMs) [10]-[12].
An illustration of the difference between PRM and BRM
algorithms is shown in Figure 1. One of the main challenges
of BRM methods is the reachability of belief nodes. Even if
the robot has full control of its mean, it is difficult to meet a
specified tolerance (e.g., covariance). Since the nodes in the
BRM are sampled in the belief space, the edges in the BRM
graph should ideally steer the robot from one distribution to
another. If reachability of the BRM nodes is not achieved,
an edge in the BRM depends on all preceding edges along
the path. This dependence among edges is referred to as the
“curse of history” problem for POMDPs [11], [13]. It breaks



the optimal substructure property, which is required for search
algorithms such as Dijkstra’s algorithm or A*.

Recent developments in explicitly controlling the covariance
of a linear system [14], [15] provide an appealing approach
to construct a BRM with guarantees of node reachability.
In particular, for a discrete-time linear stochastic system,
covariance steering theory designs a controller that steers the
system from an initial Gaussian distribution to a terminal
Gaussian distribution in finite-time [16]-[18]. Applications of
this idea have been reported for the stochastic control of a
Mars lander during powered descent and during aerocapture
in [19] and [20]. In [16], the covariance steering problem
is formulated as a convex program. Additional state chance
constraints are considered in [18] while nonlinear systems are
considered in [21] using iterative linearization. The covariance
steering problem with output feedback has also been studied
in [22]-[24].

In this paper, we propose the CS-BRM algorithm, which
uses covariance steering as the edge controller of a BRM to
ensure a priori node reachability. Since the goal of covariance
steering is to reach a given distribution of the state, it is
well-suited for reaching a belief node and thus provides a
way of addressing the “curse of history” problem. In addition,
covariance steering avoids the limitation of sampling equilib-
rium states, and thus the proposed CS-BRM method allows
sampling of non-stationary belief nodes. While current state-
of-the-art methods such as SLQG-FIRM [11] require a full
stop (zero velocity) at every node, our method allows searching
in the velocity space and thus finds paths with lower cost.
In addition, no converging phase is required at each node
compared to SLQG-FIRM, thus resulting in more efficient
motion.

A. Related Work

Planning in belief space has long been a topic of great
interest in the robotics community as a means to handle control
and decision-making problems under motion and sensory mea-
surement uncertainties. The problem is typically formulated
as a POMDP, whose solution in general domains is, however,
very challenging [4], [25], despite some recent progress in
terms of more efficient POMDP solvers [26], [27].

In planning problems with partial or incomplete information
of the state, one needs to keep track of the whole distribution
of all possible system states, referred to as the belief or infor-
mation state. Planning in such infinite-dimensional spaces can
become tractable by the use of roadmaps, that is, discrete graph
representations of the environment constructed by sampling.
Since their introduction in [10], [28] such belief roadmaps
(BRMs) have increased in popularity owing to their simplicity
and their ability to avoid local minima.

In general, in the literature, the belief may be classified into
(i) the estimation belief (e-belief), describing the output of the
estimator, i.e., the pdf over the error between the estimated
value and true value of the state; (ii) control belief (c-belief),
which refers to the pdf over “separated control” error, i.e., the
error between the estimated state and the desired state; and (iii)
the full belief (f-belief), that is, the belief over the true state.

The e-belief planning tries to obtain better state estimates and
finds a path with minimum estimation uncertainty. The f-belief
planning aims at minimizing the full uncertainty and takes into
account the impact of the controller as well. In this paper, we
consider the f-belief planning problem and will refer to it as
belief planning for simplicity.

Planning in e-belief space was studied in [10], [29], where
the goal was to find the minimum estimation uncertainty
path for a robot from a starting position to a goal posi-
tion. Reference [10] constructed the roadmap using only the
mean poses of the robot. Given the initial belief (e.g., mean
and covariance), this initial belief is propagated through the
roadmap by simulating the control inputs and the received
measurements. Then, graph searches are performed to find
paths from the initial belief node to other belief nodes in the
roadmap. The BRM in [10] depends on the initial belief of
the robot and must be re-computed if one wants to start from
a different mean or covariance. This means that the BRM
cannot be built beforehand as in the case of a PRM. The state
estimate error covariance, which is computed using a Kalman
filter, gives a measure of the confidence of the state estimate.
However, the probability distribution of the true state of the
robot is required for motion planning, instead of the estimation
error covariance. By taking into account the controller and
the sensors used, [12] computes the true a priori probability
distribution of the state of the robot and studies the f-belief
planning problem using the RRT algorithm. Reference [30]
studies the f-belief planning problem by searching over a graph
to project a belief tree. However, the independence between
edges is not satisfied in [12], [30] and these tree-based methods
can not be extended to PRM.

An important advancement in the state-of-the-art of BRM
methods was [11], which tackled the “curse of history”
problem. The proposed SLQG-FIRM method achieves node
reachability using a stationary LQG controller. The edge
controller in [11] is a concatenation of a time-varying LQG
controller and a stationary linear quadratic Gaussian (SLQG)
controller. First, the time-varying LQG controller is used to
steer the robot to a neighborhood of the goal node. Then,
the controller is switched to the SLQG controller to reach the
node. The belief converges to a stationary belief in distribution,
and the estimation error covariance converges to a stationary
covariance. Since the SLQG controller requires an infinite
time to converge to a belief node, in practice, the belief will
converge to a small neighborhood of the stationary belief.

One limitation of this method is that the nodes have to
be stationary. That is, the nodes in the BRM graph need
to be sampled in the equilibrium space of the robot, which
usually means zero velocity. The robot has to stop at every
node, which results in inefficient motion plans. This method,
used in [11], cannot explore the velocity space, and hence
the resulting paths are suboptimal. Secondly, a converging
process is required at every node. The robot will have to
“wait” at each node, which will increase the time required
for the robot to reach the goal. Some remedies are introduced
in [31], [32] for systems that cannot reach zero velocity,
such as fixed-wing aircraft, by using periodic trajectories
and periodic controllers. The periodic controller is applied



repeatedly until the trajectory of the vehicle converges to
the periodic trajectory. Thus, a “waiting” procedure is still
required in these approaches. Online replanning in belief space
is studied in [33]. The method in [33] improves the online
phase by recomputing the local plans, which includes adding
a virtual belief node and local belief edges to the FIRM graph,
and solving a dynamic program at every time-step. The offline
roadmap construction phase is the same as FIRM [11].

Extending the SLQG-FIRM to nonlinear systems requires a
nominal trajectory for each edge [11]. These nominal trajec-
tories are either assumed to be given or being approximated
by simple straight lines [11], [12]. However, the nominal
trajectory has to be dynamically feasible in order to apply
a time-varying LQG controller. Also, the nominal trajectory
must be optimal if one wishes to generate optimal motion
plans. Finding the optimal nominal trajectory requires solv-
ing a two-point boundary value problem (TPBVP) [34]. An
efficient solution for the TPBVP is only available for some
simple systems [31], [35], [36], while solving the TPBVP for
general nonlinear systems requires iterative methods [37] and
can be computationally expensive. In this paper, in addition
to presenting a new edge controller for general classes of
BRMs that solves the node reachability problem of current
BRMs, we also develop a simple and efficient algorithm to find
suitable nominal trajectories between the nodes of the BRM
graph to steer the mean states. The algorithm is integrated
with our previous method [22] resulting in an output-feedback
covariance steering method for planning for general classes of
uncertain nonlinear systems.

In this paper, we propose the Covariance Steering Belief
RoadMap (CS-BRM) algorithm for multi-query belief space
planning. The belief RoadMap can be pre-constructed offline.
Online belief space planning can be done more efficiently than
solving POMDPs [7], [27] and tree-based algorithms [12], [30]
by performing a graph search. Compared with [27] and [7],
CS-BRM can deal with long planning horizons, and solve
global planning problems in large environments. Compared
with [11], CS-BRM avoids sampling stationary beliefs and
finds better motion plans.

B. Contributions

The contributions of the paper are summarized as follows.

e A new belief space roadmap method, CS-BRM, is de-
veloped, which adopts the covariance steering theory to
achieve node reachability in BRM and overcomes the
limitation of sampling stationary nodes. Compared to
previous BRM methods, CS-BRM allows searching the
velocity space of the belief nodes and it does not require
a convergence phase at every node.

e An efficient algorithm, called the Compatible Nominal
Trajectory (CNT) algorithm, is proposed to compute
nominal trajectories for a nonlinear system. CNT utilizes
the analytical solution of the mean control of a linear
time-varying system along with iterative linearizations.

e An output-feedback covariance steering method for non-
linear systems is developed, which is based on the CNT
algorithm and the separation of the mean and covariance
controllers.

e A heuristic method for sampling the velocities of BRM
nodes is introduced, which provides a strategy to explore
the velocity space while, at the same time, tries to avoid
adding unnecessary belief nodes and edges.

We compare CS-BRM with the current state-of-the-art
SLQG-FIRM method and show that by sampling non-
stationary belief nodes and searching the velocity space, our
method is able to find more efficient and lower-cost plans.

This paper builds on our previous papers [38] and [22]
and extends these works in several directions. First, compared
to [38], we provide a more detailed description and analysis
of the CS-BRM algorithm, including the proofs of the main
results that are missing in [38]. Second, a new heuristic for
sampling the velocity space is proposed, and more simulation
studies are added, including the experimental validation of the
proposed CS-BRM algorithm on a small quadrotor. Third, the
output-feedback covariance steering controller developed in
[22] is adopted as an edge controller to construct a roadmap
in belief space to achieve multi-query motion planning for
stochastic systems in cluttered environments.

The paper is organized as follows. The statement of the
problem is given in Section II. In Section III, the output-
feedback covariance steering theory for linear systems is
outlined. The covariance steering controller is used as the edge
controller of the BRM edges. In Section IV, the covariance
steering theory is extended to deal with nonlinear systems.
The main algorithm, CS-BRM, is given in Section V. The nu-
merical implementation of the proposed algorithm in different
environments is presented in Section VI. Finally, Section VII
concludes the paper.

II. PROBLEM STATEMENT

We consider the problem of planning for a nonholonomic
robot in an uncertain environment that contains obstacles. The
uncertainty in the problem stems from model uncertainty, as
well as from sensor noise that corrupts the measurements. We
model such a system by a stochastic difference equation of
the form

Th41 = f(:rkaukawk’)v (1)

where £k = 0,1,..., N — 1 are the discrete time-steps, z €
R™= is the state, and u, € R™ is the control input. The steps
of the noise process wy € R™ are i.i.d standard Gaussian
random vectors. The measurements are given by the noisy
and partial sensing model

Yk = h(mkavk)a )

where y; € R™ is the measurement at time step k, and the
steps of the process vy € R™v are i.i.d standard Gaussian
random vectors. We assume that (wy)h ' and (vy)5 " are
independent.

The objective is to steer the system (1) from some initial
state xg to some final state xn within N time steps while
avoiding obstacles and, at the same time, minimize a given
performance index. The controller uy, at time step k is allowed
to depend on the whole history of measurements y,, ¢ =

0,...,k up to time k£ but not on any future measurements.



This is a difficult problem to solve in its full generality and
for high-dimensional spaces. For the case of a fully actuated,
holonomic system (n, = n,) without noise (wy = vp = 0
forall k =0,1,..., N —1), the probabilistic roadmap (PRM)
algorithm has been initially developed to solve such planning
problems in high-dimensional configuration spaces [8]. The
PRM algorithm has two phases: a roadmap construction phase
and a query phase. The roadmap is constructed by sampling
the collision-free configuration space and by making con-
nections between those sampled configurations using feasible
paths. The PRM results in an undirected graph where the
sampled configurations are the nodes of the graph and the
feasible paths between nodes are the edges of the graph.
For holonomic or fully actuated systems, the feasible path
between two nodes is usually a straight line connecting the
two configurations.

The PRM algorithm has been extended to dynamical sys-
tems subject to differential constraints (DPRM) in [9], [36],
[39]. Compared to the original PRM algorithm, the nodes in
DPRM are sampled in the state space of the robot instead
of the configuration space. The trajectories are generated by
connecting two nodes by directed edges using an edge con-
troller. The edge controller can either be an optimal controller
from the solution of the TPBVP or a steering function using,
for instance, a trajectory optimizer or reinforcement learning
techniques [40]. After this directed graph is constructed, the
query phase in DPRM is the same as in the original PRM
method.

In the presence of system uncertainty and sensor measure-
ment uncertainty, such as in (1) and (2), the robot cannot be
controlled to a state with certainty, and the true state of the
robot is also not available. In this case, only a probability
distribution over all possible states, referred to as the belief,
is available for motion planning. Therefore, the PRM needs
to be constructed in the belief space. Such belief roadmaps
(BRM) address uncertainties in the dynamics along with noisy
sensor measurements. Each node sampled in the belief space
is a distribution over the state. The edges between nodes in a
BRM indicate the ability to steer the state from one distribution
to another. Therefore, each edge in the BRM is constructed
by applying a controller to the stochastic system (1). In the
next section, we describe a methodology to design BRM edge
controllers that allow steering from one BRM belief node to
another. Similar to previous works [11], [12], we consider
Gaussian distributions where the belief is given by the state
mean and the state covariance.

III. EDGE CONTROLLER DESIGN
A. Covariance Steering

It is assumed that the nonlinear system (1)-(2) can be
well approximated locally by its linearization about a given,
nominal trajectory. Specifically, given a nominal trajectory
(nk)~ -, where ny = («},u}), we can construct via lin-
earization the discrete, linear time-varying model

Tip+1 = AT + Brug + hi, + Grws, 3)
yr = Crar + Dyvy, 4

where hp € R" is the drift term, A € R"=*" By €
R *"u and Gj € R"™ X"+ are system matrices, and Cj €
R™ "= and Dy, € R™*™ are observation model matrices
computed from

A=Y _of
k= g eiu0r Br=gilepaon
of o T T
Gk = %‘(332771,270)7 hk = f(xk,uk,O) — Akxk — Bkuky
oh oh
Ck - %‘(m};o), Dk = %l(zz,o)u

&)

Note that the linearization of the sensing model may also
include a drift term gi, in which case (4) is replaced by
yr = Crxip + gi + Dyvg, where g, = h(z},0) — Ciay,.
Since g; is known and deterministic, henceforth it suffices
to consider the sensing model (4) without loss of generality.

Recent developments in steering the covariance of linear
systems of the form (3)—(4) provide an appealing approach to
construct the BRM with guarantees of node reachability. In
particular, for a discrete-time linear stochastic system of the
form (3)-(4), covariance steering theory designs a controller
that steers the system from an initial Gaussian distribution to
a terminal Gaussian distribution in finite time.

We define the covariance steering problem as follows.

Problem 1: Find the control sequence u = (uy)h ' such
that the system given by (3) and (4), starting from the
initial state distribution zq ~ N (Zo, Py), reaches the final
distribution zy ~ N(Zw,Py), while minimizing the cost
functional

N—1
J(u) =E Z (Cﬂk — mk)TQk(mk — mk) + u;—Rkuk R

k=0
(6)
where (77”Lk)k]\’:_()1 is a given reference trajectory of the states,
Zp = E(x) is the mean of the state zj, Py and Py are
the covariance matrices of xg and x, respectively, and
the matrices (Q, > 0) and (R > 0) are given problem
parameters.

Problem 1 is a two-point boundary value problem (TPBVP)
with boundary conditions on both the mean and the covariance.
In the next section, we construct the BRM edge controller
based on the covariance steering approach [18], [22] for a
linear system of the form (3)-(4), which is the key ingredient
of the CS-BRM algorithm. Later, in Section IV, we extend the
covariance steering results to consider nonlinear systems.

B. Separation of Observation and Control

We assume that the control input wj at time-step k is an
affine function of the measurement data. It follows that the
state will be Gaussian distributed over the entire horizon of
the problem. To solve Problem 1, we use a Kalman filter to
estimate the state.

Specifically, let the prior initial state estimate be Zg-. We
assume that the distribution of Zy- is known and is given
by Zg- ~ N (fo,ff’o-). Let the prior initial estimation error
be Tog- = xg — Zo- and let its distribution be given by
To- ~ N(0, ]50-). The estimate Z( is updated from Z(- using



observation yg at k = 0. Define the filtration (Y}) évz_l, where
Yi = o(Zo-,yi : 0<i<k), Y1 =0(&) and o(-) denotes
the o-algebra, and define the estimated state at time k as
the conditional expectation 2} = E[xx|Y%] and the estimation
error as I — T — L. We then have

E[i‘k} = E[E[.’Ek|YkH = E[ﬁk] £ Tk (7
Notice that ;, and Zj are uncorrelated, since
E[:i‘k.i'k] = E[f}k(fbk — i‘k)]
=E[E[Zk(zr — &) [Vi]] ®)
= E[fk(E[xk‘Yk} - j?k)] =0.
Define the covariance of zy, %) and iy as Py = E[(z —
:Ek)(zk — Q_Zk)T], P, = E[(ik — fk)(fk — fk)T] and P. =
E[(zy — &) (zr — 2%) 7], respectively. Using (8), it can be
readily shown that P, = P, + P,. Define the prior esti-
mated state and prior estimation error as Iy = Elxg|Yi_1]
and Tp- = T — ai"k;. The corresponding covariances are
denoted as P- and Pi-. We assume that Zy- and Z,- are
uncorrelated. Under this assumption, it can be verified that

Py = ]50- +A]50-. Similarly to (8), - and - are uncorrelated
and P, = Py + Py-.

The Kalman filter updates are given by

&k = T + Li(yr — Crdn-),

T = Ap—12k—1 + Br—1up—1 + hg—1, ©
where
Ly = Pp-C}l (CL.P-C] + DD,
Py = (I = LiCy) P, (10)

Py = Ap1 P 1 Al + Gr1 Gy,

where Lj, is the Kalman gain. From (10), the evolution of Pk-

and P, do not depend on the control (uk)kN:_Ol.

Furthermore, note that,
E[(xx —my) " Qx(zx —my)]
= Elz) Qrar] — 27 Qumk + my, Qemu,
=E[(d), + &) " Qr(dr + k)] — 22 Qi +my Qrmi
= E[#; Quix] + E[2) Qrir] — 22 Qemi + my, Qg
= trace(PLQx) + B[] Qrix] — 23, Qumy + my Qpmy,.
(11)

Thus, the cost functional (6) can be written as

N—1 N—-1
J(uw) =E | Y &) Quér +uf Riw| =23 2] Quin
k=0 k=0
N-1 3
+ (trace(PrQr) + mZQk’mk)a
k=0

12)

where the last summation is deterministic and does not de-
pend on the control. Thus, we can discard this term without
changing the problem.

Next, define the innovation process (&x)h_, by

&k = yr — Elyk|Ye—1], (13)

and note that

Elyk|Yi—1] = E[Ckay + Dyvg|Yi—1] = Crdp-. (14)

It follows that
&k = yr — CrZ = CrTp + Dyvg, (15)
and &, has zero mean, E[¢;] = 0. It can be shown that the

innovation process at different time steps is uncorrelated [41].
Thus, the covariance of &, at time k is

P:, = E[64&] ] = CvP-C)) + DD} . (16)

Substituting the innovation process equations (13) and (14)
into the the Kalman filter updates (9), we obtain the estimated
state process

Tp41 = ApTr + Bruk + hie + Lip18p11, (17
where Zog = Zo- + Lo&o.
We can then restate Problem 1 as follows.
Problem 2: Find the control sequence (uy)y_,, such

that the system (17) starting from the initial distribution
&g ~ N(Zo, Py — Py-) reaches the final distribution Zx ~
N(Zn, Py — Py), while minimizing the cost functional

N-1 N-1
j(u) =E Z i’ng{iﬁk + u;—Rkuk -2 Z ngkmk
k=0 k=0

(18)

To summarize, the covariance steering problem of the state
xj, with output feedback has been transformed to a covariance
steering problem of the estimated state Iy, where Iy is
computed using the Kalman filter. While Problem 1 is defined
with respect to the unknown state xj, Problem 2 is defined
with respect to the known state estimate Z. Also, the noise

term Grwy in (3) is replaced by the noise term Ly1€k41 in
7.

C. Separation of Mean Control and Covariance Control

Problem 2 defines a covariance steering problem for the
estimated state Zj, which is Gaussian distributed. In this
section, we will separate Problem 2 into a mean control
problem and a covariance control problem.

At each time step k, we can obtain the expression of Ty
by forward propagating equation (17). Define the augmented
vectors

T, T T}T

Ue=Tlug uf - ug]', Ep=[& & - &

By combining the steps of the iterative equation (17), & can
be written as

19)

& = Apdo- + BrUk—1 + Hy + Ly, (20)

for k; = 1,..., N, where the system matrices Ay, B, Hg,
and Lj are given in Appendix A.

The mean of the estimated state Zj is then given by
Ty = Eliy] = ApZo + BrUp—1 + H, (21)

where ﬁk & E[Uy] is the mean control sequence. Define U, =
U, — U, & £ &, — T, and To- £ Zo- — Tg. Using (20) and



(21) we have
iy = Apdo + BrUp_1 + LiZy.

Define X, = [&g 27 --- @,]7, X = Xy, U = Uy_1, and
= = Zn. Using (20) and stacking the equations of Z; from
different time-steps, we obtain

X = Ad¢ + BU + H + LZ,

(22)

(23)

where the system matrices A, B, H, and L are given in
Appendix A.

Let X 2E[X], U2E[U], X2 X - X,and U2 U —U.
It follows that

X = Azg+ BU + H, (24)

and

X = Ao + BU + LE. (25)

The cost functional in (18) can be rewritten as
J(u) =E [XTQX + UTRU} —2XTQM,
=E [(X + X)"Q(X + X)]
+E [(U +U)TR(O + U)} —2XTQM,
=E[X"QX +U"RU|+X"QX +U"RU
-2X7QM,,
R =

where @ =  blkdiag(Qo, @Q1,...,@nN-1,0),
blkdiag(Ro, R1, ..., Ry_1), M, = [md m{ -+ m}]".

From (24), (25), and (26), the covariance steering problem
of the estimated state & can be divided into mean control
and covariance control problems. The mean control problem
is given by

(26)

min X' QX +U"RU —2X"QM,
U

st. X =A%+ BU + H, (27

EoX = T, ENX =ZIn,

where E), is a matrix defined such that Ex X = Zj. The
covariance control problem is given by

min E[XTQX + U ' RU]

(28)

where ]50- =F - PO- and Py = Py — I:’N.

D. Solutions of the Mean Control and Covariance Control
Problems

We assume that the discrete-time linear time-varying system
(3) is controllable. In this case, an analytic solution for the
mean control problem (27) is readily available. We summarize
the result as follows.

Proposition 1: The solution to the mean control problem
27) is

U* =W(=V + By (ByMBy)™!

e v 29)
(.%N — ANTo— Hy + BNWV)),

where W = (BTQB+R)"!,and V = BTQ(AZo+H —M,.).

Proof. See Appendix B. (]

After solving the mean control problem, we obtain the
mean trajectory given by (Z)f_, and (ﬂk)]k\]:})l. To solve the

covariance control problem, we consider a feedback controller

of the form .
iy =Y Kyidi, (30)
i=0
for kK = 0,1,---, N — 1. The problem remains to find the
feedback gains K}, ;. Using (30), we can write U as
U=KX, (31)
where
Koo 0 e 0 0
Kip Kia e 0 0
K= : : ) - (32
: : 0
Kny_10 Kn-11 Ky_in-1 O
Using (31), (25) becomes
X = Aiy + BKX + LE. (33)
Solving for X using (33), we have
X = (I — BK) Y (Aio + LE). (34)

Since K is block lower-triangular and B is strictly block
lower-triangular, the matrix / — BK is invertible. Following
[42], define the new decision variable F' as

F=K(I-BK)™'. (35)
It can be verified that F' satisfies
I+ BF = (I - BK)™!, (36)
and
K =F(I+BF)™". (37)

Therefore, we may optimize over F' in place of K. Substituting
(36) into (34), we get

X = (I + BF)(Aiq + LE). (38)

By assumption, - is uncorrelated with Zy- and vg. By (15),
ZTo- 18 uncorrelated with =. Thus, %o- is uncorrelated with =.
Let Z £ A%y + LE. Then Z has covariance

Py, =E[ZZ"| = AE[i¢-ig-]A" + LE[EET|LT

= APy AT+ LP:zLT, &
where Ps= is given by
P= = E[ZEZ"] = blkdiag(P¢,, - , Pey )- (40)
From (38) and (39), the covariance of X is
Py =E[XX"]=(I+BF)P;(I+BF)". (41



Using (37), the covariance of the control is given by
Py =E[UU"|=EKXX K]
= K(I+BF)Pz(I+BF)"K"
=FPyF".

(42)

Using (38) and (42), we can rewrite the cost functional in (28)
as
EXTQX +UTRU|
=E[(I + BF)Z)"Q(I + BF)Z + U"RU]
= Eltrace(Q(I + BF)ZZ" (I + BF)") + trace(RUU )]
= trace(Q(I + BF)Py(I + BF)") + trace(RFPzF ")
= trace[((I + BF)"Q(I + BF) + F" RF)Py], (43)

which is convex in F'. The terminal covariance constraint in
(28) may be rewritten as

En(I + BF)Pz(I + BF)"E}, = P; — Py. (44)

The above quadratic equality constraint is not necessarily
convex. Thus, solving the covariance control problem with
equality constraint requires the solution of a nonlinear pro-
gram. We can relax the equality constraint (44) to an inequality
constraint to reduce complexity. The corresponding inequality
constraint is

En(I + BF)Pz(I + BF)"EY\ < P; — Py, (45)
or, equivalently [43],
IP/*(I + BF)TEL(P; — Py)"?| —1<0.  (46)

To summarize, the solution of the covariance control prob-
lem is obtained by solving the optimization problem given by
(43) and (46). The optimization problem with cost function
(43) and constraint (46) is a convex optimization problem and
can be solved efficiently with existing solvers [44], [45].

IV. NONLINEAR COVARIANCE STEERING

The covariance steering problem for stochastic, discrete,
linear time-varying systems was studied in Section III. In
this section, we extend the results of Section III to deal with
nonlinear systems that are locally well-approximated by their
linearization. Based on the separation between mean control
and covariance control, we develop an efficient algorithm to
find nominal trajectories for nonlinear systems using the mean
controller developed in Section III-D.

Consider again the nonlinear stochastic system with dynam-
ics (1). The system is linearized along a nominal trajectory
(nk)r_g, where nj, = (},u}), to obtain the system shown
in (3)-(4). Finding the nominal trajectory ("k)kN:_ol itself
is an open-loop controller design problem. A deterministic
nonlinear dynamic model, i.e., with the noise wy, set to zero,
is considered when designing the nominal trajectory. Next, we
define a class of nominal trajectories, referred to as compatible
nominal trajectories, and we develop an algorithm to find
them.

A. Compatible Nominal Trajectory Generation

Consider the deterministic nonlinear system

Tp+1 = f(xg, ug, 0). 47)

Let (2})n " and (u})~-; be a nominal trajectory for this
system. The linearized model (3) along this nominal trajectory
will be used by the mean controller (29) to compute a con-
trol sequence (u}é)ff;ol and the corresponding state sequence
(:c;)fc"gol using (24). Next, we give the precise definition of a
compatible nominal trajectory (CNT).

Definition 1: A nominal trajectory is a compatible nominal
trajectory for system (47) if xj, = x{ and uj, = ug for k =
0,...,N—1

Linearizing along a compatible nominal trajectory ensures
that the nonlinear system is linearized at the “correct” points.
When applying the designed control to the linearized system,
the resulting trajectory is the same as the nominal trajectory,
which means that the system reaches the exact points where
the linearization is performed. On the other hand, there will
be extra errors caused by the linearization if the system is
linearized along a non-compatible nominal trajectory.

The iterative algorithm to find a compatible nominal trajec-
tory is given in Algorithm 1. First, we initialize the algorithm
with an initial guess for the nominal trajectory. Next, we
linearize the nonlinear system along this nominal trajectory. By
solving the mean control problem (27) using (29), we obtain
the mean trajectory. Then, we update the nominal trajectory
using the mean trajectory. We repeat the above three steps until
converge or a stop criterion is satisfied. A commonly used
convergence criterion is to check if the change of (2})p
between successive iterations is smaller than a small threshold.

Algorithm 1: Compatible Nominal Trajectory (CNT)

1 Initialize (27)7 ' and (u})~ o ;
2 while NotConverged do

3 | Linearize (47) along (2})p ' and (uf)n o' s

4 Compute the mean optimal control using (29) to
obtain the control sequence (u§)p o' ;

5 Compute the the controlled state trajectory
(25)0", using (24) ;

6 | Set (zp)Sy = (zp)isy and
(U)o = (WS

return (z})7 ' and (u})r s

=

When the algorithm converges, the nominal trajectory is
the same as the mean optimal trajectory, which, by definition,
is a compatible nominal trajectory. Note that (29) gives
the analytical solution of the mean control, which can be
quickly computed. Each iteration of the algorithm has a low
computational load and the overall algorithm may be solved
efficiently. As seen later in Section VI, the algorithm typically
converges within a few iterations.

The next result shows how to choose the reference state
trajectory (mk),ivz_ol in (6).

Proposition 2: Consider the linear time-varying system (3).
The cost function given in (12) achieves the minimum only



if the reference trajectory (mk)fcvgol is equal to the mean
trajectory of the states (Zp)p '

Proof. See Appendix C. (]

Choosing the reference state trajectory (mk)kN:_O1 judiciously
has the benefit of achieving a lower cost. It should be noted
that the cost functional (6) regulates the state trajectories to
stay close to (mk)ffgol. By setting m; = z, for all k =
0,...,N — 1, the resulting state trajectory is regulated to be
close to the nominal trajectory, and thus the linearization of
the nonlinear system is more likely to be locally valid, which

will help the stability of Algorithm 1.
”
:

(a) (b)

'\\ °
e

() (d)

Fig. 2: Construction of the CS-BRM. Gray shapes denote obstacles. (a) Node
sampling; (b) Mean trajectories are computed for all neighboring node pairs
using the mean controller. Only mean trajectories that are collision-free are
preserved. Those mean trajectories indicate possible connections/edges in the
CS-BRM; (c) Kalman filter updates are simulated for each possible edge; (d)
Finally, covariance control is applied for each edge to execute the transition
between the nodes.

V. THE CS-BRM ALGORITHM

The nodes in the CS-BRM are sampled in the belief space.
In a partially observable environment, the belief by, at time-step
k is given by the probability distribution of the state x; condi-
tioned on the history of observations (y;)*_, and the history of
control inputs (u;)F=)}, that is, by = P(xy|(y:) g, (wi)¥ ).
In a Gaussian belief space, b, can be equivalently represented
by the estimated state, Zj, and the estimation error covariance,
Py, that is, b, = (ik,ﬁ’k) [11], [30]. The state estimate
is Guassian, and is given by &y ~ ./\/(fk,ﬁ’k). Hence, the
Gaussian belief can be also written as by, = (T, Pk,, Pk)_ The
main idea of CS-BRM is to use covariance steering theory to
design the edge controller to achieve node reachability.

An illustration of the steps for building the CS-BRM is
shown in Figure 2. The algorithm for constructing the CS-
BRM is given in Algorithm 2. The following procedures are
used in the algorithm.

Algorithm 2: Constructing CS-BRM

1 V ={nody, ..., nod,} < SampleNodes(n) ;
2 VoV, E+ 0
3fori=1:ndo

4 Viear <— Neighbor(V,., nod;);
5 foreach nod; € Ve, do
6 (Uij, Tijs MCOStij) — MTraj(nodi, IlOdj) 5
7 if ObstacleFree(7;;) then
8 Py- KF(nod;, nod;) ;
9 if Py- =< Pyoq, then
10 (Uiju COVCOStij) —
CovControl(nod;, nod;) ;
11 CollisionCost;; <
MonteCarlo(Uy;, Us;) ;
12 Eij < (Uij7 Uij, EdgeCOStij) )
13 E+ FEU EU
14 (ﬁji, Tjis MCOStjz‘) — MTraj(nodj, IlOdi) 5
15 if ObstacleFree(7;;) then
16 L Repeat lines 8-13 with ¢ and j swapped
17 V. + Vi \nod; ;

18 CS-BRM « (V, E) ;
19 return CS-BRM;

Sample Nodes: The function SampleNodes(n) samples n
CS-BRM nodes. A node in the CS-BRM is represented by
the tuple (z, P, P-). Since P = P- + P., the node can also
be equivalently represented by (z, P-, P-). Note that we can
compute the a posteriori covariances Pand P using P and
P-. Thus, we may also represent the node by (z, P, P). In
Figure 2(a), for each node, Z is shown as a black dot, P is
shown as a solid ellipse, and P is shown as a dashed ellipse.
Neighbor: The function Neighbor(V,,nod;) finds all the
nodes in V,. that are within a given distance d; to node nod,,
where V. is a node-set containing all nodes in the CS-BRM.
Similar to the traditional PRM, every node tries to connect
with other nodes in the graph that are within a distance of
itself. We use the Wasserstein distance [46] to compute the
distance between BRM nodes. Specifically, given two nodes
nod; and nod; representing the Gaussian distributions (z;, P;)
and (Z;, P;), their distance D;; is computed by

SIS

Dij = |||z — ;]2 + trace (Pi 4P 2(pfapf)%)]

Mean Trajectory: Given nod; and nod;, MTraj(nod;, nod;)
uses the mean controller (29) and Algorithm 1 to find the com-
patible nominal trajectory, which is also the mean trajectory
from nod; to nod;. The function returns the mean control U, s
mean trajectory 7;; from nod; to nod;, and the mean control
cost MCost;;.

Obstacle Checking: The function ObstacleFree(7;;) checks
if the trajectory 7;; is collision free.

Kalman Filter Given two nodes nod; and nodj,
KF(nod;, nod;) returns the state estimation error covariance



at every time step along that edge.

Covariance Control: The function CovControl(nod;,nod,)
solves the covariance control problem from nod; to nod;. It
returns the control U;; and the cost CovCost,;;.

Monte Carlo: We use Monte Carlo simulations to calculate
the probability of collision of the edges. For edge E;;, the
initial state zy and initial state estimate Z(- are sampled from
their corresponding distributions. The state trajectory is sim-
ulated using the mean control U;; and the covariance control
Uij. Then, collision checking is performed on the simulated
state trajectory. By repeating this process, we approximate
the probability of collision of this edge. The collision cost
CollisionCost;; is taken to be proportional to the probability
of collision along that edge.

Different methods may be used for sampling the belief in
the SampleNodes command. First, sampling the mean z is
the same as in PRM and RRT, where we uniformly randomly
sample the free state space. For sampling the covariances P
and P, we may restrict the covariances to diagonal matrices
and sample positive real numbers for the diagonal entries.
Then each entry on the diagonal is sampled uniformly from the
interval [Amin, Amax| for some A, and Apax. These bounds
of the intervals are tuning parameters and they depend on
the planning environment. Alternatively, we can sample the
covariance from the positive definite matrix space P = QRQ "
by sampling the diagonal matrix R and the orthogonal matrix
Q@ [47]. Yet another way of sampling the beliefs is to utilize
the results from single-query belief space planning methods
[12], [30]. In that approach, the beliefs are obtained using
the RRT algorithm along with the use of LQG controllers.
In our implementation of CS-BRM, we run the single-query
belief space planners to obtain the beliefs. Then, we used those
beliefs to construct belief roadmaps.

Algorithm 2 starts by sampling n nodes in the belief space
using SampleNodes (Line 1). Lines 3-17 are the steps to add
CS-BRM edges. Given two neighboring nodes nod; and nod,
Lines 6-13 try to construct the edge E;; and Lines 14-16 try
to construct the edge Ej;.

Every edge in the CS-BRM is constructed by solving a
covariance steering problem. Each node tries to connect to
its neighboring nodes, if possible. First, for each edge, we
use Algorithm 1 to find the mean trajectory of that edge
(Line 6). Next, we check if the mean trajectory is collision-
free (Line 7). Then, the Kalman filter updates are simulated,
which gives the state estimation error covariance at every
time step along that edge. For edge ab shown in Figure 2(c),
the initial condition of the Kalman filter is ]50- = Pa-. The
prior estimation error covariance at the final time-step, ]-:’N-,
is compared with the state estimation error covariance of node
b, f’b-. If ]5N- = ]5b- (Line 9), the algorithm proceeds to solve
the covariance control problem, and this edge is added to
the graph. In Figure 2(c), ab will be added as a CS-BRM
edge, while @c will not. For the covariance control problem
of edge ab, the initial constraint and the terminal constraint
are given by PO- = Pa- and PN =< 131,. The covariance Pb is
computed using 151,-, I:’b-, first equation in (9), and (15). The
final edge controller is the combination of the mean controller,
covariance controller, and the Kalman filter.

In addition to the edge controller, the edge cost is computed
for each edge. In order to provide more accurate and faster
ways to compute collision probabilities, different methods
have been developed [11], [48], [49]. Monte Carlo simulations
provide more accurate collision probabilities at the cost of
expensive computations. Since the roadmap is constructed
offline, computation is not an issue for our method. The edge
cost EdgeCost,; is a weighted sum of MCost;;, CovCost;j,
and CollisionCost,;;. With covariance steering serving as
the lower-level controller, the higher-level motion planning
problem using the roadmap is a graph search problem similar
to a PRM. Thus, the covariance steering approach transforms
the belief space roadmap into a traditional PRM with specific
edge costs.

A. Node Consistency

In CS-BRM, each edge is an independent covariance steer-
ing problem and the planned path using CS-BRM consists
of a concatenation of edges. Since the terminal estimated
state covariance satisfies an inequality constraint given by (45)
and the terminal state estimation error covariance satisfies an
inequality relation by construction (Line 9), it is important
to verify that the covariance constraints at all nodes are still
satisfied by concatenating the edges.

To this end, consider the covariance steering problem from
node a to node b. For the edge ab, we have the initial
constraints PO = Pa , PO = P,-, and the terminal covariance
constraint PN < Pb Note that the constraint PN < Pb
is satisfied for ab (Line 9, Algorithm 2). Suppose that the
solution of the covariance control problem of edge ab results
in the feedback gain K as in (32). By concatenating the
edges, the system may not start exactly at node a. Instead,
it will start at some node a = (Z,, P.-, P.-) that satisfies
]3/ < P, and P’ < P,-. Next, we show that by applying
the pre- computed feedback gain K, the terminal covanance

still satisfies P < D, for the new covariances P,- and
P . Before verlfylng this result, we study the propagation
of the estimation error covariance Py- using the Kalman filter.
Given Py-, we obtain a sequence of error covariances (Py-)_,
using the Kalman filter updates (10). Similarly, given the new
initial error covariance P0 , we obtain a new sequence of error
covariances (P,C )N o: We have the followmg _proposition.

Proposition 3: If P0 < Po , then Pk =< Pk , for all £ =
0,---,N.

Proof. See Appendix D. O

From Proposition 3, 1t is straightforward to show that, if Po =
P() , we also have Pk < Py forall k=0,...,N.

Proposition 4: Consider a path on the CS BRM roadmap,
where the initial node of the path is denoted by (z;, P;, P;) and
the final node of the path is denoted by (z;, P;, P;). Starting
from the initial node and following this path by applying the
sequence of edge controllers, the robot will arrive at a belief
node (Z, P, P) such that 7 = 7;, P < P and P < P;.

Proof. Consider the edge ab from node a to node b. From the
solution of the covariance steering problem, we have Py =B,
and Py < P,. We only need to show that, with the new

& satisfying Pa. < P,

’
initial estimated state covariance P,-



and the new initial estimation error covariance P(; satisfying
P < P,-, and applying the pre- computed feedback gam Koap,
the terminal covariances satisfies P =< PN and P =< PN
We use PN to denote the new value of Py that corresponds to
the new initial covariances. This notation also applies to other
variables in the following derivation.

From Proposition 3 we have P]/V = PN- and P]l\, = PN.
Next, we show that P,; < P, for k = 0,1,---, N. Recall that
Ir = T — Tg, thus Pk = P. From (39) and (41), we have

P, = E Py E}

R (48
= Ey(I + BF)(APy-A" + LP=L")(I + BF)"E],

)
where Ps is given by (40). Using (16) and the expression of
Ly in (10), we get

LiPe L] = PG (CiPy-Cy + DpDJ )" CiPr,  (49)

which is a non- decreasing function of Py-. Thus, L, P/ L) =
LkngL and L' PLL'T < LP—LT Therefore, glven PO
Py- and Po- = PO , we have P = Pk and P = Pk for
k=0,1,---,N. Thus, P = PN, which completes the proof.
O

Proposition 4 guarantees that, when planning on the CS-
BRM roadmap, the covariance at each arrived node is always
smaller than the assigned fixed covariance at the corresponding
node of the CS-BRM roadmap.

B. Velocity Space Sampling

One main advantage of CS-BRM is that the nodes do not
need to be stationary. Instead, CS-BRM allows exploring the
velocity space and finds paths with lower cost. In this section,
we introduce a heuristic method for sampling the velocity
space. Sampling the position space and sampling the velocity
space are independent events. Exploring the velocity space is
important to achieve lower path costs and find smoother plans.

Fig. 3: Heuristic method for sampling the velocity space. Multiple velocities
are sampled at each sampled position. For example, v, ¢ and vqc are sampled
at vertex a, which results in the nodes Ngf and nge. Vea, Vef, and vce are
sampled at vertex ¢, which results in the nodes nca, ncf, and nce. When
constructing the edges, the edges connecting ngc t0 Nea, Ne fs and nce will
be constructed, but there will be no edges that connect n, f 10 Nea, Nef, OF
Nece-

The proposed velocity sampling heuristic consists of two
procedures: graph-structure-based heading sampling and selec-
tive connection. We sample multiple velocities at each position
based on the local graph structure. The method is illustrated in
Figure 3. For each neighboring vertex j of vertex 7, a velocity
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v; is sampled for vertex 4. In Figure 3, vertex a has two
neighbors, vertex f and vertex c. We assign two velocities vg ¢
and v, to vertex a. The directions of v,y and v, are decided
by the straight lines af and ac, respectively. The magnitudes
of vq¢ and v, are sampled randomly in an interval. Similarly,
three velocities v¢q, Vcf, and v.. are sampled for vertex c. This
process is repeated for all vertices in the map. After finishing
with this velocity sampling process, there will be two nodes
at vertex a. We denote them as n,y and ng., respectively,
where n,y corresponds to the node with velocity vgy and ngc
corresponds to the node with velocity v,.. Similarly, there are
three nodes n.q, ney, and ne. at vertex c.

The second important aspect of this method is selective
connection. In this example, only node n,. will be connected
to the nodes at vertex ¢, and node n, ¢ will not be connected to
any node at vertex c. Similarly, only n., will be connected to
Ngc and ngp, while nodes n.y and n.. will not be connected to
Nge OF N . This strategy avoids many undesired connections.
In summary, the proposed heuristic method explores the ve-
locity space without adding too many belief nodes and edges.

VI. EXAMPLES

In this section, we first illustrate our theoretical results
for the motion planning problem of a 2-D double integrator.
We compare our method with the SLQG-FIRM algorithm
[11] and show that our method overcomes some of the
limitations of SLQG-FIRM, resulting in more efficient plans.
Subsequently, the problem of a fixed-wing aerial vehicle in a 3-
D environment is studied. The theory is finally experimentally
demonstrated on a small quadrotor flying indoors between
obstacles.

A. 2-D Double Integrator

A 2-D double integrator is a linear system with a 4-
dimensional state space z;, = [z(1) () z(3) 2|7 and a 2-
dimensional control input space uy = [a, ay]T. The dynamics
of the system is given in (3) with the system matrices given
by

1 0 At 0 At?/2 0
|01 0 At 0 A2
=100 1 ol BT as 0o |’
00 0 1 0 At

Gy = diag(5,8,5,5) x 1072, hpy=[0000]",

(50)

where At is the time step size, I,,, denotes the identity matrix
with dimension m.

1) Comparison of Edge Controllers: One example of com-
puting the nominal trajectory is given in Figure 4. Since
the system is linear, the mean controller finds the nominal
trajectory in one iteration given a fixed reference trajectory
(mk) e 0 The iterations in Figure 4 result owing to updating
the reference trajectory at each iteration. The reference state
trajectory is initialized as a straight line in all 4 dimensions.
Based on the current reference trajectory, the mean control and
the mean trajectory are computed. Then, the computed mean
trajectory is used to update the reference trajectory and this



process is repeated until convergence. In Figures 4(a) and 4(b),
the red lines correspond to the final nominal trajectory, which
is also the final reference trajectory. The algorithm converged
after 6 iterations. The time step size is At = 0.2 s, the number
of steps N = 18, and the weights @, = 414 and Ry = 215.

(a)

z® (m/s)

=@ (m/s)

0.5

(b)

a, (m/s?)

(©)

Fig. 4: Results of computing the reference trajectory for the 2-D double
integrator. The reference state trajectory is initialized as a straight line in
all 4 dimensions. The state trajectories are shown in (a) and (b). The control
trajectories are shown in (c).

Next, we compare the proposed edge controller with the
edge controller in [11]. For this purpose, we use a simple
observation model with the matrices in (4) given by Cj, = I4
and Dy = diag(10,5,10,5) x 1072, Later, we consider a
different observation model where the position of the robot
is measured with respect to landmarks in the environment and
Dy, is a time-varying matrix. The edge controller in [11] is
a concatenation of a time-varying LQG controller with an
SLQG controller. A dynamically feasible nominal trajectory is
required for the time-varying LQG controller. We use the same
nominal trajectory from our method for the time-varying LQG
controller. The nominal trajectory is also the mean trajectory
from the time-varying LQG controller [30]. Thus, the time-
varying LQG controller and covariance steering controller
have the same mean trajectory.

The belief is defined as b = (§:,]5) in [11], where % is the
estimated state and P is the estimation error covariance. Note
that £ is a random vector. Since the belief is a distribution over
the state, we can also define the belief as b = (z, P, ]5) where
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Fig. 5: Comparison of the edge controller in [11] and the proposed edge
controller using covariance steering. (a) Time-varying LQG, (b) Time-varying
LQG is switched to SLQG to reach a stationary node. (c) Result of our method
using covariance steering. The red dash ellipses and the black ellipses show
the 30 confidence intervals of the estimation error covariances and the state
covariances respectively.

T is the mean, P is the state covariance and Z is deterministic.
The two definitions are equivalent, as the state covariance P
includes the estimation error covariance P and the estimated
state covariance P [30]. For comparison, we will use the same
belief definition b = (z, P, 15) for both methods. In [11], the
convergence of belief is indicated by the convergence of both
& and P. In this paper, the convergence of belief is indicated
by the convergence of both P and P. The details of computing
the state distributions along the trajectory under the LQG
controller are given in [12], [30].

The results of the edge controllers for the two methods
are shown in Figure 5. The mean velocity at the endpoint



is set to zero as required by SLQG-FIRM. The edge con-
troller in [11] is obtained using two steps: a time-varying
LQG controller (Figure 5(a)) and a stationary LQG controller
(Figure 5(b)). From Figures 5(a) and 5(b), we can see that
the estimation error covariance (red ellipses) converged to
a neighborhood of the stationary covariance in a few steps.
The state covariance (black ellipses) converged at a much
later time. Figure 5(c) is the result of our method based on
covariance steering. In both examples, the initial state mean is
[1612]" and the terminal state is [5 1 0 0] . The initial state
covariance is Py = diag(12,8,8,8) x 1072, the initial prior
estimation error covariance is 130- = 0.8 F,;. The terminal state
covariance constraint for the covariance steering method is
Py = diag(5,7,4,4) x 1072,

Compared to [11], our method is not restricted to sampling
zero velocity and it does not require a converging phase. In this
example, the time duration of the time-varying LQG controller
(Figure 5(a)) and the time duration of the covariance steering
controller (Figure 5(c)) are the same. Since the edge controller
in SLQG-FIRM requires a converging phase, the total time
required for the edge controller in SLQG-FIRM to reach a
node is longer than the CS-BRM method.

2) CS-BRM for the 2-D double integrator: We first provide
a detailed description of each procedure of the CS-BRM
method. In order to compare with SLQG-FIRM, we first
restrict our method to sample nodes with zero mean velocity.

The environment considered is shown in Figure 6. There
are ¢ landmarks placed in the environment shown as black
stars. The black polygonal shapes represent the obstacles. The
agent observes all landmarks and obtains estimates of its own
position at all time steps. The agent achieves better position
estimates when it is closer to the landmarks. Let the Euclidean
distance between the position of the 2-D double integrator
and the j* landmarks be given by d;. Then, the j" position
measurement corresponding to landmark j is

y =M 2@ 4 n,djv,, j=1,2,--- 4, (5D

where 7, is a parameter related to the intensity of the position
measurement noise that is set to 0.1, and v, is a two-
dimensional standard Gaussian random vector. The velocity
measurement is given by

Yo = [33(3) x(4)]T + NyVy, (52)

where 7, is a parameter related to the intensity of the velocity
measurement noise and is set to 0.2, and v, is a two-
dimensional standard Gaussian random vector. In this case,
the velocity is measured using onboard sensors and does not
depend on the landmarks. Thus, the total measurement vector
y is a 2¢ + 2 dimensional vector, composed of ¢ position
measurements and one velocity measurement.

The sampled CS-BRM nodes are shown in Figure 6. Each
node is given by (z, P, ]5-). The mean of the positions z(1),
z? are sampled from the obstacle-free space. The velocities
are all set to be zero for the purpose of comparison with
SLQG-FIRM.

Following Algorithm 2, the edge controllers are computed
using the covariance steering controller for each edge and the
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Fig. 6: Planning environment and sampled CS-BRM nodes. The gray dots are
the state means  of the nodes. The red dot is the state mean of the starting
node and the blue square is the state mean of the goal node. The black
ellipses around the state represent the 3o confidence intervals of the position
covariances, and the red dash ellipses correspond to the prior estimation error
covariances. The goal of the planning problem is to find the optimal path
along with the control policy to go from the starting node to the goal node.

collision cost is computed using Monte Carlo simulations. For
each node in the roadmap, the mean trajectories to go from
this node to all its neighboring nodes are computed using
Algorithm 1. In the covariance steering method introduced
in Section III, the number of time-steps /N for a particular
edge, and the time step size At are design variables chosen
by the user. In this example, we choose At = 0.2 s. The
time duration of the edge is chosen based on the Euclidean
distance between the state mean of the two endpoints of that
edge. By specifying the desired average speed of the robot,
we approximate the time duration of the edge and then obtain
the number of time-steps N of this edge. The desired average
speed is a design parameter and is set to be 4 m/s.

The edge cost in CS-BRM is the combination of the mean
control cost, the covariance control cost, and the cost from the
probability of collision. After the CS-BRM is built, the path
planning problem on CS-BRM is the same as the problem of
planning using a PRM, which can be easily solved using a
graph search algorithm. The difference between the CS-BRM
and PRM is that the edge cost in CS-BRM is specifically
designed to deal with dynamical system models and uncer-
tainties, and the transition between two nodes of CS-BRM is
achieved using covariance steering as the edge controller.

The planned path using our method is shown in Figure 7.
The edge cost in CS-BRM is a weighted sum of the mean
control cost, covariance control cost, and collision cost. Instead
of taking the shortest length path which has a high probability
of collision, the algorithm finds a detoured path that is optimal
in terms of the defined edge cost.

3) Comparison of Belief Space Roadmap Methods: In this
section, we compare the proposed CS-BRM algorithm with
the SLQG-FIRM. The sampled belief nodes for SLQG-FIRM
are the same as those in Figure 6. Since the sampled state
covariance at each node is larger than the corresponding
stationary state covariance (which is obtained using the SLQG
controller), we determine that the robot has reached a node
if, after switching from the time-varying LQG to the SLQG,



Fig. 7: Path planned by CS-BRM. The path is optimal in terms of the defined
edge cost, which is a weighted cost between the control effort and safety.

the state covariance under the control of the SLQG controller
converges to a value that is smaller than the sampled state
covariance at that node. The planned path is shown in Figure 8.

Fig. 8: Planned path using the SLQG-FIRM. The path goes through the
same set of belief nodes as those in Figure 7. The red ellipses are the state
covariances at the last step of the time-varying LQG controller. The time-
varying LQG controller is switched to the SLQG controller until the state
covariance converges to a value that is smaller than the state covariance of
the belief nodes (bold black ellipses). After that, the path proceeds to the next
node.

Both CS-BRM and SLQG-FIRM choose a path that goes
through the same set of belief nodes. In both cases, the
collision cost is zero because no collision is detected by the
Monte Carlo simulations. In Figure 8, the red ellipses are the
state covariances at the last step of the time-varying LQG
controller. As we see, each one of the ellipses is larger than
the corresponding state covariance of the intermediate belief
node (bold black ellipses). Thus, a converging step is required
at every intermediate node, which means that the path from
the SLQG-FIRM method will take more time to reach the
goal node compared to the one in Figure 7. The cost of the
path planned by CS-BRM in Figure 7 is 244.61. When only
considering the cost of the time-varying LQG controller and
ignoring the cost of the SLQG controller, the cost of the path
planned by SLQG-FIRM in Figure 8 is 240.47. After adding
the cost from the SLQG controller, the final cost is 246.13.
The mean control cost of the paths in Figures 7 and 8 are the
same because CNT is used to compute the mean trajectories
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in both cases. Also, the collision cost in both cases is zero as
no collisions are detected from the Monte Carlo simulations.
Thus, the total cost of the paths planned using CS-BRM and
SLQG-FIRM are close in this case.
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Fig. 9: CS-BRM results based on the heuristic method to sample velocity.
The green lines are the mean trajectories of the edges.

Fig. 10: Planning results using the CS-BRM algorithm and the proposed
heuristic method for sampling velocities. The path is optimal in terms of the
defined edge cost, which is a weighted sum of the control effort and safety.
By sampling the velocity space, the robot does not need to stop at every node.
The path cost is much smaller in this case compared to Figures 8.

We also used the method of Section V-B to sample the
velocity space. The mean positions, state covariances, and
estimation error covariances are the same as those in Figure 6.
The only difference is that instead of assigning zero mean
velocity to every position, multiple non-zero velocities are
sampled for each position. The results are shown in Figure 9.
The mean trajectories of the edges are shown as green lines.
The ellipses are the state covariances. The planned path is
shown in Figure 10. The cost of the planned path is 104.87,
which is much lower than the cost of the paths in Figure 7
and Figure 8, which are 244.61 and 246.13 respectively. The
decrease in the path cost is due to the decrease in the mean
control cost. In Figure 8, the robot has to stop (zero velocity)
at every intermediate node. With the proposed method, the
robot goes through each intermediate node smoothly, which
results in a more efficient and low-cost path.



B. Fixed-Wing Aircraft

In this section, we apply the proposed method to a nonlinear
example, namely, planning for a fixed-wing aerial vehicle.
The kinematic model of a fixed-wing unmanned aerial vehicle
(UAV) is given by [50]

& =V cos v cosy,

y = Vsin cos~,

z = Vsinvy, (53)
b= tang,

where the 4-dimensional state space is given by [z y z ] T,
where [z y z]" is the 3-D position of the vehicle, and 1 is
the heading angle. The 3-D control input space is given by
[V v ¢] T, where V is the air speed,  is the flight-path angle,
and ¢ is the bank angle.

The discrete-time system model with noise added is given
by

Ty1 = Tk + Vi cos g cos 1At + grrwir,

Y1 = Yk + Vi sin g, cos v At + garwor,

Zhy1 = 2k + Vi sinyp At + garwsg, 54
Y41 = Y + Vik tan ¢ At + garway,
where At is the time step size, wy, ¢ = 1,2,3,4, are

standard Gaussian random variables, g1k, 9ok, 93k, and g4k
are multipliers correspond to the magnitude of the noise. Their
values are all set to be 0.02. The system is linearized along
a nominal trajectory to obtain a discrete, linear time-varying
model. The system matrices are computed using equation
(5). Similar to the 2-D double integrator example, several
landmarks are placed in the environment. We assume that
the vehicle can observe all landmarks and obtain estimates
of the state at all time steps. The vehicle achieves better
state estimates when it is closer to the landmarks. Let the
location of the j** landmark be given by L; and the Euclidean
distance between the 3-D position of the vehicle and the ;"
landmarks be given by d;. Then, the j* position measurement
corresponding to landmark 7 is

" +ndjv, j=1,2,...,¢

Yy=lryz¢ (55)

where 7 is a parameter related to the intensity of the noise of
the measurement and is set to 0.05, and v is a 4-dimensional
standard Gaussian random vector. Thus, the total measurement
vector y is a 4¢-dimensional vector, where ¢ is the number of
landmarks.

The 3-D map of the environment is shown in Figure 11. The
four spheres in the middle of the environment are the obstacles.
The three black stars represent the landmarks. The CS-BRM
nodes are also shown in Figure 11. The black dots represent
the state mean of the nodes. The red dot is the state mean
of the starting node and the blue square is the state mean of
the goal node. The state means are deterministically chosen to
discretize the environment. Covariances are sampled for each
node. The small ellipsoid in the lower-right corner shows the
30 confidence interval of the covariance of the 3-D position
of that node. The covariances for other nodes are omitted.
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Fig. 11: 3-D map of the planning space. The black stars represent the land-
marks’ locations. The four grey balls in the middle of the cubic environment
are the obstacles. The red dot, blue square, and black circles represent the
state mean of the nodes.
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Fig. 12: Generation of a compatible nominal trajectory for the fixed-wing
vehicle. The nominal trajectory and the reference trajectory are initialized as
straight lines. The state trajectories are shown in (a) and the control trajectories
are shown in (b). The blue solid lines correspond to the initial nominal
trajectory (which is also the reference trajectory). The red lines correspond
to the final mean trajectory, which is also the compatible nominal trajectory
and the reference trajectory.

Algorithm 1 was used to find a compatible nominal trajec-
tory for the fixed-wing vehicle, and the results are given in
Figure 12. The nominal trajectory and the reference trajectory
are initialized as straight lines in all four state dimensions and
the three control input dimensions. The initial state is zero,
and the terminal state is [3 4 6 0]". The number of time-
steps is N = 20, and At = 0.2 sec, Qr = Iy, Ry = 4Is.



Fig. 13: CS-BRM of the fixed-wing vehicle. The green lines are the mean
trajectories between the nodes.
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Fig. 14: Planning results using the CS-BRM for the fixed-wing vehicle.
The gray lines are the trajectories from the Monte-Carlo simulations, 100
simulations are performed for each edge. (a) Based on the defined edge cost,
which takes into account both the control effort and probability of collision,
the algorithm finds the optimal path that trades off between control effort
and collision cost. (b) Without considering the probability of collision, the
algorithm finds a shorter length path, but which has a higher probability of
collision compared to (a).

During each iteration of Algorithm 1, the nominal trajectory
and the reference trajectory are updated using the computed
mean trajectory of Section IV. The algorithm converged in
eight iterations.

The final CS-BRM is given in Figure 13. The planned path
using this CS-BRM is shown in Figure 14. The collision cost
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is considered in the edge cost of Figure 14(a), while the result
without considering the probability of collision is shown in
Figure 14(b). Similarly to the example in Section VI-A, the
path in Figure 14(b) is shorter, but it requires the vehicle to
fly through the narrow passage between the four obstacles
resulting in a high probability of collision. Considering the
motion uncertainty and observation uncertainty, a longer path
is chosen in Figure 14(a), which trades off between control
cost and collision cost while minimizing the total edge costs.

C. Quadrotor

The final example is a small quadrotor landing in a clut-
tered environment. Due to the differential flatness of the
quadrotor model, one can recover the state trajectories of
the quadrotor from its flat outputs [51]. Many works design
smooth trajectories of the flat outputs for quadrotor trajectory
planning. The differential flatness of the quadrotor equations
of motion allows the modeling of the quadrotor dynamics as
a 3-D double integrator system. In this work, we assume that
this inner loop controller is already in place and use the 3-
D double integrator model for planning. The system matrix
Gy, is estimated from flight data of the quadrotor and is
given by G} = 10~3diag(1,1,1,6,6,6). A motion capture
system is used to provide the ground truth of the quadrotor
state. To imitate the measurement of a GPS sensor, artificial
noises are added to the motion capture system measurements.
The matrices of the measurement model are Cj Ig and
Dy, = 0.031¢.

There are three landing points in the environment. After
assigning zero velocity to the landing points, they are added to
the graph as additionally sampled vertices. Following the CS-
BRM algorithm, we can build a belief roadmap for quadrotor
landing. By performing online graph searches, we can find
safe motion plans for the quadrotor to land on either one of
the landing points or fly from one landing point to another
landing point.

Fig. 15: CS-BRM roadmap of the 3-D quadrotor.

The environment along with the constructed CS-BRM
roadmap is shown in Figure 15. The gray polyhedrons denote
the obstacles. The green trajectories are the mean trajectories
of the roadmap. The landing points are shown in blue. The
proposed velocity sampling heuristic is used to sample mul-
tiple velocities at each position. After constructing the CS-
BRM roadmap, it is used for multi-query motion planning.



Two landing motion plans are given in Figure 16. The gray
trajectories are Monte Carlo simulation results. A comparison
between CS-BRM and PRM is given in Figure 17. By taking
plan safety into consideration and planning in belief space,
CS-BRM generates a safer plan than PRM.

T .
0, | 2
z(m)

——

3 4

Fig. 16: Planning results of two quadrotor landing problems. The gray trajec-
tories are the realization of the motion plans using Monte Carlo simulations.
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Fig. 17: Comparison between CS-BRM (left) and PRM (right). CS-BRM
generation safe motion plans by planning in belief space and considering
plan safety, while the plan from PRM can result in a high probability of
collision.

We implemented this planner on a CrazyFlie quadrotor [52].
Since the planner uses a double integrator model, the plan
computes the desired acceleration of the quadrotor. The desired
acceleration is then sent to a low-level acceleration/attitude
tracking controller, which is available with the Crazyflie, to
close the control loop. A motion capture system is used to
measure the position and velocity of the quadrotor. These
measurements are the states xj in the observation model (4),
which are then corrupted by adding additive Gaussian noise
vg. Finally, the measurement y;, is used by the covariance
steering controller. A snapshot of the quadrotor executing a
landing plan is given in Figure 18. The complete experimental
results are shown in Figure 19'. The gray trajectories are the
results of 20 repeated experiments. A small trajectory tracking
error along the z-axis is observed which is due to model
mismatch and the fact that the desired acceleration is not
achieved instantly by the inner tracking CrazyFlie controller.
To reduce the error, a more sophisticated trajectory tracking
controller [53] may be used to track the plan provided by the
CS-BRM planner.

VII. CONCLUSION
A new belief space roadmap (BRM) algorithm is developed
in this paper. The nodes in BRM represent distributions of the

'A video of the experiment can be found at https://youtu.be/
bW45UtwTqiM
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Fig. 18: A snapshot of the Crazyflie quadrotor executing a landing plan from
CS-BRM.
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Fig. 19: Experiment results. The gray trajectories are the results of 20 repeated
experiments.

state of the system and are sampled in the belief space. The
main idea is to use covariance steering theory to design the
edge controllers of the BRM graph to steer the system from
one distribution to another. Compared to the previous state-of-
the-art [11], the proposed method directly deals with nonsta-
tionary belief nodes and can sample multiple velocities at the
same position node, which has the advantage of more complete
exploration of the belief space. For covariance steering of
nonlinear systems, we introduce the concept of compatible
nominal trajectories, which aim to better approximate the
nonlinear dynamics through successive linearization. We also
propose an efficient algorithm to compute compatible nominal
trajectories. Compared to the standard PRM, the additional
computation load comes from the computation of the edge
controllers and edge cost evaluations, which, however, are
done offline. The CS-BRM can be constructed incrementally,
which allows balancing between the offline computation time
and path quality. By explicitly incorporating motion and
observation uncertainties, we show that the proposed CS-
BRM algorithm generates efficient motion plans that take into
account both the control effort and collision probability.
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APPENDIX A
DERIVATION OF SYSTEM MATRICES

At each time step k, we obtain the expression of xj by
forward propagating equation (17). By combining the steps of
the iterative equation (17), & can be written as

&y = Apo- + BrUg—1 + Hy + LiEk, (A.1)
for k=1,---, N, where
Ay = Ak—1,0,
B = [Bi_10 Bk—11 - Bi_1.k-1],
& = [Br-1,0 Br—1,1 k—1,k—1] (A2)
Hy=hg10+hg—11+ -+ hg—1x-1,
Ly =[Lko Lk -+ Likl,
and
Akl,ko = AklAkl—l T AkO’ Ang = Ak,
By, ko = Aky ko+1Bky,  Bik = B, (A3)
hkl,ko = Akl,k0+1hkov hk,k = hg,
Ly ko = Aky—1,k0Lkgs Lk = L,

Using (20) and stacking the equations of & from different
time-steps, we obtain

X = A%y + BU + H + L=, (A.4)
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where

I 0 0 0
{11 Bo o 0 0
A= 42| B=| Bio By, 0
|An | | Bn-1,0 Bn-1:1 By_1,nv-1
(0] Loy 0 0
H, Lio Lia 0
H= || r[=|Lleo L2x -~ 0 | (A5
| Hn | | Lno Ly Ly~
APPENDIX B

PROOF OF PROPOSITION 1

Proof. The terminal constraint in (27) can be written as
TN = ANTo + ByU + Hy. Define the Lagrangian as
LU\ =X"QX +U"RU - 2X"QM,
+ A (Zxy — AnZo — ByU — Hy)
=(AZo + BU + H) " Q(AZo + BU + H)
+UTRU —2(AZo + BU + H) ' QM,
+ A (Zy — AnTo — BNU — Hy),

(B.1)

where A is the Lagrangian multiplier. Take the partial deriva-
tive of L(U, \) with respect to U. The first-order optimality

condition yields
VgL =2(B"QB + R)U B2
+2BTQ(AZo + H — M,) — BEA =0, '

and thus,

_ 1._
U*=W(-V + §BITVA), (B.3)

where W = (BTQB + R)™' and V = BTQ(AZo + H —
M,). Substituting U* into the terminal condition Ex X = Zy,
where X is given by (24), we have

_ _ 1_
Ty = AnTo + BNyW(-V + 5BJEA) + Hy. (B.4)
It follows that

1- _ _ _

§BNWB]TVA =Zy — ANTo— Hy + ByWV.  (B.5)

Given that the system is controllable, the matrix By is full
row rank and the matrix B NWBI, is invertible. Thus,

A =2(BN\WBY) N(zn — AnTo — Hy + ByWYV). (B.6)

Finally, substitute (B.6) into (B.3) to obtain the optimal control

U* :W(ijrB]T,(BNWB{,)*lx B7)

(Zny — AnTo — Hy + BNWYV)).

]



APPENDIX C
PROOF OF PROPOSITION 2

Proof. From (26), the cost functional in (12) may be
rewritten as

Ju)=EXTQX +U"RU]+U "RU + XTQX
- . Nl _ (C.1)
—2X"QM, + M, QM, + > tracePQy.
k=0
Note that the quadratic term X 'QX — 2X'QM, +

M;'—QMT > 0 and is zero only when M, = X. The last
term ZkN;(} trace(P,Qy) is a constant that does not depend
on the control U and M,.

In (C.1), M, is assumed given and fixed. Now, let M,
also be a design variable and define J(u,M,) = J(u) —

ij;ol trace(PyQy), then
min J (u, M) > min (E[XTQX +UTRU]+U"RU)

s Vi

+ min (XTQX —2XTQM, + MQM,)
=min(E[X QX + U RU|+ U RU)

+ min (XTQX —2XTQM, + M,”QM,)
>min(E[X QX + U RU]+ U RU).
(C.2)
The two inequalities in (C.2) become equalities when M, =

X. Thus, J(u, M,.) achieves minimum only if M, = X.
(]

APPENDIX D
PROOF OF PROPOSITION 3
Proof. Since the Kalman filter is an iterative update, we only
need to show that, if Py- < Pp-, then P,- < P;-. The rest can
be shown by induction. Define V, = DOD0 and Wy = GOGJ .
Using equation (10), we have

Lo = Py-CJ (CoPy-Cf 4+ Vo)1, (D.1)
Py = (I — LyCy) Py = (D.2)
Py — Py Cy (CoPy-Cy + Vo)L Co Py, (D.3)

Pi- = Ag[Py — Py-Cy (CoPy-Cy + Vo) *CoPy-] Ay + Wo.
D.4)

Next, define

®(H, Py) = (Ag+ HCo)Py-(Ag+ HCo) " + Wy + HV H'.

(D.5)
Note that ®( H, P,-) is non-decreasing in Py-. That is, if Py- <
Py, then ®(H, P,.) < ®(H, Py-). Since Py- and V; = 0, it
follows that ®(H, 150-) is quadratic and convex in the variable
H. By taking the partial derivative of ®(H, Py-) respect to H

and setting it equal to zero yields
Vu®(H,Py) =2(Ao+ HCy)Py-Cj +2HVy =0. (D.6)

Thus, the minimum of ®(H, 150-) with respect to H is achieved
when

"= —AgPy-Cy [CoPyrCy + Vo~ (D.7)
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The minimum is
O(H*, Py) =
Ag[Py — Py-Cy (CoPy-Cy + Vo) *CoPy-]Ag + Wo.
(D.8)

Thus, P;- = ming ®(H, Py) = <I>(H* Py-). Now given a
new estimation error covariance Po- that satisfies P0 = Py,
we have P. = ming ®(H, Po) = <I>(H*(PO) P =
S(H*(F}), Py) < B(H"(By), Py) = Pr-. O
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