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Using the time-dependent Lanczos method, we study the nonequilibrium dynamics of the one-dimensional
ionic-mass imbalanced Hubbard chain driven by a quantum quench of the on-site Coulomb interaction, where
the system is prepared in the ground state of the Hamiltonian with a different Hubbard interaction. The
exact diagonalization method (Lanczos algorithm) is adopted to study the zero temperature phase diagram in
equilibrium, which is shown to be in good agreement with previous studies using density matrix renormalization
group (DMRG). We then study the nonequilibrium quench dynamics of the spin and charge order parameters
by fixing the initial and final Coulomb interactions while changing the quenching time protocols. Our study
shows that the time evolution of the charge and spin order parameters strongly depend on the quenching time
protocols. In particular, the effective temperature of the system will decrease monotonically as the quenching
time is increased. By taking the final Coulomb interaction strength to be in the strong coupling regime, we
find that the oscillation frequency of the charge order parameter increases monotonically with the Coulomb
interaction. By contrast, the frequency of the spin order parameter decreases monotonically with increasing
Coulomb interaction. We explain this result using an effective spin model and a two-site Hubbard model in the
strong coupling limit. Finally, we take the final Coulomb interaction strength to be in the weak coupling regime
and find that the oscillation frequency of both the charge and spin order parameters increases monotonically with
decreasing Coulomb interaction. Our study suggests strategies to engineer the relaxation behavior of interacting
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quantum many-particle systems.
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I. INTRODUCTION

The understanding of nonequilibrium dynamics of a
strongly correlated electronic system has seen dramatic
progress from both theoretical and experimental sides in
the past decade [1-5]. Two commonly studied scenarios are
the laser driven strongly correlated solid state system and a
Coulomb interaction quenched system in optical lattices with
cold atomic gases [3-25]. In driven systems, the observation
of hidden quantum states not accessible in equilibrium [26],
and the nonequilibrium control of quantum phase transitions
in correlated electron systems, have attracted great interest.
For example, the ac-field drive dynamical band flipping [27],
the damping of Bloch oscillations in the Falicov-Kimball
model [28,29] and Hubbard model [30], the ultrafast control
of magnetic order in the Mott insulators [6,9,19], and photoin-
duced unconventional superconductivity [16,31,32] illustrate
known phenomena.

In these nonequilibrium systems, the study of long-time
thermalization behavior is of particular interest. In general, a
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closed (driven) system will thermalize to a featureless infinite
temperature thermal state with maximal entropy if the energy
of the system is not conserved [33—35], unless the system is
sufficiently disordered for many-body localization [36,37]. If
the system is coupled to a bath (i.e., “open”), it is possible
to establish a nonequilibrium steady state, since the absorbed
energy can be released to the connected bath [38,39]. For a
clean isolated solid state system driven by spatially uniform
electric field, the system could show different thermalization
behavior, resulting in a featureless infinite temperature steady
state, a nonthermal steady state, or even an oscillatory state
[40—42]. In the case of periodic driving, the heating rate can
depend on the laser frequency. Abanin ef al. [43,44] find the
heating rate decreases exponentially as the driving frequency
is increased, provided the frequency is larger than other char-
acteristic energy scales in the Hamiltonian. Mallayya et al.
[45—47] confirm the robust exponential regime using a numer-
ical linked-cluster expansion method, and suggest the heating
rate should obey Fermi’s golden rule in a weakly perturbed
nonintegrable system. Seetharam et al. [13] find that the Flo-
quet eigenstates in a clean system can exhibit nonthermal
behavior because of a finite system size.

In general, a Coulomb interaction quenched system will
thermalize unless the system is integrable [1,48-50]. In a
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quench from a superfluid to a Mott regime, the system will
thermalize in some regimes while not in others [51]. A nu-
merical study of a finite quantum system of bosons found
that the thermalization behavior depends on the magnitude of
Coulomb interaction change [52] and the distance in param-
eter space to an integrable point, with a failure to thermalize
as one approaches the integrable point [51]. By contrast, the
quenched fermionic Hubbard model on an infinite dimen-
sional Bethe-lattice system will result in a quasi-stationary
state for a weak and strong Coulomb interaction quench,
while in between the two regimes, a dynamical phase tran-
sition is observed, where fast thermalization occurs [53-55].
Specifically, for the SU(2) symmetry broken mass imbalanced
Hubbard model, a previous Coulomb interaction quench study
showed that a spin-selective (different hopping integrals) ther-
malization phenomena is observed [55] while studying the
Coulomb interaction quench dynamics. To build the connec-
tion between the SU(2) broken (mass imbalanced) and the
SU(2) preserved (mass balanced) Hubbard model, a quench
of the hopping integral between the two models was studied
[56]. The authors found the SU(2) symmetry order parameter
decays exponentially to zero, which is character of Hubbard
model.

In the equilibrium mass-balanced ionic Hubbard model,
there exist rich phases: an ionic band insulator without spin
order, an ionic band insulator with finite spin order, a cor-
related insulator, or even superconductivity [57-59]. In this
work, we are interested in the one-dimensional ionic mass
imbalanced Fermionic Hubbard model, which has been stud-
ied using mean-field theory (MFT) [59,60] and the density
matrix renormalization group (DMRG) [61] method. Com-
pared to the conventional Hubbard model, the translational
and spin SU(2) symmetry are explicitly broken, while the
mass imbalance breaks the SU(2) symmetry, the ionic term
(staggered potential) breaks the translational symmetry. There
exist two phases in the plane of the Coulomb interaction and
the on-site ionic term for fixed mass imbalance: (i) a charge
density wave order induced by the staggered ionic potential
and (ii) an alternating magnetic order originating from the
hopping asymmetry and Coulomb interaction. The transition
at finite U, is characterized as first order at the mean-field
level [59] and second order in DMRG [61]. If one extends the
above one-dimensional model to a two-dimensional square
lattice, one finds novel magnetically ordered metallic phases
in the Coulomb interaction and the staggered potential plane
[62]. For example, a spin imbalanced ferromagnetic metal, a
ferromagnetic metal, and an antiferromagnetic half metal all
appear. However, the nonequilibrium behavior of this model
has not been studied until now.

In this paper, we study the nonequilibrium dynamics in
the one dimensional ionic Hubbard model while quenching
the Coulomb interaction, where the initial state is prepared in
the ground state of an initial Hamiltonian. From the technical
point of view, DMRG works exceptionally well in the static
case, while time-dependent DMRG suffers from significant
growth of the entanglement entropy when studying quench
dynamics [63—68]. In our work, we adopt the time-dependent
Lanczos method in studying quench dynamics of the ionic
mass imbalanced Hubbard model in one dimension.

The experimental realization of the ionic mass imbalanced
Hubbard model can be implemented in ultracold atoms in
engineered optical lattice systems. The hopping asymme-
try (mass imbalance) can be introduced by considering two
species of fermionic atoms (e.g., °Li and *°K) trapped in an
optical lattice [69], where the staggered ionic potential can
be created by the interference of counter-propagating laser
beams, and the Coulomb interaction strength can be tuned via
a magnetic Feshbach resonance [70-72].

Our paper is organized as follows. In Sec. II, we
describe the Hamiltonian of the one-dimensional mass imbal-
anced ionic Hubbard model and the time-dependent Lanczos
method. In Sec. III, the equilibrium phase diagram is obtained
using exact diagonalization. In Sec. IV, we calculate the
nonequilibrium quench dynamics of the system in different
Coulomb interaction regimes. Finally, in Sec. V, we present
the main conclusions of the paper.

II. MODEL HAMILTONIAN AND TIME-DEPENDENT
LANCZOS ALGORITHM

The time dependent mass imbalanced ionic Hubbard model
in one dimension is

H(t)=— ZVV(CZUCi+l,U + ClTJrl,aCi,a)
+AY (=D +U® Y nipmiy, (1)
io i

where ciTU (cis) creates (annihilate) an electron with (pseudo)
spin o atsite i (i=1,...,L), and n;, = cj'ac,-(T is the corre-
sponding occupancy operator. Here, V; is the hopping integral
between nearest-neighbors for spin o electron, —A (A) is the
ionic potential for odd (even) sites of the one dimensional
chain, and U(¢) is the time dependent on-site Coulomb in-
teraction.

Throughout this paper, we set V4 = 1 as the unit of energy
and the time is in units of 1/V,, correspondingly. The hopping
asymmetry (mass imbalance) is defined as the ratio of spin-|,
to spin-1 hopping integrals n =V, /V;. In the following, we
restrict ourselves to the half-filling case with periodic bound-
ary conditions, where the total number of electrons N is equal
to the number of sites in the chain L. Furthermore, we assume
the total magnetization in the system vanishes, which means
the number of up spin electrons N; is equal to the down spin
electrons N, . The nonequilibrium quench dynamics is studied
by fixing the hopping parameter V| /V; <1 and ionic poten-
tial A > 0 while quenching the Coulomb interaction from an
initial U(t =07) = U tofinal U (¢ > t;) = Ur, where t, is the
linear ramp time of Coulomb interaction change.

The exact diagonalization method (a standard Lanczos pro-
cedure) is employed to numerically find the ground state of the
Hamiltonian at time ¢t = 0~ where U (t = 07) = U;. This state
is used as an initial state for the time dependent Schrodinger
equation id;|W(¢)) = H(¢)|¥(¢)). The time evolution is im-
plemented step-by-step based on the time-dependent Lanczos
method [73-77],

M
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FIG. 1. The equilibrium phase diagram of the one-dimensional mass imbalanced ionic Hubbard chain at half-filling and zero temperature,
calculated using the exact diagonalization method (10 sites or 14 sites with periodic boundary condition). The density matrix renormalization
group (DMRG) and mean-field theory (MFT) data are obtained from the references [59,61]. (a) The charge gap A. as a function Coulomb
interaction are plotted to characterize the phase transition (U, = 6.8), where the mass imbalance and crystal field are n = 0.75 and A = 3.0,
respectively. (b) Critical points are plotted in the plane of Coulomb interaction U and crystal field A with fixed mass imbalance n =V, /V, =
0.90. (c) Critical points are plotted in the plane of Coulomb interaction U and mass imbalance 7 with fixed crystal field A = 2.0. The lines are

guides to the eye.

where €, (®;) are the eigenvalues (eigenvectors) of the
tri-diagonal matrix generated by Lanczos iteration with
M < 100. (In general, the desired M for achieving the given
accuracy depends on the studied setups and chosen time step
sizes [78].) We set the time step size §t = 0.005 in our cal-
culation of the time evolution. The physical observable are
computed as,

(0@)) = (V()[O[W()). (@)

Following earlier work [59], we measured the evolution of the
charge and spin density order parameters,

1 .
Spe(t) = —7 Z(—l)'(‘l’(t)lnml‘l’(t)),

1 ‘
Sps(t) =+ ZU(—I)’(\P(I)Ini(rI‘I’(I)>, 3

where o = 1(—1) for spin-1 () electrons in the second
line. The effective temperature after Coulomb interaction
quench protocol is calculated by numerically solving the
equation [54]

E . Tr[Hz>t,, eXP(_,Befthzz,, )]
> Tr exp(_ﬂeffH@zq)

where E;>, is the energy after the Coulomb interaction
quench protocol and the effective temperature is denoted as
Teir = 1/Besr. Note here E;,, remains constant because the
time evolution operator is unitary. To solve Eq. (4) numeri-
cally, a finite temperature Lanczos algorithm [79,80] is used
to calculate the total energy of the equilibrium system at finite
temperature. For the analysis of long-time quench dynamics,
we define the charge, spin and excitation gaps of the equilib-
rium Hamiltonian H = H;.,, as

. “

A.=Eo(Ny +1,N)) + Eg(Ny —1,Ny) — 2Eo(N;, N),
Ay =Eq(Ny +1,N, — 1) — Eo(Ny, Ny),
Ap = E{(Ny,N)) — Eg(N;, N)), (5)

where N, (N,) is number of the spin-1 ({) electrons with
Ny =N, =L/2. Eg(Ny,N|) and E{(Ny, Ny) are the ground

and first excited state energy in the (N4, N|) subspace. Note
we have Eg(Ny £1,N}) # Eq(Ny, N, == 1) due the broken
SU(2) symmetry.

III. EQUILIBRIUM PHASE DIAGRAM
AT ZERO TEMPERATURE

To pave the way for the study of the nonequilibrium quench
dynamics of the ionic mass imbalanced Hubbard model, we
first calculate the equilibrium phase diagram using exact diag-
onalization (ED) and compare it with the data obtained with
DMRG or MFT. In Fig. 1(a), we plot the charge gap as a
function of Coulomb interaction for the one-dimensional mass
imbalanced Hubbard chain with 10 or 14 sites and periodic
boundary conditions. The mass imbalance and ionic potential
are setasn =V, /V4 = 0.75 and A = 3.0, respectively.

With a 10 site chain, the charge gap decreases with in-
creasing of Coulomb interaction at first, approaching to a
minimum, then increases with Coulomb interaction. As the
chain size is increased from 10 to 14 sites, the charge gap as a
function of Coulomb interaction takes the same character—
decreases until a critical U and then increases. With the
increasing of sites, the minimum of the charge gap decreases.
The corresponding Coulomb interaction with the minimum
is defined as the critical Coulomb interaction U, = 6.8. As
pointed out [61], the Von Neumann block entropy can also
be used as a criteria of phase transition, where the block en-
tropy peaked at the critical Coulomb interaction U, where the
charge gap dipped at the same position (shown in Appendix
Fig. 8). In addition, by comparing the charge gap of 10-site
and 14-site chains, we find the gap difference is smaller when
the Coulomb interaction moves away from the critical value
U,., which indicates that the finite-size effect is less severe
when the Coulomb interaction is away from critical U,.

In Fig. 1(b), the phase diagram in the plane of the crystal
field A and Coulomb interaction U is plotted with fixed mass
imbalance n =V, /V, = 0.9. The critical points are charac-
terized by the dip of the charge gap and can be confirmed by
studying the von Neumann block entropy as a function of the
Coulomb interaction [61]. The band insulator and correlated
insulator phase are observed in the large crystal field and
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FIG. 2. Time evolution of the charge and spin order parameter 8o, and 8 p, after the Coulomb interaction quench protocol U(¢) = U; +
(U = Uyt /1, fort <t, and U(t) = U; for t > t,, where the initial and final Coulomb interaction strength is set as U; = 6.0 and Uy = 8.0,
respectively. (a) z, = 0.0%, (b) 1.0, (c) 2.0, (d) 4.0, (e) 8.0, and (f) 16.0. The expectation value of § o, and 8 p; at zero temperature is represented
by a dashed line with Coulomb interaction U = Uy in the equilibrium calculation. The arrows indicate the thermal values of the two order
parameters at effective temperature o = 0.632, 0.420, 0.296, 0.173, 0.104, 0.085 for ¢, = 0.0%, 1.0,...,16.0, respectively. The insets
in (e) plot the order parameters as a function of time in the long-time regime ¢ € [150, 200].

large Coulomb interaction regime, respectively. To validate
the exact diagonalization method used in this paper, we plot
the phase diagram derived by the Hartree-Fock mean-field
method and DMRG method as a comparison.

Compared to the data obtained with DMRG, exact diago-
nalization underestimate the critical Coulomb interaction for
a fixed crystal field A, which we attribute to a finite-size
effect: Increasing the chain size from L = 10 to 14 decreases
the deviation. Furthermore, our numerical calculations show
that the difference decreases with increasing A. To check the
dependence on the mass imbalance, the phase diagram in the
plane of mass imbalance 1 and Coulomb interaction U for a
fixed crystal field A = 2.0 is plotted in Fig. 1(c). Comparing
to the phase diagram calculated by DMRG, one can see that
ED has worked well for large mass imbalance.

In the noninteracting limit, the charge and spin order pa-
rameter are derived analytically as §p. = 0.927 and §p, =
0.018, respectively. With increasing Coulomb interaction, the
charge order parameter 6p. will decrease while the spin
order parameter §p; increases monotonically. At specific
Coulomb interaction, we have §p, = § p,. Further increasing
the Coulomb interaction will result in §p. < §p; [59]. This
behavior above can be understood from the two limits of
the Coulomb interaction strength. In the noninteracting limit,
the model can be solved analytically and the two order pa-
rameters are expressed as a function of an elliptic integral
[59], where the charge order parameter increases monoton-
ically as a function of crystal field and finally converges to
3p. = 1. Conversely, the spin order parameter will decrease
monotonically and converge to 0. In the strong Coulomb inter-
action limit U > V4, V,, A, the system will be reduced to an
anisotropic XXZ Heisenberg model with a staggered magnetic

field, which result in an antiferromagnetic Mott insulating
phase with §p; = 1 and §p, ~ 0.

The effective Hamiltonian in the strong coupling limit
is [81]

Herr = Jox Z (S

—hY (—1)S;, (6)

1t stf;l + VS:'ZSI;-H)

where Sf(y ) is the spin operator at the ith site along direction
x(y, z) and the coupling coefficients are

2 2
_ VitV
2%V,

4UV,V,
U? —4A%’

47 =VHA
S Ur—4A?
Q)

Here, y # 1 breaks the SU(2) symmetry and & # 0 breaks the
translational symmetry.

u7ex:

’

IV. NONEQUILIBRIUM QUENCH DYNAMICS

In our study of nonequilibrium quench dynamics, we
fix the mass imbalance n =V, /V} = 0.75 and crystal field
A = 3.0 while changing the Coulomb interaction strength
U(t). The quench protocol is defined through the time
dependent Coulomb interaction as

Ui + ot
U(r):{Uf

where o = (Ur — Uj)/1, is the slope of ramp in the Coulomb
quench protocol. The starting state is set as the ground state
of the initial equilibrium Hamiltonian with U(t = 07) = U;.

r<t,

(> ®)
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TABLE 1. Effective temperatures in the long-time limit for
quench protocols (8) with different quench time ¢, are summarized,
where the initial and final Coulomb interaction are fixed as U; = 6.0
and Uy = 8.0. Here, §p.(Tetr) and §p.(Tesr) are the charge and spin
order parameters in the equilibrium calculation with U = U; and
T = T, respectively. §p. and 8 p, are the long-time (¢ € [150, 200],
not shown in Fig. 2) averaged charge and spin order parameters from
the nonequilibrium quench dynamics calculation.

lq T;:ff ) Pih 8/_3¢ ) pzh 81(_)3

0.0 0.632 0.1622 0.2197 0.0763 0.1916
1.0 0.420 0.1703 0.2077 0.1534 0.2356
2.0 0.296 0.1847 0.2026 0.2449 0.2934
4.0 0.173 0.2005 0.2024 0.3810 0.3891
8.0 0.104 0.2045 0.2047 0.4348 0.4346
16.0 0.085 0.2048 0.2049 0.4372 0.4397

The time evolution of the initial state is based on the time-
dependent Hamiltonian in Eq. (1).

A. Nonequilibrium quench dynamics: dependence
on ramp time in the quench protocol

To study the dependence of the ramp time in the quench
protocol, we fix the initial and final Coulomb interaction
Ui, Ur while changing the quench time #,. In our calculation,
we set the initial and final Coulomb interaction as U; = 6.0
and U; = 8.0, where the critical interaction between band
and correlated insulator is U, = 6.8. In Fig. 2, we plot the
nonequilibrium evolution of the charge and spin order param-
eters in the Hamiltonian, Eq. (1), with different quench time
t, =0.0", 1.0, 2.0, 4.0, 8.0, 16.0. The zero temperature
ground state expectation values of §p. and §p, in equilib-
rium with Coulomb interaction U = Uy are represented with
dashed line §p. = 0.205 and §p; = 0.440. The initial order
parameters in equilibrium (t = 0) are §p.(r = 0) = 0.530 and
dps(t = 0) = 0.124, respectively.

In the case with quench time #, = 0.0" in Fig. 2(a) (the
quench protocol is defined via a Heaviside step function),
the two order parameters are intertwined with each other.
The charge order parameter as a function of time oscillates
around §p, = 0.2197 (long-time averaged value), which is
close to the equilibrium value at zero temperature, 8,007 =
0.205. By contrast, the spin order parameter oscillates about
6ps = 0.1916, which is far from the equilibrium value at

0.5

zero temperature §p;7 = 0.440. By using the definition of
effective temperature Eq. (4), we find T = 0.632. If the
equilibrium calculation is done with U = Uy at temperature
T = T = 0.632, we have the charge and spin order parame-
ter at the thermalized state 80" = 0.1622 and §p!" = 0.0763,
which are represented as arrows in the plot. By defining the
oscillating amplitude as the difference between the maxi-
mum and the minimum of the order parameter after ¢ > 20,
we find the amplitude of charge order parameter is about
A(8p.) = 0.092, which is smaller than the spin order parame-
ter A(8p;) = 0.241.

In Fig. 2(b), we plot the time evolution of the two order
parameters with a different quench time, f, = 1.0. In the
quenching time regime t < t,, a monotonically increasing
(decreasing) behavior of spin order (charge order) parameter
is observed. Compared to the case with 7, = 0.07, the oscil-
lation amplitude of the spin and charge order parameter are
larger with A(6p.) = 0.134 and A(Sps) ~ 0.283. The effec-
tive temperature is Top = 0.420. The order parameters at the
effective temperature are 8" = 0.1703 and 8p!" = 0.1534,
and are indicated by the arrows on the right side of the figure.
In Figs. 2(c)-2(f), the quench protocol is changed by in-
creasing the quenching time as #, = 2.0, 4.0, 8.0, and 16.0.
Upon further increasing the quench time, the oscillation am-
plitude will decrease and the oscillation center (long-time
averaged value) moves closer to the one with zero tempera-
ture in equilibrium. The calculated effective temperatures are
Tor = 0.296, 0.173, 0.104, and 0.085, from which we con-
clude that the effective temperature decreases with increasing
quench time, 1.

Finally, we summarize the values of Tit, 8 0., § ps and & ,oih,
) péh for different quench times #, in Table I. From the table,
we find that the charge order parameter slightly changes with
temperature, while the spin order parameter changes signif-
icantly. The phenomenon can be understood by calculating
the charge gap A, = 1.7547 and spin gap A; = 0.4132 of the
system, where the corresponding changes are smaller for a
larger gap. Furthermore, the thermalized value of the charge
and spin order parameters are equal to the long-time averaged
value in nonequilibrium, only when the 7, > 4.0.

The systematic quench time behavior can be understood as
longer quench times #, making the Hubbard U increase closer
to an adiabatic evolution, and therefore inducing less heating.
By checking the difference of the thermal values (arrows) and
the expectation values at zero temperature (dashed line), we
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FIG. 3. Time evolution of charge and spin order parameter §p. (a) and §p, (b) for Coulomb quenches from U; = 6.5 to Uy =
6.7,6.9, ...,7.5, (c) Comparison of . and §p, for quench from U; = 6.5 to Uy = 7.5.
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TABLE II. Oscillation amplitude of the charge and spin order
parameters for quench protocols with different final U;. The ramp
time #, and initial interaction value Uj; are kept fixed.

Iy Ui Us A(Spc) A(8py)
8.0 6.5 6.7 0.005 0.007
8.0 6.5 6.9 0.010 0.010
8.0 6.5 7.1 0.013 0.014
8.0 6.5 7.3 0.017 0.031
8.0 6.5 7.5 0.021 0.058

find that the spin order parameter 6, is much more sensitive
to the effective temperature (greater for smaller #,) than the
charge order parameter §p,.

B. Nonequilibrium quench dynamics near
the critical Coulomb interaction

For the case with mass imbalance n =V, /V; = 0.75 and
crystal field A = 3.0, the critical Coulomb interaction is U, =
6.8 for the transition from band insulator to correlated insula-
tor in equilibrium. To investigate the quench dynamics around
the critical Coulomb interaction, we set the initial Coulomb
interaction as U; = 6.5 and the final Coulomb interaction to
be near the critical value, U. = 6.8. The quenching time is
fixed at f;, = 8.0 while the slope for the quench protocol is
(Ur — Uy)/1, is different for each specific Us.

In Figs. 3(a) and 3(b), we plot the time evolu-
tion of the charge and spin order parameters after a
Coulomb interaction quench from U; = 6.5 to different Uy =
6.7, 6.9, 7.1, 7.3, and 7.5. The charge and spin order pa-
rameters are §p. = 0.448 and §p; = 0.178 for the initially
prepared equilibrium system with U; = 6.5. In the time range
0 <t <1,, the charge (spin) order parameter decreases (in-
creases) monotonically, which can be attributed to the increase
of the Coulomb interaction. Over the time range ¢ > f,, the
two order parameters oscillate with different amplitudes. The
amplitudes are summarized in Table II, which are 0.005,
0.010, 0.013, 0.017, and 0.021 for charge order parameters
and 0.007, 0.010, 0.014, 0.031, and 0.058 for spin order pa-
rameters. To compare the two order parameters, we plot the
two in Fig. 3(c) with a final Coulomb interaction of Uy = 7.5.

The only crossing of the two order parameters is observed
at time ¢ ~ 5.69, followed by approximately periodic oscil-
lation.

C. Nonequilibrium quench dynamics: quench from weak to
strong Coulomb interaction limit

In order to observe the oscillating behavior clearly, we
set the final Coulomb interaction deep in the strong inter-
action regime. In Fig. 4(a), we plot the charge and spin
order parameter for the Coulomb interaction quench from
Ui =2.0,U; =8.0. In the region t > t,, the charge order
parameter is oscillating around its equilibrium value ép, =
0.205, while the spin order parameter is oscillating around
3ps = 0.330, which deviate from its equilibrium value at zero
temperature §p; = 0.438. The effective temperature at t > ¢,
is Teee = 0.215, where the order parameters are § pg.h = 0.201
and §p!" = 0.385.

To illustrate the behavior of the charge and spin order pa-
rameters in the strong Coulomb interaction regime following
a quench, we plot the spin-order parameter for the Coulomb
interactions Ur = 8.0, 12.0, 16.0, and 20.0 while fixing the
initial Coulomb interaction as U; = 2.0 in Figs. 4(b) and
4(c). Apparently, the oscillation frequency of the charge order
parameter increases monotonically with Coulomb interaction
Us. Conversely, the oscillation frequency of the spin order
parameter decrease with the Coulomb interaction. We have
checked that the oscillating frequency for both charge and spin
order are independent of initial Coulomb interaction U; and
quenching time ¢, (shown in Appendix Fig. 7).

For the time evolution of the spin order parameter,
it can be understood in the strong Coulomb interaction
limit, where the effective Hamiltonian can be approximately
described as an anisotropic XXZ spin model. In the ef-
fective spin Hamiltonian, the behavior is dominated by the
spin excitation with energy scale J.x defined in Eq. (7),
which is in agreement with previous experiments [82]. The
effective Hamiltonian, Eq. (7), is an XXZ model with ex-
change coupling J.. For the final Coulomb interaction Uy =
12.0, 14.0, 16.0, and 20.0, the corresponding exchange
interaction are Jox = 0.333, 0.263, 0.218, and 0.165, re-
spectively. The oscillation periods of the charge density
order parameter are 3.27, 1.15, 0.69, and 0.50 for Ur =

(@) U;=2.0,U;=8.0 (b) U;=2.0

U;=8.00 — 0.6 [(c) U, =20 ' U;=80 ]

Sp, — Up=120 — g0_3 L
08 08 =g V=160 —|
f\/\/\f/\'/ Up=20.0 0.0 f . . =130]
5 / ] 1 ;
Sos s PUVURNEA | &os /V\/L/V\/\N\
g S
g g 0.10 | U;=200 1 1 00 | : :
= @ f b U;=160 1
504 04 H 005 £ ] | @
o) | 19 Time 200 | &o3
0.0 t t t
0.2 02 \/\N/\/\N\MIV\J\/\/\/\MN\N\NWV\AAM/\/V\/\/\/\N b U;=200
0.0 ' X ; ' 0.0 0.0 - . .
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0

Time Time Time

FIG. 4. Time evolution of the charge and spin order parameters §p. and 8o, for the quench protocol with (a) U; = 2.0 — Uy = 8.0,
where the quench time #, = 8.0. The dashed line represents the equilibrium §p. and o, at zero temperature with U = Us. (b) U; = 2.0 —
Ur = 8.0, 12.0, 16.0, and 20.0, and the periods of the charge density order parameter are 3.27, 1.15, 0.69, and 0.50. The inset shows the
oscillation behavior at 195 < ¢t < 200 for Uy = 12, 16, and 20. (¢) U; = 2.0 — Uy = 8.0, 12.0, 16.0, and 20.0, and the periods of the spin
density order parameter are 12.40, 24.32, 43.72, and 63.53.
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TABLE III. Oscillation periods of the charge and spin order pa-
rameters (7¢ and 7°*) in the long-time limit for quench protocols (8)
with quench time 7, = 8.0. The initial Coulomb interaction is fixed as
U; = 6.0. Here, A, A., Ag are the spin, charge and excitation gaps
[Eq. (5)] for the equilibrium Hamiltonian with U = Uy.

Us 2n)T¢  2m)T° A, A. Ap

8.0 1.9205  0.5065  0.4132 1.7547 0.5144
120 54609 02582  0.1892 5.4069 0.2428
160  9.1014  0.1436  0.1000 9.3305 0.1450
200 12560  0.0958  0.0852  13.2892  0.0927

8.0, 12.0, 16.0, and 20.0. The periods of the spin density
order parameter are 12.40, 24.32, 43.72, and 63.53, which
increase monotonically with Coulomb interaction.

Furthermore, to understand the origin of the behavior with
increasing Uy, one can consider a two-site Hubbard model at
half-filling in the strong Coulomb interaction limit, where the
hopping terms are considered as a perturbation. The energy
levels from lowest to highest are the singly occupied singlet
and triplet, and the other two energy levels have a double
occupancy on one of the sites. The oscillations of the spin
order parameter will be determined mainly by the excitation
energy between the singlet and the triplet, which is the ef-
fective Hund’s coupling energy, Jex ~ U~!. By contrast, the
oscillations of the charge order will incorporate the excitation
between singly occupied and doubly occupied states, where
the energy difference will be mainly determined by Coulomb
interaction U. This explains the corresponding monotonically
decreasing and increasing oscillation period trends of the
charge and spin order parameters with increasing Us.

Finally, to qualitatively understand the oscillating behavior
above, we numerically calculate the charge, spin and exci-
tation gaps [Eq. (5)] for the equilibrium Hamiltonian with
U = Us. For the strong Coulomb interaction limit (Uy = 20.0,
for example), the oscillation frequency of charge order is
12.56, which is close to the charge gap 12.2892, and the
oscillation frequency of spin order is 0.0958, which is close to
the excitation gap 0.0927. Similar behaviors are observed for
Ur = 16.0, 12.0, and 8.0, which suggest that energetically
low-lying states are dominating the nonequilibrium dynamics.
The equilibrium spin, charge, and excitation gaps at different
Coulomb interaction Uy are summarized in Table III.

D. Nonequilibrium quench dynamics: quench
from strong to weak Coulomb interaction

In the previous section, we calculated the quench dynamics
while quenching the Coulomb interaction from the weak to
the strong coupling regime, and we found that the oscilla-
tion frequency is dependent on the charge gap (charge order
parameter) and the excitation gap (spin order parameter).
To check the generality of the conclusions obtained above,
we study the quench dynamics from a different direction in
this subsection—from the strong coupling regime to the weak
Coulomb interaction region.

In Fig. 5, we plot the time evolution of the charge and spin
order parameters, while quenching the Coulomb interaction
from U; = 12.0 to Uy = 8.0, 6.0,4.0 with fixed quenching
time 7, = 8.0. The initial state is the ground state of the equi-
librium Hamiltonian with U; = 12.0, where the charge and
spin order parameters are §p, = 0.0465 and §p, = 0.5528.
For the quenching from U; = 12.0 to Ur = 8.0 [Fig. 5(a)],
this is an in phase (Mott phase) quench. The time evolution
monotonically increase (decrease) for spin (charge) order pa-
rameters, followed by an oscillation.

Focusing on the long-time oscillation behavior, the approx-
imate oscillation frequency of charge and spin order parameter
are w, = 2 /T¢ = 1.8845 (T¢ = 3.3325)and wy, = 27 /T° =
0.5050 (T* = 12.4344), respectively. The excitation, charge
and spin gaps for U = 8.0 are Ag = 0.5144, A, = 1.7547
and A; = 0.4132, respectively. Upon decreasing the final
Coulomb interaction to Uy = 6.0, 4.0, a crossing point is ob-
served at short times, followed by oscillating parameters. The
oscillation of the spin order parameters is clear, while the
oscillation behavior of the charge order parameter is irregular.

By comparing the long-time oscillation of charge and
spin order, the oscillation of charge is approximately the
same frequency as the spin order. This can be explained
because the equilibrium charge gap and excitation gap are
approximately equal to each other. The oscillating frequency
for U =12.0 > U = 6.0 is w; =27 /T° =1.2182 (T° =
5.1550). The excitation, charge and spin gaps are Ap =
1.2265, A, = 1.4926, and Ay = 1.2282, respectively. The os-
cillating frequency for U; = 12.0 — Uy = 4.0 is w; = 2.6556
(T* = 2.3660). The excitation, charge and spin gaps are Ap =
2.6511, A, = 2.6645, and Ay = 2.7137, respectively.

In summary, with decreasing the final Coulomb interaction
in the band insulating region, we find that both the charge
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FIG. 5. Time evolution of charge and spin order parameter §p, and & p, for Coulomb quenches from U; = 12.0 to Uy = 8.0, 6.0, and 4.0.

This goes from strong coupling to weak coupling.
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and spin order oscillation decrease, and the frequency of the
two are very close to each other. This can be explained by the
charge and the excitation gap of the final Hamiltonian.

V. CONCLUSION

In this paper, the exact diagonalization (time dependent
Lanczos) method is used to study the quench dynamics in
the one-dimensional ionized Hubbard model with mass im-
balance. To check the validity of ED used in studying the
system, we first studied the phase diagram in equilibrium
and compared it with the phase diagram calculated using
DMRG and Hartree-Fock mean-field methods. Qualitatively,
the ED calculation shows that the transition between the band
insulator and correlated insulator is of second order, which is
consistent with DMRG calculations.

The phase diagram in the Coulomb interaction and crystal
field plane U-A is studied. The critical Coulomb interaction
deviate from the DMRG result for a small A < 0.25 region.
The phase diagram in the U-n plane (n is mass imbalance)
is studied. In comparison with DMRG, we find ED works
well for relative large mass imbalance 1 < 0.75. Further-
more, finite-size effects are studied by considering 10-site
and 14-site chains. We find that increasing the number of
sites will slightly improve the agreement with DMRG. In the
nonequilibrium quench dynamics study we choose the mass
imbalance and the crystal field parameters as n = 0.75 and
A = 3.0 in this paper, respectively, where the phase transition
point from band insulator to correlated insulator is U, = 6.8
in equilibrium.

Focusing on the nonequilibrium evolution after a Coulomb
quench, we study the dependence on the quenching time ¢,
for a fixed initial and final Coulomb interaction U; = 6.0 and
Ur = 8.0, where U; = 6.0 is in the band insulating regime
in equilibrium and Uy is situated in the correlated insulating
regime. By inspecting the time evolution of the charge
and spin order parameters, we observe that the two order
parameters exhibit different oscillation behaviors, which
depend on the quenching time. In general, a monotonically
increasing (decreasing) spin (charge) order parameter at short
times followed by an approximate oscillating behavior at
long-times is observed.

In the long-time regime, the order parameters oscillate
around their thermalized equilibrium value, where an effective
temperature is defined. Furthermore, the effective temperature
will decrease monotonically with quenching time for fixed
initial and final Coulomb interaction U; and Uy, where an
approximate adiabatic evolution is observed for very large 1.

Finally, we study the nonequilibrium time evolution in the
parameter regime where U; is in the band insulation region
and Ur is deep in the correlated insulating region (as well
as the opposite initial and final interaction values). We find
that the spin and charge order parameters will oscillate with
time in the long-time regime. The oscillation frequency in
the long-time regime depends only on the final Hamiltonian,
and is independent of the quenching time in the protocol
or the initial Hamiltonian. When the final Hamiltonian is in
the correlated insulating regime, the oscillation frequency of
the charge (spin) order parameter will increase (decrease)
monotonically with increasing Coulomb interaction. By con-
trast, when the final Hamiltonian is in the band insulating
regime, the oscillating frequency of the charge and spin order
parameter will both increase monotonically with decreasing
Coulomb interaction. The observed oscillation behaviors are
quantitatively explained with the charge and excitation gaps
of the final Hamiltonian.

In summary, we studied the nonequilibrium time evolution
of the mass imbalanced ionic Hubbard model driven by a
Coulomb interaction quench. Our results show that the dy-
namical evolution of physical observables exhibit different
behaviors depending on the quench protocol, where the effec-
tive temperature decreases with increasing quench time. When
the final Coulomb interaction strength is situated deep in the
correlated regime, the oscillation period of the spin (charge)
order parameter will increase (decrease) monotonically with
Coulomb interaction strength, which is independent of quench
protocol. Furthermore, when the final Coulomb interaction
strength is situated deep in the band insulating regime, the os-
cillation frequency of the spin and charge order parameter will
both increase monotonically with decreasing Coulomb inter-
action strength. Our results can be tested experimentally in
cold atom optical lattices, and may offer strategies to engineer
the relaxation behavior of interacting quantum many-particle
systems.
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FIG. 6. The initial and final Coulomb interaction are fixed as U; = 6.0 and U; = 8.0. (a) The time evolution of §X in Eq. (A1) are plotted
as a function of time with the quenching time #, = 8.0 and #, = 16.0, respectively. [(b) and (c)] The probability distribution of each Fock basis
for |¢;|* = |(I1W])|* and [(I|W(t))|* are plotted with quenching time 7, = 8.0 (b) and 7, = 16.0 (c), respectively, where |¥/) is the ground
state of equilibrium Hamiltonian with U = U, |W(t)) is the time evolved wave function from nonequilibrium time evolution.
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APPENDIX A: THE EFFECT OF LONG QUENCHING
TIME ON THE SYSTEM STATE

The time evolution of the ground state wave function that
approximates adiabatic evolution under a long quenching time
is studied here. In Figs. 2(e) and 2(f), the quenching time in
protocols are ¢, = 8.0 and #, = 16.0, respectively. The effec-
tive temperature of the systems are T = 0.104, 0.085 (close
to 0 K), where the nonequilibrium ramp process can possibly
be approximated as an adiabatic process.

To characterize the difference between the nonequilibrium
evolution studied in our work and an adiabatic process, we

define a parameter 6X to measure the difference between the
time evolved wave function and the ground state of equilib-
rium Hamiltonian at H, 3, ,

SX() = Y [(WOUNIW@) — (W] |[Daw])), (A
1

where |\I!'£) is the equilibrium ground state wave function
of the final Hamiltonian with U = Uy, |\¥(¢)) corresponds to
nonequilibrium wave function at time ¢, and / labels the i-th
Fock basis state in the many-body Hilbert space.

In Fig. 6(a), the parameter 6X with quenching times
t, = 8.0 and 16.0 are plotted as a function of time. It is ob-
served that the parameter §X decreases monotonically and
tends to approach 0. To further understand the detailed differ-
ence between the two wave functions, we plot the probabilities
of each Fock basis state in Figs. 6(b) and 6(c) for the equilib-
rium wave function |{/ |\I/g )|> and the nonequilibrium wave
function |(I|W(¢))|* at t = 30 with different quenching times
t; = 8.0 and 7, = 16.0, respectively. we find the basis with
highest probability is | |, 1, |, 1, -+, |, 1). By comparing
the time evolved wave function and the ground state of
equilibrium Hamiltonian at H,, , we conclude that the time
evolution of ground state in initial Hamiltonian will converge
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FIG. 8. [(a) and (b)] The charge, spin and excitation gap of the ionic mass imbalanced Hubbard model as a function Coulomb interaction
U. The mass imbalance and the ionic potential are n = 0.75 and A = 3.00. The calculation is done with 10 and 14 sites, respectively. (c) The
Von Neumann block entropy as a function of Coulomb interaction is plotted.
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to the ground state of the final Hamiltonian H;, , for long
quenching time.

APPENDIX B: EFFECTS OF QUENCHING TIME AND
INITIAL COULOMB INTERACTION ON THE
OSCILLATION PERIOD OF THE ORDER PARAMETER

Here we study the effect of quenching time #, on the os-
cillation period of the order parameter of the system under
strong interactions. By setting the initial and final Coulomb
interaction as U; = 2.0 and Ur = 12.0, we plot the time evo-
lution of the charge and spin order parameters with different
quenching times t, = 8.0, 12.0, 16.0, and 20.0 in Figs. 7(a)
and 7(c). By solving Eq. (4), the effective temperatures
are T = 0.345, 0.114, 0.089, and 0.020, respectively. The
oscillation period of the charge density and spin order param-
eters are 7° ~ 1.16 and T* ~ 26.02, which are independent
of the quenching time.

In addition, we study the oscillation behavior of the charge
and spin order parameters by fixing the final Coulomb interac-
tion Uy = 12.0 in the strong Coulomb interaction regime with
quenching time ¢, = 8.0 while changing the initial Coulomb
interaction U; = 2.0, 4.0, 6.0, and 8.0. The two order pa-
rameters as a function of time are plotted in Figs. 7(b) and
7(d). Our numerical results show that the oscillation periods
of the charge density and spin density order parameters are
about 7¢ ~ 1.15 and T° ~ 24.03, which are independent of
the initial Coulomb interaction strength.

APPENDIX C: FINITE-SIZE EFFECTS

To check the finite-size effects in the equilibrium study
of the mass imbalanced ionic Hubbard model, we calculate

the charge, spin and excitation gap of the system for different
Coulomb interactions U. The mass imbalance is n = 0.75, the
ionic potential is A = 3.0. We perform the calculation with 10
sites [Fig. 8(a)] and 14 [Fig. 8(b)] sites as a comparison. As
suggested in previous works, the Von Neumann entropy can
be adopted as a criteria for distinguishing the phase boundary
of a quantum phase transition, where the transition occurs
when the entropy is peaked [61]. The Von Neumann block
entropy is defined as S4 = —Tro4 In o, where A, B is the
block including the first and second half of the chain sites.
04 = Trpo is the partial trace with ¢ = |W,)(W,|. From the
plot of Von Neumann entropy as a function of Coulomb
interaction in Fig. 8(c), we find that except the quantitative
difference between the calculated values with 10 and 14 sites,
the peaked position is approximately the same.

In studying the nonequilibrium quench dynamics, we
calculate the time evolution of the charge and spin order
parameters with 10 sites (Fig. 9), as a comparison with 6
or 14 sites (within our calculation ability). The initial and
final Coulomb interactions are set as U; = 2.0 and Uy = 8.0
with fixed quench time 7, = 0.0 [(a) and (b)] and 8.0 [(c)
and (d)]. In the 7, = 0.0 case, the oscillation amplitude of
the order parameters in long-time regime decreases with in-
creasing system time. The average of the order parameters
in the long-time regime are close to each other, which is
consistent with the diagonal ensemble [2,83]. In the 7, = 8.0
case, the main qualitative features (e.g., oscillation amplitude
and frequency) obtained with 14 sites can be reproduced by a
10-site system, except for a small quantitative difference. With
the two studied cases, we conclude that the results obtained
with a 10-site system are indicative of the behavior in the
thermodynamic limit of large system sizes.
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