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with staggered Coulomb interactions

Zhenyu Cheng,1 Ying Li,1 Hantao Lu,2 Xiang Hu,1 Zhongbing Huang ,3 Gregory A. Fiete ,4,5 and Liang Du 1,*

1College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
2Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and

Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
3Department of Physics, Hubei University, Wuhan 430062, China

4Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 25 November 2023; revised 4 February 2024; accepted 25 April 2024; published 7 May 2024)

Doublon-holon dynamics is investigated in a pumped one-dimensional Hubbard model with a staggered on-
site Coulomb interaction at half-filling. When the system parameters are set to be in the Mott-insulating regime
the equilibrium sublattice density of states exhibits several characteristic peaks, corresponding to the lower and
upper Hubbard bands as well as hybridization bands. We study the linear absorption spectrum and find two main
peaks characterizing the photon frequencies which excite the ground state to an excited state. For a system driven
by a laser pulse with general intensity and frequency, both the energy absorption and the doublon-holon dynamics
exhibit distinct behaviors as a function of laser amplitude and frequency. Single-photon processes are observed
at low laser intensity where the energy is absorbed for resonant laser frequencies. For strong laser intensity
multiphoton-induced dynamics are observed in the system that are confirmed by an evaluation of the Loschmidt
amplitude. The contribution of multiphoton processes to site-resolved double occupancy is also characterized by
the generalized Loschmidt amplitude. The site-resolved doublon-holon dynamics are observed in both the one
and multiphoton processes and the site-resolved behavior is explained within a quasiparticle picture. Our study
suggests strategies to optically engineer the doublon-holon dynamics in one-dimensional strongly correlated
many-body systems.
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I. INTRODUCTION

Nonequilibrium control of quantum states in strongly
correlated systems with optical techniques and its physi-
cal understanding have been attracting attention from the
condensed-matter community in the past decade and remains
challenging [1–4]. Of particular interests are (1) thermaliza-
tion and prethermalization behavior as the system is driven far
from equilibrium [1,5], (2) nonthermal states not accessible
in equilibrium [3,6,7], (3) nonequilibrium control of quantum
phase transitions [2,4,8–11], and (4) disentangling degrees of
freedom in a strongly correlated electronic system [12].

The doublon(doubly occupied states)-holon(emputy states)
dynamics in the driven Hubbard model and its extended ver-
sion in low (one- or two-) dimensional systems have attracted
attention. In the one-dimensional extended Hubbard model,
the doublon-holon pair is long lived and the expected decay
mechanism due to spin excitation is inefficient [13,14]. A
study of the doublon-holon dynamics on the photo-doped
Mott insulator in the above system shows that the nonequilib-
rium system can be described as a generalized Gibbs ensemble
[15]. In the pumped one-dimensional Hubbard model, the
evolution of doubly occupied states (doublons) are dependent
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on the laser frequency [16–18]. Starting from a charge-density
wave band insulator or a spin-density wave Mott insulator,
doublon-holon pairs (exciton) will generate in-gap states in
the optical conductivity [19,20]. On the other hand, in a two-
dimensional Hubbard cluster, the system exhibits Rabi-like
oscillations [21], where the oscillation frequency increases
with the drive amplitude (intensity). In contrast to the one-
dimensional case, the doublon dynamics in the Hubbard
two-leg ladder exhibits weak coupling with magnetic exci-
tations [22]. In addition, impact ionization is observed in a
two-dimensional cluster [23–26] where the double occupancy
rises further after the laser pulse.

The nonequilibrium studies summarized above are focused
on systems with spatial homogeneity in the Hamiltonian. In
such systems, doublons and holons are generated when a
pump light is applied, which leads to an increase in the total
energy of the system. After the passing of the pump light
through the system, the system begins to relax through the
recombination of doublons and holons, where prethermaliza-
tion behavior occurs [15]. By contrast, the nonequilibrium
dynamics in systems without spatial homogeneity (e.g.,
ionic Hubbard model, Hubbard superlattice with a staggered
Coulomb interaction) have received relatively little attention.
For the purpose of simplifying the physical picture and the
analysis in nonequilibrium studies of doulon-holon dynamics,
we focus our attention on the Hubbard superlattice with a
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FIG. 1. An example of a lattice with 10 sites, where the onsite
Coulomb interaction strength is modulated alternatively (staggered)
with Ua != Ub for different sublattices.

staggered Coulomb potential rather than the ionic Hubbard
model where charge-density wave, spin-density wave, and
spontaneous dimerized states [27] could occur and complicate
the analysis.

In this paper we focus on the nonequilibrium dynam-
ics of the Hubbard superlattice with spatially staggered
Coulomb interactions, as shown in Fig. 1. In equilibrium
such a Hubbard superlattice can be experimentally real-
ized in condensed-matter systems with nanoscale spatial
inhomogeneity [28–33], which is characterized as a quasi-
one-dimensional system with alternating atoms with varying
on-site electron correlations and orbital energies. For exam-
ple, the one-dimensional copper-oxide model [34] and the
atomic chains of carbon-transitional-metal compounds [35]
contain this essential physics. The simplest spatially inhomo-
geneous case is where there are two sites in the unit cell with
on-site Coulomb interactions Ua for the A sublattice and Ub
for the B sublattice. For a noninteracting B sublattice, Ub = 0,
and finite Ua > 0 in one dimension, the system exhibits a
correlated-metallic phase with zero spin and zero charge gaps
[32,33] as the particle-hole symmetry is preserved. For a B
sublattice with finite Coulomb interaction strength Ub > 0,
the system is an antiferromagnetic Mott insulator with zero
spin gap and finite charge gap [32]. Besides realizations in
condensed-matter systems, a spatial modulation of the inter-
action has also been reported in 174Yb gas systems [36], where
the Coulomb interaction strengths can be tuned via a Fesh-
bach resonance. The system undergoes a Mott metal-insulator
transition as the Coulomb interaction increases [37–39] in
the infinite-dimensional Bethe lattice, as shown within the
framework of dynamical mean-field theory [40].

In this work, by introducing a spatial inhomogenity with
spatially alternating (staggered) on-site Coulomb interactions,
we study the doublon-holon dynamics as a function of laser
intensity and frequency in the one-dimensional Hubbard su-
perlattice with Ub = 18.0th,Ub = 3.0th [see Eq. (1)], where
the system is a Mott insulator before the pump is applied.
We concentrate our investigation on the light-induced exotic
electronic behavior, particularly as the system is driven into
the far-from-equilibrium regime, where nonlinear phenom-
ena, such as multiphoton processes, manifest. For weak laser
intensity where linear response theory applies, we observe
a site-selective doublon-holon dynamics at laser frequency
h̄! ≈ 3.2th, where the double occupancy of the B sublattice
is enhanced by the laser pulse, while the double occupancy
of the A sublattice remains almost unchanged during and
after the laser pulse. With strong laser intensity, multiphoton
effects are observed, and the site-selected doublon is ob-
served for laser frequency at h̄! = 9.4th, with site A enhanced
substantially while site B remains unchanged, in contrast to
the selective behavior observed at h̄! = 3.2th. This observa-
tion opens the possibility to optically engineer doublon-holon

states through appropriate laser protocol in many-body inter-
acting systems.

Our paper is organized as follows. In Sec. II, we describe
the Hamiltonian of the pumped one-dimensional Hubbard
model with a modulated (staggered) site-dependent Coulomb
interaction and the time-dependent Lanczos method of solu-
tion. In Sec. III, the equilibrium sublattice-resolved density of
states and the linear absorption spectrum are obtained using
exact diagonalization. In Sec. IV, we study the nonequilibrium
dynamics of doublon-holons as a function of laser frequency
and amplitude, and we study the eigenstate spectrum using
the Loschmidt amplitude. In Sec. V, a generalized Loschmidt
amplitude is introduced to exhibit details of the site-resolved
doublon-holon dynamics. Finally, in Sec. VI we present the
main conclusions of the paper.

II. MODEL AND METHOD

In equilibrium the one-dimensional Hubbard superlattice
(A-B sublattice) with particle-hole symmetry is written as
[32,33,41],

H = −th
∑

iσ

(c†
iσ ci+1σ + H.c.)

+
∑

i

Ui

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
iσ (ciσ ) creates (annihilates) a fermionic particle at

site i with spin projection σ and niσ = c†
iσ ciσ for σ =↑,↓.

Here th is the hopping amplitude connecting nearest neighbor
sites and Ui is the site-dependent onsite Coulomb interaction
between ↑ and ↓ spin electrons, which we choose to be
Ui = Ua(Ub) for odd (even) sites in the one-dimensional
chain.

In this paper, we set th = 1 as the energy unit and corre-
spondingly, the unit of time is then the inverse of energy, t−1

h .
The site-specific density of states are defined as

ρα (ω) =
∑

i∈α,σ

∑

φ

|〈φ|c†
iσ |ψ0〉|2δ(ω − Eφ + E0)

+ |〈φ|ciσ |ψ0〉|2δ(ω + Eφ − E0), (2)

where {|φ〉} are the eigenstates of the equilibrium Hamiltonian
in Eq. (1) with respect to energy eigenvalues Eφ , and |ψ0〉 is
the ground state with energy E0. The definition of the linear
absorption spectrum is [18,42–44]

α(ω) = − 1
π

Im〈ψ0| ĵ
1

ω + iη − (H − E0)
ĵ|ψ0〉, (3)

where the broadening factor η is set as η = 1/L, with L the
chain size. The current density operator is defined as

ĵ = ith
∑

iσ

(c†
iσ ci+1,σ − c†

i+1σ ci,σ ). (4)

The equation for linear absorption, Eq. (3), is only accurate in
the low-laser-intensity regime, where linear response theory is
applicable.

We consider a system exposed to an external laser pulse
with vector potential (directed along the chain direction),

A(t ) = A0 exp
[
−(t − tp)2/2t2

d

]
cos[!(t − tp)], (5)
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where A0 is the laser intensity, ! is the laser frequency, and
the laser pulse is peaked at tp, with td characterizing the
duration time (pulse width) of light. We set tp = 8.0, td = 2.0
in the following numerical calculations. The time-dependent
Hamiltonian is written using the Peierls substitution,

H (t ) = −th
∑

iσ

{exp[iA(t )]c†
iσ ci+1σ + H.c.}

+
∑

i

Ui

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (6)

We choose the chain size to be L = 10 with periodic bound-
ary conditions and a coarse-grained time δt = 0.005t−1

h . In
the following, we restrict ourselves to the case of half-filling
with periodic boundary conditions, where the total number of
electrons N is equal to the number of sites in the chain L.
Furthermore, we assume the total magnetization in the system
vanishes, which means the number of up-spin electrons N↑ is
equal to the down-spin electrons N↓.

The exact diagonalization method (a standard Lanczos pro-
cedure) is employed to numerically calculate the ground state
of the Hamiltonian at time t = 0−, where the laser pulse is
not yet applied to the system. The ground state is used as
an initial state for the time-dependent Schrödinger equation,
i∂t |,(t )〉 = H (t )|,(t )〉. The time evolution is implemented
step by step based on the time-dependent Lanczos method
[16,42,45–47],

|,(t + δt )〉 ≈ e−iH (t )δt |,(t )〉 ≈
M∑

l=1

e−iεl δt |.l〉〈.l |,(t )〉,

where εl (.l ) are the eigenvalues (eigenvectors) of the tridiag-
onal matrix generated by Lanczos iteration with M ! 100. (In
general, the desired M for achieving a given accuracy depends
on the setups and chosen time step size [48].) We set the time
step size to be δt = 0.005t−1

h in our calculation of the time
evolution. The physical observables are computed as

〈O(t )〉 = 〈,(t )|O|,(t )〉. (7)

For the case of high laser intensity, multiphoton processes
appear or even dominate the optical excitations in the system.
To validate the multiphoton processes and provide more de-
tails on the double-holon dynamics, the Loschmidt amplitude
is used to calculate the spectral density [21,24,49],

L(ω, t ) =
∑

n

|〈En|,(t )〉|2δ[ω − (En − Eg)], (8)

where |En〉 and En are the eigenstates and eigenenergies (Eg
is the many-body ground-state energy) of the unperturbed
Hamiltonian (after the pulse Hamiltonian has decayed away)
and |,(t )〉 is the time evolved state at time t . Note that the
eigenstate spectrum remains unchanged as a function of time
after the pump pulse has decayed, because for these times
H (t ) = H (0), and as a result |〈En|,(t )〉| is unchanged.

III. DENSITY OF STATES AND LINEAR
ABSORPTION SPECTRUM

In this section, we focus our attention on the Hubbard
superlattice in the Mott-insulating phase with finite charge
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FIG. 2. Sublattice-resolved density of states for the Hubbard
superlattice with fixed site-dependent Coulomb interaction strength
Ub = 3.0 and Ua = 18.0. (a) The sublattice-resolved density of states
in equilibrium. (b) The linear absorption spectrum as a function of
frequency calculated using Eq. (3), where linear response theory
applies. The broadening factor is set to η = 0.1 for both the density
of states and the linear absorption spectrum.

gap and zero spin gap [32], where the system parameters are
Ua = 18.0 and Ub = 3.0 (measured in units of th). In Fig. 2(a),
we plot the sublattice-resolved density of states in Eq. (2)
at zero temperature using the Lanczos method. Evidently,
the particle-hole symmetries are observed for both A and
B sublattices, with each site singly occupied (half-filling).
The energy gap at the Fermi energy (EF = 0.0) confirms
that the system is an insulator. Note the density of states
exhibits four peaks for each sublattice. For the A sublattice,
we observe the lower and upper Hubbard band are located
approximately at ±Ua/2 = ±9.0 and there are two hybridiza-
tion bands around ±Ub/2 = ±1.5. In contrast, the upper and
lower Hubbard band for the B sublattice are located approx-
imately at ±Ub/2 = ±1.5 with tiny hybridization bands at
±Ua/2 = ±9.0.

To study the effect of a laser drive on the equilibrium
system (taking it out of equilibrium), we first study the energy
absorption of the superlattice system at low laser intensity
where linear response theory applies. In Fig. 2(b), the linear
absorption spectrum α(ω) with 0.0 ! ω ! 20.0 is calculated
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using Eq. (3), where Fermi’s golden rule applies [26]. The
positions of the peaks in the linear absorption spectrum (one-
photon excited states) are ω ≈ 3.2, 11.4 (two peaks at ω ≈
11.0, 11.5 are merged into a single peak). The peak at ω ≈ 3.2
corresponds to the energy difference between the lower Hub-
bard band of the B sublattice and the upper hybridization peak
of the A sublattice or, inversely, from lower hybridization peak
of A sublattice to the upper Hubbard band of B sublattice.
The peak at ω ≈ 11.4 corresponds to the energy difference
between the lower Hubbard band of the B sublattice and
the upper Hubbard band of the A sublattice or, inversely,
from lower Hubbard band of the A sublattice to the upper
Hubbard band of the B sublattice. The physical picture can
be clearly understood as follows: Since the hopping between
the nearest-neighboring A-B sites is dominant, that process
will contribute most to the optical excitation. In contrast,
the next-nearest-neighbor A-A or B-B hopping, which is a
second-order process (compared with the nearest-neighbor
A-B first-order hopping process), is weaker.

IV. NONEQUILIBRIUM DRIVEN BEHAVIOR
IN THE MOTT INSULATING REGIME

To gain an overall picture of photon absorption in the
system, we plot the energy following the pulse (t > 15.0)
as a function of laser frequency ! and laser intensity A0 in
Fig. 3(a). Note the energy remains unchanged after the laser
pulse has passed since the time evolution operator is unitary
(no energy is being added or removed from the system). A lin-
ear response behavior is observed for small laser intensity for
the one-photon resonance frequencies ! ≈ 3.2, 11.4, which
were clarified previously by the linear absorption spectrum
in Fig. 2(b). To make the linear response regime clear, we
plot the energy as a function of laser intensity with fixed
laser frequency ! = 3.2, 6.0, 9.4, 11.4 in Fig. 3(b). The total
energy exhibits linear energy absorption in the regime A0 <
0.20 for laser frequencies ! = 3.2, 11.4. In contrast, the total
energy does not change until A0 " 0.2 for laser frequencies
! = 6.0, 9.4, which suggest single-photon absorption is ab-
sent for a lower-intensity laser and multiphoton excitation
occurs for higher laser intensity.

To provide more details of the optical excitation process,
we focus our attention on the nonequilibrium evolution of
the total energy and double occupancy of the system. The
time-dependent energy as a function of laser frequency is
plotted in Figs. 4(a1), 4(b1), 4(c1), and 4(d1), where the
laser intensities are set as A0 = 0.1, 0.2, 0.6, 1.0, respectively.
The time evolution of the site-resolved double occupancy is
plotted in Figs. 4(a2) and 4(a3) for laser intensity A0 = 0.1,
Figs. 4(b2) and 4(b3) for A0 = 0.2, Figs. 4(c2) and 4(c3) for
A0 = 0.6, and Figs. 4(d2) and 4(d3) for A0 = 1.0.

For A0 = 0.1 in the linear response regime, the photon
energy is absorbed at frequency ! = 11.4 and a small energy
absorption is observed at frequency ! = 3.2, which is consis-
tent with the equilibrium calculation of the linear absorption
spectrum in Fig. 2(b). By inspecting the site-resolved double
occupancy as a function of time and laser frequency, we find
that an increase of double occupancy on both the A site and
the B site at frequency ! = 11.4 will contribute to the total
energy absorption, while for laser frequency ! = 3.2, the
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FIG. 3. The energy absorbed following the laser pulse for the
Hubbard superlattice with fixed site-dependent Coulomb interaction
strength Ub = 3.0 and Ua = 18.0. (a) The after-pulse (t = 15.0 used)
energy as a function of laser frequency and amplitude. (b) The
after-pulse energy as a function of laser amplitude with fixed laser
frequency ! = 3.2, 6.0, 9.4, 11.4.

energy absorption mainly comes from the enhancement of
double occupancy only at the B site.

The behaviors above can be explained with the fol-
lowing physical picture: For laser frequency ! = 11.4, a
single-photon absorption-induced optical excitation will move
electrons from the lower Hubbard band of the A sublattice to
the upper Hubbard band of the B sublattice, which enhances
the double occupancy of the B site. Correspondingly, a photon
can also excite electrons from the lower Hubbard band of the
B sublattice to the upper Hubbard band of the A sublattice,
enhancing the A-site double occupancy simultaneously.

By contrast, the physical picture is different for optical
excitation with laser frequency ! = 3.2. A single-photon pro-
cess will excite electrons from the lower Hubbard band of B
sites to the upper hybridization band of A sites, enhancing
the kinetic energy while not affecting the double occupancy
of the A sites. However, an optical excitation from the lower
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FIG. 4. The time evolution of the total energy and site-resolved double occupancy as a function of frequency ! for the Hubbard superlattice
with fixed site-dependent Coulomb interaction strength Ub = 3.0 and Ua = 18.0. The energy and site-resolved double occupancy is plotted with
each column representing a different laser intensity A0 = 0.1 [(a1)–(a3)], A0 = 0.2 [(b1)–(b3)], A0 = 0.6 [(c1)–(c3)], and A0 = 1.0 [(d1)–(d3)].

hybridization A sites to the upper Hubbard bands of the B sub-
lattice will enhance the double occupancy of the B sites. As
a result, the system will exhibit site-selective doublon-holon
dynamics at ! = 3.2 which results from a single-photon ex-
citation. Further increasing the laser intensity to A0 = 0.2 will
not introduce new physics, except it enhances the effects ob-
served with A0 = 0.1, indicating that A0 = 0.2 is still situated
in the linear response region of optical excitation.

Increasing the laser intensity to A0 = 0.6, besides the en-
hancement of energy absorption at ! = 3.2, 11.4 observed
before, results in energy absorption at laser frequencies
! = 9.4, 6.0, 1.5 respectively. The extra absorption frequen-
cies can be explained by multiphoton absorption processes,
which indicate that A0 = 0.6 is out of the linear re-
sponse regime. For ! = 6.0, 1.5, the double-photon processes
correspond to the excitation of single-photon process of
! = 11.4, 3.2, respectively (as the frequencies are roughly
doubled). However, the two-photon process for ! = 9.4 is
different from the other two frequencies, since we do not
have an linear absorption peak at laser frequency ! ≈ 18.8
in Fig. 2(b).

For ! = 9.4, an apparent enhancement of double occu-
pancy is observed for the A site in Fig. 4(c2) while not for
the B site in Fig. 4(c3). The short-time process is due to an

excitation from the lower Hubbard band of the A sublattice to
the upper Hubbard band of the B sublattice, which enhances
the double occupancy of the B sites. At subsequent times,
a quasiparticle is further excited to the upper Hubbard of
the A sublattice, which results in a reduction of the double
occupancy of the B sites and an increase of the A sites [see
also Figs. 5(c1) and 5(c2)]. Thus, the double occupancy of the
A sites is enhanced while the B sites do not change in the long-
time regime (which is induced by the two-photon process in
the relative long-time regime). Further increasing the laser in-
tensity to A0 = 1.0 will enhance the observed doublon-holon
dynamics of A0 = 0.6, and a triple-photon absorption is ob-
served at ! = 6.5 (confirmed with the Loschmidt amplitude,
not shown). In summary, a clear frequency selection behav-
ior is observed from the energy absorption and site-resolved
double occupancy enhancement. The quasiparticle picture for
the selective dynamics can be different for different pump
frequencies.

To make the laser frequency selection in the dynamical be-
havior more clear, we plot the site-resolved double occupation
as a function of time with different laser intensities in Fig. 5,
with the Loschmidt amplitude (see also Sec. V) as a function
of ω plotted in the third row. For laser frequency ! = 3.2,
the double occupancy of the A site remains nearly unchanged
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FIG. 5. The time evolution of site-dependent double occupancy and the Loschmidt amplitude for the Hubbard superlattice with fixed
site-dependent Coulomb interaction strength Ub = 3.0 and Ua = 18.0 for different laser amplitudes A0 and frequency !. [(a1)–(a3)] ! = 3.2,
[(b1)–(b3)] ! = 6.0, [(c1)–(c3)] ! = 9.4, and [(d1)–(d3)] ! = 11.4, respectively. The broadening factor is set as η = 0.1 for the Loschmidt
amplitude.

while the B site is significantly enhanced with increased laser
intensity. For laser frequency ! = 8.0 (not shown), the double
occupancy of both the A and B sites are unchanged with
light. The physics can be explained using the quasiparticle
picture of photonic excitation in Ref. [24]. For laser frequency
! = 11.40, the double occupancy of both A sites and B sites
are strongly enhanced. For laser frequency ! = 6.0, we find
that the double occupancy does not change for small laser in-
tensity A0 = 0.05, 0.10, 0.20, while for A0 = 0.60, 1.00, the
double occupancy of both A and B sites increase in a similar
fashion, which can be explained as multiphoton processes.
The multiphoton processes can be identified as double-photon
processes by looking at the Loschmidt amplitude, peaking
at 2!, 4!, 6!. Further, the oscillation frequency of double
occupancy at long-time regime is independent of the laser
intensity, which is different from the Rabi-like behavior (os-
cillation frequency increase with laser intensity) observed in
the pumped two-dimensional Hubbard cluster [21]. At a laser
frequency ! = 9.4, the characterized two-photon process is
a one-photon process from the lower Hubbard band of A
sites to the upper Hubbard band of B sites, with a subsequent
excitation to upper Hubbard band of A sites.

V. THE GENERALIZED LOSCHMIDT AMPLITUDE

In the context of site-selective doublon-holon dynamics, it
is important to know which energies will contribute signifi-
cantly to the double occupancy enhancement of the A sites
or the B sites after the laser pulse has passed (t = 40.0 used
here). To this end, we followed previous work [26] and defined

the generalized Loschmidt amplitude with respect to energy
and a site-resolved double occupancy,

LĤD̂α
(ω, D, t ) =

∑

m,n

〈ψ (t )|En〉〈En|Dm〉〈Dm|ψ (t )〉

× δ(ω − En)δ
(
D − Dα

m

)
, (9)

where D̂α =
∑

i∈α n̂i↑n̂i↓ (α = a, b for the A, B sublattices)
and D̂α|Dm〉 = Dα

m|Dm〉, with |Dm〉 the many-body Fock basis
with double occupancy Dm = Da

m + Db
m. Here |En〉 are energy

eigenstates of the Hamiltonian with eigenvalue En. Due to the
fact that the eigenspectrum and eigenstates of double occu-
pancy are a priori known, a computational cheaper way to
obtain the same information as Eq. (9) is using projectors [26],

LH (ω, P̂m) =
∑

n

〈ψ (t )|En〉〈En|P̂m|ψ (t )〉δ(ω − En), (10)

where P̂m = |Dm〉〈Dm| is the projector operator onto states
with double occupancy, Dm ∈ {0, 1, 2, . . . , N/2}, with N the
number of sites in the one-dimensional chain,

N/2∑

Dm=0

LH (ω, P̂m) = L(ω). (11)

The total double occupancy is expressed as

N/2∑

Dm=0

Dm

∫
dωLH (ω, P̂m) = 〈D̂〉. (12)
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FIG. 6. The double occupancy and generalized Loschmidt amplitude for the Hubbard superlattice with fixed site-dependent Coulomb
interaction strength Ub = 3.0 and Ua = 18.0. These are plotted as a function of energy for different laser frequencies, [(a1) and (a2)] ! = 3.2,
[(b1) and (b2)] ! = 6.0 [(c1) and (c2)] ! = 9.4, and [(d1) and (d2)] ! = 11.4, respectively. The green dashed line is the Loschmidt amplitude,
which is a guide to the eye for the sum rule in Eq. (11). The broadening factor is set as η = 0.1.

The site-resolved double occupancy is

N/2∑

Dm=0

Dα
m

∫
dωLH (ω, P̂m) = 〈D̂α〉, (13)

where α = a, b.
In Fig. 6, we plot the generalized Loschmidt amplitude

as a function laser frequency, where the laser amplitude is
fixed at A0 = 0.60. For laser frequency ! = 3.2, the single-
and double-photon processes will induce a hopping within
the Da = 0 subspace, while the single-photon process will in-
clude the state with one double occupancy in the B sublattice,
and two-photon processes will induce two double occupancies
on the B sites. As a result, the A-site double occupancy does
not change and the B-site double occupancy is enhanced.

For laser frequency ! = 6.0, the single-photon processes
are absent and only double-photon process will enhance the
Da = 1 subspace. Note that a four-photon process is a sequen-
tial two-photon process (one following the other). For laser
frequency ! = 9.4, single-photon processes are absent and
only a double-photon process will enhance the Db = 0 sub-
space and the Da = 1 subspace. Here again the four-photon
process is a sequential two-photon process. For laser fre-
quency ! = 11.4, single-photon processes are observed and
a single-photon will enhance the Db = 1 subspace, and the
Da = 1 subspace. Here yet again the multiphoton processes
are a sequential one-photon process.

VI. CONCLUSION AND DISCUSSION

In this paper, we study the laser driven doubon-holon dy-
namics in the Hubbard superlattice with spatially modulated
(staggered) on site Coulomb interaction. The Coulomb in-
teraction parameters are set as Ua = 18.0 and Ub = 3.0, for
odd and even sites of the one-dimensional chain with periodic
boundary conditions adopted. In equilibrium, the site-resolved
density of states is studied and shown to exhibit four peaks
with lower and upper Hubbard bands and two hybridization

peaks. Within linear response theory, we find two main res-
onance frequencies (! = 3.2 and ! = 11.4) by studying the
linear absorption spectrum.

Focusing on the dynamics of the site-resolved double oc-
cupancy, we study the time evolution of double occupancy
at the A and B sites in the plane of the laser intensity and
frequency. For small laser intensity, the system is in the lin-
ear response regime, where the resonance frequencies are
! = 3.2 and ! = 11.4. At ! = 3.2, the double occupancy of
the A sites remain approximately unchanged, while the double
occupancy of the B sites is largely enhanced. The site-resolved
doublon-holon dynamics observed above is due to the fact that
the upper hybridization band of the A sites is mostly singly
occupied, while the upper Hubbard band of the B sites is
mostly doubly occupied. At ! = 11.4, the double occupancy
of both A sites and B sites are increased simultaneously by
the laser, which is explained as a resonant excitation from the
lower Hubbard band of the A(B) sites to upper the Hubbard
band of the B(A) sites. For higher laser intensity beyond the
linear response regime, multiphoton processes play an impor-
tant role in the doublon-holon dynamics.

At ! = 6.0, the double occupancy of the A and B
sites remain almost unchanged (oscillating around their
equilibrium value at time t = 0.0−) for laser intensity
A0 = 0.05, 0.10, 0.20, while for laser intensity A0 = 0.6, 1.0,
the double occupancy of both A and B sites increase simul-
taneously. We conclude that the double-photon processes at
! = 6.0 for high laser intensity will induce hopping events
observed for single-photon processes around ! = 11.4. Fur-
thermore, at ! = 9.4, the double occupancy of the A sites
is increased significantly while that of the B sites remain
almost unchanged, which is what we observed in site-resolved
doublon-holon dynamics.

The physical picture for ! = 9.4 is different from the one
for ! = 3.2, where one hopping event is introduced to explain
the dynamics. The phenomena for ! = 9.4 is explained with
two subsequent hopping events: the hopping from the lower
Hubbard band of A sites to the upper Hubbard band of B
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sites, followed by a second hopping from the upper Hubbard
band of B sites to the upper Hubbard band of A sites. The
physical pictures described above have been confirmed by di-
rect evaluation of the Loschmidt amplitudes. Taking all these
results together, we can conclude that our theoretical study
suggests strategies to engineer the doublon-holon dynamics
with specified laser parameters.

In summary, the nonequilibrium site-selective doublon-
holon dynamics we study is an analog of the orbital-selective
Mott transition [50–53] in multiband Hubbard models. In
the latter, transport properties in different orbits are selec-
tively influenced by the Coulomb interaction. We are currently
undertaking a comparison between site-selective dynamics
out-of-equilibrium and orbit-selective transport behavior un-
der equilibrium conditions. Additionally, our investigation
reveals site-selective doublon-holon dynamics in the ionic
Hubbard model (not illustrated), where one sublattice expe-
riences enhanced doublon occupancy compared to the other,
accompanied by an increase in charge-density wave order. The
nonequilibrium physics of the ionic Hubbard model will be
addressed in a separate study.
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APPENDIX A: POSITION OF LOWER AND UPPER
HUBBARD BAND OF THE HUBBARD SUPERLATTICE

In the homogeneous one-band Hubbard model at half-
filling, the positions of the lower and upper Hubbard bands

are situated at −U/2 and U/2 in equilibrium, which can be
understood by calculating the lesser Green’s function and
greater Green’s function in the strong Coulomb interaction
limit.

The lesser Green’s function is defined as

G<
↑ (ω) = −

∑

n

〈,g|c†
↑|n〉〈n|c↑|,g〉

ω + iη − (E0 − En)
, (A1)

where E0 and |,g〉 = |↑,↓,↑,↓, . . . 〉 are the ground-state en-
ergy and vector in the subspace (N↑, N↓) and En and |n〉 are the
eigenenergy and eigenvector in the subspace (N↑ − 1, N↓). As
a result, the energy difference E0 − En constitutes the position
of the lower Hubbard band. The greater Green’s function is
defined as

G>
↑ (ω) = +

∑

m

〈,g|c↑|m〉〈m|c†
↑|,g〉

ω + iη − (Em − E0)
, (A2)

where E0 and |,g〉 are the ground-state energy and vector in
the subspace (N↑, N↓) and Em and |m〉 are the eigenenergy
and eigenvector in the subspace (N↑ + 1, N↓). As a result,
the energy difference Em − E0 constitutes the position of the
upper Hubbard band with one more doubly occupied site.

For the half-filled Hubbard superlattice with staggered
Coulomb interactions, its atomic limit Hamiltonian in one unit
cell is written as

Hloc = Ua(na↑ − 1/2)(na↓ − 1/2)

+ Ub(nb↑ − 1/2)(nb↓ − 1/2). (A3)

The ground-state | ↑a,↓b〉 (| ↓a,↑b〉) energy in the (N↑ =
1, N↓ = 1) subspace is −(Ua + Ub)/4. For the A sublattice
(where the newly added or deleted electron is from the A
site), in subspace (N↑ = 0, N↓ = 1), the ground-state energy
is (Ua − Ub)/4, which implies the lower Hubbard band is
situated at −Ua/2. In subspace (N↑ = 2, N↓ = 1), the ground-
state energy is (Ua − Ub)/4, where the upper Hubbard band
is situated at Ua/2. For the B sublattice (where the newly
added or deleted electron is from the B site), at subspace

FIG. 7. Density matrix renormalization group (DMRG) calculations compared against exact diagonalizaton for the Hubbard super-lattice
with fixed site-dependent Coulomb interaction strength Ub = 3.0 and Ua = 18.0, the time evolution of site-dependent double occupancy.
[(a) and (b)] ! = 3.2, [(c) and (d)] ! = 6.0, [(e) and (f)] ! = 9.4, and [(g) and (h)] ! = 11.4 for A sites and B sites, respectively. For DMRG,
open boundary conditions (OBC) and periodic boundary conditions (PBC) are employed, respectively.
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(N↑ = 1, N↓ = 0), the ground-state energy is (Ub − Ua)/4,
where the lower Hubbard band is situated at −Ub/2. In sub-
space (N↑ = 1, N↓ = 2), the ground-state energy is (Ub −
Ua)/4, where the upper Hubbard band is situated at Ub/2.

APPENDIX B: FINITE-SIZE EFFECTS

To determine the finite-size effects in the nonequilibrium
system, we compare our exact diagonalization (10 sites)
results of the pumped one-dimensional Hubbard supperlat-
tice chain with the density matrix renormalization group
(DMRG) theory (32 sites) using Itensor [54,55]. For both
open boundary condition (OBC) and periodic boundary con-
dition (PBC), the DMRG calculations with a 32 site chain
is carried out up to five finite-system sweeps keeping up to

m = 500 states in the equilibrium calculation. The discarded
weight is of order 10−8. In the real-time DMRG calcula-
tion, we choose the time interval as δt = 0.05 and only
one finite-system sweep is executed. The system parameters
are Ua = 18.0,Ub = 3.0, and A0 = 0.6. The laser frequency
is set as ! = 3.2 (single-photon process) in Figs. 7(a) and
7(b), ! = 6.0 (double-photon process) in Figs. 7(c) and 7(d),
! = 9.4 (double-photon process) in Figs. 7(e) and 7(f), and
! = 11.4 (single-photon process) in Figs. 7(g) and 7(h). The
one-dimensional chain with PBC and OBC are employed,
respectively. The double occupancy calculated with DMRG
(32 sites) and exact diagonalization (10 sites) show good
agreement with each other, which indicates that the finite-size
effects on the evolution of double occupancy in this work are
not severe.
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